UCLA

UCLA Electronic Theses and Dissertations

Title
Multiobjective Deep Learning

Permalink
https://escholarship.org/uc/item/3ww3r9m?2

Author
Jayanth, Jayanth

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3ww3r9m2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Multiobjective Deep Learning

A thesis submitted in partial satisfaction
of the requirements for the degree

Master of Science in Computer Science

by

Jayanth

2019

(© Copyright by
Jayanth
2019

ABSTRACT OF THE THESIS
Multiobjective Deep Learning
by

Jayanth
Master of Science in Computer Science
University of California, Los Angeles, 2019
Professor Kai Wei Chang, Chair

Many current challenges in natural language processing and computer vision have to deal
with multiple objectives simultaneously. In this article, we study different methods to solve
such multi-objective problem for CIFAR-100 and SEMEVAL datasets, and compare with
traditional deep learning methods. The multi-output method achieves better results than
training a single neural net from scratch with its own model for each objective. Multi-

objective deep learning with weights achieves comparable results too.

i

The thesis of Jayanth is approved.
George Varghese
Quanquan Gu

Kai Wei Chang, Committee Chair

University of California, Los Angeles

2019

1l

To my family . ..
who—among so many other things—
helped me survive my schizophrenic episodes

and are still supporting me through my recovery

v

TABLE OF CONTENTS

Introduction 1
1.1 Examples 1
1.2 Typical Approaches 2
1.3 Literature Survey 2
Algorithm 3
Dataset 6
3.1 CIFAR-100 6
3.2 SEMEVAL Irony 8

3.2.1 Ironic vs. non-ironic Lo 8

3.2.2 Different types of irony 9
CIFAR-100 Experiment 11
4.1 Motivation for CNN 11
4.2 Baseline Single Neural Net architecture 11
4.3 Multi-output Unbranched Neural Net 17
4.4 Multi-output Branched Neural Net 20
4.5 Weighted Multi-output Neural Net 20
4.6 Multi-output Resnet 28
4.7 Results oo 28
SEMEVAL Irony Experiment 29
5.1 Motivation for recurrent neto 29
5.2 Baseline Single Neural Net architecture 29

v

5.3 Multi-output Branched Neural Net

5.4 Weighted Multi-output Neural Net
5.5 Results
References s,

vi

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

5.2

9.3

5.4

9.5

5.6

5.7

LIST OF FIGURES

Hard parameter sharing for multi-task learning in deep neural networks 4
CIFAR-100 images o e 8
Loss of baseline coarse neural net 12
Accuracy of baseline coarse neural neto 13
Loss of baseline fine neural net 15
Accuracy of baseline fine neural net 16
Model loss of unbranched neural net 19
Last layers of Multi-output Branched Neural Net 20
Fine loss of multi-output branched neural net 21
Coarse loss of multi-output branched neural net 22
Model loss of multi-output branched neural net 23
Accuracy of weighted multi-output branched neural net 24
Coarse Accuracy of weighted multi-output branched neural net 25
Fine Accuracy of weighted multi-output branched neural net 26
Loss of weighted multi-output branched neural net 27
GRU Model 30
Accuracy of baseline coarse neural net L. 31
Loss of baseline coarse neural net 32
Accuracy of baseline fine neural net 33
Loss of baseline fine neural net 34
Multi-output Branched GRU Neural Net 35
Accuracy of GRU multi-output neural net 36

vil

5.8 Loss of GRU multi-output neuralnet 37

5.9 Multi-output Branched GRU Neural Net 38
5.10 Accuracy of GRU weighted multi-output neural net 39
5.11 Loss of GRU weighted multi-output neural net 40

viil

3.1

4.1

4.2

4.3

4.4

5.1

LIST OF TABLES

Superclass and subclass in CIFAR100 dataset 7
Table for single neural network for coarse objective 14
Table for single neural network for fine objective 17
Table for single neural network for fine objective 18
Table of results for CIFAR-100 Experiment 28
Table of results for SEMEVAL Irony Experiment 38

1X

ACKNOWLEDGMENTS

First and foremost, I thank Professor Kai Wei Chang, my advisor, without whose guidance,
support, and encouragement this thesis would never have been completed. I am fortunate
to have worked with him. It has been a pleasure all along working under his guidance. He
consistently steered me in the right the direction whenever I needed it.

I would like to thank Professor George Varghese, who provided me with encouragement and
help in completing my degree despite my struggles with physical and mental health. He had
been a constant support during my tough period of recovery. I am grateful to him for his
guidance, and for serving on my thesis committee.

Next, I would like to thank professor Quanquan Gu for serving on my dissertation committee.
I owe my thanks to my colleagues and lab mates, especially Sudharsan Krish for helping me
come up the idea.

I am grateful to my parents, Prabhat Kumar Jaiswal and Neeta Kumari, and my sibling,
Rathin Kumar, for their love, support, and encouragement during my last year struggle in
graduate school due to mental and physical health challenges.

Thank You,

Jayanth

CHAPTER 1

Introduction

Many current challenges in natural language processing and computer vision have to deal
with multiple objectives simultaneously. Multi-objective optimization or classification in-
volve more than one objective function that are to be minimized or maximized simultane-
ously. In this article, we understand the solution of multiple decision problems on same
dataset. In this introductory chapter, we shall first give some examples. Informally, we shall
understand such problems as mathematical models of decision problems. The remainder
of the thesis is organized as follows. Current Chapter discusses previous approaches used
for multi-objective optimization. Chapter 2 gives detailed explanation about the algorithm.
Chapter 3 gives detailed explanation about the dataset being used. Chapter 4 then dis-
cusses the experiments and the results obtained from it on CIFAR dataset. Chapter 4 then

discusses the experiments and the results obtained from it on SEMEVAL dataset.

1.1 Examples

Let us consider the following examples from different fields:

Economics: Predicting consumer’s demand for various goods is determined by the pro-
cess of maximization of the consumer’s satisfaction derived from those goods, subject to a
constraint based on how much income is available to spend on those goods and on the prices
of those goods. The consumer’s demand for separate goods are the multiple objective in this

use-case.

Vision: Given an image, identify the shape, the color and other such physical properties,

followed by finally identifying the object or object category. Shape, color, physical proper-

1

ties, object category etc each can serve as seperate objective. Similarly, given the image,
identifying what categories the image belongs to each level as separate objective, before
identifying the exact object, reinforcing from the previous labels and improving the final
prediction. For example, CIFAR100 has two separate level of labels - coarse and fine, with

fine being one level deeper than coarse.

Natural Language Processing: Predicting how many retweets and likes a news headline
will receive on Twitter as two separate objectives. Given a text for sentiment analysis,
identifying whether it is subjective or objective, if subjective, whether positive or negative,
whether sentiment is implicit or explicit, whether it is irony or not, each serving as seperate

objective across different levels.

1.2 Typical Approaches

Typical approaches to deal with multi-objectives are to convert all but one into constraints
during problem modeling phase. Another approach is to project it onto R' or other lower
space by giving them weights as hyperparameter and then, optimizing the weighted sum.
Typically, all these approaches simplify the problem consideration, losing information and

requirements along the way.

1.3 Literature Survey

Multiobjective optimization is an active area of research. It is an area of multiple criteria
decision making that is concerned with mathematical optimization problems involving more
than one objective function to be optimized simultaneously. Multi-objective learning has
been used successfully across all applications of machine learning, from natural language

processing [3] and speech recognition [4] to computer vision [5] and drug discovery [6].

CHAPTER 2

Algorithm

Hard parameter sharing is the most commonly used approach to Multi-Task Learning in
neural networks and goes back to [2]. It is generally applied by sharing the hidden layers

between all tasks, while keeping several task-specific output layers.

Hard parameter sharing greatly reduces the risk of overfitting. In fact, [1] showed that
the risk of overfitting the shared parameters is an order N — where N is the number of tasks
— smaller than overfitting the task-specific parameters, i.e. the output layers. This makes
sense intuitively: The more tasks we are learning simultaneously, the more our model has to
find a representation that captures all of the tasks and the less is our chance of overfitting

on our original task.

The algorithm is to decompose the network graph into separate branches. Calculate
loss with respect to each branch end and then, use the loss to calculate weights for gradient
update. The loss can be used directly as weights as in algorithm 1 or as inversely as harmonic

weights as in algorithm 2.

Task Al |Task Bl [Task C| Task-
f 1 f specific

layers
I
Shared
. layers

Figure 2.1: Hard parameter sharing for multi-task learning in deep neural networks

define model:
return branchy, branchs...branch,
predy, preds...pred, = model(X)

for i+ 1 ton do
| loss; = lossfn;(pred;, y;)

end

for i +— 1 ton do

loss;
loss|+lossa+...lossy

o=
end

for 1 < 1 ton do
| optimizer;.step(a;)
end
Algorithm 1: Arithmetic weighted update algorithm
define model:
return branchq, branchs...branch,,
predy, preds...pred, = model(X)

for i < 1 ton do
| loss; = lossfn;(pred;, y;)

end

for : < 1 ton do

1
1 loss;
] 1 T
al F oy T

lossy ' los

1
lossn

end

for i <1 ton do
| optimizer;.step(a;)

end
Algorithm 2: Harmonic weighted update algorithm

CHAPTER 3

Dataset

The multi-objective deep learning method has been applied to two datasets - one in vision,

CIFAR-100 dataset and one in NLP, SEMEVAL Irony dataset.

3.1 CIFAR-100

The CIFAR-100 dataset consists of 60000 32x32 colour images, containing 50000 training
images and 10000 test images. The dataset is divided into five training batches and one test
batch, each with 10000 images. The training batches contain the images in random order,
but some training batches may contain more images from one class than another. This
dataset has 100 classes containing 600 images each. There are 500 training images and 100
testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses.
Each image comes with a ”fine” label (the class to which it belongs) and a ”coarse” label

(the superclass to which it belongs).

Here is the list of classes in the CIFAR-100:

Superclass

aquatic

fish

flowers

food

fruit and vegetables

household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores and herbivores
medium-sized mammals
non-insect invertebrates
people

reptiles

small mammals

trees

vehicles 1

vehicles 2

Classes

mammals beaver, dolphin, otter, seal, whale
aquarium fish, flatfish, ray, shark, trout

orchids, poppies, roses, sunflowers, tulips
containers bottles, bowls, cans, cups, plates
apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach

bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle

hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train

lawn-mower, rocket, streetcar, tank, tractor

Table 3.1: Superclass and subclass in CIFAR100 dataset

=HE" BB~
ERE RS e B~ S
mll VES FEEN
- al” By =
M B & ¥ A

(i < sF A la
B e e 0 e B
i O S R T
=T PR
JdHsREESESEE

Figure 3.1: CIFAR-100 images

¥
i
=
b
-

Here is a sample image containing images in the CIFAR-100.

3.2 SEMEVAL Irony

The SEMEVAL2018 task proposes two different subtasks for the automatic detection of irony
on Twitter. For the first subtask, participants should determine whether a tweet is ironic
or not (by assigning a binary value 0 or 1). For the second subtask, participants are tasked
with distinguishing between non-ironic and ironic tweets, the latter of which are subdivided

into three categories. More details of both subtasks are described below.

3.2.1 Ironic vs. non-ironic

The first subtask is a two-class (or binary) classification task where the system has to predict
whether a tweet is ironic or not. The following sentences present examples of an ironic and

non-ironic tweet, respectively.

e [just love when you test my patience!! #not

e Had no sleep and have got school now #not happy

3.2.2 Different types of irony

The second subtask is a multiclass classification task where the system has to predict one
out of four labels describing i) verbal irony realized through a polarity contrast, ii) verbal
irony without such a polarity contrast (i.e., other verbal irony), iii) descriptions of situational

irony, iv) non-irony. A brief description and example for each label are presented below.

3.2.2.1 Verbal irony by means of a polarity contrast

Instances containing an evaluative expression whose polarity (positive, negative) is inverted

between the literal and the intended evaluation.

Examples:

e I love waking up with migraines #not :’(

e [really love this year’s summer; weeks and weeks of awful weather.

In the above examples, the irony results from a polarity inversion between two evaluations.
In sentence 4 for instance, the literal evaluation ("I really love this year’s summer”) is
positive, while the intended one, which is implied by the context (”weeks and weeks of awful

weather”), is negative.

3.2.2.2 Other verbal irony

Instances which show no polarity contrast between the literal and the intended evaluation,

but are nevertheless ironic.

Examples:

e @someuser Yeah keeping cricket clean, that’s what he wants #Sarcasm

e Human brains disappear every day. Some of them have never even appeared.

9

#brain #humanbrain #Sarcasm

3.2.2.3 Situational irony

Instances describing situational irony, or situations that fail to meet some expectations. As
explained by [7], firefighters who have a fire in their kitchen while they are out to answer a

fire alarm would be a typically ironic situation.

Examples:

e Most of us didn’t focus in the #ADHD lecture. #irony
e Event technology session is having Internet problems. #irony #HSC2024

e Just saw a non-smoking sign in the lobby of a tobacco company #irony

3.2.2.4 Non-ironic

Instances that are clearly not ironic, or which lack context to be sure that they are ironic.

Examples:

e And then my sister should be home from college by time I get home from babysitting.
And it’s payday. THIS IS A GOOD FRIDAY

e Please dont fuck with me when I first wake up #not a morning person!

10

CHAPTER 4

CIFAR-100 Experiment

For CIFAR-100 dataset, the 20 ”coarse” superclass labels serve as first objective while, the
100 "fine” subclass labels serve as the second objective. The aim of the deep learning model

is to predict both coarse and fine label simultaneously as separate objectives.

4.1 Motivation for CNN

Convolutional neural nets have an interesting ability to learn spatial relations from raw
data without prior feature selection or feature engineering. This end to end learning can
be leveraged for classification tasks where the data is image data because it is difficult to
make prior assumptions about features for this sort of data set. We designed a custom 4
layered convolutional neural net for the classification task. Please see Table 1 for performance

comparisons and Table 3 for architecture details.

4.2 Baseline Single Neural Net architecture

All the architecture was kept common across all the experiment. The baseline architecture

was single neural net for each objective separately.

The batch size was kept at 128, the epochs are set at 50, the optimizer is Adam with
learning rate of 3e — 4 with loss as categorical cross entropy. The total parameters are
1,255,988 in the single neural net coarse architecture. It achieved training loss of 0.7338 and
training accuracy of 75.15% with validation loss of 1.3746 and validation accuracy of 59.26%

for coarse predictions.

11

Model loss

4.0 4

— Train
Test

315 -

3.0 -

25 -

Loss

20 4

15 1

10 -

Epoch

Figure 4.1: Loss of baseline coarse neural net

12

ACcuracy

Model accuracy

Epoch

Figure 4.2: Accuracy of baseline coarse neural net

13

Layer (type) Output Shape | Parameters
conv2d; (Conv2D) (None, 32, 32, 32) 896
activation, (Activation) (None, 32, 32, 32) 0
conv2dy (Conv2D) (None, 30, 30, 32) 9248
activationy (Activation) (None, 30, 30, 32) 0
maxpooling2d; (MaxPooling2) | (None, 15, 15, 32) 0
dropout; (Dropout) (None, 15, 15, 32) 0
conv2ds (Conv2D) (None, 15, 15, 64) 18496
activations (Activation) (None, 15, 15, 64) 0
conv2dy (Conv2D) (None, 13, 13, 64) 36928
activation, (Activation) (None, 13, 13, 64) 0
mazxpooling2ds (MaxPooling2) | (None, 6, 6, 64) 0
dropouts (Dropout) (None, 6, 6, 64) 0
flatten; (Flatten) (None, 2304) 0
dense; (Dense) (None, 512) 1180160
activations (Activation) (None, 512) 0
dropouts (Dropout) (None, 512) 0
densey (Dense) (None, 20) 10260
activationg (Activation) (None, 20) 0

Table 4.1: Table for single neural network for coarse objective

The total parameters are 1,297,028 in the single neural net fine architecture. They only
differ in last layer, where there is a dense layer with 512 input and 100 output for fine, 20
output for coarse respectively. It achieved training loss of 15.957 and training accuracy of

1% with validation loss of 15.957 and validation accuracy of 1% for fine predictions.

The average accuracy of Single net models on both the task was around 30%.

14

Loss

41 59521 Model loss

0.007 4

= Train
Test

0.006

0.005

0.004 4

0.003 1 |

0.002

Epoch

Figure 4.3: Loss of baseline fine neural net

15

Model accuracy

0.01030 4

001025

0.01020 4

0.01015 -

0.01010 +

0.01005 4

0.01000 4

— TTEin
Test

Epoch

Figure 4.4: Accuracy of baseline fine neural net

16

Layer (type) Output Shape | Parameters
conv2d; (Conv2D) (None, 32, 32, 32) 896
activation, (Activation) (None, 32, 32, 32) 0
conv2dy (Conv2D) (None, 30, 30, 32) 9248
activationy (Activation) (None, 30, 30, 32) 0
maxpooling2d; (MaxPooling2) | (None, 15, 15, 32) 0
dropout; (Dropout) (None, 15, 15, 32) 0
conv2ds (Conv2D) (None, 15, 15, 64) 18496
activations (Activation) (None, 15, 15, 64) 0
conv2dy (Conv2D) (None, 13, 13, 64) 36928
activation, (Activation) (None, 13, 13, 64) 0
mazxpooling2ds (MaxPooling2) | (None, 6, 6, 64) 0
dropouts (Dropout) (None, 6, 6, 64) 0
flatten; (Flatten) (None, 2304) 0
dense; (Dense) (None, 512) 1180160
activations (Activation) (None, 512) 0
dropouts (Dropout) (None, 512) 0
densey (Dense) (None, 100) 51300
activationg (Activation) (None, 100) 0

Table 4.2: Table for single neural network for fine objective

4.3 Multi-output Unbranched Neural Net

Next, we tried unbranched neural net for both the task. The penultimate layer gave the fine

output, while the last layer gave the coarse output.

The total parameters are 1,299,048 in the above architecture. The layer denses followed
by activationg serves as fine output and the layer denses followed by activation; serves

as coarse output. It achieved training loss of 18.9527 with validation loss of 18.9527 and

17

Layer (type) Output Shape | Parameters
conv2d; (Conv2D) (None, 32, 32, 32) 896
activation, (Activation) (None, 32, 32, 32) 0
conv2dy (Conv2D) (None, 30, 30, 32) 9248
activationy (Activation) (None, 30, 30, 32) 0
maxpooling2d; (MaxPooling2) | (None, 15, 15, 32) 0
dropout; (Dropout) (None, 15, 15, 32) 0
conv2ds (Conv2D) (None, 15, 15, 64) 18496
activations (Activation) (None, 15, 15, 64) 0
conv2dy (Conv2D) (None, 13, 13, 64) 36928
activation, (Activation) (None, 13, 13, 64) 0
mazxpooling2ds (MaxPooling2) | (None, 6, 6, 64) 0
dropouts (Dropout) (None, 6, 6, 64) 0
flatten; (Flatten) (None, 2304) 0
dense; (Dense) (None, 512) 1180160
activations (Activation) (None, 512) 0
dropouts (Dropout) (None, 512) 0
densey (Dense) (None, 100) 51300
activationg (Activation) (None, 100) 0
densesz (Dense) (None, 20) 2020
activation; (Activation) (None, 20) 0

Table 4.3: Table for single neural network for fine objective

validation accuracy of 5% for coarse, 1% for fine leading to average accuracy of 3%. As we
can see, the outputs get stagnant at fixed values of random classification because we used

single neural net without branching, leading to low accuracy.

18

41 89521 Model loss

eS| =111
0.007 - Test

0.006
u
§ 0.005 1

0.004 4

0.003

0.0 0.5 10 15 iﬂ 25 0 is 40
Epoch

Figure 4.5: Model loss of unbranched neural net

19

'

dense_14: Dense

'

dropout_18: Dropout

RN

dense_15: Dense dense_16: Dense

Figure 4.6: Last layers of Multi-output Branched Neural Net

4.4 Multi-output Branched Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into
two layers, that gave the fine output and the coarse output. The loss gave equal weights to

both objective loss with update as arithmetic weighted (page 5).

The total parameters are 1,307,288 in the above architecture. It achieved training loss of
2.2288 with validation loss of 3.4648 and validation accuracy of 59.2% for coarse, 46.13% for
fine leading to average accuracy of 52.665%. As we can see, the average accuracy is 52.66%
for coarse and fine label based single multi-output neural net model, which is more than

single output models by more than 20

4.5 Weighted Multi-output Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into
two layers, that gave the fine output and the coarse output. The loss gave inverse weights

to both objective loss with update as harmonic weighted (page 5).

It achieved training loss of 3.4873 with validation loss of 4.211 and validation accuracy

of 42% for coarse, 32% for fine leading to average accuracy of 37% .

20

Fine label loss

Model loss

— Train
5.0 1 Test

45 -
4.0 1
35
3.0 -
25 -
2.0 -

15 1

Figure 4.7: Fine loss of multi-output branched neural net

Epoch

21

Coarse label loss

Model loss

35

3.0 4

25 -

2.0 -

15 -

10 -

— Train
Test

Epoch

Figure 4.8: Coarse loss of multi-output branched neural net

22

Model loss

— Train
Test

Epoch

Figure 4.9: Model loss of multi-output branched neural net

23

Train/Test Acc

— Train
50 { = Test
.''|,|] .
i
&
3]] .
20 4
I I I I I !
] 10 20 30 40 B0

epoch

Figure 4.10: Accuracy of weighted multi-output branched neural net

24

Coarse Train/Test Acc

=== Train Fesg
53 1 === Test e

aCC
%
Y
[

25 1

20 -

epoch

Figure 4.11: Coarse Accuracy of weighted multi-output branched neural net

25

Fine Train/Test Acc

20 1

Figure 4.12: Fine Accuracy of weighted multi-output branched neural net

epoch

26

loss

Coarse/Fine/Total Loss

35 1
—— Total

— arse
- Firige

25 -

20 -

D 2000

4000

epoch

E000

B000

10000

Figure 4.13: Loss of weighted multi-output branched neural net

27

4.6 Multi-output Resnet

Next, we modified Resnet architecture with depth of 32 to multi-output architechture . The
penultimate layer branched into two layers, that gave the fine output and the coarse output.
The loss gave equal weights to both objective loss with update as arithmetic weighted (page
5).

The total parameters are 477,368 in the above architecture, with 475,096 trainable param-
eters and 2,272 non-trainable parameters. It achieved validation loss of 3.108 and validation

accuracy of 69.19% for coarse, 53.68% for fine leading to average accuracy of 61.435% .

4.7 Results
Architecture Loss | Coarse Accuracy | Fine Accuracy | Average Accuracy
Baseline Single net 17.33 59.26% 1% 30.13%
Multi-output Unbranched | 18.95 5% 1% 3%
Multi-output branched | 3.46 59.2% 46.13% 52.66%
Weighted multi-output | 4.211 42% 32% 37%
Multi-output Resnet 3.108 69.19% 53.68% 61.43%

Table 4.4: Table of results for CIFAR-100 Experiment

28

CHAPTER 5

SEMEVAL Irony Experiment

For SEMEVAL dataset, the 2 ”coarse” superclass labels - irony vs non-irony serve as first
objective while, the 4 "fine” irony subclass labels serve as the second objective. The aim of
the deep learning model is to predict both coarse and fine label simultaneously as separate

objectives.

5.1 Motivation for recurrent net

Recurrent Neural Networks (RNN) are a powerful and robust type of neural networks and
belong to the most promising algorithms out there at the moment because they are the only

ones with an internal memory.

Because of their internal memory, RNN’s are able to remember important things about
the input they received, which enables them to be very precise in predicting what’s coming

next.

This is the reason why they are the preferred algorithm for sequential data like time series,
speech, text, financial data, audio, video, weather and much more because they can form a

much deeper understanding of a sequence and its context, compared to other algorithms.

5.2 Baseline Single Neural Net architecture

We created two architectures to model the prediction for SEMEVAL Irony dataset. The first

was simple GRU net, which used word embeddings as features.
The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with

29

Prinishdrs

ENSERSEN N

Emnaicing Empasdiching Emimsciding Embmking
‘ ‘ { |
| }:l | | a | | - | | -I.. |
] 5 sl il e’

Figure 5.1: GRU Model

learning rate of le — 4 with loss as negative log likelihood loss. It achieved training loss of
0 and training accuracy of 100% with validation loss of 4.6688 and validation accuracy of
60.16% for coarse predictions. It achieved training loss of 0.0158 and training accuracy of
99.36% with validation loss of 5.7352 and validation accuracy of 47.66% for fine predictions.

The average accuracy for both predictions was 53.91%.

5.3 Multi-output Branched Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into
two layers, that gave the fine output and the coarse output. The loss gave equal weights to

both objective loss with update as arithmetic weighted (page 5).

The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with
learning rate of le — 4 with loss as negative log likelihood loss. It achieved training loss of

0 and training accuracy of 100% with validation loss of 10.4498 and validation accuracy of

30

acC

Train/Test Acc

100 -

0.95 4

0.90 1

085 1

0.80 -

075 -

070 1

(.65 4

060 1

— Train = W4

— Tesk

\YA "

epoch

Figure 5.2: Accuracy of baseline coarse neural net

31

lass

Train/Test Loss

epoch

Figure 5.3: Loss of baseline coarse neural net

32

dCC

Train/Test Acc

10 1

0.9 -

0.8 -

0.7 A

0.6 -

0.5 -

0.4 -

0.3 A

0.2 -

— Trﬂin /_..-—-.__,__.--—\v.—- —v-"-n_-—
— Test

! ! ! ! !

0 10 20 30 40

epoch

Figure 5.4: Accuracy of baseline fine neural net

33

loss

Train/Test Loss

— Train
— Tesk

Figure 5.5: Loss of baseline fine neural net

epoch

34

i iz ".I I-'. i
'l ¥ L L -
R = R - GRU }—A R \
Emgaidng Emgaidng Emngasidng Empesicing
—— — —— —F
Dei [S a]

L] L]

Figure 5.6: Multi-output Branched GRU Neural Net

56.64% for both predictions on average.

5.4 Weighted Multi-output Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into
two layers, that gave the fine output and the coarse output. The loss gave inverse weights

to both objective loss with update as harmonic weighted (page 5).

The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with
learning rate of le — 4 with loss as negative log likelihood loss. It achieved training loss of
0.0022 and training accuracy of 100% with validation loss of 5.8202 and validation accuracy

of 61.59% for both predictions on average.

5.5 Results

35

dCC

10 1

0.9 -

0.8 -

0.7 A

0.6 -

Train/Test Acc

— Train ~—— " 7/ A el

— Test

epoch

Figure 5.7: Accuracy of GRU multi-output neural net

36

loss

Train/Test Loss

epoch

Figure 5.8: Loss of GRU multi-output neural net

37

.III '-"
f f
f k! f

J

Cor
Fraaita
/
s
ll\. IIl

Fr

Eoradt ez
&
/ |
i ",'
-

L
1]

Figure 5.9: Multi-output Branched GRU Neural Net

Architecture

l“'-\. -
., -
" .____.-".
=) =) }—. QR \
——, ——, P Y
r, %, % iy x
i , rd by ' LY
% %, ¢ .
'!'M Emgaddng ':'M Emgesidng . Emibeiding i
) rd 'H. rd LY y
' r ™, y) 4
. _ ——
— —

Training Loss

Val Accuracy

Baseline Single net
Multi-output branched

Weighted multi-output

0.0158
0
0.0022

Training Accuracy | Val Loss
99.68% 10.404

100% 10.4498
100% 5.8202

53.91%
56.64%
61.59%

Table 5.1: Table of results for SEMEVAL Irony Experiment

38

dCC

Train/Test Acc

104 — Train

— Tesk

0.9 -

0.8 -

0.7 A

0.6 -

0.5 -

Figure 5.10: Accuracy of GRU weighted multi-output neural net

epoch

39

lass

Train/Test Loss

— Train
— Tesk

Figure 5.11: Loss of GRU weighted multi-output neural net

20 30
epoch

40

REFERENCES

[1] Baxter, J. (1997). “A Bayesian/information theoretic model of learning to learn via mul-
tiple task sampling.” Machine Learning, 28, 7-39.

2] Caruana, R. “Multitask learning: A knowledge-based source of inductive bias.” Proceed-
ings of the Tenth International Conference on Machine Learning. 1993.

[3] Collobert, R., & Weston, J. (2008). “A unified architecture for natural language process-
ing.” Proceedings of the 25th International Conference on Machine Learning - ICML 08,
20(1), 160-167.

[4] Deng, L., Hinton, G. E., & Kingsbury, B. (2013). “New types of deep neural network
learning for speech recognition and related applications: An overview.” 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 8599-8603.

[5] Girshick, R. (2015). “Fast R-CNN.” In Proceedings of the IEEE International Conference
on Computer Vision (pp. 1440-1448).

(6] Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., & Pande, V. (2015).
“Massively Multitask Networks for Drug Discovery.”

[7] Shelley, C.: 2001, “The bicoherence theory of situational irony.” Cognitive Science 25(5),
775-818.

41

