
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Analyzing the Security Gap in Bootstrapping Obfuscation

Permalink
https://escholarship.org/uc/item/3ww7r5zb

Author
Roncevich, Evan

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ww7r5zb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Analyzing the Security Gap in Bootstrapping Obfuscation

A Thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Computer Science

by

Evan Thomas Roncevich

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Mihir Bellare
Professor Deian Stefan

2018

Copyright

Evan Thomas Roncevich, 2018

All rights reserved.

The Thesis of Evan Thomas Roncevich is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

2018

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

Acknowledgements . v

Abstract of the Thesis . vi

Chapter 1 Overview of Obfuscation and Bootstrapping . 1
1.1 Introduction . 1

1.1.1 VBB vs iO . 1
1.1.2 Uses of Obfuscation . 2
1.1.3 Tradeoffs of Various Methods . 3
1.1.4 Questions . 4
1.1.5 Contributions . 5
1.1.6 Open Question . 6

1.2 Preliminaries . 6
1.2.1 Definitions . 7
1.2.2 Applebaum Construction . 10
1.2.3 Generalized Construction . 11
1.2.4 Fundamental Lemma of Game Playing . 12

Chapter 2 Constructions for Proofs . 13
2.1 Trivial Counterexample to Construction . 13

2.1.1 Construction of randomized encoding scheme R̂E 14
2.1.2 Constructing PRF Ĥ . 16
2.1.3 Trivial Obfuscation Scheme . 18
2.1.4 Constructing Adversary . 19

2.2 Counterexample to Generalized Construction . 21
2.2.1 Construction of PRF Ĥ . 22
2.2.2 Construction of randomized encoding scheme R̂E 36
2.2.3 Adversary Construction . 39

Chapter 3 Analysis of Bootstrapping . 42
3.1 Other Forms of Bootstrapping . 42

3.1.1 Garg et al. Bootstrapping . 42
3.1.2 Canetti et al. Construction . 46

3.2 Analysis of Bootstrapping Constructions . 53
3.3 Conclusion . 54

Bibliography . 57

iv

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Daniele Micciancio for his support as my

professor and the chair of my committee. Through three courses and numerous one-on-one

meetings, I’ve had the chance to improve and really enjoy being a part of the academic

community.

I would additionally like to acknowledge the wonderful graduate students at UCSD

who would answer my innumerable questions and continually spark my interest in research.

Chapter 1,2, and 3, in part is currently being prepared for submission for publication

of the material. Micciancio, Daniele; Roncevich, Evan. The thesis author was the primary

investigator and author of this material.

I would like to thank Sandia National Laboratories for funding my Master’s degree,

including this research. This paper describes objective technical results and analysis. Any

subjective views or opinions that might be expressed in the paper do not necessarily

represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-NA0003525. SAND no. SAND2018-6145 T.

v

ABSTRACT OF THE THESIS

Analyzing the Security Gap in Bootstrapping Obfuscation

by

Evan Thomas Roncevich

Master of Science in Computer Science

University of California San Diego, 2018

Professor Daniele Micciancio, Chair

Indistinguishability obfuscation is an extraordinarily versatile primitive, leading

many to search for candidate constructions. Of these candidates, many rely on “boot-

strapping” techniques that transform an obfuscator for a small class of circuits into an

obfuscator for larger class of circuits. While this technique can be achieved in several

manners, examining each shows drawbacks in utility ranging from strong assumptions to

exponential loss in security. We specifically examine the construction by Applebaum [1]

and the construction by Canetti et al. [11], two very similar constructions, to explain why

each is different and if the differences are warranted. We prove that the Applebaum con-

struction is not valid under the indistinguishability obfuscation definition, demonstrating

vi

an important difference with the Canetti et al. construction. Additionally, we examine

the Garg et al. construction [14] in how it relates to the other constructions.

vii

Chapter 1

Overview of Obfuscation and Boot-
strapping

1.1 Introduction

Program obfuscation is a subject that has attracted a lot of attention in cryptography

recently. There are many ideal uses for being able to change arbitrary programs into

obfuscated programs, where obfuscated programs keep the functionality of the original

program while otherwise appear unintelligible. There has been significant work on how

this idea of obfuscation can be cryptographically defined along with its relation to other

well-known cryptographic definitions.

Throughout this work, we analyze some of these cryptographic definitions along

with constructions related to obfuscation.

1.1.1 VBB vs iO

The theoretical study of obfuscation as a cryptographic primitive was initiated by

the studies of Barak et al. [4] and Hada [16]. From [4] the authors defined two types of

obfuscation, virtual black-box obfuscation (VBB) and indistinguishability obfuscation (iO).

These definitions involve taking a program, creating a functionally equivalent obfuscated

version of the program, and challenging an adversary to learn some information about the

obfuscated program. Virtual black box obfuscation requires an obfuscated program to

1

reveal no more information than what could be obtained using the program as a black-box.

The weaker definition of indistinguishability obfuscation requires any two functionally

equivalent programs, when obfuscated, to be computationally indistinguishable from each

other.

In the Barak et al. paper, the authors demonstrate that the VBB definition is

an unachievable definition for general classes of programs. The authors present a circuit

family which is impossible to obfuscate under the VBB definition as the very circuit itself

can reveal information.

As for the iO definition, research such as [7] shows this form of obfuscation is

equivalent to functional encryption. These candidate constructions have generally relied

on multi-linear maps, and while many have been broken, with no known impossibility

results, indistinguishability obfuscation seems a far more achievable goal, with significant

research going into the construction and performance improvements.

1.1.2 Uses of Obfuscation

A reason for interest in obfuscation is the extreme versatility of indistinguishability

obfuscation. From iO, an enormous number of cryptographic primitives can be derived.

This includes one-way functions, fully homomorphic encryption, zero-knowledge proofs,

and functional encryption. Because of the large number of uses, several research efforts

have gone into proposing candidate constructions and ways of improving constructions.

One candidate construction in particular proposed by Garg et al. [14] was an iO

construction which was limited to obfuscating low depth circuit families from the use of

branching programs. In order to obfuscate more general circuit families with polynomial

depth, they additionally offer an “amplification” technique which converts a low depth

obfuscator into an obfuscator for polynomial-sized circuits. An active area of research is

examining how this iO “amplification” technique is performed. We refer to constructions

which transform an obfuscator for a small circuit family into an obfuscator for a larger

2

circuit family as obfuscation bootstrapping.

1.1.3 Tradeoffs of Various Methods

A bootstrapping technique (for either the iO or VBB definitions) takes an obfuscator

which can securely obfuscate circuit families in some class WEAK (such as NC1) and

constructs a new obfuscator which can obfuscate arbitrary polynomial-sized circuit families.

There are a number of techniques given for bootstrapping an iO obfuscator in addition to

the one proposed by Garg et al. [14].

Garg et al.’s candidate construction for bootstrapping uses Fully Homomorphic En-

cryption with an obfuscator capable of decrypting in WEAK to produce the bootstrapped

obfuscator. The first drawback of this technique is to rely on a Fully Homomorphic

Encryption scheme which can be implemented in the complexity class WEAK. Many

FHE schemes rely on the use of the Learning with Errors problem, and significant work

has been done in improving the performance of such schemes [13], [12]. This is not an

unreasonable assumption to make. There may be additional concerns about performance

of FHE techniques and how it would ultimately affect the obfuscation bootstrapping tech-

nique, giving interest in relaxing the assumptions needed for an obfuscation bootstrapping

construction.

The next construction examined how obfuscation bootstrapping could be accom-

plished without FHE. In [1], Applebaum examines obfuscation using the VBB definition

instead of iO. While it is known that the VBB definition is impossible to achieve for general

circuit families, when used to bootstrap under the VBB definition, this construction does

not rely on FHE. Instead it uses constructions derived from one-way functions. Applebaum

uses a randomized encoding schemes constructable in NC1 and a family of pseudorandom

functions in NC1 to turn any VBB obfuscator for circuit families in NC1 into a VBB

obfuscator for arbitrary polynomial-sized circuit families. The natural drawback of this

construction is the fact that the VBB definition for obfuscation is unachievable for general

3

circuit families as well as needing to rely on the existence of a randomized encoding scheme

and a PRF in NC1.

As the VBB definition is unachievable, Canetti et al. [11], find a way to achieve

both obfuscation bootstrapping for iO and avoid relying on FHE for a bootstrapping

construction. The authors accomplish this by modifying the construction presented by

Applebaum in [1]. This construction still relies on randomized encoding schemes in NC1,

and then restricts the PRF used to a puncturable PRF in NC1. This construction, however,

also has drawbacks, namely an exponential security loss when constructed from the security

assumptions of the obfuscator, randomized encoding scheme, and puncturable PRF. In

order to prove the security of their bootstrapping construction, the authors rely on an

exponential number of security hybrids.

1.1.4 Questions

Through the various construction for bootstrapping obfuscation, several questions

come up. The first question is about the exact difference between the constructions of

Canetti et al. [11] and Applebaum [1].

The construction by Canetti et al. is extremely similar to the Applebaum construc-

tion, making a very specific set of changes to account for the change from VBB to iO

definitions. Both use a randomized encoding scheme of a universal circuit to “hide” a

circuit that is being evaluated. They both make use of some form of PRF to produce the

randomness used by the randomized encoding scheme. The changes however, result in an

exponential security loss in the Canetti et al. construction when there was otherwise none.

The first question we seek to answer in this paper is do these constructions need to

be different? Is the Applebaum construction sufficient for indistinguishability obfuscation

bootstrapping?

If the Applebaum construction is not sufficient for iO while the Canetti et al.

construction is sufficient, there must be some gap between the two constructions derived

4

from their differences. Then this leads to the question:

Does the Canetti et al. construction make the most efficient modifications to the

Applebaum construction, or are improvements in efficiency possible?

With the analyses of the two constructions, we would also like to compare between

the other known forms of bootstrapping.

1.1.5 Contributions

Counterexamples to Applebaum Construction. The main question posed in this

work is if the obfuscation bootstrapping construction presented by Applebaum in [1] is

secure for indistinguishability obfuscation. Applebaum demonstrates a bootstrapping

technique which given a VBB obfuscator for a small class of functions, a family of

pseudorandom functions computable in WEAK , and a randomized encoding scheme

computable in WEAK constructs a VBB obfuscator for a larger class of functions. Since

VBB and iO have the same syntax/interface, the same construction can be applied to iO.

However, the paper makes no claim about its security when using the construction under

the indistinguishability obfuscation security definition instead of the VBB definition.

Our first result is to answer this question with “no” in that we find a valid instanti-

ation of Applebaum’s construction which trivially fails to bootstrap indistinguishability

obfuscation. This first result follows from the specific way Applebaum defines the con-

struction, allowing for the use of the identity function as a trivially secure iO obfuscator

for specific circuit families. We present a PRF, randomized encoding scheme, and iO

obfuscator that when used in the Applebaum construction, fails the iO definition.

To analyze the Applebaum scheme better adapted to iO we consider how the

construction works when requiring nontrivial indistinguishability obfuscation as the base

obfuscator and demonstrate that the construction still fails to securely bootstrap iO

by demonstrating a general-purpose counterexample to Applebaum’s construction. The

counterexample relies on constructing a PRF and randomized encoding that when used

5

with any iO obfuscator for the Applebaum construction, fails the iO definition.

From these results we can conclude that Applebaum’s construction is suitable for

VBB obfuscation but is not sufficient for iO bootstrapping.

Analysis of iO Solutions. Given that Applebaum’s construction is not secure for the

iO definition, the analysis turns to constructions as found in Canetti et al. [11] or Garg

et el. [14]. Each construction is secure but poses tradeoffs in terms of performance and

assumption. Because of the similarities found in the Canetti et al. construction and

Applebaum construction, we analyze the differences between the schemes to determine

how the construction can be improved in terms of efficiency while remaining secure.

Certain parameters in the Canetti et al. construction can be modified while keeping

the construction secure. We additionally give a further analysis of the Garg et al. [14]

construction to give a more in-depth comparison between these constructions.

1.1.6 Open Question

An important open question worth exploring is the following: Can obfuscation

bootstrapping be accomplished under the iO definition while avoiding an exponential loss

in security and without relying on FHE?

Many constructions and reductions related to iO result in an exponential loss in

security [15] and even results exist showing certain black-box iO derived reductions require

this loss [3]. The open question of an improved obfuscation bootstrapping construction

may result in an impossibility result or a reduction to another problem.

1.2 Preliminaries

In this section we explain the definitions and constructions to be used in the proofs.

Many of these definitions are taken from [1].

6

1.2.1 Definitions

In the following definitions, for any set S, s
$← S refers to setting a element s to

a random element in the set S. For a randomized algorithm A(x), A(x; r) refers to the

output of A on input x using the random coins r. y
$← A(x) refers to setting y to the

output of A(x; r) where the random coins, r, are randomly chosen.

Definition 1.2.1. (Circuit Families). Let F be an infinite sequence of circuit families

{Fn}n∈N where for every n ∈ N, Fn is a set of Boolean circuits with n inputs, m(n)

outputs, and a circuit size `(n) where m and ` are bounded by a polynomial of n.

Definition 1.2.2. (Pseudorandom functions). Let H = {Hn}n∈N be a family of

polynomially-sized Boolean circuits. Let H.K be a PPT sampling algorithm that on

input 1n samples a circuit h in Hn. H is a pseudorandom function family (PRF) if there

exists a negligible function neg(n) such that for every non-uniform oracle aided PPT

adversary A:

∣∣∣∣∣ Pr
h

$←K(1n)
[Ah = 1]− Pr[ARn = 1]

∣∣∣∣∣ ≤ neg(n)

where Rn is a uniformly random function with the same input and output sizes as Hn.

Definition 1.2.3. (Puncturable pseudorandom functions) Let H = {(H)n}n∈N be a family

of polynomially-sized Boolean circuits. Let K be a PPT sampling algorithm that on input

1n samples a random key k. H is a puncturable pseudorandom function family if in

addition to satisfying the definition of a pseudorandom function using the sampled circuit

written as Hk, there exists a polynomial time algorithm Puncture which satisfies the

following properties:

• Correctness. For all keys k ∈ K(1n), all inputs i ∈ {0, 1}n, all x 6= i, and all

punctured keys k−i
$← Puncture(k, i), Hk−i(x) = Hk(x).

7

• Pseudorandom at punctured point. For every (two-stage) PPT adversary

(A1,A2), where A1 returns a point i ∈ {0, 1}n, and state σ, there is a negligible func-

tion neg(n) such that for k randomly sampled from K(1n) and k−i
$← Puncture(k, i),

|Pr[A2(σ, k−i, i,Hk(i)) = 1]− Pr[A2(σ, k−i, i, $) = 1]| ≤ neg(n)

where $ is a uniformly selected random bitstring of size equal to the output size of

Hk.

Definition 1.2.4. (Strong pseudorandom permutations). Let P = {Pn}n∈N be a family of

polynomially-sized Boolean circuits evaluating an n-bit permutation. Let P .K be a PPT

sampling algorithm that on input 1n samples a circuit p in Pn. P is a strong pseudorandom

permutation family (sPRP) if there exists a negligible function neg(n) such that for every

non-uniform oracle aided PPT adversary A:

∣∣∣∣∣ Pr
p

$←K(1n)
[Ap,p−1

= 1]− Pr[ARn,R
−1
n = 1]

∣∣∣∣∣ ≤ neg(n)

where Rn and R−1n are a uniformly random permutation with the same input and output

sizes as Pn and its inverse. The adversary is given access to both the permutation p and

the inverse of the permutation p−1.

Definition 1.2.5. (Randomized Encoding). Let Fn : Xn → Yn be an efficiently com-

putable function. Then a randomized encoding scheme RE for Fn is a tuple of PPT

algorithms (En,De, Sim) such that:

• En : Xn ×Rn → En

• De : En → Yn

• Sim : En
$→ Yn

8

We assume the values for Xn, Yn, En, Rn are bit strings. For this scheme to be a

secure randomized encoding, the tuple of algorithms must satisfy the following properties:

• Perfect Correctness For every n ∈ N, x ∈ {0, 1}n , and r ∈ Rn,

De(En(x; r)) = Fn(x)

• Computational Privacy For every non-uniform PPT oracle aided adversary A,

∣∣Pr[AEn(·;$) = 1]− Pr[ASim(F (·)) = 1]
∣∣ ≤ neg(n)

where the function En uses fresh randomness $ ∈ Rn in each oracle invocation.

Definition 1.2.6. (Virtual Black-Box Obfuscator). Let F = {Fn}n∈N be a family of

polynomial-sized Boolean circuits. A virtual black-box (VBB) obfuscator O for the circuit

family F is a PPT algorithm mapping each circuit f ∈ Fn to a new circuit [f] with the

following properties:

• Preserve Functionality. For every n ∈ N, f ∈ Fn, and x ∈ {0, 1}n,

Pr[[f](x) 6= f(x)] ≤ neg(n)

• Polynomial Slowdown. There exists a polynomial p such that for all n ∈ N and

f ∈ Fn, the size of the circuit produced by O(f) is at most p(|f |).

• Virtual Black-Box. For every non-uniform PPT adversary A, there exists an

oracle aided PPT simulator Sim such that for every n ∈ N and f ∈ Fn,

∣∣Pr[A(O(f)) = 1]− Pr[Simf (1|f |, 1n) = 1]
∣∣ ≤ neg(n)

9

Definition 1.2.7. (Indistinguishability Obfuscator). Let F = {Fn}n∈N be a family of

polynomial-sized Boolean circuits. An indistinguishability obfuscation (iO) obfuscator O

for the circuit family F is a PPT algorithm mapping each circuit f ∈ Fn to a new circuit

[f] with the following properties:

• Preserve Functionality. For every n ∈ N, f ∈ Fn, and x ∈ {0, 1}n,

Pr[[f](x) 6= f(x)] ≤ neg(n)

• Polynomial Slowdown. There exists a polynomial p such that for all n ∈ N and

f ∈ Fn, the size of the circuit produced by O(f) is at most p(|f |).

• Indistinguishability. For every n ∈ N, for all equally sized and equivalent circuits

f0, f1 ∈ Fn, and for every non-uniform PPT adversary A,

|Pr[A(O(f0)) = 1]− Pr[A(O(f1)) = 1]| ≤ neg(n)

1.2.2 Applebaum Construction

The obfuscation bootstrapping construction presented in [1] relies on 3 primitives

to construct the new obfuscation scheme. The first component is a randomized encoding

scheme RE for the evaluator F of a circuit family F . The next component is a family

of pseudorandom functions H where the output size of Hn is equal to the size of the

randomness input of RE.En. The third component is an obfuscator O for a circuit family

G, which will be defined later.

Combining these components in the construction produces an obfuscator Ô. In the

original construction in [1] O and Ô were VBB obfuscators, but throughout this analysis,

we will consider them as iO obfuscators.

10

Explicit Construction

The circuit family G = {Gn} is the circuit family that will be needed to be obfuscated

by O. We define G as the circuit family where Gn contains all the circuits of the form,

gf,h : x 7→ RE.En((f, x), h(x)), ∀f ∈ Fn, h ∈ Hn (1)

Then the Applebaum construction, which we will refer to as AiOO,RE,H, follows:

AiOO,RE,H(f)

h
$← H.K(1n)

[g]
$← O(gf,h)

[f]← (x 7→ RE.De([g](x)))

return [f]

where gf,h is as defined in (1).

On return, the output of AiOO,RE,H(f) = [f] is the composition of the circuit

RE.De with [g]. This is functionally equivalent to the original circuit f . As shown in [1],

AiOO,RE,H is a secure obfuscation bootstrapping scheme under the VBB definition.

1.2.3 Generalized Construction

The original construction is limited by how it defines the obfuscator O for the

circuit family G used in the construction AiOO,RE,H. G is defined as a specific circuit

family. When considering the VBB definition, this is not an issue; however, under the iO

definition, the circuit family is so limited that trivial constructions of O can be constructed.

This leads to the issue explained in Section 2.1.

Because the construction presented by Applebaum is focused only on the VBB

definition, when analyzing the application to the iO definition, we consider stronger

requirements of the obfuscator O used. We modify the circuit family G that the obfuscator

needs to be able to obfuscate to prevent this issue. Define AiO NCO,RE,H as AiOO,RE,H

11

where O is an indistinguishability obfuscator for the class of circuits G = NC1.

1.2.4 Fundamental Lemma of Game Playing

Throughout several proofs, we make use of the Fundamental lemma of game playing

as formally defined in [5].

In order to prove that two distributions are computationally indistinguishable from

each other, the distributions may be identical until a specific event happens. Treating these

distributions as games, if two games execute in a functionally equivalent way under the

same adversary until some flag bad is set, these games are considered identical-until-bad

games.

G and H are identical-until-bad games if for any adversary A, the executions of G

and H under adversary A are identical until the event occurs setting the flag bad to true.

Once this occurs, there is no longer a guarantee the games will have equivalent execution

under adversary A.

Let G and H be identical-until-bad games. Let A be an adversary. Then

|Pr[GA = 1]− Pr[HA = 1]| ≤ Pr[GA sets bad]

12

Chapter 2

Constructions for Proofs

2.1 Trivial Counterexample to Construction

The Applebaum construction AiOO,RE,H is secure under the VBB definition; how-

ever, the construction relies on an obfuscator O which only needs to obfuscate a narrowly

defined circuit family G composed of circuits evaluating the functions

x 7→ RE.En((f, x), h(x)), ∀f ∈ Fn, h ∈ Hn

where H is the PRF in AiOO,RE,H and RE is a randomized encoding scheme for an

evaluator F which can evaluate the polynomially-sized circuit family F . When considering

the case where AiOO,RE,H is applied to iO instead of VBB obfuscation, the way G is defined

can lead to a construction that breaks the indistinguishability of the scheme. Constructing

an iO obfuscator which trivially satisfies the obfuscation of circuit family G breaks the

security of AiOO,RE,H.

Theorem 2.1.1. Under standard assumptions, there exists a secure iO obfuscator for

the circuit family G, a PRF, and randomized encoding scheme such that the construction

presented by Applebaum fails to produce a secure iO obfuscator.

We prove this by constructing a randomized encoding R̂E, a PRF Ĥ, and an

obfuscation scheme O with an adversary which can break the iO-security definition for

13

AiOO,R̂E,Ĥ.

2.1.1 Construction of randomized encoding scheme R̂E

The construction is derived from a randomized encoding scheme RE for the function

evaluator F of a family of circuits F . The original randomized encoding scheme, RE, can

be derived from Yao’s garbled circuit scheme as shown in [2]. We use RE to construct a

new randomized encoding scheme R̂E as follows:

• R̂E.En(x; (r0, r1, r2))

return
(
RE.En(x; r1), r0, r2 ⊕ x

)
• R̂E.De((y0, y1, y2))

return RE.De(y0)

where y0 is the bits of input pertaining to RE.En(x; r1), y1 being the bits of r0, and

y2 is the bits of r2 ⊕ x.

• R̂E.Sim(F (x))

r0, r2 ← $

return
(
RE.Sim(F (x)), r0, r2

)
Proof R̂E is a randomized encoding scheme. To demonstrate R̂E is a randomized encod-

ing scheme, we demonstrate it holds perfect correctness and computational privacy.

Perfect Correctness For every n ∈ N, x ∈ {0, 1}n , and r ∈ Rn,

R̂E.De(R̂E.En(x; r)) = F (x)

This is satisfied from RE being a randomized encoding for the function F :

R̂E.De(R̂E.En(x; (r0, r1, r2)))

= R̂E.De
((
RE.En(x; r1), r0, r2 ⊕ x

))
14

= RE.De(RE.En(x; r1))

= F (x)

Computational Privacy For every non-uniform PPT oracle aided adversary A,

∣∣∣Pr[AR̂E.En(·;$) = 1]− Pr[AR̂E.Sim(F (·)) = 1]
∣∣∣ ≤ neg(n)

where the function R̂E.En is using fresh randomness $ in each oracle invocation. By

construction, the advantage of adversary A is equal to:

∣∣∣∣Pr[A RE.En
r0,r1,r2←$

(·;r1),r0,r2⊕x
= 1]− Pr[A

RE.Sim
r0,r2←$

(F (·)),r0,r2
= 1]

∣∣∣∣
where each $ is fresh randomness of the corresponding sizes for each query to the

oracle. To show there is a negligible advantage for the adversary, first examine that r0,

r1, and r2 are independent random values. Then, because r2 is only used once and as a

one-time pad,

∣∣∣∣Pr[A RE.En
r0,r1,r2←$

(·;r1),r0,r2⊕x
= 1]− Pr[A

RE.En
r0,r1,r2←$

(·;r1),r0,r2
= 1]

∣∣∣∣ = 0

Then the advantage that an adversary can break computation privacy, using the

triangle inequality, is bounded by∣∣∣Pr[A RE.En
r0,r1,r2←$

(·;r1),r0,r2⊕x
= 1]−

(
Pr[A

RE.En
r0,r1,r2←$

(·;r1),r0,r2
= 1]

−Pr[A
RE.En

r0,r1,r2←$
(·;r1),r0,r2

= 1]
)
− Pr[A

RE.Sim
r0,r2←$

(F (·)),r0,r2
= 1]

∣∣∣
=

∣∣∣∣Pr[A RE.En
r0,r1,r2←$

(·;r1),r0,r2
= 1]− Pr[A

RE.Sim
r0,r2←$

(F (·)),r0,r2
= 1]

∣∣∣∣
Now the only difference between the distributions is the bits corresponding to

RE.En(·; r1) and RE.Sim(F (·)) as the remaining bits are equivalent and independent of

15

the first bits for both distributions. By the definition of the randomized encoding scheme

RE, any adversary would have negligible advantage distinguishing between RE.En(·; r1 ←

$) and RE.Sim(F (·)).

This implies any PPT adversary is bounded in the advantage of distinguishing

between the encoding and simulator by a negligible function, satisfying computational

privacy. Satisfying the correctness and privacy properties proves that the scheme R̂E is a

secure randomized encoding scheme.

2.1.2 Constructing PRF Ĥ

For the counter example, we need to use a PRF Ĥ which when used as a circuit

family, contains no two circuits which are functionally equivalent. This can be constructed

from any PRF H where the function can be sampled by picking a random key k ∈ {0, 1}n,

written as Hk and is of the form Hk : {0, 1}n → {0, 1}3n.

The constructed PRF Ĥ is sampled as Ĥk where k is uniformly sampled from

{0, 1}n. Ĥk is written below.

Ĥk(x) =

03n if x = k

13n if Hk(x)[1 : n] = 0n

Hk(x) otherwise

where Hk(x)[1 : n] is the first n bits of the output.

Proof Ĥ is a PRF. For any sampled key k, by construction Ĥk is equal to Hk for all

inputs except where x = k and Hk(x)[1 : n] = 0n.

Because of this equivalence, the only way a PPT adversary will be able to distinguish

between Ĥk and Hk would be to find where x = k or the first n bits of Hk(x) = 0n. Using

the fundamental game playing lemma, the advantage is bounded by the probability

16

that an adversary with oracle access to Hk can query with input x such that x = k or

Hk(x)[1 : n] = 0.

Because H is a PRF, there is a negligible probability that any adversary can find

any input x that will result in the first n bits of Hk(x) being equal to any n-bit constant. If

such an adversary existed, it would break the security of H as it should be indistinguishable

from a random function. A random function has a 2−n chance of having the first n bits of

output equal to any constant. A PPT adversary which could find query this input with

non-negligible probability would break the PRF security of H.

If an PPT adversary A with oracle access to Hk could query with the input x = k

with non-negligible probability, H could be broken in another trivial reduction. An

adversary B can be constructed which simply runs the adversary A with oracle access

to Hk, recording the queries. Then B simply checks if one of the queried inputs, when

treated as a key, is consistent with the outputs of the queried inputs.

The probability of either case is negligible, so there is a negligible advantage in

distinguishing between Ĥk and Hk. Because H is a PRF, Ĥ is a PRF as well.

Furthermore, representing Ĥ as a keyed circuit family will have no duplicate circuits.

For any k, k′ ∈ {0, 1}n, if ∀x. Ĥk(x) = Ĥk′(x), then Ĥk(k) = Ĥk′(k) = 03n.

The only way the first n bits of Ĥk(x) is equal to 0n is if x = k, which implies

Ĥk′(k) = 03n ⇒ k = k′.

This proves that Ĥ is a PRF where no two key sampled functions are functionally

equivalent, which means the circuit family for Ĥ can be written with each circuit being

functionally unique. Additionally, only the first n bits of output are needed to determine

if two instances of Ĥ are equivalent.

17

2.1.3 Trivial Obfuscation Scheme

We construct an indistinguishability obfuscation scheme O for a specific circuit

family G. By limiting the circuit family needed to be obfuscated, even the identity function

O(g) = g is a valid iO obfuscator as long as there are no two functionally equivalent

circuits in G.

Using the construction Ĥ defined in the previous subsection, when used as a keyed

circuit family, for any keys k′ 6= k′, Ĥk and Ĥk′ are not functionally equivalent.

We use the randomized encoding scheme R̂E as defined in the previous subsection

which is a randomized encoding for the evaluator F : F ×X → Y which can evaluate the

circuit family F with an input.

We define the circuit family G that O can obfuscate as the set of circuits of the

form

gf,Ĥk : x 7→ R̂E.En((f, x), Ĥk(x)), ∀f ∈ F , Ĥk ∈ Ĥ

The obfuscator, O, being the identity function is O(gf,h) = gf,h.

Proof O is an iO obfuscator. To prove that O is a valid obfuscator under the iO defini-

tion, it must satisfy the properties Preserve Functionality, Polynomial Slowdown, and

Indistinguishability according to Definition 1.2.7. Being the identity function, Preserve

Functionality and Polynomial Slowdown are clearly satisfied.

The third property, Indistinguishability, requires that for all equally sized and

equivalent circuits gf,Ĥk , gf ′,Ĥk′ ∈ G, and for every non-uniform PPT adversary A,

∣∣∣Pr[A(O(gf,Ĥk)) = 1]− Pr[A(O(gf ′,Ĥk′)) = 1]
∣∣∣ ≤ neg(n)

To show that the Indistinguishability property is satisfied, we demonstrate there are no

two circuits in G which are functionally equivalent. Without two different but equivalent

18

circuits in G, Indistinguishability is satisfied.

If two circuits gf,Ĥk and gf ′,Ĥk′ are functionally equivalent, we show (f, k) = (f ′, k′).

This is shown directly by assuming that for all inputs x,

R̂E.En((f, x), Ĥk(x)) = R̂E.En((f ′, x), Ĥk′(x))

Refer to the outputs of Ĥk(x) = r0, r1, r2 and Ĥk′(x) = r′0, r
′
1, r
′
2 where each output

is a bit string of size n. By construction of R̂E, the previous statement can be rewritten as

RE.En((f, x), r1), r0, r2 ⊕ (f, x) = RE.En((f ′, x), r′1), r
′
0, r
′
2 ⊕ (f ′, x)

where r0 and r′0 refer to the first n bits of the output of Ĥk(x) and Ĥk′(x). If r0 = r1 for all

inputs x, then for the input x = k, Ĥk(k)[1 : n] = Ĥk′(k)[1 : n] = 0n. In the construction

Ĥk, the first n bits of output equals 0n if and only if the input is equal to the key. This

implies k = k′.

If k = k′, r2 = r′2 for all inputs. This implies if r2 ⊕ (f, x) = r′2 ⊕ (f ′, x) for all

inputs, then (f, x) = (f ′, x). This concludes that f, k = f ′, k′.

If each circuit in the circuit family G is functionally unique, no adversary can

exist as a counter example, satisfying the Indistinguishability property for O is a valid iO

obfuscator. With all three properties satisfied, O is an iO obfuscator for the circuit family

G.

2.1.4 Constructing Adversary

As shown above, the secure indistinguishability obfuscator O can be constructed

as the identity function for the circuit family G defined by

gf,Ĥk : x 7→ R̂E.En((f, x), Ĥk(x)), ∀f ∈ F , Ĥk ∈ Ĥ

19

where we additionally assume the circuits in G have a simple structure in that a polynomial

time algorithm exists which for all f and k, given the circuit gf,Ĥk , returns f . Naturally,

the identity function when used for obfuscating G does not hide anything from an adversary.

Then Applebaum’s construction using the randomized encoding scheme R̂E, iO obfuscator

O, and Ĥ would be a valid instantiation. Using these components would construct

AiOO,R̂E,Ĥ(f)

Ĥk
$← Ĥ.K

[g]← O(gf,Ĥk)

[f]← (x 7→ RE.De([g](x)))

return [f]

We assume F contains any two different but functionally equivalent circuits f0, f1 ∈

F . To prove AiOO,R̂E,Ĥ is not an iO obfuscator, we show a polynomial time adversary

exists which can break the Indistinguishability property of AiOO,R̂E,Ĥ.

Under the Indistinguishability property in the definition of iO, the adversary A

takes as input either AiOO,R̂E,Ĥ(f0) or AiOO,R̂E,Ĥ(f1) and must determine whether it was

given f0 or f1. A executes as follows:

1. A is given AiOO,R̂E,Ĥ(f) where f is either f0 or f1.

AiOO,R̂E,Ĥ(f) = [f] = (x 7→ RE.De([g](x)))

Because the output is (x 7→ RE.De([g](x))), which is the composition of functions

RE.De ◦ [g], A recovers the circuit for [g]. We assume the composition of circuits is

done in a manner that is reversible.

2. [g] is the obfuscation of gf,Ĥk using the identity function, so [g] = O(gf,Ĥk) = gf,Ĥk

must be of the form (x 7→ R̂E.En((f, x), Ĥk)) for some k. Because we assumed

the circuits in G allow for recovery of f for any gf,Ĥk , the adversary parses [g] to

20

return 1 if [g] is of the form x 7→ R̂E.En((f1, x),) and return 0 of [g] is of the form

x 7→ R̂E.En((f0, x),) where is any value.

Under adversary A, f1 and f0 will always be correctly identified. This results in

∣∣∣Pr[A(AiOO,R̂E,Ĥ(f0)) = 1]− Pr[A(AiOO,R̂E,Ĥ(f1)) = 1]
∣∣∣ = 1

This fails the Indistinguishability property for the iO security definition, meaning

the instantiation of Applebaum’s construction is not a valid iO obfuscator, proving Theorem

2.1.1.

2.2 Counterexample to Generalized Construction

The Applebaum construction, AiOO,RE,H is secure under the VBB definition of

obfuscation, and we demonstrate in the previous section a counterexample exists when the

construction uses the iO definition instead. This counterexample arises from the narrow

definition requirements presented in [1].

We further examine Applebaum’s construction by enforcing a stronger requirement

on one of the components used. In the original construction, the base obfuscator O used

only requires it to obfuscate a narrowly defined circuit family G, which ultimately allows

for counterexample shown in Section 2.1.

Generalizing this construction by requiring O to obfuscate a larger circuit family

such as those in NC1, prevents this issue. This leads to the construction as shown in Section

1.2.3, AiO NCO,RE,H. However, analysis of the generalized construction AiO NCO,RE,H

reveals it is insufficient for the purpose of bootstrapping iO. We demonstrate that coun-

terexamples will still exist.

Theorem 2.2.1. Under standard assumptions, there exists a secure PRF and randomized

encoding scheme such that for any iO obfuscator for the class of NC1, when used in the

21

Applebaum construction fails to produce an iO-secure bootstrapped obfuscator.

The basis of the counterexample is a modified version of a counterexample used in

Barak et al. [4]. There are circuit families which are impossible to obfuscate under the VBB

definition because the structure of a circuit can reveal information about the function which

oracle access cannot. This relates in the iO setting because the Applebaum construction

tries to use a PRF essentially as a VBB obfuscated random oracle. There are PRFs which

cannot be obfuscated under the VBB definition, and when used as an obfuscated source of

randomness for a larger construction, can ultimately reveal the randomness used by the

entire construction.

In order to learn this randomness, we construct a PRF Ĥ which is unobfuscatable,

revealing information through any circuit which can evaluate an instance of the PRF. This,

when combined with a specific randomized encoding scheme R̂E, allows an adversary to

break the iO definition of AiO NCO,R̂E,Ĥ.

What follows is the construction of the PRF Ĥ, randomized encoding scheme R̂E,

and adversary A to prove Theorem 2.2.1.

2.2.1 Construction of PRF Ĥ

The PRF Ĥ used in proving Theorem 2.2.1 is constructed by taking a PRF, H,

a strong PRP, P, and using it to build the PRF Ĥ. We denote a sampled function in

the PRF H as Hk1 where k1 is a randomly sampled key. Similarly, we denote a randomly

sampled function in the PRP P as Pk2 where k2 is a randomly sampled key. H and P are

used to construct the PRF Ĥ, sampled as Ĥk3 where k3 is a randomly sampled key. The

size of the keys used in sampling H, P , and Ĥ may be different sizes and are determined

by a security parameter.

The dimensions of the functions Hk1 , Pk2 , and Ĥk3 will be sized so that:

Hk1 : X → {0, 1}y

Pk2 : {0, 1}y+1 → {0, 1}y+1

22

Ĥk3 : X → {0, 1}5y+2

where we note that these functions have an implicit security parameter and the size of y

grows linearly with the security parameter.

The construction of Ĥ is defined below along with the additionally used families of

functions C,E,Hom, and B.

Ĥk=(k′,k′′,k′′′,kIV ,kV ,kV I ,α,β)(X)

return Hk′(X)||Ck′′,α,β(X)||Ek′′′,kIV ,α(X)||Homk′′′,kV (X)||Bk′,k′′′,kV I ,β(X)

Ck′′,α,β(X = (α′, i, ct0, ct1, op, ct[]))

if α′ = α

then β

else Hk′′(X)

Ek′′′,kIV ,α(X = (α′, i, ct0, ct1, op, ct[]))

Pk′′′(αi||HkIV (X))

Homk′′′,kV (X = (α′, i, ct0, ct1, op, ct[]))

(m0,)← P−1k′′′(ct0)

(m1,)← P−1k′′′(ct1)

m′ ← m0 op m1

Pk′′′(m′||HkV (X))

Bk′,k′′′,kV I ,β(X = (α′, i, ct0, ct1, op, ct[]))

if P−1k′′′(ct[j]) = (βj,)∀j

then Hk′(X)

else HkV I (X)

23

Notation:

• αi is the ith bit of α

• βj is the jth bit of β

• || denotes concatenation

• denotes an arbitrary value

Proof Ĥ is a PRF. In order to prove that Ĥ is a PRF as defined in Definition 1.2.2, we

demonstrate through a series of hybrids to show that for any oracle aided PPT adversary

A:

∣∣∣∣∣ Pr
Hk

$←Kn
[AĤk = 1]− Pr[ARn = 1]

∣∣∣∣∣ ≤ neg(n)

We show a series of hybrids H0, H1, H2, H3, H4, H5, H6 where each hybrid is negli-

gibly distinguishability from the previous. This results in the first and last hybrids being

indistinguishable, satisfying the definition.

Each hybrid will use a modified version of Ĥ which we will denote as ĤHi where

Hi is the corresponding hybrid. We list the variations of Ĥ below along with the specific

functions they use. When a part of the key is no longer used, we label it with .

ĤH0

k=(k′,k′′,k′′′,kIV ,kV ,kV I ,α,β)
(X)

return Hk′(X)||Ck′′,α,β(X)||Ek′′′,kIV ,α(X)||Homk′′′,kV (X)||Bk′,k′′′,kV I ,β(X)

ĤH1

k=(, ,k′′′, , , ,α,β)(X)

return R0(X)||C ′α,β(X)||E ′k′′′,α(X)||Hom′k′′′(X)||B′k′′′,β(X)

24

ĤH2

k=(, , , , , ,α,β)(X)

return R0(X)||C ′α,β(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

ĤH3

k=((, , , , , ,α,β)(X)

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

ĤH′3=H4

k=(, , , , , ,α,)(X)

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||R4(X)

ĤH′′3 =H5

k=(, , , , , , ,)(X)

return R0(X)||R1(X)||RP (0||RE(X))||RP (0||RHom(X))||R4(X)

ĤH6

k=(, , , , , , ,)(X)

return R0(X)||R1(X)||R2(X)||R3(X)||R4(X)

The functions used above are defined below:

25

C ′α,β(X = (α′, i, ct0, ct1, op, ct[]))

if α′ = α

then β

else R1(X)

E ′k′′′,α(X = (α′, i, ct0, ct1, op, ct[]))

Pk′′′(αi||RE(X))

E ′′α(X = (α′, i, ct0, ct1, op, ct[]))

RP (αi||RE(X))

Hom′k′′′(X = (α′, i, ct0, ct1, op, ct[]))

(m0,)← P−1k′′′(ct0)

(m1,)← P−1k′′′(ct1)

m′ ← m0 op m1

Pk′′′(m′||RHom(X))

Hom′′(X = (α′, i, ct0, ct1, op, ct[]))

(m0,)← R−1P (ct0)

(m1,)← R−1P (ct1)

m′ ← m0 op m1

RP (m′||RHom(X))

B′k′′′,β(X = (α′, i, ct0, ct1, op, ct[]))

if P−1k′′′(ct[j]) = (βj,)∀j

then R0(X)

else R4(X)

B′′β(X = (α′, i, ct0, ct1, op, ct[]))

if R−1P (ct[j]) = (βj,)∀j

then R0(X)

else R4(X)

The following are random func-

tions:

R0 : X → {0, 1}y

R1 : X → {0, 1}y

RE : X → {0, 1}y

RHom : X → {0, 1}y

R4 : X → {0, 1}y

Additionally RP : {0, 1}y+1 →

{0, 1}y+1 is a random permutation.

Hybrid H0: For the PPT adversary A, the hybrid samples a random key k in the key

space of Ĥ and returns the output of AĤk .

Hybrid H1: First we replace each PRF H used in Ĥk with random functions. H1

26

proceeds identically to H0, except we replace the use of Ĥk with ĤH1
k . This changes the

return statement in ĤH1
k from

return Hk′(X)||Ck′′,α,β(X)||Ek′′′,kIV ,α(X)||Homk′′′,kV (X)||Bk′,k′′′,kV I ,β(X)

to

return R0(X)||C ′α,β(X)||E ′k′′′,α(X)||Hom′k′′′(X)||B′k′′′,β(X)

The change from ĤH0 to ĤH1 safely replaces instances of H with a random function

of equivalent dimensions for each key. The keys k′, k′′, kIV , kV , kV I are only ever used

as the keys for calls to Hk′(X), Hk′′(X), HkIV (X), HkV (X), HkV I (X) respectively. The

security advantage between hybrids H0 and H1 is negligible by the strength of the PRF H

which could be shown by trivial reductions.

|Pr[H0]− Pr[H1]| ≤ neg1(n)

where neg1 is a negligible function.

Hybrid H2: We next replace the use of the strong PRP from ĤH2
k with a random

permutation. H2 proceeds identically to H1 except replacing the use of ĤH1
k with ĤH2

k .

This changes the return statement in ĤH2
k from

return R0(X)||C ′α,β(X)||E ′k′′′,α(X)||Hom′k′′′(X)||B′k′′′,β(X)

to

return R0(X)||C ′α,β(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

The change from ĤH1 to ĤH2 safely replaces the strong PRP used with a random

permutation of equivalent dimensions. The key k′′′ is only used as the key to Pk′′′(X).

The security advantage between hybrids H1 and H2 can be shown to be negligible through

27

a trivial reduction.

|Pr[H1]− Pr[H2]| ≤ neg2(n)

where neg2 is a negligible function.

Hybrid H3: H3 proceeds identically to H2, except we replace the use of ĤH2
k with ĤH3

k

by removing the conditional in C ′. This changes the return statement in ĤH3
k from

return R0(X)||C ′α,β(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

to

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

Showing that hybrid H3 is indistinguishable from hybrid H2 requires several steps.

The structure of the proof is to show 3 separate identical-until-bad games. We show the

probability H2 and H3 are distinguishable for any adversary is bounded by the summation

of the probabilities of these bad events occurring in their respective games. This summation

is shown to be negligible, resulting in H3 and H2 being indistinguishable.

The game BadHi records the inputs to the oracle that the adversary for some hybrid

H makes, and the game uses the recorded inputs to determine if the associated bad event

which would set a flag bad to true occurred during the execution. BadHi returns 1 if the

bad event occurred and returns 0 otherwise. The bad events of each i in BadHi are defined

as follows:

• BadH1 : the adversary in hybrid H makes the query to ĤH
k with input X =

(α′, i, ct0, ct1, op, ct[])) where α′=α.

• BadH2 : the adversary in hybrid H makes the query to ĤH
k with input X =

(α′, i, ct0, ct1, op, ct[])) where R−1P (ct[j]) = (βj,) ∀j.

28

• BadH3 : the adversary in hybrid H makes a query to ĤH
k resulting in a collision on the

last y bits of input to RP . This can also be written as the adversary making queries

with a collision to RE, RHom, or finding inputs X,X ′ where RE(X) = RHom(X ′)

These defined bad events are combined with additionally defined hybrids H ′3, and

H ′′3 to prove a negligible difference between hybrids H3 and H2 using the fundamental

lemma of game playing [5]. By showing

|Pr[H2]− Pr[H3]| ≤ Pr[BadH3
1]

∣∣∣Pr[BadH3
1]− Pr[BadH

′
3

1]
∣∣∣ ≤ Pr[Bad

H′3
2]

∣∣∣Pr[BadH′31]− Pr[BadH
′′
3

1]
∣∣∣ ≤ Pr[Bad

H′′3
3]

The following is true:

|Pr[H2]− Pr[H3]| ≤ Pr[Bad
H′′3
1] + Pr[Bad

H′3
2] + Pr[Bad

H′′3
3] ≤ neg3(n)

This is shown using the following lemmas.

Lemma 2.2.1. The execution of H2 and H3 are identical until bad.

|Pr[H2]− Pr[H3]| ≤ Pr[BadH3
1]

Proof of Lemma 2.2.1. In both hybrids H2 and H3, while each hybrid’s adversary, A, does

not query ĤH2
k or ĤH3

k with input X = (α′, i, ct0, ct1, op, ct[])) where α′=α, by construction

of C ′, ĤH2
k and ĤH3

k are execute equivalently returning

29

R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

This implies the execution of the hybrids are identical until the bad event in BadH2
1

or BadH3
1 . By the fundamental lemma of game playing this is

|Pr[H2]− Pr[H3]| ≤ Pr[BadH3
1]

The next lemma uses the hybrid H ′3 which is identical to the hybrid H3 except ĤH3

is changed to ĤH′3 which removes the conditional in B′′ changing the return statement

from

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||B′′β(X)

to

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||R4(X)

Lemma 2.2.2. The execution of BadH3
1 and Bad

H′3
1 are identical until bad.

∣∣∣Pr[BadH3
1]− Pr[BadH

′
3

1]
∣∣∣ ≤ Pr[Bad

H′3
2]

Proof of Lemma 2.2.2. In both BadH3
1 and Bad

H′3
1 , if the adversary does not make queries

to ĤH3 or ĤH′3 with input X = (α′, i, ct0, ct1, op, ct[])) where R−1P (ct[j]) = (βj,)∀j, the

outputs of ĤH3 and ĤH′3 have equivalent execution, returning

R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||R4(X)

This implies the hybrids H3 and H ′3 are equivalent until the event in Bad2 occurs

for BadH3
1 or Bad

H′3
1 . While the games Bad

H′3
1 and H ′3 are different, Bad

H′3
1 executes H ′3 to

30

check if the bad event occurs, so the event in Bad2 occurring in game Bad
H′3
1 implies Bad

H′3
2

under the same adversary. By the fundamental game playing lemma,

∣∣∣Pr[BadH3
1]− Pr[BadH

′
3

1]
∣∣∣ ≤ Pr[Bad2 occurs in game Bad

H′3
1] ≤ Pr[Bad

H′3
2]

Bad
H′3
2 is negligible: Pr[Bad

H′3
2] can be bounded by a negligible function. In or-

der for the bad event in Bad
H′3
2 to occur, the adversary must query ĤH′3 with input

X = (α′, i, ct0, ct1, op, ct[])) where R−1P (ct[j]) = (βj,)∀j. β is uniformly random y-

bit string and is not used anywhere in ĤH′3 . There are 2y equally-likely sequences of

(β1,), (β2,), ..., (βy,) and the adversary must produce the sequence. Even an adversary

with oracle access to R−1P is bounded by a q
2y

chance of correctly predicting the sequence

after q guesses. This implies a negligible probability for Bad
H′3
2 assuming y grows linearly.

The next lemma uses the hybrid H ′′3 which is identical to the hybrid H ′3 except

ĤH′3 is changed to ĤH′′3 changing the return statement from

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||R4(X)

to

return R0(X)||R1(X)||RP (0||RE(X))||RP (0||RHom(X))||R4(X)

Lemma 2.2.3. The execution of Bad
H′3
1 and Bad

H′′3
1 are identical until bad.

∣∣∣Pr[BadH′31]− Pr[BadH
′′
3

1]
∣∣∣ ≤ Pr[Bad

H′′3
3]

Proof. ĤH′3 and ĤH′′3 have identical execution except in the functions E ′′α(X)||Hom′′(X)

and RP (0||RE(X))||RP (0||RHom(X)) respectively.

31

For this proof, consider ĤH′′3 and ĤH′3 as keeping state to generate the random

permutation RP dynamically as a table of input/output. Functionally this is equivalent to

the stateless distribution where RP is randomly chosen on construction.

Because RP is a random permutation, as long as the input to RP is never repeated,

a fresh element from the remaining domain of RP is generated and returned. In the

difference between ĤH′′3 and ĤH′3 , E ′′α(X)||Hom′′(X) and RP (0||RE(X))||RP (0||RHom(X))

both are of the form:

RP (||RE(X))||RP (||RHom(X))

Which assuming both functions have the same source of randomness when dynam-

ically generating RP , are equivalent until given an input where the last y bits of input

to RP is repeated. Because RP is not used outside these functions, it would imply that

ĤH′′3 and ĤH′3 will return the same, freshly generated values until given inputs to the PRF

resulting in a collision on RE, RHom, or between RE and RHom. This is the bad event in

defined in Bad3.

Assuming the adversary does not make repeated queries to ĤH′′3 or ĤH′3 with

inputs resulting in a collision on RE, RHom, or between RE and RHom, ĤH′′3 and ĤH′3 are

equivalent when R is determined dynamically.

This implies the games Bad
H′3
1 and Bad

H′′3
1 are identical until either the event in

Bad
H′3
3 or Bad

H′′3
3 . While the games Bad

H′′3
1 and H ′′3 are different, Bad

H′′3
1 executes H ′′3 to

check if the bad event occurs, so the event in Bad3 occurring in game Bad
H′′3
1 implies Bad

H′′3
3 .

By the fundamental lemma of game playing,

∣∣∣Pr[BadH′31]− Pr[BadH
′′
3

1]
∣∣∣ ≤ Pr[Bad3 occurs in game Bad

H′′3
1] ≤ Pr[Bad

H′′3
3]

32

Bad
H′′3
3 is negligible: Even an adversary which has oracle access to RE and RHom has a

negligible probability of having the event in Bad
H′′3
3 occur. By definition, RE and RHom

are independent random functions so the output of any input is randomly chosen from 2y

possible values. The probability of a collision in RE, RHom, or between RE and RHom is

negligible assuming y grows linearly in the security parameter.

Bad
H′′3
1 is negligible: As α is never used in hybrid H ′′3 , an adversary would need to query

ĤH′′3 with input X = (α′, i, ct0, ct1, op, ct[])) where α = α′ without any information about

the value of α. With α being chosen uniformly at random, having 2y equally likely values,

any q queries to ĤH′′3 have at most a q
2y

chance of triggering the event in Bad
H′′3
3 . This gives

the adversary a negligible probability of the event occurring assuming y grows linearly.

Combining the lemmas: Using the Triangle Inequality, the hybrids H2 and H3 are

indistinguishable.

From Lemma 2.2.1,

|Pr[H2]− Pr[H3]| ≤ Pr[BadH3
1]

= Pr[BadH3
1]− (Pr[Bad

H′3
1]− Pr[BadH

′
3

1])

≤
∣∣∣Pr[BadH3

1]− Pr[BadH
′
3

1]
∣∣∣+ Pr[Bad

H′3
1]

Which by Lemma 2.2.2

≤ Pr[Bad
H′3
2] + Pr[Bad

H′3
1]

= Pr[Bad
H′3
2] + Pr[Bad

H′3
1]− (Pr[Bad

H′′3
1]− Pr[BadH

′′
3

1])

≤ Pr[Bad
H′3
2] +

∣∣∣Pr[BadH′31]− Pr[BadH
′′
3

1]
∣∣∣+ Pr[Bad

H′′3
1]

33

Which by Lemma 2.2.3

≤ Pr[Bad
H′3
2] + Pr[Bad

H′′3
3] + Pr[Bad

H′′3
1]

As Pr[Bad
H′′3
3], Pr[Bad

H′3
2], and Pr[Bad

H′′3
1] are shown to be negligible, this implies

hybrids H2 and H3 are indistinguishable as well.

|Pr[H2]− Pr[H3]| ≤ neg3(n)

where neg3 is a negligible function.

Hybrid H4: Hybrid H4 proceeds identically to H3, except the use of ĤH3
k is replaced with

ĤH4
k which changes the return statement in ĤH4

k from

return R0(X)||R1(X)||E ′′(X)||Hom′′(X)||B′′β(X)

to

return R0(X)||R1(X)||E ′′(X)||Hom′′(X)||R4(X)

where R4 is a uniformly random function of input size |X| and outputting a bit

string of size y. This hybrid is equivalent to the hybrid H ′3 described previously.

As shown in lemma 2.2.2, the functions ĤH3
k and ĤH′3=H4

k are equivalent until an

adversary makes a query to ĤH3
k or ĤH4

k with input X = (α′, i, ct0, ct1, op, ct[])) where

R−1P (ct[j]) = (βj,)∀j. Because the adversary needs to determine this value without any

knowledge of β, the probability of an adversary achieving this is bounded by at most q
2y

,

where q is the number of queries the adversary makes. This is a negligible advantage for

any adversary when y grows linearly in the security parameter.

|Pr[H3]− Pr[H4]| ≤ neg4(n)

where neg4 is a negligible function.

34

Hybrid H5: Hybrid H5 proceeds identically to H4, except the use of ĤH4
k is replaced with

ĤH5
k . This hybrid is equivalent to H ′′3 which changes the return statement in ĤH5

k from

return R0(X)||R1(X)||E ′′α(X)||Hom′′(X)||R4(X)

to

return R0(X)||R1(X)||RP (0||RE(X))||RP (0||RHom(X))||R4(X)

As shown in lemma 2.2.3, the functions ĤH′3=H4

k and ĤH′′3 =H5

k are equivalent until

the event that ĤH4
k or ĤH5

k is queried with inputs resulting in a collision on RE, RHom, or

between RE and RHom.

RE and RHom are independently random functions, and this leads to the probability

of finding a collision in RE, RHom, or between RE and RHom negligible for any adversary.

This probability is negligible assuming y grows linearly in the security parameter.

|Pr[H4]− Pr[H5]| ≤ neg5(n)

where neg5 is a negligible function.

Hybrid H6: Hybrid H6 proceeds identically to H5, except the use of ĤH5
k is replaced with

ĤH6
k . This hybrid changes the return statement in ĤH6

k from

return R0(X)||R1(X)||RP (0||RE(X))||RP (0||RHom(X))||R4(X)

to

return R0(X)||R1(X)||R2(X)||R3(X)||R4(X)

where R2 and R3 are random functions of input size and output size equal to that

of RP . The gap between H5 and H6 is negligible by the fact that because RP is a random

permutation, and RP (0||RE(X))||RP (0||RHom(X)) and R2(X)||R3(X) will each produce

fresh random (y + 1)-sized bit strings for each input unless a collision is found on RE,

RHom, R2, or R3. Because these are independent random functions, there is a negligible

35

probability of this occurrence for any adversary, assuming y grows linearly.

|Pr[H5]− Pr[H6]| ≤ neg6(n)

where neg6 is a negligible function.

Combining Hybrids

The hybrid H0 is using the original PRF Ĥ and hybrid H6 instead uses ĤH6
k which

is a random function. Through the use of the hybrids above, the difference between hybrids

H0 and H6 is bounded by

|Pr[H0]− Pr[H6]| ≤ neg1(n) + neg2(n) + neg3(n) + neg4(n) + neg5(n) + neg6(n)

This shows the gap between hybrids H0 and H6 are negligible, that Ĥ is a secure

PRF.

2.2.2 Construction of randomized encoding scheme R̂E

In the Applebaum’s construction, the randomized encoding scheme uses a PRF as

a source of randomness. The PRF we will use, constructed in subsection 2.2.1, is designed

such that when given as a circuit reveals information about the PRF. Because of this, the

randomized encoding scheme we construct is designed to leak most of the circuit of the

PRF.

The construction is derived from any randomized encoding scheme RE which

encodes the evaluator F : F ×X → Y for a polynomially-sized circuit family F . This can

be accomplished through the use of Yao’s garbled circuits such as presented in [2]. An

additional requirement of RE is that for any inputs x0 6= x1, with high probability of the

random sampled r, RE.En(x0; r) 6= RE.En(x1; r). This requirement can be accomplished

36

in a similar manner to construction presented in Section 2.1 with a one-time pad of the

inputs concatenated to end of the randomized encoding.

Using RE, we construct a randomized encoding scheme R̂E for the evaluator F

where the algorithms (R̂E.En, R̂E.De, R̂E.Sim) are described as

• R̂E.En(x; (r0, r1))

return
(
RE.En(x, r0), r1

)
where r0 is the first |Hk(x)| bits of the random string,

r1 is the remaining |Ĥk(x)| − |Hk(x)| bits of the random string,

• R̂E.De((y0, y1))

return RE.De(y0)

where y0 is the first |RE.En(x; r0)| bits of the encoding,

y1 is the remaining |Ĥk(x)| − |Hk(x)| bits of the encoding

• R̂E.Sim(F (x))

return
(
RE.Sim(F (x)), $

)
where the output is padded with a random bit string $ of size |Ĥk(x)| − |Hk(x)|

Proof R̂E is secure randomized encoding scheme. Using Definition 1.2.5, R̂E must satisfy

the properties Perfect Correctness and Computational Privacy.

• Perfect Correctness For every n ∈ N, x ∈ {0, 1}n , and r ∈ Rn,

R̂E.De(R̂E.En(x; r)) = F (x)

This is satisfied as because RE is a randomized encoding for evaluator F :

37

R̂E.De
(
R̂E.En(x; (r0, r1))

)
= R̂E.De

((
RE.En(x; r0), r1

))
= RE.De(RE.En(x; r0))

= F (x)

• Computational Privacy For every non-uniform PPT oracle aided adversary A,

∣∣∣Pr[AR̂E.En(·;$) = 1]− Pr[AR̂E.Sim(F (·)) = 1]
∣∣∣ ≤ neg(n)

where the function R̂E.En is using fresh randomness $ in each invocation.

By construction, the advantage of adversary A is equal to:

∣∣Pr[ARE.En(·;$),$ = 1]− Pr[ARE.Sim(F (·)),$ = 1]
∣∣

where each $ is a different fresh randomness of its respective size. The random string

concatenated to the end of RE.En(·; $) and RE.Sim(F (·)) are independent and

identically distributed random bit strings which can be ignored. Then the advantage

of an adversary is bounded by the advantage of any non-uniform PPT oracle aided

adversary B,

∣∣Pr[BRE.En(·;$) = 1]− Pr[BRE.Sim(F (·)) = 1]
∣∣

which by definition of RE being a randomized encoding scheme, is negligible. This

satisfies the privacy property.

Satisfying the correctness and privacy properties proves that the scheme R̂E is a secure

randomized encoding scheme of the evaluator F .

38

2.2.3 Adversary Construction

Using the R̂E and Ĥ constructions in the Applebaum construction allows for a

PPT adversary breaking the iO security in a similar manner to the Barak et al. paper [4].

In this case the circuit family for Ĥ cannot be obfuscated under the VBB definition,

because the structure of any equivalent circuit can be used to learn hidden informa-

tion about Ĥ. The randomized encoding scheme R̂E produces the circuit evaluating

x 7→ R̂E.En((f, x); Ĥk(x)) which leaks the unobfuscatable information that breaks the

indistinguishability definition.

Using the PRF Ĥ and R̂E, the Applebaum bootstrapping construction is:

AiOO,R̂E,Ĥ(f)

Ĥk
$← Ĥ.K

[g]
$← O(x 7→ R̂E.En((f, x); Ĥk(x)))

[f]← (x 7→ RE.Decode([g](x)))

return [f]

First, [f] is just a composition of the functions [g] and RE.Decode, which

any adversary can decompose to recover [g]. [g] is an obfuscation of the function

R̂E.En((f, x); Ĥk(x)), which is equivalent to being given a circuit of the function

x 7→ RE.En((f, x),Hk′(x)), Ck′′,α,β(x)||Ek′′′,kIV ,α(x)||Homk′′′,kV (x)||Bk′,k′′′,kV I ,β(x)

where k = (k′, k′′, k′′′, kIV , kV , kV I , α, β).

With this circuit, the adversary can use the individual circuits corresponding to

the functions C, E, Hom, and B to recover the value Hk′(x) hidden in the function B.

By learning the value of Hk′(x) for some x, the adversary knows the randomness used in

the randomized encoding. Then the adversary can break the iO security definition. We

39

explain this in detail.

Recovering Hk′(x) from B

Given input x = (α′, i, ct0, ct1, op, ct[])), Bk′,k′′′,kV I (x) returns Hk′(X) if

P−1k′′′(ct[j]) = (βj,) ∀j. Since P−1k′′′ is used as a block cipher, the adversary uses the

circuits of the functions C, E, and Hom to determine an encryption of βj for all j.

E returns the encryption of each bit of α, C returns β if the input has α′ = α,

and Hom performs homomorphic operations on the encrypted values. The adversary can

treat each as an individual circuit by ignoring the outputs that do not correspond to

the individual circuits.Using equal-sized and equivalent circuits f0, f1 ∈ F , the adversary

makes a series of calls to the obfuscated circuits within [g].

1. The adversary recovers encryptions of the bits of α by making |α| queries to E,

changing the value of i to get each bit.

2. The adversary using Hom homomorphically computes the circuit corresponding to C

using the encrypted input of x = (α′, i, ct0, ct1, op, ct[])) where the encrypted bits of α′

are set to the encrypted bits of α. The remaining input of x = (α′, i, ct0, ct1, op, ct[]))

does not matter and can be encryptions of arbitrary bits in α. The output of

computing C homomorphically will be encryptions of each of the bits of β.

3. The adversary calls the function B with an input x = (α′, i, ct0, ct1, op, ct[])) where

the list of ciphertexts ct[] is the encryptions of the bits of β. B will then return

Hk′(x).

4. The adversary determines if the output of the last query to [g](x) is equal to

RE.En((f0, x),Hk′(x)) or RE.En((f1, x),Hk′(x)) and returns a 1 or 0 respectively.

As the adversary will always be able to use [g] to recover Hk′(x) for some x, the first

part of [g](x) is guaranteed to be equal toRE.En((f0, x),Hk′(x)) orRE.En((f1, x),Hk′(x)).

40

The only case where the adversary cannot determine whether f0 or f1 is used is when

RE.En((f0, x),Hk′(x)) = RE.En((f1, x),Hk′(x)). We assume RE is chosen such that for

any (f0, x) 6= (f1, x), that RE.En((f0, x), r) 6= RE.En((f1, x), r) with high probability for

randomly sampled r.

This implies RE.En((f0, x),Hk′(x)) 6= RE.En((f1, x),Hk′(x)) with low probability,

resulting in AiOO,R̂E,Ĥ being broken, proving Theorem 2.2.1.

41

Chapter 3

Analysis of Bootstrapping

3.1 Other Forms of Bootstrapping

Because we demonstrate that the construction for bootstrapping obfusction pre-

sented in [1] is not secure under the iO definition, the next step is to examine the

constructions which do produce valid iO obfuscators. The main two to be examined are

the ones by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [14] and by Canetti, Lin,

Tessaro, and Vaikuntanathan [1].

For each, we provide the construction, an overview of the proof, an analysis of key

aspects of the proofs in each construction, and an overview of potential issues surrounding

performance.

3.1.1 Garg et al. Bootstrapping

Shown in [14], Garg et al. present a way to take an obfuscator for a small class of

circuits and transform it into an obfuscator for a large class of circuits. The reason for this

construction is from the fact that in the same paper, they propose a candidate construction

for iO which can only obfuscate circuits within NC1. To create an obfuscator for general

polynomial-sized circuits, they present a way to bootstrap the candidate construction by

taking advantage of Fully Homomorphic Encryption (FHE).

In order to obfuscate a circuit C, the idea is to use FHE to homomorphically

42

evaluate the FHE encryption of C as input to a universal circuit. This aspect does not rely

on obfuscation and can be performed on polynomial circuits and produces an encrypted

output of the function. The only need is to decrypt the output without revealing the

circuit or FHE key.

To decrypt the output of the universal circuit, the encrypted output from the

universal circuit, along with a proof that the output was correctly computed is given to an

obfuscated circuit which checks the proof and decrypts the output if the proof is correct.

The construction makes use of low-depth proofs of FHE computations. In the

paper, [14], they describe the way to construct such a proof. Essentially record all the

inputs and outputs to each FHE evaluation gate. Then to verify the proof, check that the

inputs of each gate evaluate to the specified output, and these outputs match with the

inputs to other gates.

This proof technique is low depth because it is only necessary to check each the

inputs and outputs of each individual gate, which assuming each FHE operation can be

computed as a low depth circuits, can be checked in low depth.

Garg et al. Construction

The obfuscation scheme relies on at a least leveled homomorphic encryption scheme,

but we describe it using fully homomorphic encryption. To obfuscate a circuit C, the

obfuscation scheme performs the following using the base obfuscator O and FHE scheme

FHE. These have an implicit security parameter λ associated with each function.

1. Generate (PK0, SK0)
$← FHE.KeyGen() and (PK1, SK1)

$← FHE.KeyGen().

2. Using a Universal Circuit for NC1 circuits, U(·, ·), with the circuit C encoded as

input, obtain g0
$← FHE.EncPK0(C) and g1

$← FHE.EncPK1(C).

3. Define the function P SK0,g1,g2 :

43

P SK0,g1,g2(x, e0, e1, φ) :

t
$← check φ is a low-depth proof that:

e0 and e1 are the FHE evaluations of U(g0, x) and U(g1, x)

if t then FHESK0 .Dec(e0)

else 0

Using the base obfuscator O, obfuscate a circuit evaluating P SK0,g1,g2 which takes as

input (x, e0, e1, φ) where x is the input for the circuit C, e0 and e1 are encryptions

computed using FHE under PK0 and PK1 respectively, and φ is a low-depth proof.

The obfuscation of P SK0,g1,g2 is denoted as [P].

4. Return [P], g0, g1, PK0, and PK1.

Then C(x) can be evaluated using [P], g0, g1, PK0, and PK1.

1. Using PK0 and PK1, encrypt the input x under each key.

2. Using PK0,PK1, g0, and g1 along with the encryptions of x to homomorphically

evaluate the universal circuit to produce

e0 ← U(g0, FHEPK0 .Enc(x)) and e1 ← U(g1, FHEPK1 .Enc(x)). While computing

e0 and e1, record all inputs and outputs for the homomorphic operations to produce

the low-depth proof φ.

3. Compute [P](x, e0, e1, φ), which will return the value of C(x).

Overview of Proof

This construction relies on the strength of both the iO obfuscator and FHE

with a sequence of 5 hybrids to prove that the obfuscation of two equivalent circuits is

computationally indistinguishable. The proof leverages the ability to switch between the

44

two FHE keys used throughout the computation without changing the functionality of the

obfuscated circuit [P].

The more detailed proof is found in [14], but we provide an overview of its construc-

tion. In order to prove that obfuscations of two functionally equivalent circuits C0 and C1

are indistinguishable, the first hybrid is the adversary accessing the default construction

using circuit C0 with the last being the adversary accessing the construction under circuit

C1.

The second hybrid keeps the construction the same except making g0
$←

FHE.EncPK0(C0) and g1
$← FHE.EncPK1(C1). This hybrid is indistinguishable from

the previous because they present a reduction which would break the FHE scheme.

[P] in the previous hybrids only used SK0 to decrypt the encryption e0. The

third hybrid replaces the obfuscated circuit with a functionally equivalent circuit [P ′]

which uses SK1 to decrypt the encryption e1 instead of using SK0 to decrypt e0. This is

secure by the fact that both circuits are functionally equivalent, so by iO, [P] and [P ′] are

indistinguishable.

The fourth hybrid makes g0
$← FHE.EncPK0(C1) and g1

$← FHE.EncPK1(C1).

This hybrid can be argued similarly to the second hybrid where the hybrid is indistinguish-

able from the previous by the strength of the FHE.

The fifth hybrid goes back to using the original obfuscated circuit [P] instead of

[P ′], which is secure since the functions are equivalent. This is the original obfuscated

circuit but using circuit C1 instead of C0, satisfying the indistinguishability requirement

of the iO definition. The functionality requirement is straightforward, being a decryption

of the encryption of the output of the circuit.

Analysis of Construction

This construction, unlike the Canetti et al. construction [1], does not rely in

increasing the security parameter to keep security.

45

While this construction avoids the exponential number of hybrids needed, it still

relies on the usage of at least leveled homomorphic encryption. This becomes a non-

trivial assumption, because in the desire to bootstrap from some small class of circuits

to polynomial circuits, the function P SK0,g1,g2 makes use of FHE evaluations for checking

that inputs e0 and e1 are the FHE evaluations of U(g0, x) and U(g1, x) respectively as well

as the FHE decryption function to decrypt the final output.

Because P SK0,g1,g2 must be in the small class of circuits such as NC1, this FHE

evaluations and decryptions must also be in the same class. While it is not necessarily an

unreasonable assumption to think FHE evaluations and decryptions can be done in NC1,

it is still an important assumption to be made.

Additionally when considering performance, the use of FHE may not be ideal. To

evaluate an obfuscated circuit, the evaluator will need to essentially perform the FHE

computation of a universal circuit at least 4 times; once under each key to get the encrypted

output of the universal circuit, then once under each key when the circuit [P] verifies the

proof.

Compared to schemes like randomized encodings, FHE can be very slow with some

of the best-known constructions taking over 0.1 seconds to evaluate the bootstrapping

procedure in FHE [12]. Needing to perform this polynomial number of times could be

considerable overhead. There will be additional expected overhead caused by the fact that

much of the computation will be in the evaluation of [P]. It is unclear what the slowdown

will be from O because the requirement for iO is only a polynomial slowdown. Reducing

the size of the circuit evaluating P SK0,g1,g2 would be very important for performance.

3.1.2 Canetti et al. Construction

The construction by Canetti et al [11] avoids the need for fully homomorphic

encryption, extending the Applebaum construction to produce a secure iO bootstrapping

scheme. The construction uses a randomized encoding scheme in a similar manner to the

46

Applebaum construction to convert a circuit of polynomial depth into a circuit which can

be encoded as a circuit in NC1. Canetti et al.’s extension to the construction solves the

problems presented in this paper by modifying the security parameters and making use of

puncturable PRFs.

Naturally, these changes make the counterexamples shown previously no longer

succeed. The issue that can be analyzed is why these changes are necessary from the

Applebaum construction and if there is a way to remove the exponential security loss.

Construction Overview

As the construction is an adaptation to the Applebaum construction, we focus on the

main differences, namely the security parameters changes and the use of puncturable PRFs.

To examine these, we make explicit the security parameter λ. These constructions rely

on sub-exponential secure schemes where a security parameter 1λ results in an advantage

for any PPT adversary of at most 2−λ
ε

where ε is a constant in (0, 1) for the specific

definition.

The construction still uses a randomized encoding scheme RE for an evaluator

F of a circuit family F . We explicitly specify the security parameter used in RE as 1λ.

It is assumed that RE for a security parameter 1λ has at least sub-exponential security

where the distinguishing advantage for any PPT adversary is at most 2−λ
ε

according to

Definition 1.2.5.

The Applebaum construction allows for the use of any PRF, whereas this con-

struction is limited to using a puncturable PRF H. For a security parameter 1λ, the

puncturable PRF H is assumed to have a security advantage bounded by 2−λ
ε

for any

PPT adversaries for Definition 1.2.2.

The construction makes use of an iO obfuscator O which uses a security parameter

1λ with a similar bounded security advantage of 2−λ
ε

for PPT adversaries for Definition

1.2.7.

47

The Canetti et al. construction takes RE, H, and O and picks specific security

parameters for each. For RE with a security parameter of 1λ and given a circuit to

obfuscate which is at most λ, define λ′ = (λlog2(λ))1/ε. Furthermore, define λ′′ ≥ λ′.

The Canetti et al. construction is defined

Ô(f)

k
$← H.K(1λ

′
)

[g]
$← O(1λ

′′
, gf,Hk)

[f]← (x 7→ RE.De(1λ
′
, [g](x)))

return [f]

where gf,Hk is the function x 7→ RE.En(1λ
′
, (f, x),Hk(x)) and all inputs are padded

to the correct length.

Proof Overview

This proof is further detailed in [11]. With many schemes relating to iO, there

is an exponential security loss in the proof. This is a result of requiring an exponential

number of hybrids to be used in the proof, of which this scheme is no different.

The overall proof involves constructing specific new definitions - probabilistic indis-

tinguishability obfuscation and indistinguishable sampler, which when combined can form

an indistinguishability obfuscator. The important step resulting in exponential security

loss involves the way the probabilistic indistinguishability obfuscation is constructed and

proved.

An overview of the probabilistic indistinguishability obfuscation is to construct an

obfuscator which when randomly sampling any two circuits from a specific circuit family,

the obfuscations of these circuits are indistinguishable.

Canetti et al. present a way to achieve a probabilistic indistinguishability obfus-

48

cation scheme from a one-way function and indistinguishability obfuscator. Randomly

sampling the circuits C0 and C1 from the distribution, the probabilistic indistinguishability

obfuscator can be proved to make them indistinguishable by using an exponential number

of hybrids. With the first hybrid being the obfuscation of C0 and the last being the

obfuscation of C1, the hybrids change one input/output pair of the circuit at a time to

gradually shift C0 to C1 to show that no PPT adversary can distinguish between the

obfuscations.

This results in many intermediate hybrids obfuscating a circuit Ei for i ∈ [1...X]

where x1, ..., xX are the canonically ordered elements of the differing domain between C0

and C1, where the size of X can be exponential.

Ei(x) =

 C1(x;Hk(x)) if x ≤ xi

C0(x;Hk(x)) if x > xi

Because C0 and C1 both use a puncturable PRF H, each circuit Ei can be replaced

with a functionally equivalent circuit which uses a punctured key k−i on the point xi. This

results in the functionally equivalent circuit E ′i:

E ′i(x) =

C1(x;Hk−i(x)) if x < xi

y ← C1(x;Hk(x)) if x = xi

C0(x;Hk−i(x)) if x > xi

Because the Ei and E ′i are functionally equivalent, their obfuscations will be

indistinguishable under iO. Additionally, there is a hybrid for each E ′′i :

E ′′i (x) =

C1(x;Hk−i(x)) if x < xi

y ← $ if x = xi

C0(x;Hk−i(x)) if x > xi

Then no PPT adversary would be able to distinguishable between the obfuscations

49

between E ′i and E ′′i because both are only different at a single point xi, which even an

adversary knowing the punctured key k−i provides negligible advantage in distinguishing

by the strength of the puncturable PRF.

While there are several additional hybrids for each xi, this technique replaces a

single input/output pair of the circuit C0 to what would be found in C1. Because there

can be an exponential number of input/output pair differences between C0 and C1, their

proof requires an exponential number of hybrids.

To compensate for the need for exponential hybrids, this scheme increases the

security parameters used by the puncturable PRF, randomized encoding scheme, and

obfuscator while keeping the input sizes the same.

These puncturable PRFs only puncture a single point, so a natural extension be

in puncturing an exponential number of points, such as Boneh and Zhandry show with

bit-fixing constraints [8]. Puncturable PRFs that can puncture an exponential number of

inputs may not be enough. The hybrids for each E ′′i rely on changing the point at xi to

output a random value, but an exponential number of points cannot be replaced with an

exponential number of truly random values while keeping the circuit a polynomial size.

This problem may be what is needed to be changed in order to remove the need for an

exponential number of hybrids.

Being over to replace an exponential number of input/output pairs at a time for

the obfuscation would be a way to remove the exponential loss in security. Then the proof

would be nearly identical except use only a polynomial number of hybrids.

Why the Counterexamples no Longer Work

Because this scheme claims to produce a secure iO scheme, the counterexamples

previously presented in this paper either no longer apply or are no longer insecure. In

analyzing why the Applebaum construction is fundamentally different than the Canetti et

al. construction, it is important to note why the counterexamples used in Section 2.1 and

50

Section 2.2 fail.

The trivial counterexample presented in Section 2.1 is no longer a counterexample

due to the way the Canetti et al. specify the base obfuscator O. O in the Applebaum

only needed to obfuscate a very specific circuit family. Specified in [1], this family only

includes the circuit family G = {gf,h | f ∈ F , h ∈ H}.

The trivial counterexample is considered trivial because it allows the identity

function to be a valid iO construction for that specific circuit family, but this is no longer

the case when the obfuscator must obfuscate a larger circuit family. This would make the

counterexample no longer a valid construction, which is exactly what is done by Canetti

et al. They specify that the base obfuscator O must be able to obfuscate at least the class

NC1. The identity function is not an obfuscator for class NC1, making this no longer a

valid counterexample.

The main counterexample presented in Section 2.2 also no longer works. First is

the issue that the counterexample uses a PRF which is not necessarily a puncturable

PRF whereas the Canetti et al. construction requires a puncturable PRF. It is unclear if

the PRF Ĥ constructed in the counterexample or some variant could be modified into a

puncturable PRF while still being used as a counterexample.

Even if the same PRF could be constructed as a puncturable PRF, it would still

fail due the relation between the input size and key size. The input to the PRF Ĥ needs to

exactly correspond in size to the output in a manner that allows an adversary to recover a

secret within any circuit evaluating an instance of the PRF.

While the Canetti et al. construction increases the key size that the PRF uses, the

input size intentionally remains the same. The adversary for the counterexample relies on

several subsets of the PRF key being equal in size to several subsets of the input to the

PRF. When the key grows at a different rate than the input size, with high probability

the adversary can no longer manipulate the inputs to recover the hidden information in

the PRF. This makes the counterexample no longer work.

51

Improving the Performance

The Canetti et al. construction relies on an exponential number of hybrids in the

proof, resulting in the security loss. To compensate for the security loss, the security

parameter is increased from λ to λ′ = (λlog2(λ))1/ε.

An area of further research would be to analyze if the Canetti et al. construction

can be further modified to avoid needing an exponential number of hybrids, or to show

some kind of theoretical need for this security loss.

This construction, even with the increase in parameter, has several advantages to

the construction proposed by Garg et al. in [14]. The assumptions are weaker, as the

construction relies on a randomized encoding scheme and puncturable PRF, both of which

can be derived from one-way functions, in contrast with needing a fully homomorphic

encryption scheme that evaluates operations and decrypts in NC1.

Additionally, needing to increase the security parameter from λ to λ′ = (λlog2(λ))1/ε

may not result in significant overhead depending on the base obfuscator O used in the

construction. The offline computation of a garbled circuit is considerably faster than FHE.

Additionally, while examining the security proof of the Canetti et al. construction,

we notice the security parameter may not need to be increased to as large. As currently

defined, λ′ = (λlog2(λ))1/ε. The specific reason for this is to prove that each of the possibly

exponential number of hybrids is indistinguishable from the previous by an advantage

bounded by 1

X2log2λ
where X is a value bounded by 2−λ.

Because the puncturable PRF, iO obfuscator, and randomized encoding scheme

are each assumed to have a 2−λ
ε

distinguishing gap for some security parameter λ, and

λ′′ ≥ λ′, using these components under either λ′ or λ′′ when λ′ = (λ+ log2(λ))1/ε results

in a distinguishability gap of

2−λ
′ε

= 2−((λ+log
2(λ))1/ε)ε = 2−(λ+log

2(λ)) =
1

2λ2log2λ
≤ 1

X2log2λ

52

All the hybrids the authors prove rely on this bounded advantage in distinguishing

between hybrids, meaning setting λ′ = (λlog2(λ))1/ε is larger parameter than is actually

needed. This does not remove the need for exponential hybrids, but it would reduce the

security parameter by a possibly nontrivial amount.

3.2 Analysis of Bootstrapping Constructions

Something of interest is the way in which the bootstrapping techniques are proved.

In both constructions, the hybrids are able to tradeoff bounding the distinguishability of

two consecutive hybrids by switching between the strength of the iO obfuscator and some

additional primitive with a publicly revealable element. In the Garg et al. construction, the

adversary has access to the public keys to allow both encryption and computation under

FHE. With FHE, the construction can switch between hybrids relying on the strength of

FHE with the strength of iO.

In the Canetti et al. construction, this is the strength of the punctured PRF, which

when given a punctured key, means an adversary can’t distinguish between the punctured

point and a random value. This implies that in certain hybrids, even if an adversary has

access to a punctured key, they still cannot distinguish between the hybrids. This is what

allows the proof to replace a single input/output pair, switching between the strength of

the iO construction for equivalent circuits, and the strength of the punctured PRF.

Regarding the exponential security loss in the Canetti et al. construction, this

is a well-documented issue in constructions related to iO. Many constructions to and

from iO constructions incur some form of exponential loss in the security reductions [15],

typically by using an exponential number of hybrids replacing one input of a function

at a time. This includes building trapdoor permutations [6], constrained PRFs [9], and

more. Furthermore, there are even theoretical constraints on constructions from black-box

models of iO. There is a guaranteed exponential loss in certain security reductions as

53

shown in [3]. The frequent occurrence of this exponential security loss lead credence to

the issue specifically with obfuscation bootstrapping.

Further analysis of the obfuscation bootstrapping techniques is to examine how

some separation results or work-arounds for this exponential loss in security associated

with the Canetti et al. construction. This leads to a few interesting questions. Can a

counterexample to Applebaum’s construction exist using a puncturable PRF? Can the

exponential security loss be avoided for iO bootstrapping using constructions derived from

one-way functions? What is the relationship between obfuscation bootstrapping and the

other iO based constructions?

3.3 Conclusion

Indistinguishability obfuscation is a cornerstone of cryptography. From an indistin-

guishability obfuscation scheme, many other primitives can be achieved. From this is the

importance in actually finding practical constructions. One important candidate construc-

tion [14] shows promise in the effort to build useful obfuscation. The construction focuses

only on obfuscating circuit families within NC1 as opposed to arbitrary polynomial-sized

circuits.

As it is useful obfuscating more than just circuit families in NC1, to construct the

obfuscator for more general circuit families, the authors present a solution to convert the

candidate obfuscator for the smaller class of circuits to an obfuscator of the polynomial

size circuits.

The three main techniques to accomplish this is to what is proposed in [14], [1], [11].

The first, proposed by Garg et al. obfuscates a circuit C by using fully homomorphic

encryption to compute the circuit homomorphically then using an obfuscated circuit which

can decrypt the results. While this technique is straightforward, it relies on the use of fully

homomorphic encryption achievable in the NC1, which might be a stronger assumption

54

than is needed. The second solution proposed by Applebaum instead relies on weaker

assumptions of one-way functions in NC1, using only garbled circuits and a PRF. The

issue is that the technique is designed for VBB obfuscation and not iO, of which the VBB

definition is known to be unachievable. The third solution proposed by Canetti et al.

modifies Applebaum’s construction to work under the iO definition, but ultimately results

in an exponential loss in security.

We examined the constructions proposed by Applebaum and Canetti et al. to

examine why the changes made in the latter produces a secure iO bootstrapping technique.

It was unknown if the Applebaum construction was sufficient under the iO definition.

We determined that the Applebaum construction is insufficient, first by demonstrating a

trivial counterexample that takes advantage of the specific way the construction is defined.

The original proof in [1] relied on the base obfuscator for a narrowly-defined circuit family,

and this was not restrictive enough when applied to the iO setting.

In order to examine the Applebaum construction for iO in a more intended way,

we generalized the construction to require the base obfuscator to obfuscate a much larger

circuit family. While this prevented the trivial counterexample from existing, ultimately

the Applebaum construction was still insufficient. We demonstrate an instantiation of the

construction with an adversary to break it by taking advantage of the impossibility results

of obfuscating VBB [4].

The Canetti et al. construction is nearly identical to the Applebaum construction,

modifying several security parameters and restricting the PRF used to a puncturable PRF.

Because the Applebaum construction can be shown to fail in the iO case, it demonstrates

that a security gap between Applebaum and Canetti et al.’s constructions exist because

of these changes. We further examined both the Garg et al. construction and Canetti

et al. construction on why they succeed within their proofs, finding tradeoffs between

constructions.

Chapters 1, 2, and 3, in part is currently being prepared for submission for

55

publication of the material. Micciancio, Daniele; Roncevich, Evan. The thesis author was

the primary investigator and author of this material. Permission was granted from Daniele

Micciancio on this material.

56

Bibliography

[1] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
ASIACRYPT (2), pages 162–172, 2014.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[3] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. SIAM Journal on Computing, 45(6):2117–2176, 2016.

[4] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In Annual
International Cryptology Conference, pages 1–18. Springer, 2001.

[5] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security
of triple encryption. In Advances in Cryptology–EUROCRYPT, volume 4004, page 10,
2006.

[6] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos.
In Theory of Cryptography Conference, pages 474–502. Springer, 2016.

[7] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 171–190. IEEE, 2015.

[8] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. Cryptology ePrint Archive, Report 2015/1167, 2015. https://eprint.iacr.
org/2015/1167.

[9] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Algorithmica, 79(4):1233–1285, 2017.

[10] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc ˆ 1 from lwe.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 446–476. Springer, 2017.

[11] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In TCC (2), pages 468–497, 2015.

57

https://eprint.iacr.org/2015/1167
https://eprint.iacr.org/2015/1167

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachne. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. Cryptology ePrint
Archive, Report 2016/870, 2016. https://eprint.iacr.org/2016/870.

[13] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic encryption in
less than a second. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 617–640. Springer, 2015.

[14] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[15] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking
the sub-exponential barrier in obfustopia. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 156–181. Springer, 2017.

[16] Satoshi Hada. Zero-knowledge and code obfuscation. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 443–457.
Springer, 2000.

58

https://eprint.iacr.org/2016/870

	Signature Page
	Table of Contents
	Acknowledgements
	Abstract of the Thesis
	Overview of Obfuscation and Bootstrapping
	Introduction
	VBB vs iO
	Uses of Obfuscation
	Tradeoffs of Various Methods
	Questions
	Contributions
	Open Question

	Preliminaries
	Definitions
	Applebaum Construction
	Generalized Construction
	Fundamental Lemma of Game Playing

	Constructions for Proofs
	Trivial Counterexample to Construction
	Construction of randomized encoding scheme RE"0362RE
	Constructing PRF H"0362H
	Trivial Obfuscation Scheme
	Constructing Adversary

	Counterexample to Generalized Construction
	Construction of PRF H"0362H
	Construction of randomized encoding scheme RE"0362RE
	Adversary Construction

	Analysis of Bootstrapping
	Other Forms of Bootstrapping
	Garg et al. Bootstrapping
	Canetti et al. Construction

	Analysis of Bootstrapping Constructions
	Conclusion

	Bibliography

