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Role for β-arrestin in mediating paradoxical β2AR and PAR2

signaling in asthma
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aDuke University School of Nursing, Duke University Medical Center, Durham, NC 27710

bDivision of Biomedical Sciences, University of California, Riverside, CA 92521

Abstract

G protein-coupled receptors (GPCRs) utilize (at least) two signal transduction pathways to elicit

cellular responses including the classic G protein-dependent, and the more recently discovered β-

arrestin-dependent, signaling pathways. In human and murine models of asthma, agonist-

activation of β2-adrenergic receptor (β2AR) or Protease-activated-receptor-2 (PAR2) results in

relief from bronchospasm via airway smooth muscle relaxation. However, chronic activation of

these receptors, leads to pro-inflammatory responses. One plausible explanation underlying the

paradoxical effects of β2AR and PAR2 agonism in asthma is that the beneficial and harmful effects

are associated with distinct signaling pathways. Specifically, G protein-dependent signaling

mediates relaxation of airway smooth muscle, whereas β-arrestin-dependent signaling promotes

inflammation. This review explores the evidence supporting the hypothesis that β-arrestin-

dependent signaling downstream of β2AR and PAR2 is detrimental in asthma and examines the

therapeutic opportunities for selectively targeting this pathway.

INTRODUCTION

Asthma is a chronic inflammatory disease characterized by airway inflammation,

hyperresponsiveness and remodeling [1]. Airway hyperresponsiveness (AHR), a measure of

bronchoconstrictor responsiveness, is associated with debilitating asthma signs and

symptoms such as coughing, wheezing and shortness of breath. Beta-2-adrenergic receptor

(β2-AR) agonist (β-agonist) administration is the mainstay therapy during bronchospastic

episodes, providing significant relief to asthmatics [2]. However, chronic β-agonist therapy

has also been associated with loss of asthma control, worsening of disease and increased

morbidity and mortality (reviewed in [3]). Activation of Protease-activated receptor-2

(PAR2), which promotes bronchorelaxation, has also been explored as a treatment for

asthma. However, similar to the β2-adrenergic receptor (β2AR) paradox, murine studies have
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shown that PAR2 activation can play diametrically opposed roles in allergic asthma

providing both potent bronchorelaxation and increased inflammation [4]. Activation of dual

independent signaling pathways by agonist binding to a single receptor may underlie these

respective paradoxical effects. It is well known that signal transduction at the β2AR and

PAR2 (as well as a multitude of other GPCRs) occurs through classic G-protein-dependent

signaling, as well as via the more recently described β-arrestin-dependent signaling pathway

(Fig. 1) [5,6]. Interestingly, the two pathways are also temporally separable, with β-arrestin

signaling sometimes occurring earlier than the G-protein signaling pathway [7], and other

times exhibiting a delayed and/or more prolonged signal [8]. Consistent with these distinct

signaling pathway characteristics, we and others have shown that β2AR and PAR2 mediate

bronchorelaxation through G protein-dependent signaling [4,9,10] and have accumulated

evidence suggesting that β-arrestin-dependent signaling downstream of these receptors leads

to a pro-inflammatory effect (Fig. 1) [4,11,12]. Because bronchorelaxation and

inflammation are mediated via two independent signaling pathways, there is therapeutic

potential in developing “biased” or “pathway-specific” ligands that preferentially activate or

inhibit one signaling pathway over the other. Substantial murine and initial human data

suggest that preferential activation of G-dependent, and inhibition of β-arrestin-dependent,

signaling downstream of β2AR or PAR2 receptors would promote desirable effects for

asthmatics such as bronchodilation while reducing associated pro-inflammatory effects

(reviewed in [3]). This review examines how the dual signaling pathways activated by

ligand binding at the β2AR and PAR2 give rise to both beneficial and detrimental effects in

asthma and highlights β-arrestin-dependent signaling as the link underlying the parallels

between the two.

β-arrestins

β-arrestins are adaptor proteins that are recruited to GPCRs to promote receptor

desensitization and internalization, but they can also promote G-protein-independent signals,

leading to a diverse array of physiological responses [5,6]. The role for β-arrestins in G

protein-dependent signal termination occurs on several levels. The first characterized role

for β-arrestins was the uncoupling of GPCRs from their cognate heterotrimeric Gα subunit,

leading to a decrease in the responsiveness of the receptor to further agonist stimulation. β-

arrestins can also link receptors to clathrin-coated pits, facilitating their internalization.

Finally, ubiquitination, and thus, degradation of internalized receptors is facilitated by β-

arrestins. In this fashion, β-arrestins are thought to “arrest” the initial G-protein-triggered

signal [13]. Over the last decade, a more extensive role for β-arrestins in GPCR signaling

has become appreciated. β-arrestins can serve as scaffolds for signaling complexes that then

promote G-protein-independent signals. Most of these signals are positive, in that they

facilitate activation of the proteins they scaffold, but there are also examples of β-arrestin-

dependent inhibition of the enzymatic activity of kinases and GTPases [7,14,15]. A common

result of β-arrestin-dependent signaling is cell migration and actin reorganization, as well as

transcription of specific genes not targeted by the G-protein pathway [13,16–18]. In some

cases, these targets of β-arrestin-dependent inhibition are downstream of G-protein signaling

pathways, providing yet another mechanism by which β-arrestins can turn off the G-protein

signal. Both the desensitization and signaling roles for β-arrestins come into play in
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physiological and pathological situations such as regulation of airway responsiveness and

airway inflammation. While loss of β-arrestin-induced desensitization can result in

uncontrolled G-protein signaling events, which can be pathological, other G-protein

signaling events are protective and in the absence of β-arrestins, these protective pathways

are enhanced. Furthermore, β-arrestins can promote inflammatory signals; thus in the

absence of β-arrestin signaling downstream of a number of GPCRs, inflammation is abated

[4,12,19]. This review focuses on two such receptors: β2AR and PAR2, highlighting recent

studies that demonstrate the potential therapeutic advantage of developing biased agonists or

antagonists that target these receptors.

β2AR and PAR2 signaling in asthma

Dual roles for β-arrestin and G protein signaling in mediating β2AR effects in asthma

β2ARs are ubiquitously expressed and modulate a wide range of cellular responses when

activated by epinephrine, their only endogenous ligand [20]. In the airway smooth muscle

(ASM) agonist-activated β2ARs couple to Gαs resulting in stimulation of membrane bound

adenylyl cyclase, cyclic adenosine monophosphate (cAMP) generation and activation of the

cAMP-dependent protein kinase (PKA), which mediates relaxation through phosphorylation

of cross-bridge cycling regulatory proteins. In addition to the Gαs/cAMP second messenger

system, β2ARs also mediate cellular responses via Gαi – induced generation of cGMP and

Ca2+; however, cAMP/PKA is the predominant mechanism underlying ASM relaxation (for

a more complete review see [21] and Pera and Penn this issue). Through activation of β2AR

coupling to Gas, beta-agonists oppose airway smooth muscle (ASM) constriction and inhibit

the release of pro-contractile agents, chiefly vagally-released acetylcholine (reviewed in

[21,22]). We have shown using multiple methods (in vitro, ex vivo and in vivo) that β-

arrestin-2 constrains β2AR-mediated G protein-dependent ASM relaxation [9] making β-

arrestin-2 inhibition an attractive therapeutic strategy in asthma irrespective of its pro-

inflammatory role.

Shenoy et al. were the first to show that β2ARs can utilize a G-protein-independent, β-

arrestin-dependent signaling pathway to exert physiological effects [23]. Since then, several

pieces of evidence, when taken together, suggest that β2AR-mediated β-arrestin-dependent

signaling is pro-inflammatory in asthma. Firstly, β-arrestins have been implicated as

regulators of inflammation in a variety of diseases including asthma, sepsis, rheumatoid

arthritis, inflammatory bowel disease, multiple sclerosis and atherosclerosis [24,25]. Lung β-

arrestin expression is up-regulated in murine models of asthma [10] and is similarly

dynamically regulated in other inflammatory diseases [24]. Results from multiple murine

studies have shown that the asthma phenotype is strikingly diminished in β-arrestin-2−/−

mice irrespective of the method of induction of allergic airway disease [4,12,19]. Although

development of the asthma phenotype is likely mediated by multiple GPCRs that signal

through the β-arrestin-dependent pathway, β2ARs are distinguished as being extremely

important. Results from murine studies have shown that the asthma phenotype is

significantly suppressed when either β2AR expression or epinephrine synthesis is genetically

abrogated [26,27]. Furthermore, blockade of β2AR with select β2AR antagonists (nadolol)

can significantly diminish asthma severity in murine models [26,28] and reduce airway
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sensitivity to methacholine in human trials [29]. Finally, chronic dosing with β-agonists can

restore the asthma phenotype in mice that lack epinephrine or exacerbate it in mice that are

replete with epinephrine [10,27,30] strongly suggesting that the deleterious effects

associated with chronic β2AR agonism in asthma result from β-arrestin-2-dependent

signaling.

Like β2ARs, β-arrestin proteins are also widely expressed. Thus, presently it is unknown in

which cell type(s) β2AR-mediated β-arrestin-dependent signaling contributes to the

development of asthma. Recent evidence points to airway epithelial cells as playing a key

role [31]. Airway epithelial expression of membrane-bound β2AR and cytosolic β-arrestin-2

is significantly elevated relative to that in ASM cells [9,10] or T lymphocytes (unpublished

data), two additional cell types that also figure prominently in asthma pathogenesis, and the

magnitude of impairment of the mucin phenotype in β2AR−/− mice is noticeably greater than

that of the inflammatory cell or AHR phenotypes [11]. However, data from β-arrestin-2−/−

bone marrow transplant chimeric mice suggest that βarr-mediated signal transduction in

hematopoietic cells, in addition to that in lung structural cells, is required for full

development of the asthma phenotype [19]. Consistent with this notion, both PAR2- and C-

C chemokine receptor 4 (CCR4)-mediated inflammatory cell chemotaxis is β-arrestin-

dependent [4,12] in murine asthma models.

Dual roles for β-arrestin and G-protein signaling in mediating PAR2 effects in asthma

PAR2 is widely expressed on inflammatory cells, airway epithelium, smooth muscle and

vascular endothelium, where it is activated by serine proteases that cleave the extracellular

N-terminus to unveil a tethered ligand (human: SLIGKV/mouse: SLIGRL)[32,33]. This

tethered ligand then binds to and activates the receptor, triggering downstream signaling

events. Recently, high-affinity and stable agonists, such as 2-furoyl-LIGRL-O (aka 2fAP),

have been developed and used both in vivo and in vitro to activate PAR2 [34–36]. Although

PAR2 has been implicated in a number of inflammatory disorders, and has been heavily

investigated as a putative therapeutic target for asthma, the nature of its involvement

remains highly controversial. In favor of a protective role for PAR2 in the airway, PAR2
−/−

mice demonstrate heightened bronchial smooth muscle cell contraction and airway

constriction, and administration of a PAR2 peptide agonist promotes smooth muscle

relaxation in isolated bronchioles and abrogates LPS-mediated inflammation [32,37,38]. In

contrast, in an OVA-induced model of airway inflammation, cytokine production and

infiltration of leukocytes into the bronchioles is impaired in PAR2
−/− mice, suggesting a pro-

inflammatory role for PAR2 [39–42], and intranasal administration of SLIGRL or 2fAP

exacerbates these effects [4,43,44].

Recent studies have provided a plausible answer to this conundrum of the PAR2 role in

asthma. First, cytoskeletal reorganization and chemotaxis, which are the main cellular

processes underlying the pro-inflammatory effects of PAR2, do not require Gαq/Ca2+

signaling, but rather utilize β-arrestins [7,14,45,46]. β-arrestins can signal to various actin

assembly pathways to promote chemotaxis, but a major player in PAR2/β-arrestin signaling

is the actin filament severing protein, cofilin [7,47]. Conversely, other studies have

demonstrated that PAR2-induced smooth muscle relaxation, which initiates the protective
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effects in the airway, is mediated by prostaglandin E2 (PGE2), derived from epithelial cells.

PGE2 production requires Gαq-induced mobilization of intracellular Ca2+, activation of

PI3K and phosphorylation of Akt (which leads to release of PGE2), and nuclear ERK1/2

activation (which leads to expression of cyclooxygenase-1 and -2) [37,48]. Solidifying the

importance of the PAR2/β-arrestin signaling axis to inflammation in a modified mouse

OVA-induced asthma model are the observations that PAR2-induced recruitment of

leukocytes to the airways, mucus production and cytokine release are abolished in β-

arrestin-2−/− mice, while PGE2 release and smooth muscle relaxation remain intact [4].

These studies suggest that two different signaling pathways may account for the contrasting

effects of PAR2: β-arrestin-dependent leukocyte chemotaxis and Gαq-dependent PGE2

production.

Just as β2ARs are ubiquitously expressed, so too is PAR2, being found in the airway

epithelium as well as the invading leukocytes (neutrophils, eosinophils, lymphocytes and

macrophages) [37,49–51]. The protective effects of PAR2 have been shown to be

epithelium-dependent, as PGE2 production and smooth muscle relaxation in bronchiolar

rings in response to PAR2 agonists is abolished when the epithelial cells are removed

[48,51]. PAR2-induced inflammation in mice is significantly reduced when wild type mice

are transplanted with PAR2
−/− bone marrow, suggesting a crucial role for PAR2 expressed

on the infiltrating leukocytes [4]. However, PAR2
−/− mice transplanted with wild type bone

marrow also showed reduced leukocyte infiltration, pointing to a role of epithelial PAR2 in

the progression of inflammation as well as the protective PGE2 release. Together these data

suggest that β-arrestins expressed within the structural and epithelial cells of the lungs, as

well as invading leukocytes, contribute to the inflammatory responses during asthma.

Therapeutic Opportunities

Therapeutic targeting of GPCRs has, until very recently, been focused entirely on

modulation of responses thought to be mediated by G protein-dependent signaling pathways.

With the discovery that GPCRs also utilize β-arrestin-dependent signaling to cause

physiological (and pathophysiological) effects, comes the opportunity to therapeutically

regulate a second signaling pathway. Specifically, the now established concept of dual

independent GPCR signaling pathways allows us to consider the possibility that one

signaling pathway can be selectively manipulated to promote events that are therapeutic and

avoid, or even inhibit, those that are harmful. For example, the superior clinical efficacy of

carvedilol over other β-blockers, which inhibit classic G protein adrenoceptor signaling, in

treating heart failure is attributed to carvedilol’s activation of the β-arrestin-dependent

signaling pathway [52]. Whereas β–arrestin-dependent signaling is beneficial in heart

failure, it appears deleterious in several other diseases (cancer, atherosclerosis, chronic

inflammation) including asthma. Substantial murine, and initial human, data suggest that

asthma treatment would be significantly improved by preferential activation of β2AR- and

PAR2–mediated G protein-dependent bronchodilation and/or inhibition of β-arrestin-

dependent pro-inflammatory signaling.

Appreciation for the impact of β-arrestin-dependent signaling on drug discovery is rapidly

emerging in the quest for biased ligands, allosteric receptor modulators and β-arrestin
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inhibitor compounds. Recently developed cell based assays demonstrate that endogenous

GPCR ligands are unbiased, in that they activate both the G protein- and β-arrestin-

dependent signaling pathways at functionally relevant levels (Fig. 2a). Using these assays,

β2AR or PAR2 ligands that favor G signaling over β-arrestin signaling could be found, or

designed, and used to treat asthma (Fig. 2b). As an alternative approach, the signaling

effects of an unbiased ligand could be shifted to favor Gs-dependent signaling over β-

arrestin-dependent signaling by addition of a second drug that, through allosteric

modulation, moves the receptor into a biased signaling conformation (Fig. 2c) (see

Thanawala this issue). Along the same lines, an unbiased ligand could give rise to G protein-

biased signaling if β-arrestin was pharmacologically prevented from participating in signal

transduction (Fig. 2d). Yet another angle by which unbiased ligand-induced G protein-

dependent signaling might be favored over that mediated by β-arrestin is to develop a drug

that inhibits β-arrestin-mediated constraint of G protein-dependent bronchorelaxation (Fig.

2e). Such a drug may allow a normal bronchodilation effect to be generated by a much lower

dose of β-agonist/PAR2-agonist which in turn would only weakly activate the pro-

inflammatory β-arrestin-dependent signaling pathway.

Concluding remarks

Unbiased agonists acting at either β2AR or PAR2 elicit paradoxical responses in asthma.

Evidence suggests that ligand-induced protective bronchodilation and deleterious pro-

inflammation are mediated through separate G protein- and β-arrestin-dependent signaling

pathways, respectively. Selective promotion of the protective signaling pathway or

inhibition of the inflammatory one, will lead to therapeutic advances in the treatment of

asthma.
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Highlights

1. β2AR or PAR2 activation is both protective and pro-inflammatory in asthma

2. β2AR and PAR2 G protein-dependent signaling is protective in asthma

3. β2AR and PAR2 β-arrestin-dependent signaling is pro-inflammatory in asthma

4. Biased activation of PAR2 and β2AR G protein signaling may improve asthma

treatment.

5. Biased inhibition of PAR2 and β2AR β-arrestin signaling may improve asthma

treatment.
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Figure 1. Dual signaling pathways and paradoxical response to bronchodilators
Activation of β2AR or PAR2 leads to both β-arrestin-dependent and G protein-dependent

signaling. Activation of the G protein-dependent pathway leads to bronchorelaxation

whereas activation of the β-arrestin-2-dependent signaling pathway is pro-asthmatic. (β2AR,

beta-2-adrenergic receptor; PAR2, protease-activated-receptor-2; ASM, airway smooth

muscle.
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Figure 2. Impact of β-arrestin-dependent signaling on drug discovery for asthma treatment
a) Unbiased GPCR ligand functionally activates both the G protein- and Barrestin-dependent

signaling pathways leading to bronchorelaxation and inflammation, respectively; b) Biased

ligand favors G signaling over β-arrestin signaling; c) Allosteric modulation of the receptor

facilitates biased signaling even though the ligand is unbiased; d) Intracellular inhibition of

β-arrestin-dependent signaling; e) Low dose unbiased agonist results in normal ASM

relaxation due to intracellular inhibition of β-arrestin-mediated constraint of G protein

signaling. UBL, unbiased ligand; BL, biased ligand; AM, allosteric modulator; GPCR, G

protein-coupled receptor, ASM relax, airway smooth muscle relaxation; Pro-inflam, pro-

inflammatory; βarr, β-arrestin.
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