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Abstract

An important aspect of mathematical and computational think-
ing is algorithmic thinking––the analysis of systems, algo-
rithms, and natural processes. A fundamental skill in algo-
rithmic thinking is estimating the growth of functions with
increasing input size. In this study, we asked 178 partici-
pants to estimate values of seven common functions in algo-
rithmic analysis [log(n),

√
n, n log(n), n2, n3, 2n, n!] to under-

stand their intuitive perception of their growth. Their estimates
were fit against the actual values for all functions. Participants
showed a linearization bias: sublinear functions were best fit
by a linear function, and superlinear functions were best fit by
a cubic (i.e., polynomial) function, even those that grow much
faster (e.g., n!). In addition, participants estimated logarithmic
functions least accurately. These results provide insight into
how people perceive the growth of functions and set the stage
for future studies of how to best improve people’s reasoning
about functions more generally.
Keywords: mathematical cognition; algorithmic thinking;
function learning; exponential growth; logarithmic growth

Introduction
An important part of mathematical and computational think-
ing is acquiring an intuitive sense of common functions such
as log(n),

√
n, n log(n), n2, n3, 2n and n!. This involves

developing an accurate perception of the magnitudes of ex-
pressions using these functions and understanding the gen-
eral shape of these functions. However, people have been
shown to struggle with many of these common functions. Re-
search on how students analyze the computational complex-
ity of algorithms in the classroom has suggested that poor
understanding of the functions themselves, especially loga-
rithms, might underlie the difficulty of algorithmic analysis
(Parker & Lewis, 2014). While students’ intuitions about
superlinear functions (e.g., exponentials) may be improved
by experience with intractable problems (del Vado Vı́rseda,
2021) and concrete examples like the Tower of Hanoi prob-
lem (del Vado Vı́rseda, 2019; Levitin, 2005), novices in par-
ticular still struggle with determining whether a problem of a
given level of complexity can be solved in a feasible amount
of time (MacCormick, 2018).

These common functions appear in many other sciences,
where they have similarly been found to be difficult to teach
and intuit. Undergraduate life sciences majors are often un-
able to identify a logarithmic function from a graph (Con-
frey & Smith, 1995), despite having taken calculus. Middle
school teachers who teach exponential functions themselves

have misconceptions about the difference between linear and
exponential growth trends (Alagic & Palenz, 2006). Stu-
dents’ early misconceptions about exponential growth often
come from misapplying the constant unit rate interpretation
of slope from linear functions; they show little evidence of
the ‘covariational reasoning’ that allows for modeling multi-
plicative relations (Confrey & Smith, 1995; Ferrari-Escolá et
al., 2016). Students’ understanding of exponential growth has
been characterized as a learning trajectory (Ellis et al., 2016),
with students gradually moving from conceptualizing expo-
nential growth as a qualitatively superlinear curve, to natural
number multiplications (e.g., “the number of cases is doubled
five times”), to a correspondence between multiplicative (ex-
ponential) growth in the outcome and additive (linear) growth
in time (e.g., “over five days, the number of cases has in-
creased tenfold”).

Research in psychology has also found that people per-
form poorly when reasoning about superlinear functions, es-
pecially the fastest growing ones. Tversky and Kahneman
(1973) investigated the factorial function n!, which grows
even faster than the exponential function. They found that
people’s estimate of 8! were an order of magnitude smaller
than the actual value. Wagenaar and Sagaria (1975) had col-
lege undergraduates view a table of hypothetical pollution
levels for the years 1970-1974 that had been generated by
an exponential function, and then estimate the pollution level
in 1979. Their estimates were also an order of magnitude less
than the correct value.

Another line of research in cognitive psychology has
shown that people find it easier to learn, from training data,
functions that are linear, continuous, monotonic, and non-
cyclic compared to the alternatives (Busemeyer et al., 1997).
Participants learning linear, quadratic, exponential, and pe-
riodic functions were better at function interpolation than
extrapolation, with increased error the farther a new input
value is from previously sampled points (Gelpi et al., 2021).
The Population of Linear Experts theory (Kalish et al., 2004)
posits that errors in extrapolation occur because humans en-
code different intervals of input values as following linear
functions with different slopes. In these experiments on func-
tion learning, participants are unaware of the shape of the
functions before prediction, and have to learn them from
feedback. However, there are important differences between
learning functions and estimating their growth. For example,
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in mathematics, computer science, and natural science con-
texts, people are often aware of the definition of the function
at hand (e.g., that pandemics explode at an exponential rate),
and do not have to learn them.

Research on irrational numbers supports the hypothesis
that humans are linear approximators. Patel and Varma
(2018) asked participants to compare pairs of

√
n expres-

sions and found behavioral patterns similar to people’s com-
parisons of natural numbers, i.e., the linear function. On
the other hand, when asked to interpolate graphically, peo-
ple have been shown to employ a quadratic curve to estimate
noisy exponential curves (Ciccione et al., 2022). More gener-
ally, surprisingly few studies have investigated how polyno-
mials are processed, despite their prevalence in high school
mathematics. Research on people’s perception of other im-
portant functions, such as log(n) and n!, is also limited. Many
of these studies focus on the phenomenon of underestimation
rather than people’s intuitions about the profile, or shape, of
different functions. In addition, very few studies have investi-
gated how people perceive the symbolic forms of these func-
tions or compared how people perceive the growth of differ-
ent functions, despite their importance in mathematics, natu-
ral science, computer science, and science communication.

To understand how people perceive the growth of func-
tions, we asked participants to make speeded estimations of
the values of seven functions common in mathematics and
computer science: log(n),

√
n, n log(n), n2, n3, 2n, n!. They

did so for input values appropriate for each function to en-
courage estimation instead of calculation, in contrast to pre-
vious work where all functions were displayed with the same
input values (Marupudi et al., 2022). We fit participants’ esti-
mates for each function to the actual values of all seven func-
tions (as well as the linear function, n). We predicted that
their estimates would be linearized, i.e., functions would be
best fit by a function that is closer to a linear growth pro-
file (shape). For example, we predicted 2n would be best
fit by a polynomial function such as n2 or n3 (i.e., closer to
linear n), and log(n) would be best fit by a linear function.
Finally, given past research, we also predicted participants
would perform least accurately for functions involving loga-
rithms (Parker & Lewis, 2014).

Methods
Participants
We recruited 301 participants from the online recruitment
platform Prolific (www.prolific.com). The study was made
available for participants between 18 and 65 years old. Data
for 128 participants was removed due to data quality con-
cerns (see below), resulting in a final dataset of 178 partic-
ipants. The mean age of participants was 38.47 years old
(SD = 11.18). 103 participants identified as men, 69 as
women, and 4 as non-binary or gender non-conforming. This
task was part of a larger study for which participants received
$12 for 45 minutes of their time. The experimental protocol
was approved by the university IRB.

Design and Materials
The study followed a 7 (function, within-participants) x 9
(input value, within-participants) x 2 (order of trials within
functions, between-participants) design. Each trial consisted
of one functional expression with one input value for partic-
ipants to estimate the value of. We selected seven common
functions important for mathematics and computer science:
log(n),

√
n, n log(n), n2, n3, 2n, n!. The range of the input

values for each function was varied to prevent participants
from using calculation strategies. The input values were be-
tween 1 and 100000 for logn, 1 and 10000 for

√
n, 1 and 1000

for n logn, and 1 and 1000 for n2, 1 and 100 for n3, 1 and 20
for 2n, and 1 and 10 for n!. To determine the input values
for each function, for each participant, nine base values were
chosen to evenly span the range, and a random number up to
5% of the upper bound for each function was added to each
value to prevent the use of special strategies for specific input
numbers (e.g., 5032 instead of 5002).

The dependent variable for each trial was the participant’s
estimate for the functional expression. We also collected their
response time (RT) to make each estimate; these data are not
analyzed here due to space constraints.

Procedure
Participants completed the experiment online after a differ-
ent math task. They were instructed to try their best to es-
timate the values of the mathematical expressions, up to 2
decimal points. Examples of all seven functions (without an-
swers) were provided to familiarize them with the functions
that would be presented to them. Additional instructions was
presented for logarithms and factorials because pilot testing
revealed that some participants needed to be reminded of the
syntax of these functions and their definitions.

Figure 1: Experimental trial structure.

Participants then completed the 63 estimation trials. The
trials were grouped by the function to be estimated, the or-
der of which was randomized. For each function, the order
of the input numbers was randomized for half of the partic-
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ipants, and presented in ascending order for the others. On
each trial, participants first viewed a fixation square (□) for
one second. They were then shown a functional expression
(e.g.,

√
2). Participants typed in their estimate and pressed

ENTER to submit their response. Participants could type any
number for their estimate. After 5 seconds, the functional ex-
pression was replaced with a timer counting down from 10
seconds, giving participants a total of 15 seconds to provide
their estimation. Figure 1 shows an example of a single trial.
We still allowed them to answer after the timer ran out, but
prompted them to be faster next time. Participants were not
provided any feedback for their estimates. At the end of the
session, participants were debriefed and compensated.

Exclusion criteria
Of the first 301 participants, we excluded participants who
were within 10% of the correct values for 8!, 9!, 10!, and 11!
as it was unlikely people were able to estimate those values
that accurately in the allotted time without using a calculator
(Tversky & Kahneman, 1973). We also removed participants
who answered with both the correct first digit and the cor-
rect order of magnitude on those trials. Finally, we removed
participants who achieved 100% accuracy within 10% of the
correct answer on any function or provided the same response
to multiple input values of the same function. This left 178
participants.

Results
Accuracy
We used two different metrics to measure accuracy: exact
accuracy, which measures whether participants were able to
provide the exact value of an expression, and accuracy within
10%, which measures whether participants were able to pro-
vide an estimate that was within 10% of the correct value of
the expression. Exact accuracy provides a measure of cal-
culation while accuracy within 10% also includes successful
estimates. Participants estimated a total of 10.7% of trials
with exact accuracy and 19.5% of trials accuracy within 10%
of the correct answer. To understand the differences in accu-
racy between the various functions and input values, we fit
two generalized linear mixed effects models with a binomial
link function predicting both metrics, using the function par-
ticipants estimated and rank order of the input value. The
rank order of the input value was used instead of the value to
facilitate comparisons across the different functions.

We found that exact accuracy was significantly predicted
by the function participants estimated (χ2 = 959.30, p< .001;
see Figure 2, left panel). Pairwise Tukey contrasts with
the Benjamini-Hochberg p-value correction (Benjamini &
Hochberg, 1995) revealed that exact accuracy differed be-
tween almost all pairs of functions. The adjusted p-values for
all pairwise contrasts were less than .001 except for the three
functions

√
n, log(n), and n log(n), which were comparable.

Similarly, we found that accuracy within 10% was also pre-
dicted by the function participants estimated (χ2 = 840.41,

p < .001); see Figure 2 (right panel). Pairwise Tukey con-
trasts with the Benjamini-Hochberg p-value correction re-
vealed that accuracy within 10% differed among almost all
pairs of functions: only the p-value for the log(n) compared
to log(n) contrast (p = .339) was greater than .003.

Purely judging from the exact accuracy means (Figure 2,
left), a curious pattern emerges: the higher the growth rate of
the function, the higher participants’ exact accuracy. This is
most likely an artifact of exact accuracy being easier for inte-
ger versus decimal values. Indeed, looking at accuracy within
10% (Figure 2, right), this pattern mostly disappears. While
2n and n! have similar means across the measures, the re-
maining functions have notably higher accuracy within 10%
values (which are a superset of the exact accuracy values).
This suggests that the accuracy within 10% is a better indi-
cator of estimation in general, and the curious pattern is not
particularly meaningful to our research questions.

To visualize how calculation strategies vary between dif-
ferent trials, we separated out the accuracy measures for trials
with larger input values, defined as trials where the input rank
was 5 or greater. In other words, these were the larger half of
trials for each function. We predicted that participants would
be less likely to calculate the values of expressions on these
larger trials, and that this would especially be the case for 2n

and n!, resulting in a drastic reduction in exact accuracy for
these functions. We plot the accuracies for the larger input
values in Figure 3. Consistent with our prediction, the overall
exact accuracies dropped (i.e., compared to Figure 2), sug-
gesting less calculation for these trials (and implying, con-
versely, more calculation for the easier input values). Ad-
ditionally, the high accuracy within 10% for the superlinear
functions has dropped to the same level as for (or lower than)
the sublinear and polynomial functions.

We then evaluated whether the order in which participants
saw the input values for a function – ascending vs. random –
affected the accuracy of their estimates. Recall that this was a
between-participants manipulation. We considered both mea-
sures of accuracy, exact accuracy and accuracy within 10%.
For each, we fit a generalized linear mixed effects model pre-
dicting the metric with the order condition of the participant
as a fixed effect and a random intercept per participant. Exact
accuracy was similar between both conditions (β = −0.147,
z =−1.72, χ2 = 2.967, p = .085). Similarly, accuracy within
10% was similar in both conditions (β=−0.161, z=−1.119,
χ2 = 1.25, p = .263). Thus, we exclude this variable in most
subsequent analyses.

Monotonicity
Another important property of participants’ perceptions of
these functions is monotonicity: whether they understand that
increases in the input value of the function always results in
an increase in the magnitude of the expression, as all func-
tions tested in this study were strictly monotonic. A trial
was considered monotonically accurate if a participant’s es-
timate for it was greater than their estimate for the trial with
the next lower input value for the same function. We fit a
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Figure 2: Exact accuracy and accuracy within 10% for all functions. Participants were largely unable to provide accurate
estimations for these functions in the ranges presented to them. The similarity between the values of the metrics for n! and 2n

suggests that participants were mostly accurate on items they could calculate exactly. Additionally, people performed poorly at
estimating expressions involving the log(n) function.

Figure 3: Exact accuracy and accuracy within 10% for larger input values (i.e, of input rank ≥ 5). The reduced exact accuracies
for these trials. However, the largely intact accuracy within 10% values suggest that participants were unable to calculate these
values and were forced to estimate them.

generalized linear mixed effects model predicting monotonic-
ity accuracy for the function participants estimated, the in-
put rank of the input value, and the estimation order, along
with a random intercept per participant. We found a main
effect of estimation order condition: participants were 1.86
times as likely to provide a monotonically accurate response
in the ascending condition compared to the random condi-
tion (β = −0.63, χ2 = 68.3, z = −8.264, p < .001). Mono-
tonicity accuracy also depended on the function participants
estimated (χ2 = 293.244, p < .001). Pairwise Tukey con-
trasts with Benjamini-Hochberg p-value adjustments indi-
cated that the superpolynomial functions 2n and n! were sim-
ilar to each other (p = .16) and were the most monotonically
accurate, likely a consequence of their higher accuracy (ex-
plained below). The remaining functions were largely similar
to each other in monotonicity accuracy, and significantly dif-
ferent from the superpolynomial functions. Finally, partici-
pants were 1.09 times as likely to make monotoniticity errors
for each increase in input rank (β = −0.088, χ2 = 69.083,

z = −8.312, p < .001). Thus, for example, the expressions
with the highest magnitude were 2.022 times more likely to
include monotoniticity errors compared to the expressions of
the lowest magnitude.

Underestimation
For trials where participants did not answer exactly, we asked
whether there was a systematic bias in their errors. For these
trials, their bias was for underestimation (Figure 4). Partici-
pants underestimated on 60.2% of all trials.

We fit a generalized linear mixed effects model predicting
whether participants underestimated with fixed and random
effects for the function estimated by participants along with a
random intercept per participant. We found a main effect of
the function participants estimated (χ2 = 252.101, p < .001).
Pairwise Tukey contrasts revealed significant differences in
underestimation between log(n) and all other functions,

√
n

and all other functions, n log(n) with n2 and n3, and n3 with
2n. We then conducted a binomial test for each function com-
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Figure 4: Differences in underestimation between the func-
tions participants estimated. Underestimation is defined as
the proportion of trials where the participants’ estimate was
lower than the correct value. Values greater than 0.5 indicate
underestimation and values lower than 0.5 indicate overesti-
mation of the value of functional expressions.

paring the rate of underestimation to chance (i.e., 0.5). All
adjusted p-values were lower than .001.

As Figure 4 shows, only the two sublinear functions were
overestimated; the rest were underestimated. The results are
largely consistent with our prediction that participants use
qualitative linear and polynomial functions to approximate
all functions considered here. That is, people have a linear
bias in their estimation of the growth of functions, causing
sublinear functions to be overestimated and polynomial and
superpolynomial functions to be underestimated.

Reaction time
We investigated the time participants took to estimate the
value of the functional expressions. We fit a linear mixed ef-
fects model predicting the time participants took to estimate
a functional expression with fixed effects of the function and
the rank of the input value with a random intercept per par-
ticipant. There was a main effect of the function participants
estimated (χ2 = 149.53, p < .001).

Pairwise Tukey contrasts with the Benjamini-Hochberg p-
value correction found that participants spent more time es-
timating the

√
n, n2, and n3 functions, which were similar

to each other and different from other functions in their RT
profile (p < 0.05). log(n), n log(n), and 2n also followed
similar reaction time profiles to each other (p ¡ 0.05). The
factorial function, however, was in a class by itself: par-
ticipants estimated it more quickly than all the other func-
tions (p < .001). This may be partly driven by the fact
that prior estimations can be repurposed on subsequent trials.
Additionally, we found evidence for an effect of input rank
(β = 124.88, χ2 = 13.082, t = 3.617, p = .0029) such that an
increase of one rank was associated with a 125 ms increase in

reaction time.

Shape match
Finally, we conducted a shape-fitting analysis to further probe
the smaller number of qualitative functions participants might
be using to estimate the growth of all functions: sublinear,
linear, polynomial, and/or superpolynomial. We first nor-
malized each participant’s estimates for each function to the
[0,1] range to capture the shape of their estimates instead of
their magnitudes. Then, for each function and participant,
we predicted their estimates for the function using the nor-
malized values of correct function and those of the other al-
ternative functions (the tested functions and a baseline linear
function). This resulted in eight R2 values per function. A
high R2 value indicates participants’ estimates fit the shape
(functional form) well.

As can be seen in Figure 5, the shapes of participants’ es-
timates for polynomial and superpolynomial functions were
best predicted by a polynomial function, n3. This result indi-
cates that participants understand superlinear functions rela-
tive to a qualitative polynomial function. Additionally, partic-
ipants’ perceptions of the sublinear functions log(n) and

√
n

as well as the next slowest-growing function, n log(n), were
fit best by the linear function most of the time. We interpret
this as evidence that participants use a qualitative linear func-
tion when estimating sublinear (and near-linear) functions.

Discussion
An important part of mathematical development is acquiring
an intuitive sense of numbers. Functions play an important
role in abstracting over these intuitions. However, the field
has only recently begun to investigate their psychological un-
derpinnings.

The current study asked people to estimate the growth of
seven functions common in algorithmic analysis. Compared
to prior work that used smaller input ranges Marupudi et
al. (2022), participants’ estimates were linearized: their esti-
mates of sublinear functions were best fit by the mathematical
values of the linear function, and their estimates of superlin-
ear functions were best fit by polynomial functions. Likely as
consequence of this linearization, participants overestimated
the sublinear functions: log(n) and

√
n, and underestimated

the polynomial and superlinear functions n2, n3, 2n, and n!.
Also as predicted, participants made generally poor estimates
for functions involving logarithms. This difficulty is consis-
tent with prior research (Confrey & Smith, 1995; Parker &
Lewis, 2014). Misperceiving logarithms as linear can po-
tentially have important negative consequences for decision-
making and using mathematics to solve problems. It might
lead to misconceptions about algorithms like binary search.
Additionally, people might wrongly perceive a problem as
infeasible due to resource constraints. Despite these errors,
the data showed that participants were mostly aware of the
monotonic nature of all functions in this study.

These results do come with limitations. While the conclu-
sions here might hold for symbolic perceptions of the func-
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Figure 5: Various shape fits for the functions participants estimated. We find evidence of a linear bias, as a linear model fits
participants’ estimates of sublinear functions best, and polynomial models fit participants’ estimates of superlinear functions
best.

tional expressions, it is possible that participants do hold
more accurate internal representations. For example, Cic-
cione et al. (2022) discovered that participants were better at
estimating exponential functions when presented in a noise-
free graphical plot or when data were presented using a log-
arithmic scale. An analogous study using graphed curves
instead of symbolic expressions can be run to answer that
question for the various functions. Another limitation of the
current work is that the ranges of the input values provided
to participants were based on subjective judgement and pi-
lot testing. Development of an objective criterion to deter-
mine equivalent ranges between the functions can help im-
prove measurement of the perceptions of these functions. It
is also important to note that the set of functions used in this
study is not comprehensive. There are functions that grow
much slower than log(n) and much faster than n!. For exam-
ple, Ackermann’s function is a function of 2 positive integers
for which A(1, 1) = 3, A(2, 2) = 7, and A(3, 3) = 61, and A(4,
4) = 2265536 −3. Humans may not be capable of intuiting the
growth of such a function.

Finally, certain expressions presented to participants in-
volved large numbers, e.g., log(99789). Since people re-
cruit a logarithmically-compressed representation for numer-
ical magnitudes, they are prone to perceive large numbers as
smaller than they are (Izard & Dehaene, 2008). Despite this,
participants still overestimated the value of logarithmic func-
tions, underscoring the size of the overestimation effect.

The current results set the stage for future instructional
studies of the best ways to build intuitions about the growth
of functions in students. The current estimation task can be
adapted into a pre-post assessment of reasoning about the
growth of functions that can then be used in studies inves-
tigating different instructional approaches to teaching algo-
rithmic analysis and big-O notation. This would be an im-
portant innovation because many measures of computational

thinking lack items relevant for algorithmic thinking (Román-
González et al., 2017). Those that do often include items that
merely measure people’s impressions of algorithms (“I think
that I have a special interest in the mathematical processes”)
rather than their direct knowledge of algorithms (Korkmaz
et al., 2017). Also, the estimation task can potentially be
adapted into an instructional activity for building students’
intuitions about the growth of functions. For example, they
could be presented with two functions and asked which would
yield the greater value on the same input, or on different in-
puts (Rittle-Johnson & Star, 2007; Schwartz & Bransford,
1998).

We do not know whether participants can actually translate
the descriptions of natural processes or algorithms into sym-
bolic representations, and how these translation processes are
associated with each individual’s intuitions for the growth of
functions. Accurate estimation of the growth of functions is
important not just for computer science, but also for com-
putational thinking in all sciences. For example, undergrad-
uates have difficulty reasoning about the explosion and col-
lapse of biological processes even when interacting with a dy-
namic, graphic simulation––producing estimates that are off
by an order of magnitude (Wagenaar & Timmers, 1979). The
COVID-19 pandemic revealed that one reason people have
difficulty understanding the spread of infectious diseases is
their perception of the growth of nonlinear functions over
time. The failure to understand the difference between lin-
ear and exponential growth might underlie the widespread
underprediction of the expected number of cases and deaths
during the first wave of the COVID-19 epidemic. The cur-
rent research can help at educating the public to reason about
the spread of infectious diseases, which can be exponen-
tial, logarithmic, and polynomial at different phases of pan-
demics (Keeling & Rohani, 2011; Kermack et al., 1927), and
for using computational simulations, analogies, and explana-
tions to develop an understanding of these issues.
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