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Abstract— We present analysis and results of a social game
encouraging energy efficient behavior in occupants by dis-
tributing points which determine the likelihood of winning in
a lottery. We estimate occupants utilities and formulate the
interaction between the building manager and the occupants
as a reversed Stackelberg game in which there are multiple
followers that play in a non-cooperative game. The estimated
utilities are used for determining the occupant behavior in the
non-cooperative game. Due to nonconvexities and complexity
of the problem, in particular the size of the joint distribution
across the states of the occupants, we solve the resulting the bi-
level optimization problem using a particle swarm optimization
method. Drawing from the distribution across player states, we
compute the Nash equilibrium of the game using the resulting
leader choice. We show that the behavior of the agents under
the leader choice results in greater utility for the leader.

I. INTRODUCTION

Energy consumption of buildings, both residential and
commercial, accounts for approximately 40% of all energy
usage in the U.S. [1]. One of the major consumers of energy
in commercial buildings is lighting; one-fifth of all energy
consumed in buildings is due to lighting [2].

There have been many approaches to improve energy ef-
ficiency of buildings through control and automation as well
as incentives and pricing. From the meter to the consumer,
control methods, such as model predictive control, have been
proposed as a means to improve the efficiency of building
operations (see, e.g., [3]–[8]). From the meter to the energy
utility, many economic solutions have been proposed, such
as dynamic pricing and mechanisms including incentives,
rebates, and recommendations, to reduce consumption (see,
e.g., [9], [10]).

There are many ways in which a building manager can
be motivated to encourage energy efficient behavior. The
most obvious is that they pay the bill or are required to
maintain an energy effcient building due to some operational
excellence measure. Beyond these motivations, recently de-
mand response programs are being implemented by utility
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companies with the goal of correcting for improper load
forecasting (see, e.g., [11], [12], [13]). In such a program,
consumers enter into a contract with the utiltiy company in
which they agree to change their demand in accordance with
some agreed upon schedule. In this scenario, the building
manager may now be required to keep this schedule.

Our approach to efficient building energy management
focuses on office buildings and utilizes new builiding au-
tomation products such as the Lutron lighting system1. We
design a social game aimed at incentivizing occupants to
modify their behavior so that the overall energy consumption
in the building is reduced. Social games have been used
to alleviate congestion in transportation systems [14] as
well as in the healthcare domain for understanding the
tradeoff between privacy and desire to win by expending
calories [15].

The social game we executed consists of occupants voting
according to their usage preferences of shared resources such
as lighting dim level. They win points based on how energy
efficient their vote is compared to other occupants. After each
vote is logged, the average of the votes is implemented in
the office. The points are used to determine an occupant’s
likelihood of winning in a lottery. We designed an online
platform so that occupants vote, view their points, and
observe all occupants consumption patterns and points. This
platform also stores all the past data allowing us to use it
for estimating occupant behavior.

At the core of our approach is the fact that we modeled the
occupants as non-cooperative agents who play Nash. Under
this assumption, we were able to use necessary and sufficient
first- and second-order conditions [16] to cast the utility
estimation problem as a convex optimization problem in the
parameters of the occupants’ utility functions. We showed
that estimating agent utility functions via this method results
in a predictive model that out performs several other standard
techniques.

In this paper, we are able to leverage the fact that we
modeled the occupants as utility maximers in a game-
theoretic framework by formulating the building manager’s
problem as a reversed Stackelberg game. In particular, the
building manager’s optimization problem is modeled a bi-
level optimization problem in which the inner optimization
problem is a non-cooperative game between the occupants
and the outer optimization problem is the maximization of
the building manager’s utility over the total points and default
lighting setting.

1http://www.lutron.com/en-US/Pages/default.aspx



Given the data from our social game experiment, we
estimate the occupants’ utility functions. We determine a
distribution for each occupant over the set of events which
include the occupant states present and active, present and
remaining at the default, and absent. We refer to these as the
player states and shorten them to active, default, and absent.
Due to the number of events in the joint distribution across
possible occupant states, we employ a particle swarm opti-
mization (PSO) method for solving the building manager’s
bi-level optimization problem. This results in a suboptimal
solution; however, we show in simulation that the solution
leads to a occupant behavior that results in a larger utility for
the building manager as compared to previously implemented
schemes.

The rest of the paper is organized as follows. We begin
in Section II by describing the experimental setup for our
social game test-bed. In Section III, we present the game
formulation. There are games at two levels; the inner non-
cooperative continuous game between the occupants and
the outer reversed Stackelberg game between the building
manager and the followers. We describe the utility estimation
and incentive design (solution to the building manager’s
optimization problem) in Section IV. We conclude with some
discussion and proposal for future work in Section V.

II. EXPERIMENTAL SETUP

In this section we briefly describe the experimental setup.
The social game for energy savings that we have designed

is such that occupants in an office builing vote according to
their usage preferences of shared resources and are rewarded
with points based on how energy efficient their strategy
is in comparison with the other occupants. Having points
increases the likelihood of the occupant winning in a lottery.
The prizes in the lottery consist of three Amazon gift cards.

We have installed a Lutron system for the control of the
lights in the office. This system allows us to precisely control
the lighting level of each of the lights in the office. We use
it to set the default lighting level as well as implement the
average of the votes each time the occupants change their
lighting preferences. There are 22 occupants in the office
which is divided into five lighting zones each with four
occupants.

We have developed an online platform in which the occu-
pants can login and participate in the game. In the platform,
the occupants can log their lighting dim level votes, view
point balances of all occupants, and observe all the behavior
(voting) patterns of all occupants. Figure 1(a) shows a display
of how an occupant can select their lighting preference and
Figure 1(b) shows a sample of how occupants can see their
point balance.

An occupant’s vote is for the lighting level in their zone
as well as for neighboring zones. The lighting setting that
is implemented in each zone is the average of all the votes
weighted according to proximity to that zone. In addition,
there is a default lighting setting. An occupant can leave
the lighting setting as the default after logging in or they
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Figure 8: Live information for the point balance of each participant for each game 
 
 
In figure 8 each participant can see lively his / her point balance for every game. Also, he 
can see his grand point total so as to know how much chances does he have in the game. 
Moreover, in the left upper corner there is a yellow coin that it is randomly appeared 
every 40 to 70 minutes and gives to each participant some bonus points if he pushes that. 
So, this is one way for us to see if an individual cares about his / her points and if he 
looks at his / her total point balance.  
 

 
Figure 9: Pie chart of the total amount of coin hits  
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Fig. 1. (a) Display of how occupants can log their lighting vote. (b) Display
of an occupant’s point balance.

can change it to some other value in the interval [0, 100]
depending on their preferences.

Each day when an occupant logs into the online platform
the first time after they enter the office, they are considered
present for the remainder of the day. If they actively change
their vote from the default to some other value, then we
consider them active. On the other hand, if they choose not
to change their vote from the default setting, then they are
considered default for the day. If they do not enter the office
on a given day, then they are considered absent.

III. GAME FORMULATION

We model the interaction between the building manager
(leader) and the occupants (followers) as a leader-follower
type game. We use the terms leader and building manager
interchageably and, similarly, for follower and occupant.

In this model the followers are utility maximizers that play
in a non-cooperative game for which we use the Nash equi-
lirbium concept. The leader is also a utility maximizer with a
utility that is dependent on the choices of the followers. The
leader can influence the equilibrium of the game amongst
the followers through the use of incentives which impact the
utility and thereby the decisions of each follower.

A. Follower Game

We begin by describing the game-theoretic framework
used for modeling the interaction between the occupants.

Let the number of occupants participating in the game be
denoted by n. We model the occupants as utility maximizers
having utility functions composed of two terms that capture
the tradeoff between comfort and desire to win. We model
their comfort level using a Taguchi loss function which is
interpreted as modeling occupant dissatisfaction in such a
way that it is increasing as variation increases from their
desired lighting setting [18]. In particular, each occupant has
the following Taguchi loss function as one component of
their utility function:

ψi(xi, x−i) = − (x̄− xi)2 (1)

where xi ∈ R is occupant i’s lighting vote, x−i =



{x1, . . . , xi−1, xi+1, . . . , xn}, and

x̄ =
1

n

n∑
i=1

xi (2)

is the average of all the occupant votes and is the lighting
setting which is implemented. Hence, this term measures the
discomfort an occupant feels given that its vote is xi and the
state of the environment is actually x̄.

Each occupant’s desire to win is modeled using the
following function:

φi(xi, x−i) = −ρ
( xi

100

)2
(3)

where ρ is the total number of points distributed by the
building manager. The points are distributed by the leader
using the relationship

ρ
xb − xi

nxb −
∑n
j=1 xj

(4)

where xb = 90 is the baseline setting for the lights, i.e. the
lighting setting that occurred before the implementation of
the social game in the office. In our previous work [17] we
modeled the function φi, i.e. the desire to win, using the
natural log of (4). We found that the form of φi as defined
in (3) provides a better estimation and prediction of all the
occupant’s behavior. It appears that it captures the occupants’
perceptions about how the points are distributed and the
value of the points as determined by each of the occupants
more accurately. We are currently exploring more general
non-parametric and data-driven methods for estimating the
occupants’ utility functions.

Each occupant’s utility function is then given by

fi(xi, x−i) = ψi(xi, x−i) + θiφi(xi, x−i) (5)

where θi is parameter unknown to the leader.

The i-th occupant faces the following optimization prob-
lem:

max
xi∈Si

fi(xi, x−i) (6)

where Si = [0, 100] ⊂ R is the constraint set for xi.

Note that each occupant’s optimization problem is depen-
dent on the other occupants’ choice variables.

We can explicitly write out the constraint set as follows.
Let hi,j(xi, x−i) for j ∈ {1, 2} denote the constraints on
occupant i’s optimization problem. In particular, following
Rosen [19], for occupant i, the constraints are

hi,1(xi) = 100− xi (7)
hi,2(xi) = xi (8)

so that we can define Ci = {xi ∈ R| hi,j(xi) ≥ 0, j ∈
{1, 2}} and C = C1 × · · · × Cn. Thus, the occupants are
non-cooperative agents in a continuous game with convex
constraints. We model their interaction using the Nash equi-
librium concept.

Definition 1: A point x ∈ C is a Nash equilibrium for

the game (f1, . . . , fn) on C if

fi(xi, x−i) ≥ fi(x′i, x−i) ∀ x′i ∈ Ci (9)

for each i ∈ {1, . . . , n}.
The interpretation of the definition of Nash is as follows: no
player can unilaterally deviate and increase their utility.

If the parameters θi ≥ 0, then the game is a concave n-
person game on a convex set.

Theorem 1 (Rosen [19]): A Nash equilibrium exists for
every concave n-person game.
Define the Lagrangian of each player’s optimization problem
as follows:

Li(xi, x−i, µi) = fi(xi, x−i) +
∑

j∈Ai(xi)

µi,jhi,j(xi) (10)

where Ai(xi) is the active constraint set at xi. We can define

ω(x, µ) =

D1L1(x, µ1)
...

DnLn(x, µn)

 (11)

where DiLi denoets the derivative of Li with respect to xi.
It is the local representation of the differential game

form [16] corresponding to the game between the occupants.
Definition 2 (Ratliff, et al. [16]): A point x∗ ∈ C is a

differential Nash equilibrium for the game (f1, . . . , fn)
on C if ω(x∗, µ∗) = 0, zTDiiLi(x

∗, µ∗i )z < 0 for all z 6= 0
such that Dihi,j(x

∗
i )
T z = 0, and µi,j > 0 for j ∈ Ai(x∗i ).

Proposition 1: A differential Nash equilibrium of the n-
person concave game (f1, . . . , fn) on C is a Nash equilib-
rium.

Proof: The proof is straightforward. Indeed, suppose
the assumptions hold. The constraints for each player do not
depend on other players’ choice variables. We can hold x∗−i
fixed and apply Proposition 3.3.2 [20] to the i-th player’s
optimization problem

max
xi∈Ci

fi(xi, x
∗
−i) (12)

Since each fi is concave and each Ci is a convex set, x∗i is
a global optimum of the i-th player’s optimization problem
under the assumptions. Since this is true for each of the
i ∈ {1, . . . , n} players, x∗ is a Nash equilibrium.
A sufficient condition guaranteeing that a Nash equilibrium x
is isolated is that the Jacobian of ω(x, µ), denoted Dω(x, µ),
is invertible [16], [19]. We refer to such points as being non-
degenerate.

B. Leader Optimization Problem – Incentive Design

A reverse Stackelberg game is a hierarchical control
problem in which sequential decision making occurs; in
particular, there is a leader that announces a mapping of
the follower’s decision space into the leader’s decision space,
after which the follower determines his optimal decision [21].

Both the leader and the followers wish to maximize
their pay-off determined by the functions fL(x, y) and
{f1(x, γ(x)), . . . , fn(x, γ(x))} respectively where we now



consider each of the follower’s utility functions to be a func-
tion of the incentive mechanism γ : x 7→ y where leader’s
decision is y = (d, ρ) with d being the default lighting setting
and ρ the total number of points. The followers’ decisions
is denoted by x. The leader’s strategy is γ.

The basic approach to solving the reversed Stackelberg
game is as follows. Let y and x take values in Y ⊂ R2 and
Ci ⊂ R, respectively and let fL, fi : Rn ×R2 → R for each
i ∈ {1, . . . , n}. We define the desired choice for the leader
as

(x∗, y∗) ∈ arg max
x,y

{
fL(x, y)| y ∈ Y, x ∈ C}. (13)

Of course, if fL is concave and Y × C is convex, then the
desired solution is unique. The incentive problem can be
stated as follows:

Problem 1: Find γ : X → Y , γ ∈ Γ such that x∗

is a differential Nash equilibrium of the follower game
(f1, . . . , fn) subject to constraints and γ(x∗) = y∗ where
Γ is the set of admissible incentive mechanisms.
By insuring that the desired agent action x∗ is a non-
degenerate differential Nash equilibrium ensures structural
stability of equilibrium helping to make the solution robust
to measurement and environmental noise [22]. Further, it
insures that it is (locally) isolated — it is globally isolated
if the followers’ game is concave.

For the lighting social game, the leader’s utility function
is given as follows:

fL(x, y) =E
[
K − g(y, x)︸ ︷︷ ︸

energy

− c2p(ρ)︸ ︷︷ ︸
effort

− c1
n∑
i=1

βifi(xi, x−i, y)︸ ︷︷ ︸
benevolence

]
(14)

where K is is the maximum consumption of the Lutron
lighting system in kilowatt-hours (kWh), g(y, x) is the is
the energy consumption in kWh at a given (y, x), p(·)
is a cost-for-effort function on the points ρ and c1, c2 ∈
R+ are scaling factors for the last two terms describing
how much utility and total points respectively the leader
is willing to exchange for 1 kWh. The last term is the
benevolence term where the βi’s are the benevolence factors.
This term captures the fact that the leader to cares about the
followers’ satisfaction which is related to their productivity
level (see [23] for a similar formulation). The expectation
is taken with respect to the joint distribution defined by
distributions across the player states absent, active, default.

Since the prize in the lottery is currently a fixed mone-
tary value delivered to the winner through an Amazon gift
card, varying the points does not cost the leader anything
explicitly. However, we model the cost of giving points by a
function p(·) which captures the fact that after some critical
value of ρ the points no longer seem as valuable to the
followers.

The followers’ perceive the points that they receive has
having some value towards winning the prize. The leader’s

goal is to choose ρ and d so they induce the followers to
play the game and choose the desired lighting setting.

Currently we do not add individual rationality constraints
to the leader’s optimization problem which would ensure that
the players’ utilities are at least as much as what they would
get by selecting the default value. The impact being that this
constraint would ensure players are active. With respect to
economics literature, the default lighting setting compares to
the outside option in contract theory. It is interesting that in
the current situation the leader has control over the outside
option. We leave exploring this for future work.

Due to the complexity of computing the expectation for the
joint distribution across player states absent, active, default
for n = 22 players, we currently restrict the set of admissible
incentive mechanisms to be the map γ(x) = (γd(x), γρ(x))
such that the i-th player’s utility is

fi(x, γ(x)) = ψi(x)− θiγρ(x)
( xi

100

)2
(15)

where γ(x) ≡ ρ for all i ∈ {1, . . . , n}. In addition, the nature
of γd(x) is that it is an option provided to the followers; they
must actively vote in order for this value not to be taken as
their current vote when they are present in the office. In
sense, it is the outside option. Thus, the leader only selects
the constants (d, ρ). This reduces the solution of the reversed
Stackelberg game to a bi-level optimization problem that we
solve with a particle swarm optimization (PSO) technique
(see, e.g., [24]–[26]).

The particle swarm optimization method is a population
based stochastic optimization technique in which the algo-
rithm is initialized with a population of random solutions and
searches for optima by updating generations. The potential
solutions are called particles. Each particle stores its coor-
dinates in the problems space which are associated with the
best solution achieved up to the current time. The best over
all particles is also stored and at each iteration the algorithm
updates the particles’ velocities.

At the inner level of the bi-level optimization problem,
we replace the condition that the occupants play a Nash
equilibrium with the dynamical system determined by the
gradients of each player’s utility with respect to their own
choice variable, i.e.

ẋi = Difi(xi, x−i, y), xi ∈ Ci, ∀ i ∈ {1, . . . , n}. (16)

It has been show that by using a projected gradient descent
method for computing stationary points of the dynamical
system in (16), which is derived from an n-person concave
games on convex strategy spaces, converges to Nash equi-
libria [27]. In our simulations, we add the constraint to the
leader’s optimization problem that at the stationary points of
this dynamical system, i.e. the Nash equilibria, the matrix
−Dω is positive definite thereby ensuring that each of the
equilibria are non-degenerate and hence, isolated.

Denote the set of non-degenerate stationary points of the
dynamical system ẋ as defined in (16) as Stat(ẋ). The
leader then solves the following problem: given the joint



distribution across player states active, default, absent, find

max
y∈Y

fL(y, x) (17)

s.t. x ∈ Stat(ẋ)

For each particle in the PSO algorithm, we sample from
the distribution across player states and compute Nash for the
resulting game via simulation of the dynamical system (16).
We compute the mean of the votes at the Nash equilibrium
to get the lighting setting. We repeat this process and use
the mean of the lighting settings over all the simulations to
compute the leader’s utility for each of the particles.

We are currently exploring other techniques for solving
bi-level optimization problems in which the degree of com-
plexity of computing leader’s utility is very high.

IV. UTILITY ESTIMATION AND INCENTIVE DESIGN

In this section, we present our results on both the utility
estimation problem and the incentive design problem in
which the leader optimizes their cost with respect to the
total points to be distributed per day and the default lighting
setting.

A. Utility Estimation – Results

We briefly describe the utility estimation problem in this
section and refer the interested reader to [17] for a more
detailed description including results on the efficacy of our
estimations.

We formulate the utility estimation problem as a convex
optimization problem by using first-order necessary con-
ditions for Nash equilibria. In particular, the gradient of
each occupant’s Lagrangian should be identically zero at the
observed Nash equilibrium.

For each observation x(k), we assume that it corresponds
to occupants playing a strategy that is approximately a Nash
equilibrium where the superscript notation (·)(k) indicates the
k-th observation. Thus, we can consider first-order optimality
conditions for each occupants optimization problem and
define a residual function capturing the amount of sub-
optimality of each occupants choice x(k)i [28], [23].

We consider the residual defined by the stationarity and
complementary slackness conditions for each occupant’s
optimization problem:

r
(k)
s,i (θi, µi) = Difi(x

(k)
i , x

(k)
−i ) +

n∑
j=1

µjiDihi,j(x
(k)
i ) (18)

r
j,(k)
c,i (µ) = µjihi,j(x

(k)
i ) j ∈ {1, 2} (19)

Define r
(k)
s (θ) = [r

(k)
s,1 (θ1, µ1) · · · r

(k)
s,n (θn, µn)]T and

r
(k)
c,i (µi) = [r

1,(k)
c,i (µi) r

2,(k)
c,i (µi)] so that we can define

r
(k)
c = [r

(k)
c,1 (µ1) · · · r(k)c,n(µn)]T where µi = (µ1

i , µ
2
i ).

Given observations {x(k)}Kk=1 where each x(k) ∈ C, we

can solve the following convex optimization problem:

min
µ,θ

K∑
k=1

χ(r(k)s (θ, µ), r(k)c (µ)) (20)

s.t. θi ≥ 0, µi ≥ 0 ∀ i ∈ {1, . . . , n} (21)

where χ : Rn×R2n → R+ is a nonnegative, convex penalty
function satisfying χ(z1, z2) = 0 if and only if z1 = 0 and
z2 = 0, i.e. any norm on Rn×R2n, and the inequality µi ≥ 0
is elementwise.

Note that we constrain the θi’s to be non-negative. This
is to ensure that the estimated utility functions are concave.
We add this restriction so that we can employ techniques
from simulation of dynamical systems to the computation of
the Nash equilibrium in the resulting n-person concave game
with convex constraints. In particular, define a gradient-like
system using the local representation of the differential game
form [16] and using the estimated θi’s

ẋi = Difi(xi, x−i; θi) ∀ i ∈ {1, . . . , n}, (22)

and consider the feasible set defined by the constraints

hi,1(xi) = 100− xi ≥ 0
hi,2(xi) = xi ≥ 0

}
∀ i ∈ {1, . . . , 20} (23)

Then, as we mentioned in the previous section, the subgradi-
ent projection method applied to the dynamics (22) and the
constraint set defined by (23) is known to converge to the
unique Nash equilibrium of the constrained n-person concave
game [27].

By drawing from the joint distribution across player states
(active, default, absent), we simulate the game using the
estimated utility functions. In figure 2, we can see that our
model captures most of the variation in the true votes.

B. Incentive Design – Results

We collected data on the energy consumption of the lights
for different lighting settings (see Figure 3) and created a
piecewise affine map from the lighting dim level to energy
consumption in kilowatt–hours (kWh). Using this map, we
formulate a utility for the leader which takes the average
lighting votes as the input and returns the difference between
the maximum consumption in kWh, i.e. 25 kWh, and the
piecewise affine map for energy comsuption of the lights.

Using the past data, i.e. data collected for default settings
{10, 20, 60, 90}, and θi estimates for each occupant, we
create a piecewise affine map for interpolating the parameters
of the occupants utility functions for different default set-
tings. Similarly, we interpolated the joint distribution across
player states (absent, active, default) as a function of the
default setting. This allows use to optimize the leaders utility
function, given in (14), over both the total points ρ and the
default setting d. Due to the complexity of the expectation
and the nature of the bi-level optimization problem, we
solve the leader’s problem by employing a particle swarm
optimization method.

Example 1 (Solution Leader Optimization Problem):
The following example is a sample solution to the leader’s
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Fig. 3. Energy conumption data for the Lutron lighting system in kWh as
a function of the lighting setting.

optimization problem under some selection of the parameters
c1, c2 and the benevolence factor β = (β1, . . . , βn).

In the implementation of the leader’s optimization problem
in this example we make the following choices for the
parameters and scaling of the leader’s utility function. For
each particle in the PSO algorithm, we map each follower’s
true utility fi to an interpolated utility f̂i taking a value in the
range [0, 100] by finding the global maximum and minimum
of their utility under the current particle to determine an
appropriate affine scaling of their original utility. We use f̂i
in place of fi in the leader’s utilty.

We use c1 = 1/2 which represents the fact that the leader
is willing to exchange 1 kWh savings for a utility value of 2
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Fig. 4. Utility of occupant 2 as a function of (d, ρ) at the mean Nash
equilibrium after running 1000 simulations. Notice that for fixed values of
d the utility value is near constant in ρ. Also, occupant 2 has very large
utility when the default setting is around 70.

in the total sum of the followers’ utilities
∑
i βif̂i under the

current particle value for y = (d, ρ). Similarly, we use c2 =
1/500 which represents the fact that the leader is willing to
exchange 500 points in return for 1 kWh of savings.

At present the choice of these parameters is just for the
purpose of creating an example with interesting behavior and
we leave full exploration of these parameters to future work
in which we implement various solutions in practice and
obtain feedback from the occupants’ via survey about their
satisfaction.

Examining each of the occupant’s estimated utility func-
tions has given us a sense of which occupants are the most
sensitive to changes in ρ and d. Occupant 2 is quite inflexible
to changes in the points ρ and appears to care less about
winning and more about his comfort level (see Figure 4).
This fact is also reflected in the very low parameter estimate
for θ2. It is also the case that occupant 2’s behavior is largely
affected by others’ votes.

In addition, occupants in the set C = {2, 6, 8, 14, 20} are
the most active players in a probabilistic sense. As a result, in
this example we give non-zero benevolence terms to players
in this set. We refer to this set as the leader’s care-set. For
all i ∈ {1, . . . , 20}\C, we set βi = 0. Further, we force∑
j∈C βj = 1. Since occupant 2 has particularly interesting

behavior, we vary β2, and let βj = (1−β2) 1
|C| for all j ∈ C

and where |C| is the cardinality of C. Tables I and II contain
the energy savings in dollars per day for the leader given the
energy cost of the lights and how much of the occupants’
utility and the total points distributed per day that the leader
is willing to exchange for 1 kWh in dollars using a cost per
kWh of $0.12. The values were computed by solving the
leader’s optimization problem via the PSO method where we
simulate the game of the occupants via the dynamics system
in (22). Table I has the leader’s utility in dollars for previous



(d, ρ)
β

(0.9,0.1) (0.75,0.25) (0.6,0.4) (0.45,0.55) (0.3,0.7) (0.2,0.8)

(10, 7000) $2.01 $2.10 $2.19 $2.28 $2.37 $2.42

(20, 7000) $1.98 $2.01 $2.06 $2.08 $2.10 $2.13

(60, 7000) $1.70 $1.67 $1.66 $1.65 $1.65 $1.64

(90, 7000) $1.35 $1.33 $1.32 $1.31 $1.31 $1.30

TABLE I
LEADER’S UTILITY IN DOLLARS FOR THE PREVIOUSLY IMPLEMENTED (d, ρ) FOR VARIOUS BENEVOLENCE FACTORS β = (β2,

∑
j∈A βj) WHERE

A = {6, 8, 14, 20}. THE VALUE IS INTERPRETED AS THE ENERGY SAVED IN DOLLARS BY THE LEADER PLUS THE UTILITY AS MEASURED IN

DOLLARS. WE USE A RATE OF $0.12 PER KWH AS THIS IS THE APPROXIMATE RATE CHARGED BY THE BUILDINGS ON THE UC BERKELEY CAMPUS.
COMPARE TO TABLE II

(d, ρ, β2,
∑
j∈A βj) utility

(63, 200× 103, 0.9, 0.1) $4.56

(56, 169.6× 103, 0.75, 0.25) $4.73

(55.5, 175.2× 103, 0.6, 0.4) $4.67

(48, 142.2× 103, 0.45, 0.55) $4.69

(10.47, 173× 103, 0.3, 0.7) $5.07

(7.23, 194.6× 103, 0.2, 0.8) $5.43

TABLE II
LEADER’S UTILITY IN DOLLARS FOR THE VALUES

(d∗, ρ∗, β2,
∑

j∈A βj) WHERE β2 IS THE BENEVOLENCE FOACTOR FOR

USER 2 AND 1− β2 =
∑

j∈A βj IS THE SUM OF THE BENEVOLENCE

FACTORS FOR THE OCCUPANTS A = {6, 8, 14, 20}. THE UTILITY VALUE

IS DETERMINED BY SOLVING THE LEADER’S OPTIMIZATION PROBLEM

USING THE PSO METHOD AND SIMULATING THE OCCUPANT GAME VIA

THE DYNAMICAL SYSTEM GIVEN IN (22). THE VALUE OF THE UTILITY IS

INTERPRETED AS THE ENERGY SAVED IN DOLLARS BY THE LEADER

PLUS THE UTILITY AS MEASURED IN DOLLARS. WE USE A RATE OF

$0.12 PER KWH.

values of (d, ρ) after the start of the social game. In Table
II we report the values after optimizing over (d, ρ) for some
given benevolence factor β = (β1, . . . , βn). We can see that
computing even the suboptimal (d, ρ) by solving the leader’s
bi-level optimization problem via PSO, the leader has a much
higher utility.

We have not yet factored in the cost of the prize in the
lottery. Currently it is at a value of $100 per week. The
values we report in Tables I and II are per day savings on
weekdays. Hence, with a prize cost of $20 per day for our
particular experimental set-up the leader does not save. Using
this case-study as proof-of-concept, we are in the process
of implementing a social game in an entire building in
Singapore with more than 1, 000 occupants. This social game
will include options for the consumer to choose lighting
setting, HVAC and personal cubicle plug-load consumption.
In addition, we plan to implement a social game of this nature

in Sutarja Dai Hall on the UC Berkeley campus. At this scale,
with a week-day lottery cost of $100 the building manager
stands to save a considerable amount.

In Figure 5, we show the results of simulating the game
under the (d, ρ)’s that we found for various benevolence
factors. We show the mean of the lighting votes averaged
over 1000 simulations. It is interesting to see that the
average Nash equilibrium under the various default settings
is actually less than the default setting itself except in the
case when the default setting is below a threshold below
which occupants actually log votes above the default setting.
For example, with a default setting of 10.74, the mean of the
Nash equilibria is ∼ 15. The case when the default setting is
above this threshold of basic operation, the most aggressive
players’ desire to win pushes the Nash equilibrium below
the default. On the other hand, when the default is below
this threshold, all the players’ comfort comes into play and
shifts the Nash equilibrium above the default setting.
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(63, 200 × 103 , 0.9, 0.1)

(55.5, 175.2 × 103 , 0.6, 0.4)

(10.74, 173 × 103 , 0.3, 0.7)

(7.23, 194.6 × 103 , 0.2, 0.8)

(56, 169.6 × 103 , 0.75, 0.25)

(48, 142.4 × 103 , 0.45, 0.55)

Fig. 5. Mean of the Nash equilibria of the simulated games over 103 days
under estimated occupant utilities with leader incentives found via PSO and
parameters given by (d, ρ, β2,

∑
j∈A βj) where A = {6, 8, 14, 20}. Note

that the mean Nash equilibrium in each case is slightly below the default
setting.



V. DISCUSSION AND FUTURE WORK

We presented the results of a social game for encouraging
energy efficient behavior in building occupants and mod-
eling of occupant behavior patterns. We briefly discussed
the utility estimation problem. Using the estimated utili-
ties, we formulated and solved the building manager’s bi-
level optimization problem for the total points and default
setting. Due to the large number of events underlying the
joint distribution across player states and non-convexities,
we utilized a particle swarm optimization method. We are
exploring more efficient methods for solving for the optimal
points and default setting as well as implementing the current
(d, ρ) that we found through PSO in our test bed.

The leader’s utility function contains a number of pa-
rameters such as c1, c2 and the benevolence factor which
represent how much utility or happiness the leader is willing
to exchange for savings. We are in the process of examing
the impact of these factors on the leader savings as well as
the occupant satisfaction in practice. We are implementing
surveys to collect additional data about the occupants’ satis-
faction which we plan to incorporate into our solution.

In addition, we did not include individual rationality
constraints in the leader’s optimization problem. It would be
interesting to explore incorporating such a constraint in the
optimization problem where we consider the outside good to
be the default setting.

Another interesting direction for future research that we
are exploring is understanding the type (parameter) space
of the occupants and how the Nash equilibria of the fol-
lower game depend on these parameters. Specificically it
is interesting to take a dynamical systems perspective and
study parameter configurations leading to the desired Nash
equilibrium being structurally stable.
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