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ABSTRACT OF THE DISSERTATION

A Modeling Study of the Biogoechemical Cycling of Iron, Ligands, and Phytoplankton in
the Ocean

By

Elliot Michael Sherman

Doctor of Philosophy in Earth System Science

University of California, Irvine, 2016

Professor J. Keith Moore, Chair

Iron is a key micronutrient for marine biogeochemistry, limiting growth and nitrogen fixation

in over a third of the ocean. However, the impacts of iron-binding ligands and iron source

processes on dissolved iron distributions is not well known. The goal of this dissertation is to

better understand the cycling of iron-binding ligands and the controls on their distributions

and how that impacts dissolved iron. This dissertation also seeks to understand how indi-

vidual iron sources influence iron distributions and biogeochemistry. To accomplish this, a

new prognostic ligand tracer and iron-ligand speciation chemistry are incorporated into the

Community Earth System Model (CESM). The CESM is now able to simulate realistic distri-

butions of iron-binding ligands. The results show that with relatively few ligand sources and

sinks the model was able to match observations of ligands, and that inclusion of a dynamic

ligand tracer improves simulation of dissolved iron. To better understand the influence iron

sources have on dissolved iron concentrations and biogeochemistry, sensitivity experiments

for each source are conducted with the CESM. The results show that atmospheric dust and

sedimentary iron inputs have the largest impact on dissolved iron concentrations and biogeo-

chemistry. Hydrothermal vent inputs are important for deep ocean iron, and their inclusion

in global biogeochemical ocean models would allow for more realistic iron simulation.

xi



This dissertation work also reevaluates the parameters governing the temperature influence

on community phytoplankton growth rates. A dataset of in situ community phytoplankton

growth rates was compiled and parameter values for the Q10 and Arrhenius models were

optimized for use in global biogeochemical and ecosystem models. The results show and op-

timized Q10 value of 1.47 and an activation energy of 0.277 eV. Both the Q10 and Arrhenius

models do equally well for estimating the temperature influence on community phytoplank-

ton growth rates against the dataset. Evaluation of global biogeochemical and ecosystem

models against our dataset will allow for further constraints on phytoplankton ecology and

associated biogeochemitry.
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Chapter 1

Introduction

1.1 Background

Iron is a key micronutrient for marine phytoplankton which strongly limits primary produc-

tion and nitrogen fixation in the oceans (Moore et al., 2004; Hunter and Boyd, 2007). The

iron-carbon feedback has been hypothesized to have influenced Earths past climate during

the Last Glacial Maximum through alleviating nutrient limitation and strengthening the

biological carbon pump (Martin 1990). An in depth understanding of iron cycling processes

is necessary to better predict past and future climate on Earth as well as the cycling of other

biogeochemical tracers in the ocean. This dissertation focuses on modeling iron cycling pro-

cesses at the global scale for the contemporary period. New treatments of iron speciation

and their impact on dissolved iron and organic ligand distributions are modeled. The relative

impacts of iron source processes on dissolved iron distributions, carbon export and nitrogen

fixation are also studied though sensitivity simulations. Lastly the influence of temperature

on community phytoplankton growth rates is reassessed with new observational data.

Iron is the sixth most abundant element in the Milky Way Galaxy by concentration, and

the most abundant element on Earth by mass (Croswell, 1996; Morgan and Edward 1980).

The majority of iron on Earth resides in the mantle with an additional 5.6% in the Earths
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crust. Iron presents an interesting problem as it is an abundant element most places on

Earth but is scarce in the oceans with concentrations ranging from 0.05 - 30 nM (Tagliabue

et al., 2010; Mawji et al., 2015). The scarcity of iron in the ocean is due to its low solubility

in seawater (Byrne and Kester 1976; Kuma et al. 1996; Liu and Millero 2002). Dissolved

iron, defined as less than 0.2 - 0.45 micrometers, can exist in seawater in the oxidation states

Fe(II) and Fe(III), as free ions, or complexed with organic or inorganic ligands. Fe(III) is the

most thermodynamically stable form of iron in oxic seawater with 96% present in the form

of Fe(III) (oxy)hydroxides if organic complexation is not considered (Raiswell and Canfield,

2012). The solubility of inorganically complexed iron in the forms of Fe(III) (oxy)hydroxides

is ∼0.1 nM. The discrepancy between the solubility of inorganically complexed iron and

observed iron concentrations can be explained by considering organic complexation of iron.

Greater than 99.9% of iron in seawater is bound to organic ligands (Hirose 2006; Boyd and

Ellwood 2010; Buck et al. 2015).

1.2 Ligand Sources and Sinks

Iron-binding ligands are organic molecules that bind with iron and can be most broadly

categorized as saccharides (Hassler et al. 2011). More specific chemical characterization

of natural ligands in the oceans has not been studied aside from siderophores (Barbeau

et al. 2002). Ligands increase the solubility of iron in seawater and reduce losses through

precipitation and particle scavenging (Buck et al. 2015). With the majority of iron solubility

in seawater due to organic ligands, their impact on dissolved iron distributions and cycling

processes is significant. Many hypotheses for ligand cycling processes have been put forth

which can be tested through modeling efforts. This dissertation, in part, aims to test the

plausibility of some of these hypotheses.

Ligands are detected using the competitive ligand exchange-adsorptive cathodic stripping
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voltammetry (CLE-ACSV) method which determines concentration and binding strength

(Gledhill and van den Berg, 1994; Gledhill and Buck, 2012). With this method, aliquots of

seawater samples are titrated with dissolved iron 10-20 times the original sample concentra-

tion and left to equilibrate with ambient iron-binding ligands for several hours. The aliquots

are then amended with a characterized competing ligand (CP) of known quantity and left to

equilibrate to form Fe(CP)x. The aliquots of the titration are then analyzed by adsorptive

cathodic stripping voltammetry using a hanging mercury drop electrode (HDME). A voltage

of -0.5V, the reduction potential of iron, is applied to the HMDE. The Fe is reduced from

the Fe(CP)x complex and generates a peak in current which is measured by the HDME. The

peak is recorded for each aliquot and plotted against the added dissolved iron to generate

a titration curve. Linear or non-linear transformations are applied to the titration curve to

determine the iron-binding ligand concentration and the associated conditional stability con-

stant. Iron-binding ligands are placed into classes based on the strength of their conditional

stability constants where strong binding ligands (L1) have conditional stability constants of

log KFeL1 greater than ∼12.0. Weak binding classes, L2 and L3, have conditional stability

constants of log KFeL2 = 11-12 and log KFeL3 = ∼11-10.

The current state of iron-binding ligand research is relatively unexplored with only ∼1,200

observations globally, and few studies providing ligand production and removal rates. Most

hypotheses regarding ligand sources emphasize the role of biology. Siderophores are some

of the strongest iron-binding ligands and are produced by bacteria and cyanobacteria as

a strategy to help solubilize dissolved iron under Fe-limiting conditions (Reid et al., 1993;

Maldonado et al., 2002; Buck et al., 2010). Studies have also shown ligand production during

iron fertilization experiments, hypothesized to be siderophores (Rue and Bruland, 1993; Boye

et al. 2005). It should be noted this behavior of producing siderophores under iron replete

conditions is contradictory to what has been observed by Malanodo et al. (2002) and Buck

et al. (2010). It is possible that increasing iron concentrations via fertilization, could have

led to artificially high ligand concentrations as the ligand measurements are based off of iron

3



concentrations in the samples (Buck et al., 2010). Production of ligands by degradation

of organic matter has been quantified by Boyd et al. (2010). They measured the rate of

ligand production from bacterial remineralization of sinking organic matter to be 10-4 (mol

ligand/mol organic matter). The study sampled at ∼100m, but remineralization of organic

matter is likely a source for ligands throughout the water column. More rate measurements

are needed to better constrain this rate of production and if the ligand/organic matter ratio

is constant throughout the oceans. Sato et al. (2007) observed ligand formation during

incubation experiments of microzooplankton and copepod grazing on phytoplankton. They

found that the accumulation of ligands was approximately proportional to the decrease in

chlorophyll a concentration. Ligand production from phytoplankton grazing likely came

from intracellular fluid and ligands imbedded within cellular membranes responsible for iron

uptake (Sato et al., 2007). A similar pathway for ligand production has been hypothesized

to be viral lysis and colloid formation from senesced phytoplankton, however the rates of

ligand production were not quantified (Poorvin et al., 2004; Boye et al., 2001). Production

of fluorescent dissolved organic matter and humic substances are also thought be a source

of ligands to the ocean with the majority of inputs of humics from rivers (Laglera and van

den Berg, 2007; Batchelli 2010; Boyd et al., 2010; Misumi et al., 2013).

There have been many hypotheses put forth for ligand sources but relatively little attention

has been given to ligand sink processes. The most studied removal process for ligands is

photochemical degradation (Barbeau et al., 2001; 2003; 2006; Powell and Wilson-Finelli,

2003; Rijkenberg et al., 2006, Bundy et al., 2016). This process is restricted to the upper

ocean as light attenuates strongly with depth. Results from studies that measured ligand

degradation from sunlight have produced mixed results with experiments showing slight

increases, no change, and appreciable decreases in ligand concentration. It is also possible

that the degradation of ligands from light decreases the conditional stability constant of

ligands converting them to a weaker ligand class (Bundy et al., 2016). Biological uptake

has also been hypothesized to be a removal pathway for ligands in the upper ocean (Sunda,
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1989; Sunda, 2001). As phytoplankton assimilate the iron ligand complex into their cells,

the iron is bound to a strong ligand within the cell membrane, and the original ligand is

cleaved off. The fate of the original ligand is unknown. It may have been degraded to

where it can no longer bind with iron, degraded into a weaker ligand, or may have the

same conditional stability constant and able to bind with another iron atom (Boukhalfa and

Crumbliss, 2002). Ligands are a component of the dissolved organic carbon pool and are thus

thought to be susceptible to removal by bacterial consumption (Voelker and Tagliabue et

al. 2014). However there have been no studies that have observed or quantified this process

observationally. Observations of this process are critical to understanding ligand cycling in

the oceans as it is the only hypothesized removal process operating throughout the water

column, and may prove to be an important removal pathway.

How ligand source and sink processes influence ligand distributions in the oceans is not well

known because observations are lacking for the both ligand concentrations and ligand cy-

cling processes. We have compiled a database of ligand measurements using the CLE-ACSV

method has been compiled from the literature by Sherman and Moore (2016, in prep.), but

there are no clear regional trends in the data. While all studies used the same methods, not

all studies used the same competing ligand which changed the detection window for ligands

(Ibisanmi et al., 2011; Gledhill and Buck, 2012). These studies also did not standardize the

definition of ligand classes based on stability constants so many of the reported ligands have

overlapping stability constant values. The discrepancies within the measurements make it

difficult to differentiate human induced versus natural variability. The recent GEOTRACES

program has helped to standardize the methods, procedure and definition of ligands (Gled-

hill and Buck, 2012; Buck et al., 2015). Ligand data from studies by Buck et al. (2015)

and Gerringa et al. (2015) are the first full profile basin transect measurements. Buck et

al. (2015) shows relatively constant ligand concentrations between 1 and 2 nM along the

GEOTRACES GA03 (east to west transect through mid Atlantic) for L1, L2 and L3 ligand

classes. Elevated ligand concentrations are seen along continental margins for the L1 class.

5



Data from Gerringa et al. (2015) along the GEOTRACES GA02 (north to south transect

along the east Atlantic) again showed relatively homogenous concentrations between 1 and

2 nM with slightly higher ligands in the North Atlantic versus the Southern Ocean. Based

on current observations, ligand profiles do not fit the profiles of other classic ocean tracer

categories: nutrients, scavenged, or conservative. Modeling the cycling processes of ligands

and comparing the results to observations can highlight areas of uncertainty and provide

insight into what cycling processes drive ligand distributions in the ocean.

1.3 Iron Sources and Sinks

Dissolved iron is operationally defined as being less than 0.2 - 0.45 micrometers and is

regulated by multiple source and sink processes in the ocean. Sources for iron include

atmospheric dust (Jickells et al., 2005), ocean sediments (Elrod et al., 2004), hydrothermal

vents (Bennett et al., 2008; Tagliabue et al., 2010), rivers (Rijkenberg et al., 2014), glaciers

(Gerringa et al., 2012) and regenerated iron (Kirchman, 1996). Removal processes include

particle scavenging (Nozaki et al., 1987) and biological uptake (Sunda and Huntsman, 1997).

Iron from atmospheric dust primarily comes from the large deserts on Earth and its inputs

to the ocean are heterogeneous in space and time. The production of dust depends on

the supply of wind-erodible material and from the processes of saltation and sandblasting

(Jickells et al., 2005; Prospero et al., 2002). Dust aerosols are typically between 0.1 to 10

micrometer and have a lifetime from hours to weeks, which allows for long range transport of

thousands of kilometers (Duce et al., 1995). Models and observations estimate dust inputs

at approximately 245 to 450 Tg/year (Jickells et al. 2005; Mackie et al., 2008) with iron at

approximately 3.5% of the dust by weight (Duce and Tindale 1991). The majority of dust

inputs occur in the Northern Hemisphere with model estimates ranging from 81% to 94%

(Mackie et al., 2008). Dust inputs are continuous from the Sahara and Gobi with peaks in the
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boreal spring and summer months. Deposition is influenced by atmosphere dynamics such

as the oscillation of the intertropical convergence zone and the North Atlantic Oscillation

(Prospero et al., 2014; Schlosser et al., 2014; Moulin et al., 1999). Southern hemisphere dust

inputs are highly seasonal, peaking in austral summer. The solubility of iron in the dust

particles is impacted by transport time, weathering, photochemistry, and acidic pollutants

such as NOx and SOx (Meskhidze et al., 2003; Sasakawa and Uematsu, 2005; Hand et al.,

2004). Combustion products also produce aerosols with a highly soluble fraction of iron

(Sedwick et al., 2007; Luo et al. 2008). All of these processes produce large variability in

the fraction of iron that is soluble within dust particles. Estimates of dust iron inputs to

the oceans range from 2x109 to 1.6x1010 mol Fe/year (Fung et al., 2000; Jickells and Spokes

2001; Luo et al., 2008; Tagliabue et al., 2016). Dust also likely impacts iron concentrations

throughout the water column through slow dissolution of iron from sinking dust particles

(Jickells et al., 2005). This process may be facilitated in low pH microenvrionments such as

zooplankton guts, within aggregates and via stripping iron from particles by biology (Frew

et al., 2006).

Iron inputs from sediments come from resuspended sediment (Johnson et al., 1999) and

decomposition of organic matter (Elrod et al., 2004). Iron observations show higher dissolved

iron concentrations near shore and off continental margins which decrease towards the center

of ocean basins, highlighting the influence of sediment derived iron (Elrod et al., 2004; Moore

and Braucher, 2008). A study by Elrod et al. (2004) used benthic flux chambers and found a

strong correlation between carbon oxidation and iron flux from sediments. They hypothesize

that iron reduction is mediated by carbon oxidation and that reduced iron escapes the

sediment (Van Cappellen and Wang, 1996). Estimated iron flux from the continental shelf

sediments based on benthic flux chambers are 89 Gmol Fe/year (Elrod et al., 2004) and

109 ±55 Gmol/year (Dale et al., 2015), althought most global biogoechemical ocean models

assume a lower input (Tagliabue et al., 2016). The benthic flux chamber estimates likely

overestimate the iron flux to the water column, with high scavenging losses near the source.

7



Hydrothermal inputs of iron may be a significant source of iron to the deep ocean and

buffer changes in iron inputs over timescales relevant to Earths climate (Toner et al., 2012;

Tagliabue et al. 2010). Estimated inputs of dissolved and particulate iron to the oceans

range from 7.2 to 450 Gmol Fe/year (Baker et al. 1993; Bennett et al. 2008; Elderfield and

Schultz 1996; Hawkes et al. 2013; Tagliabue et al. 2010). The majority of iron from vents

is in the form of iron sulfides and iron oxyhydroxides which precipitate and sink out near

the vent sites (Feely et al., 1987; Bennett et al. 2008). However, some iron is stabilized

in the dissolved fraction and is able to advect away from the vent site, contributing to

the dissolved iron inventory. The mechanisms for stabilization of hydrothermal vent iron

remains unknown, but current hypothesis suggest a role for organic complexation by ligands

(Bennett et al., 2008; Fitzsimmons et al., 2014; Fitzsimmons et al., 2016). The distribution

of vent sites normally occur along spreading ocean ridges and some subduction zones, but

observations of active vent fields and iron concentrations near vents are scarce, which makes

quantifying this iron source difficult (Baker and German, 2004).

Iron inputs from rivers are of marginal importance for the global iron budget, but are likely a

significant source of iron near river mouths and may explain high iron concentrations observed

near major river systems (de Baar and de Jong, 2001; Krachler et al., 2005; Rijkenberg et

al., 2014). Most river iron is lost via flocculation during estuarine mixing due to changes

in pH and ionic strength (Dai and Martin, 1995). River iron sources may be of particular

importance for the Arctic Ocean as it is comparatively a small basin by volume with a

significant amount of freshwater discharge from Siberian and North American rivers.

The iron sources mentioned thus far refer to new iron inputs, but recycled or regenerated

iron is also an important component of the iron cycle. Regenerated iron is unique to other

sources as it is strongly mediated by biology. Regenerated iron has been shown to come from

zooplankton grazing (Hutchins and Bruland, 1994), remineralization of phytoplankton debris

(Lee and Fisher, 1993) and sinking particulates (Lamborg et al., 2008). This rapid recycling
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of particulate biogenic iron to bioavailable iron in surface waters by zooplankton, viruses

(Mioni et al., 2005) and heterotrophic bacteria (Strzepek et al., 2005) has been termed the

ferrous wheel. The ferrous wheel can vary between regions and is thought to depend on the

partitioning of iron between biogenic pools (Strzepek et al., 2005). The Fe-ratio (new iron

/ (new iron + regenerated iron)) quantifies the contribution of new iron to the total iron

supply and gives a sense of the role of the ferrous wheel within a system. In high nutrient

low chlorophyll waters, where new iron inputs are low, the Fe-ratio has been calculated at

∼10% emphasizing the role of the ferrous wheel (Boyd et al., 2005) . Conversely a higher

Fe-ratio of 50% has been calculated for regions where new iron inputs are relatively high

(Sarthou et al., 2008).

The dominant removal pathway for iron throughout the water column is scavenging by

sinking particles. The concentration and flux of sinking particles exerts a strong control on

the rate of scavenging such that increasing sinking fluxes generates higher rates of scavenging

(Honeyman et al., 1988). Iron, or trace metal scavenging in general, can be described as the

reversible exchange between iron and a sinking particle between the dissolved and particulate

phases (Nozaki et al., 1987; Honeyman et al., 1988). The proposed mechanism for which

this happens is Brownian-Pumping (Honeyman and Santschi, 1989). No observations and

few estimates of iron scavenging rates exist (Wu and Boyle, 2002).

An important removal process for dissolved iron in the surface ocean is biological uptake.

Phytoplankton require iron for cellular processes such as chlorophyll synthesis, carbon and

nitrogen fixation, and electron transport for photosynthesis and respiration (Sunda, 1989;

Raven et al., 1999). Inorganically complexed iron, specifically ferric oxides and oxyhydrox-

ides, are not thought to be bioavailable to phytoplankton (Sunda, 1989). Free iron ions

or organically complexed iron is available for uptake by phytoplankton (Sunda, 1989). For

phytoplankton to take up iron into the cell, iron must first bind to a strong ligand on the cell

surface. Bilayer membranes generally prohibit uptake of charged or polar species so chelation
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with the transport ligand in the membrane is an important process for cellular uptake and

transport. Following complexation with the transport ligand, the original ligand is cleaved

and the new iron-ligand complex is taken up by cell. The rate of uptake is described by

using MichaelisMenten kinetics.

V =
Vmax[Fe]

[Fe] +Ks

(1.1)

V is uptake rate of iron by the cell, Vmax is the maximum uptake rate of iron by the cell and Ks

is half of Vmax. The iron quotas in phytoplankton can vary between phytoplankton groups,

ocean regions, ambient iron concentrations and are often negatively correlated with light

availability (Sunda and Huntsman, 1998; Finkel et al., 2006; Twining and Baines, 2012). Iron

quotas are generally highest in non-iron limiting waters (Fe:P = 1.1 mmol/mol) and lowest

in the Southern Ocean (Fe:P = 0.2 mmol/mol) (Twining and Baines, 2012 and references

within). Variability in iron stoichiometries of marine phytoplankton has been recognized but

is not well understood. Further observations are needed to understand variations between

ocean regions.

1.4 Iron Distributions

Iron distributions in the oceans are a manifestation of the interactions of the mentioned

source and sink processes. In general, iron profiles are a hybrid of a nutrient and scavenged

tracer exhibiting characteristics of both. Iron is low in surface waters from biological con-

sumption and particle scavenging. Increases in iron concentration with depth to ∼1000m to

2000m occur from remineralization. Below intermediate depths, iron concentrations gradu-

ally reduce which is indicative of scavenging. Large variability is seen in iron observations
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and is a reflection of local source and sink processes and iron’s relatively short residence

time. High iron concentrations (>∼0.6 nM) are typically seen along continental margins

which decrease towards the center of ocean basins, exemplifying the influence of sedimen-

tary iron inputs. Observational data, mostly from the recent GEOTRACES campaigns,

shows very high iron concentrations near hydrothermal vent sites (> 10 nM) (Mawji et al.,

2015). Regions of high dust inputs also exhibit high iron concentrations (Measures et al.,

2008). Low iron concentrations in surface waters occur in the North Pacific, Eastern tropical

Pacific and Southern ocean due to low iron inputs. It was thought that iron concentrations

homogenized in the deep ocean due to constant ligand concentrations of ∼0.6 nM (Johnson

et al., 1997). However, data has shown that as in the surface ocean, iron concentrations are

variable in the deep as well (Boyd and Ellwood, 2010). The variability of iron throughout

the deep ocean (> 2000m) is evident from the recent GEOTRACES campaigns where iron

is observed between 0.1 nM to greater than 5 nM (Mawji et al., 2015; Rijkenberg et al.,

2014; Resing et al., 2015). Combining the historical iron data compiled by Tagliabue et

al. (2010) and the available GEOTRACES data there are ∼23,000 iron observations for the

entire ocean. 72% of that data is for the upper 1000m. The number of iron observations is

growing, but still more are needed to understand distributions of iron in the oceans.

1.5 Research Objectives

This dissertation seeks to reduce the uncertainties in iron and ligand cycling processes in the

ocean using the ocean biogeochemistry component of the Community Earth System Model.

The model includes a new ligand tracer with explicit iron-ligand speciation and ligand source

and sink processes. The ligand sources and sinks in the model are thought to be the most

important for ligand cycling in the ocean and reflect the current knowledge of ligand cycling

processes in the literature. Simulated ligand distributions are compared against observed

concentrations. These comparisons help to test hypotheses about ligand cycling processes
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and their impacts on dissolved iron distributions. As new data and hypotheses come forth,

this ligand model can be used by the scientific community to study the cycling of ligands

and iron in the ocean.

There is a great deal of uncertainty in the rates of iron source and sink processes. The un-

certainties with regards to modeling the iron cycle was evaluated and discussed in the Iron

Model Intercomparison Project (FeMIP) (Tagliabue et al., 2016). An outcome of FeMIP

was the recognized need to conduct sensitivity experiments varying iron sources in each of

the models to better understand each models sensitivity to iron sources. Quantifying the

sensitivity for iron sources in each model will allow for a more detailed understanding of

the feedbacks between iron and other biogeochemical processes and how they might impact

climate. This dissertation expands upon FeMIP and conducts sensitivity experiments vary-

ing iron source processes and quantifies the impacts on dissolved iron concentrations and

biogeochemical processes.

This dissertation also reassesses the temperature influence on community phytoplankton

growth rates (Sherman et al., 2016). A dataset of community phytoplankton growth rates is

complied and optimized parameter values for the Q10 and Arrhenius equations are calculated

for use in global ocean biogeochemical and ecosystem models. This study found that using a

weaker temperature-growth relationship for phytoplankton than is typically used in models

produced a better fit to observations. Models that prescribe a stronger temperature-growth

relationship may over predict phytoplankton growth response to warming oceans.
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Chapter 2

Controls on iron binding ligand distrubtions

in the oceans and their impacts on modeling

dissolved iron

2.1 Abstract

The majority of iron in the oceans is stabilized in the dissolved pool through complexation

with organic ligands. In this study we dynamically model ligands using a global biogeochem-

ical model with explicit ligand source and sink processes to better understand the controls on

ligand concentrations and their influence on dissolved iron concentrations in the ocean. The

modeled ligand cycle includes a source from particulate organic matter remineralization and

dissolved organic matter production. Ligand sink processes include photochemical degra-

dation in the surface ocean, bacterial degradation, biological uptake, and aggregation and

scavenging onto sinking particles. Our ligand model is able to reproduce general patterns of

observed ligand concentrations along GEOTRACES transects. Model-data mismatch such

as regional underestimations and a relatively conservative ligand tracer highlights areas of

uncertainty within ligand cycling processes. We compare simulated dissolved iron distribu-

tions using a prognostic ligand model, constant ligand model, and implicit ligand model.

Inclusion of variable ligand concentrations produces the best simulated iron distributions
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compared to observations for the upper ocean. Prescribing a constant ligand concentration

(often 1.0 nM) will underestimate iron concentrations in regions of high iron inputs such as

continental margins or hydrothermal vents.

2.2 Introduction

It is well known that iron (Fe) is a key micronutrient for phytoplankton in the oceans,

limiting growth over one third of ocean area (Moore et al., 2004; Hunter and Boyd, 2007).

What remains unclear is how the cycling of iron-binding ligands influence dissolved iron

distributions, and what processes control iron-binding ligand concentrations. The solubility

of inorganic iron in seawater is extremely low, ∼0.1 nM, compared to measured values of

dissolved iron (Liu and Millero, 2002). The relatively high iron measured in the oceans is due

to its complexation with organic ligands which reduces losses to precipitation and particle

scavenging. The strength of the ligands complexation with iron is quantified through its

conditional stability constant. The classification of a ligand into the strong binding class

(L1, log KFeL1 >∼12.0) or weak binding classes (L2, log KFeL2 = 11-12; L3, log KFeL3

= ∼11-10) is operationally defined by the conditional stability constant (Gledhill and Buck

2012; Buck et al., 2015). Ligands do not rigidly adhere to one class in a step wise manner

based on stability constants, but rather exist across a large spectrum of stability constants

(Bundy et al., 2014; Bundy et al., 2016). However, categorizing ligands into classes by

stability constants allows for comparisons amongst observations and may provide insights

into cycling processes.

The majority of dissolved iron in the oceans is bound to iron-binding ligands of unknown

origins. Studies that measured ligand concentrations have provided insights into source

and sink processes (Rue and Bruland, 1995). A ligand source for the upper water column

comes from bacteria (Martinez et al., 2000; Gledhill et al., 2004). These ligands, called
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siderophores, are classified as strong binding ligands due to their high conditional stability

constants (Butler, 2005; Hider and Kong, 2010). Weaker binding ligands in the upper water

column have been measured from remineralization of sinking organic matter (Boyd et al.,

2010), the rupture of phytoplankton cells by viral lysis (Witter et al., 2000; Vong et al.,

2007), and zooplankton grazing (Sato et al., 2007). Deeper water column ligand sources are

thought to be primarily from humic like substances but may also come from remineralization

of sinking organic matter and are more refractory (Laglera and van den Berg, 2007; Batchelli

2010; Boyd et al., 2010; Misumi et al., 2013). A less noted source for deep sea ligands could

also be carboxyl-rich alicyclic molecules (Hertkorn et al., 2006). Although sources for ligands

have been hypothesized and identified, the relative importance of each source remains almost

completely unconstrained.

Relative to ligand sources, there has been less attention given to removal processes. It is not

currently possible to conclude how sunlight impacts surface ligand concentrations as studies

have produced varied results (Barbeau et al., 2001; 2003; 2006; Powell and Wilson-Finelli,

2003; Rijkenberg et al., 2006, Bundy et al., 2016). Further investigation of this loss process is

important for the understanding of ligand and iron cycles as it may be a ubiquitous sink for

ligands in surface waters. Loss of ligands via biological uptake is likely another important loss

term for ligands in the upper ocean (Sunda, 2001). However it is also likely that the ligand

is sometimes released after the uptake of iron and is able to re-bind with another iron atom

with the same or weaker conditional stability constant (Boukhalfa and Crumbliss, 2002).

The rate of ligand loss, or transformation into a weaker ligand class, is also unconstrained.

Iron-ligand complexes in the colloidal size fraction are also susceptible to aggregation and

adsorption onto sinking particles. An iron-ligand modeling study by Voelker and Tagliabue

(2014) imposed a ligand sink through bacterial degradation. The rate of loss is dependent

upon the local ligand concentration in an exponential fashion. In their study a high ligand

concentration would yield a short residence time (1 year minimum) and low concentration

would yield a long residence time (1000 year maximum). Although no studies have measured
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the rate of ligand loss from bacterial degradation, ligands are a component of the dissolved

organic carbon pool and are likely susceptible to bacterial consumption (Zweifel et al., 1993;

Arnosti et al., 1994).

The inclusion of iron-binding ligands in ocean biogeochemical models has thus far been

simplistic, usually with an assumed constant concentration of 1nM (Parekh et al., 2004;

Tagliabue et al., 2016). A study by Voelker and Tagliabue (2014) prognostically modeled a

generic class of ligands and found it helped to generate a more nutrient like profile for iron

but created surface concentrations higher than observed. In this study we simulate dynamic

ligand concentrations with explicit sources and sinks using the Community Earth System

Model (CESM) ocean component to better understand the cycling of ligands, the controls

on their distributions, and their interaction with iron cycling. We compare results from this

dynamic ligand simulation with simulations using an assumed constant ligand concentration,

and with the implicit ligand approach developed previously for the CESM.

2.3 Methods

2.3.1 CESM-BEC model description

We used the Community Earth System Model Biogeochemical Elemental Cycling model

to simulate iron and ligand concentrations (CESM-BEC; Hurrell et al., 2013; Moore et

al., 2004; 2013; 2015). The CESM is a global Earth System Model with biogeochemical

cycles, atmospheric chemistry and physics and ice sheet dynamics (Hurrell et al., 2013).

Further description of the CESM can be found in cited references and model code can be

downloaded online (www2.cesm.ucar.edu). The BEC model runs within the Parallel Ocean

Program model which is the ocean physics component of CESM (Gent et al., 2011). The

Parallel Ocean Program version used in this study has a nominal resolution of 3 degrees with
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60 vertical levels. The upper 150m of the model has 10m vertical resolution which thickens

with depth to several hundred meters in the deep ocean.

The BEC component includes three phytoplankton functional groups: pico-nano phyto-

plankton, diatoms and diazotrophs and one adaptive zooplankton group. Dissolved biogeo-

chemical tracers include: organic and inorganic carbon, nitrate, ammonium, silicate, iron,

phosphate, oxygen, and alkalinity. The model has been validated against numerous obser-

vational datasets (Moore et al. 2002, 2004; Moore and Braucher 2008; Doney et al. 2009b,

Long et al. 2013). Moore et al. (2015) contains a more full description of the model and

treatment of phytoplankton groups and marine biogeochemical processes.

2.3.2 Iron cycling processes

Iron sources include atmospheric dust deposition, sedimentary diffusion, hydrothermal vents

and rivers. These sources are balanced by loss of iron to ocean sediments. A climatological

soluble iron deposition to the oceans is used comes from both mineral dust and combustion

sources allowing for spatial and temporal variability (Luo et al., 2008). Dust deposition is

from the same climatology. Some subsurface release of iron also occurs as the dust sinks

though the water column (Moore and Braucher 2008). Rates of sedimentary iron diffusion

are a function of the sinking particulate organic carbon flux to the bottom ocean grid (Elrod

et al., 2004; Moore and Braucher 2008). Iron inputs from hydrothermal vents occur along

mid-ocean ridges at a constant rate of 10 Gmol/year (Beaulieu et al, 2013; earthchem.org).

No ligands are released at the vents. The source of iron is prescribed at 300m above the

geographic location of the ridge to account for displacement by buoyancy (Tagliabue et al.,

2010). Iron input from rivers is set to a constant concentration of 10 nM in the river water

as it enters the ocean. The total flux of iron from rivers is 0.33 Gmol/year.

Two pools of iron are considered in the model: dissolved and particulate. The dissolved
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fraction represents both dissolved and colloidal iron, which is subject to scavenging by sinking

particles. Iron in phytoplankton is routed to either pool through mortality and excretion.

The amount of iron routed to the sinking particulate or dissolved pools is dependent on

phytoplankton size, where more particulate iron is routed from the grazing mortality of

larger phytoplankton than small (Moore et al., 2004; Misumi et al., 2014). All scavenged

iron is placed in the sinking particulate pool, and the iron reaching the bottom of the ocean

grid is lost to sediments. Physical desorption of iron from particulate iron is also included

in the model, and is released as a constant low fraction of the sinking particulate iron flux.

2.3.3 Description of iron-ligand models

In this study we use three variations of the CESM-BEC where we modified iron cycling

processes. We define the Explicit Dynamic ligand model as having explicit iron-ligand spe-

ciation, dynamic ligand sources and sinks, and variable ligand concentrations. We set a

relatively high scavenging rate for iron in the excess of ligand concentration (the rate is

25 times the rate for bound iron) based on the assumption that much of this iron would

be bound to weaker ligands. Previous model studies often assumed much higher rates for

“free” iron, sometimes instantaneous removal (i.e, Archer et al., 2000; Parekh et al., 2004).

This “free” iron scavenging parameter allows dissolved iron to sometimes exceed the ligand

concentration in areas of high iron inputs. The Explicit Constant ligand model is defined by

explicit iron-ligand speciation with a constant generic ligand concentration of 1.52 nM, which

is the average ligand concentration in the Explicit Dynamic model control simulation. This

treatment of ligands, with a constant concentration, is in the fashion of Parekh et al. (2004),

where any iron exceeding the ligand concentration is rapidly removed. The Implicit ligand

model has no explicit simulation of iron-ligand speciation or ligands, but includes the impact

on iron solubility through the scavenging parameter. An implicit ligand concentration of 0.8

nM is assumed with increased rates of iron scavenging above 0.8 nM, and reduced rates of
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scavenging below 0.8 nM (Moore and Braucher, 2008; Moore et al., 2013). This is meant to

capture increased scavenging and iron oxidation as iron exceeds the implicit ambient ligand

concentration. All model parameters for the Explicit Dynamic and Explicit Constant are

the same; the only difference is in the treatment of ligands. The iron scavenging parameter

in the Implicit model was tuned independently of the Explicit ligand models, but all other

model parameters are equal.

2.3.4 Ligand source and sink processes

Explicit simulation of iron binding ligands was incorporated into the CESM-BEC model. Due

to discrepancies in the procedure for measuring ligands and lack of observational constraints

it is challenging to model multiple ligand classes with any certainty (Ibisanmi et al., 2011;

Voelker and Tagliabue, 2014). The Explicit Dynamic model considers one strong ligand

class. Ligand concentrations are variable in space and time and are a function of source and

sink processes. The ligand source is set as a constant proportion of remineralized particulate

organic carbon (POC) and dissolved organic carbon (DOC) production. This value is 10−4

(mol ligand/mol organic carbon) and is from studies by Boyd et al. (2010) and Wagener

et al (2008). The conditional stability constant for the iron-ligand complex is 1013 (M−1)

(Gledhill and Buck, 2012; Buck et al., 2015).

Ligand sink terms include scavenging of iron-bound ligands, biological uptake of bound lig-

ands, bacterial consumption/degradation and photochemical degradation of free and bound

ligands. The scavenging is a function of the sinking mass particle flux which includes, POM,

CaCO3, SiO2, and dust. The model does not differentiate between colloidal and dissolved

iron pools. We impose a weaker scavenging rate for iron that exceeds the simulated ligand

concentration in order to represent the spectrum of weaker ligands subclasses such as L2

and L3 ligands without the additional computational expense of adding other tracers. This

parameter is insensitive to the iron bound to the explicit ligand, but is sensitive to iron that

19



exceeds the local ligand concentration.

As the phytoplankton consume the iron-ligand complex, we assume 24% of the ligands are

destroyed by the uptake process and the remaining ligands are released back into the ocean

able to rebind with another iron atom.

bacterial ligand degradation = POC remineralization rate · scaling factor (2.1)

Bacterial ligand degradation in our model is a function of POC remineralization. We assume

that POC remineralization rates are a proxy for heterotrophic bacterial activity. Areas

of high POC remineralization lead to high rates of organic ligand degradation and low

remineralization rates would cause less ligand degradation building on correlations between

primary production, remineralization rates and bacterial biomass (Cole et al., 1988; Ducklow,

2000; Obernosterer et al., 2008).

photochemical degradation = [Ligand] · PAR · reference liftime (2.2)

Our photochemical degradation parameter follows that of Voelker and Tagliabue et al.

(2014). Photochemical degradation of ligands occurs only in the surface layer of the ocean

as UV radiation attenuates rapidly with depth. We use photosynthetically active radiation

(PAR) as a proxy for UV radiation. The rate of degradation is a function of PAR where PAR

is greater than 1.0 W/m2. This product is then scaled to give a minimum surface lifetime

of three months (Barbeau et al. 2003, Schlosser & Croot 2009).

Ligand parameters were optimized by comparing against ligand data from Buck et al. (2015),
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ligand observations compiled from published experiments, and by comparing resulting sim-

ulated iron against the Tagliabue et al. (2012) observational dataset and iron data from

GEOTRACES (Mawji et al., 2014). In sum, a dataset of 1,125 ligand observations us-

ing the competitive ligand equilibration and absorptive cathodic stripping voltammetry

was compiled. The dataset contains iron binding ligand concentration, geographic location,

depth, conditional stability constant and iron observations in every ocean basin except the

Arctic. The data from Buck et al. (2015) (452 observations) used consistent procedures

with the same analytical window, while the compiled dataset (1,125 observations) used the

same method with different procedures, analytical windows and different definitions of ligand

based on conditional stability constants.

2.3.5 Model experiments

Model simulations using the three variations of the CESM-BEC are conducted to elucidate

how the treatment of ligands impacts dissolved iron distributions. The constant ligand

concentration used for the Explicit Constant model is the average concentration of ligands

in the Explicit Dynamic model. Using the average value from the Explicit Dynamic model

simulation of 1.52 nM, as opposed to using a constant 1.0 nM as described in Parekh et al.

(2004) and Tagliabue et al., (2016), will produce a more direct comparison of the impacts

of ligand concentration on dissolved iron distributions between the Explicit Dynamic and

Explicit Constant models. We increase the “free” iron scavenging parameter for the Explicit

Constant model to rapidly remove iron above the ambient ligand concentration, to replicate

what is done in Parkeh et al. (2004) and other biogeochemical models (Tagliabue et al.

2016). We also conduct sensitivity experiments varying the desorption rate of iron from

particulate iron by a factor of ±10 of the optimized value, and the “free” iron scavenging

parameter by a factor of ±10 using the Explicit Dynamic model. All parameters between

the three models are the same and only the treatment of ligands differ. Simulations are run
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for 310 years and results are computed from the average of the last 20 years of simulation.

The length of the simulation is sufficient for upper ocean biogeochemical fluxes and pools to

approach a steady state.

2.4 Results

2.4.1 Ligand and dFe distributions in the Explicit Dynamic model

Figure 2.1 compares simulated ligand distributions from the Dynamic Explicit model av-

eraged over specified depth intervals and ligand observations from Buck et al. (2015) and

observations from the literature. Simulated ligand concentrations correlate with primary

productivity for the upper ocean. The North Pacific and Eastern Equatorial Pacific exhib-

ited ligand concentrations of ∼2 nM in the upper 100m. The Eastern Equatorial Pacific has

the highest concentration at ∼2.25 nM. Lower ligand concentrations are seen in the Southern

Ocean and South Atlantic between 1 and 1.75 nM. The lowest simulated concentrations are

in the Sargasso Sea at between 0 and 1 nM. Low concentrations of 0.5 to 1 nM are seen in the

Indian Ocean, North Atlantic and Arctic. Below 100m the pattern of ligand distributions

begins to homogenize with concentrations ranging between 1 and 2.25 nM. The highest con-

centrations are again seen in the Eastern Equatorial Pacific. Below 1000m ligands generally

vary between 1.25 and 2 nM. Note that in the North Atlantic transect from Buck et al.

(2015) there is a similar upper-ocean pattern, with elevated ligand concentrations along the

more productive continental margins.

Figure 2.2, left panels, compare BEC simulated ligands to measured L1 ligands along the

GEOTRACES GA03 transect (Buck et al. 2015). The model is able to reproduce the general

concentrations of L1 ligands along this transect, but does not reproduce some key features.

Buck et al. (2015) found relatively uniform ligand concentrations of ∼1.3 nM along the
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transect with higher concentrations of ∼2 nM near continental margins and greater than 4

nM at the TAG hydrothermal vent site. The BEC did not simulate the high concentrations

near continental margins and TAG vent site. The model underestimates ligand concentration

along the transect by an average of -0.37 nM. Overestimation of ∼0.3 nM occurs between 300-

700m. Table 1 compares simulated ligand against three ligand datasets: historic data from

published literature values, L1 and L2 data from Buck et al. (2015). The simulated ligands

from the Explicit Dynamic model matched L1 data from Buck et al. (2015) well based

on correlation coefficients and root mean square error values. The model also compared

reasonably well against the L2 data. Comparing ligand observations with the constant 1.52

nM ligand concentration simulation results slightly smaller rms errors for L1 than the Explicit

Dynamic model, but larger rms errors for the L2 (Table 1).

Figre 2.2, right panels, compare simulated dFe versus observed along the GEOTRACES

GA03 transect. The model slightly overestimates iron along this transect, but it is gener-

ally able to capture the major patterns of dissolved iron. The BEC simulates low iron in

surface waters which increase with depth due to remineralization. The model also captures

higher iron concentrations seen on the western portion of the transect from remineralization

and sedimentary sources (Buck et al., 2015). The placement of iron from the Saharan dust

plume on the eastern portion of the transect is simulated well, but underestimations of iron

concentration of ∼1 nM are seen between 200m to 800m. Underestimations by the model

of ∼0.5 nM are seen in the dust plume between 2000m and 3000m. The BEC simulates the

placement of the hydrothermal vent plume well (between 50◦W and 40◦W below 3000m),

but it underestimates the concentration. The model simulates hydrothermal plume concen-

trations approaching 2 nM, but observed concentrations are greater than 30 nM (Buck et

al., 2015; Mawji et al., 2014). Simulating such high iron concentrations near vent sites is

challenging as the mechanism for iron stabilization is unknown. The leading hypothesis for

iron stabilization in the dissolved fraction at vent sites suggests the role of ligands. The

BEC does not currently include a ligand source at hydrothermal vents, but future research
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efforts include implementing a ligand source at vent sites to test this hypothesis. Of the three

models used in this study, the Explicit Dynamic ligand model produced the best correlation

and lowest rms error to observed iron along this transect.

2.4.2 Comparison of dissolved iron distributions from Explicit Dy-

namic, Explicit Constant, and Implicit models

All three models produce similar patterns of dissolved iron distributions for the upper 1000m

with the Explicit Dynamic model capturing more of the high-end variability in iron concen-

trations throughout the water column (Figure 2.3). All models are able to simulate iron-

limiting concentrations in the HNLC regions and high iron near continental margins and in

areas of high dust deposition. The Explicit Dynamic model produces the highest correlation

to observed iron (r = 0.389) and lowest root mean squared error (rmse = 0.733) of the three

models tested for the upper 100m (Table 2). In the upper 100m the Explicit Constant model

overestimates iron in the Arctic and in regions of high dust deposition like the Atlantic and

Indian Oceans. Below 1000m both the Dynamic Ligand and Constant Ligand models under-

estimate iron in the North Pacific and overestimate in the North Atlantic and Arctic. The

Implicit model produces more homogenous iron distributions at an average of 0.69 nM with

modest overestimation in the Southern Ocean. The Implicit model is also rarely simulates

iron concentrations above 2 nM seen near continental margins and hydrothermal vents. The

Explicit Constant ligand model rarely produces iron concentrations greater than 1.52 nM as

iron is rapidly scavenged when it exceeds the local ligand concentration. This tight lid on

iron concentrations is apparent in Figure 2.4, which depicts scatter plots of observed versus

simulated iron using the raw data and regionally binned data within 30x30 degree grid boxes.
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2.5 Discussion

2.5.1 Ligand distributions in the Explicit Dynamic model

Surface ligand distributions generally follow patterns of chlorophyll and sinking carbon ex-

port for the surface ocean as remineralization of POC and DOC are the sources of ligands

in the model. The low ligand concentrations simulated in the Sargasso Sea are a result of

overly strong phosphorus limitation, which leads to little carbon export, remineralization

and ligand production. Below 100m ligand concentrations and distributions homogenize

with little variability within ocean basins. A peak in average ligand concentration is seen

at intermediate depths coinciding with increased remineralization of organic matter, and

reductions in loss rates compared to surface waters. The homogenous distribution in the

deep is largely due to a balance between ligand production and bacterial degradation. The

additional removal processes and variability in phytoplankton production cause variability

in ligand concentrations in the surface ocean.

Ligand concentrations in the surface ocean are sensitive to the phytoplankton degradation

parameter in regions where iron-ligand, also known as dissolved iron, concentrations are

relatively high because only the iron-ligand complex is directly impacted by the phytoplank-

ton degradation parameter. The pattern and degree of change in ligand concentration is

governed by the iron-ligand concentration and its availability to phytoplankton. In regions

where iron concentrations are relatively low, this parameter has little impact on ligand con-

centrations. Observational constraints on the fraction of degraded ligand from iron uptake

by phytoplankton would help constrain the upper ocean ligand budget.

The photochemical degradation is also a sensitive parameter for the surface ocean. This pa-

rameter is most sensitive where ligand concentrations are high and where photosynthetically

active radiation is high. Experiments have observed photochemical degradation of various
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ligand classes (Barbeau et al., 2003; Powell and Wilson-Finelli 2003; Schlosser and Croot

2009). The average rate of loss of ligand from photochemical degradation in the Explicit

Dynamic control simulation is 4.78 nM/year in the surface layer. Powell and Wilson-Finelli

(2003) conducted incubation experiments exposing sea water to sunlight and observed the

degradation of ligands. Our simulations show much slower removal of ligands from photo-

chemical degradation compared to their experiments. However, some of their experiments

also showed little change or even increases in ligand concentration making the comparison

challenging to interpret. It is likely we are missing additional ligand sources in the surface

ocean such as siderophore production or viral lysis which could cause us to bias the photo-

chemical loss parameter high to an unknown extent. Further rate constraints on this process

and other ligand cycling processes would help to show the relative importance of ligand

cycling processes on ligand and iron distributions in the ocean.

Comparing simulated and observed ligands along the GEOTRACES GA03 transect high-

lights regions of model error and provides insight into possible causes. Given what is known

about ligand sources one might expect to see something similar to a profile of dissolved

organic carbon, however this is not what is observed by Buck et al. (2015). The BEC un-

derestimates ligands along this transect. Increasing the ligand production rate could have

helped produce a better match to observations, but would have deviated from measurements

of ligand production rates by Boyd et al. (2010). It is possible the model is missing a ligand

source from humic substances or CRAM which would alleviate some of the underestimation.

The model underestimates ligands at continental margins while capturing high POC flux

in the upwelling region off the West African coast and Eastern North America. Observa-

tions show sustained ligand concentration greater than 2 nM at continental margins down

to 4000m. Table 2 shows the comparison of modeled ligands versus observed ligands for L1

and L2 data from Buck et al. (2015). Simulated ligands correlate better with the L1 class

than the L2 class while exhibiting similar errors. This suggests the simulation of our ligands

are able to partially capture the distribution patterns of both L1 and L2 classes. Prognostic
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simulation of ligands as described in this study is a more realistic way to represent ligands

in the ocean than a constant ligand value, and may simulate better distributions under

changing climate and biogeochemical conditions.

Gerringa et al. (2015) measured ligands along the GEOTRACES GA02 transect and found

heterogeneous distributions with a general pattern of decreasing ligands from the North

Atlantic to the Southern Ocean. Simulated ligands along the GA02 transect produced a

pattern that mostly follows the major water masses, indicative of a relatively conservative

tracer. The simulated ligand residence time below 2000m in the North Atlantic is 305

years, sufficient time to follow North Atlantic Deep water south of the equator (Gebbie

and Huybers, 2012). Simulated ligands along the GA02 transect appear too conservative

compared to distributions from Gerringa et al. (2015), and our model is likely missing source

and sink processes that would help contribute to the variability seen in the observations.

The observed decreasing ligand concentration in the NADW indicates greater removal of

ligands than supply. It is possible we underestimate the removal of ligand from bacterial

degradation or scavenging relative to supply within the NADW, or that ligands exhibit

rates of removal similar to some first order decay process. Gerringa et al. (2015) also

observed no increase in ligand concentration in the oxygen minimum zone between 20◦S

and 20◦N, where we simulated the highest ligand concentrations along the transect. It is

also possible we are overestimating ligand production from organic carbon remineralization.

However this could contradict our previous statement of underestimating removal because

underestimating removal from bacterial degradation has the same effect as overestimating

ligand production. Without further observational rate constraints on ligand source and

sink processes its difficult to discern whether we are overestimating ligand production or

underestimating ligand removal.

We also compare simulated ligands against a database of observed ligand concentrations

using the competitive ligand equilibration and absorptive cathodic stripping voltammetry

27



(CLE-ACSV) (Gledhill and Van den berg, 1994; Rue and Bruland, 1995). Figure 2.1 and

Table 2.1 compares averaged simulated and observed ligand over specified depth ranges. The

observations show no clear trend with depth and concentrations are highly variable. The

lack of trend and high variability are likely due to inconsistencies in method procedures be-

tween studies, but biases in sampling locations or seasonal variability may also play a role.

All studies in the dataset used the CLE-ACSV method, but not all studies used the same

competing ligand or had the same side reaction coefficient, which determines the detection

window (Ibisanmi et al., 2011). Varying detection windows amongst studies could partially

explain the highly variable ligand concentrations, and lack of consistent patterns. Many of

the studies also defined the ligand class using different conditional stability constants mak-

ing it difficult to compare the results of one study against one another or a specific modeled

ligand class. The discrepancies amongst the methods make it challenging to assess model

performance. There must be more consistency in the competitive ligand and detection win-

dow used and a standard definition of ligand classes based on conditional stability constants

to better document trends in ligand concentration and for model validation.

2.5.2 Comparison of model iron simulations

All models, with their different implementation of ligands, were able to reproduce realistic

iron distributions for the upper ocean with the Explicit Dynamic and Implicit models per-

forming better than the Explicit Constant model at nearly all depths (Figure 2.4 and Table

2.2). Any implementation of ligands described in this study will allow for simulation of real-

istic contemporary iron distributions. However, the Explicit Dynamic model best captures

high iron concentrations near continental margins and at hydrothermal vents. This is in

part due to the “free” iron scavenging parameter which is meant to capture the reductions

in iron removal from adsorption and scavenging for the weaker spectrum of ligands we do not

explicitly simulate. Implementing our “free” iron scavenging parameter using the Explicit
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Constant model would allow for simulation of high iron concentrations in regions where iron

fluxes are high and would likely produce iron concentrations more similar to the Explicit

Dynamic model. The Implicit model also captures high iron concentrations by increasing

rates of scavenging as a function of increasing iron concentration above a threshold of 0.8

nM (Moore et al., 2004; Moore and Braucher, 2008). Some representation of variable ligand

concentration, whether explicit or implicit, helps to improve simulation of dissolved iron dis-

tributions and variability. Prescribing a constant ligand concentration without representing

the weaker spectrum of ligands sets and upper limit on simulated iron concentrations (Figure

2.4). Current hypotheses for ligand sources and sinks emphasize the role of biology. Inclusion

of variable ligand concentrations for different climate scenarios will allow for the simulation

of more realistic iron concentrations and associated feedbacks between iron, ligands, biology

and other biogeochemical tracers. Prescribing a constant ligand concentration in a biogeo-

chemical model not only sets an upper limit on the dissolved iron concentration, but also

on the potential total iron inventory in the ocean. This may be problematic if one were to

use a biogeochemical model with constant ligand concentration for a paleoceanographic or

future climate change scenario study, where the iron inventory and concentrations could be

drastically different.

Simulation of NPP was 49.9 (PgC/year) for the Explicit Dynamic and 50.0 (PgC/year) Ex-

plicit Constant models. The implicit model produced a similar NPP of 52.2 (PgC/year).

The increase in production occurred in the Central Pacific and northern boundary of the

Southern Ocean. The Explicit Dynamic and Explicit Constant models both produced export

production values of 7.41 (PgC/year), and the Implicit model produced an export production

of 7.74. The increase in export production occurred from the increase in NPP. The relatively

small difference in the export ratio shows that the treatment of ligands between models had

little to no effect on phytoplankton community composition. The simulated concentrations

and distributions of iron were similar enough to produce very small differences in the biolog-

ical response for the contemporary period. Using any treatment of ligands described in this
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study will likely produce little change in the biogeochemical response for the contemporary

period, but might give markedly different distributions under another climate/productivity

state.

2.5.3 Desorption sensitivity experiments

Increasing desorption by a factor of 10 increased dissolved iron inventories by 68% from the

control experiment (Figure 2.5). This is partly because there is no upper limit to the amount

of iron adsorbed onto sinking particles which creates a large reservoir of iron in the particu-

late pool in the model. Particulate iron represents a large fraction of iron in the oceans, but

further constraints are needed on the rate of desorption of dissolved iron from particulate

iron and on the amount of particulate iron in sinking particles. The uncertainty associated

with this process could lead to overestimation of iron removal processes in models, further

confounding the rates of sources and sinks for iron. The uncertainty of iron cycling param-

eters was explored by Tagliabue et al. (2016) and this sensitivity experiments highlights

another uncertain parameter. Reducing the desorption rate of iron showed a much smaller

impact relative to the experiment increasing desorption. The iron inventory decreased by

9.3% when desorption was decreased. Both experiments showed the most significant change

in iron concentration deeper in the water column, greater than 1000m.

2.5.4 “Free” iron scavenging sensitivity experiments

The “free” iron scavenging parameter allows for an implicit inclusion of the broad spectrum

of weaker ligand classes not explicitly simulated. This parameter is only sensitive where

iron is above the ligand concentration due to strong input fluxes, which is most often near

hydrothermal vents or continental margins. Increasing the “free” iron scavenging parameter

by a factor of ten removed nearly all iron above the ambient ligand concentration, decreasing
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the iron inventory by 2.8% compared to the control run. The model was not able to capture

the high iron concentrations seen in observations with such strong scavenging. Decreasing

this parameter had the opposite effect, producing higher iron near continental margins and

along hydrothermal vents. Decreasing the “free” iron scavenging parameter by a factor of

ten increased the iron inventory by 15.5% compared to the control run. Not all of this

excess iron is scavenged away locally, circulation and mixing moves some iron out of the

high input regions to where iron concentrations are less than the ligands. Inclusion of the

“free” iron scavenging parameter would be useful in models that assume a constant ligand

concentration. It would help capture the impact of high iron concentrations in regions where

iron inputs are high and exceed strong ligand concentrations.

2.6 Conclusions

Our study provides insight into ligand cycling processes and their impacts on dissolved iron

in the oceans. We are able to reasonably match observed ligand concentrations with few

source and sink processes. Comparing our modeled results against ligand data from the

GEOTRACES GA02 and GA03 shows that our current understanding of ligand cycling pro-

cesses is not enough to fully recreate what is observed, but does highlight areas of uncertainty

which can guide future research (Gerringa et al., 2015; Buck et al., 2015). Our ligand tracer

appears to be too conservative and it is likely we are missing additional source and sink

processes.

Inclusion of varying ligand concentration, whether explicit or implicit, improves simulation

of dissolved iron distributions. Ocean biogeochemical models should work towards includ-

ing some non-static representation of iron binding ligands. Implementing a constant ligand

concentration sets a hard upper limit on iron concentrations. The inability to capture vari-

ability in iron concentrations could lead to inaccuracies in simulation of past and future
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climate scenarios. Further observational constraints on ligand source and sink processes and

more ligand observations would greatly help future modeling efforts. The high resolution

measurements from the GEOTRACES campaigns are ideal for evaluating model results and

will be instrumental in future ligand and iron cycling model development.

2.7 Figures

Figure 2.1: Left panels (A-D) show the averaged simulated ligand concentration over the
specified depths. Right panels (E-H) show observed ligand concentrations.
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Figure 2.2: Top left panels shows observed ligand concentrations along the GEOTRACES
GA03 transect (Buck et al., 2015). Bottom left panel shows simulated ligand concentrations
from the BEC Dynamic Explicit model along the GA03 transect. Top right panel shows ob-
served iron along the GA03 transect (Buck et al., 2015). Bottom right panel shows simulated
iron from the BEC Dynamic Explicit model along the GA03 transect.

Figure 2.3: First column panels show iron from Implicit ligand model. Second column
panels show iron from the Explicit Constant model. Third column panels show iron from
the Explicit Dynamic model. All model data is averaged over specified the depths. Fourth
column panels show iron from the Tagliabue et al. (2012) and Mawji et al. (2014) datasets.
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Figure 2.4: Top panels show modeled iron for the different ligand models versus observed
iron from the Tagliabue et al., (2012) and Mawji et al., (2014) datasets for the upper 315m.
Bottom panels show modeled iron averaged over 30x30 degree boxes for the different ligand
models versus observed iron from the Tagliabue et al., (2012) and Mawji et al., (2014)
datasets for the upper 315m. Statistics presented in Table 2.
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Figure 2.5: Left-hand panels show difference in iron concentration from the Explicit Dy-
namic increased desorption simulation averaged over the specified depths. Right-hand panels
show difference in iron concentration from the Explicit Dynamic and decreased desorption
simulation averaged over the specified depths.
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2.8 Tables

 

 Literature data  GA03 L1   GA03 L2   GA03 L1+L2  

depth (m) r rmse 
mean 
bias r rmse 

mean 
bias r rmse 

mean 
bias r rmse 

mean 
bias 

0-100 -0.080 3.462 -1.042 0.093 1.016 -0.895 -0.010 0.679 -0.367 -0.150 1.731 -1.544 
100-500 -0.230 1.281 0.159 0.575 0.500 -0.234 0.226 0.689 0.290 0.411 1.021 -0.797 
500-1000 -0.170 2.210 -0.222 0.396 0.442 -0.154 0.177 0.790 0.491 0.395 1.042 -0.811 
1000-2000 -0.420 3.438 -0.659 0.363 0.442 -0.326 0.246 0.797 0.339 0.160 1.179 -1.024 
2000-5250 -0.760 0.845 0.004 -0.040 0.728 -0.371 0.251 0.587 0.063 0.157 1.589 -1.157 
0-5250 -0.150 2.729 -0.512 0.292 0.642 -0.367 0.119 0.697 0.155 0.174 1.337 -1.043 

0-5250a 1.1e-7 2.613 -0.298 1.5e-6 0.498 -0.08 1.5e-13 0.768 0.469 7.1e-7 1.112 -0.075 

Table 2.1: Explicit Dynamic modeled ligands compared to our compiled observational
dataset (See text for details). a shows statistics of the constant ligand concentration of 1.52
nM compared to the observational datasets.
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Explicit 
Dynamic  

Constant 
Dynamic  Implicit   

depth (m) r rmse 
mean 
bias r rmse 

mean 
bias r rmse 

mean 
bias 

0-100 0.389 0.733 -0.034 0.320 0.801 0.085 0.309 0.773 0.001 

0-315a 0.375 0.748 0.011 0.319 0.798 0.092 0.325 0.763 0.014 

0-315b 0.707 0.322 -0.006 0.653 0.345 0.040 0.649 0.309 -0.050 

100-500 0.354 0.742 0.066 0.304 0.761 0.073 0.361 0.712 0.027 

500-1000 0.250 0.583 -0.104 0.178 0.618 -0.111 0.341 0.513 -0.079 

1000-2000 0.030 0.930 -0.105 0.001 0.960 -0.092 0.080 0.863 -0.027 

2000-5250 0.168 1.420 -0.084 0.156 2.730 -0.210 0.181 1.404 -0.070 

0-5250 0.256 1.090 -0.029 0.213 1.116 0.021 0.233 1.090 -0.017 

Table 2.2: Modeled iron compared to the Tagliabue et al. (2012) dataset for the specified
depth intervals at the same geographic location. 0-315a refers to modeled iron compared to
observed iron at the same geographic location and depth interval. 0-315b compares averaged
modeled and observed iron over 30x30 degree boxes.
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Chapter 3

Controls on dissolved iron in the oceans

3.1 Abstract

We conduct sensitivity experiments with iron sources in the CESM-BEC to better under-

stand the impact iron sources have on dissolved iron distributions and biogeochemsitry in

the oceans. The sedimentary iron source had the strongest impact on dissolved iron con-

centrations throughout the water column. Removing the sedimentary iron source reduced

iron concentrations by as much as 40% compared to the control simulation. Atmospheric

iron inputs had a strong impact on surface dissolved iron concentrations and showed partic-

ular importance for subtropical gyre systems. Hydrothermal iron inputs had little impact

on upper ocean iron concentrations, but did impact iron in the deep ocean mostly along

mid ocean ridges. Biogeochemical processes were most sensitive to atmospheric iron inputs.

The largest reductions in NPP, export production and nitrogen fixation occurred when re-

moving the surface atmospheric iron source. This atmospheric source is the most spatially

and temporally variable with strong links to climate forcings. Our results suggest that iron

from hydrothermal vent systems has little impact on surface ocean biogeochemistry on a

basin-wide scale, but that shallow vent systems may be of regional importance. Shallow

vents in the North East Pacific in the model are shown to support a significant fraction of

carbon export. These results highlight the relative importance of iron sources to dissolved
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iron distributions in the CESM-BEC and associated biogeochemistry. Comparisons of sim-

ilar sensitivity experiments with other global ocean biogeochemical models would help to

reduce uncertainty of iron cycling processes on dissolved iron distributions in the oceans but

also amongst models.

3.2 Introduction

The importance of iron as a limiting nutrient and its influence in the cycling of carbon

and nitrogen is well accepted (Boyd and Ellwood, 2010). The identification of iron as a

limiting nutrient in the High Nutrient Low Chlorophyll regions and potential influence on

climate has spurred a great effort to measure iron and identify its cycling processes in the

ocean. Johnson et al. (1997) used known iron cycling processes and sparse observations

to describe global patterns of iron concentrations. They showed a nutrient like profile for

iron with relatively constant deep sea concentration of ∼0.6 -0.7 nM and noted almost no

fractionation between ocean basins. They proposed inputs from atmospheric deposition and

reductions in deep sea scavenging were the cause of the observed trends. As the number

of iron observations grew it became apparent that iron concentrations are more spatially

variable than previously thought, and other source processes likely influence this variability.

Elrod et al. (2004) measured iron fluxes on continental margins and hypothesized this as a

significant source of iron to the oceans. Moore and Braucher (2008) compiled a dataset of

6,540 observations and showed higher iron concentrations near continental margins. They

also conducted model sensitivity experiments and showed that inclusion of both atmospheric

deposition and sedimentary diffusion of iron are necessary to simulate realistic iron distribu-

tions in the ocean. Dust inputs were observed to be spatially and temporally varying and

thus not an equal source of iron to all ocean basins highlighting the importance of regional

dust sources (Jickels et al., 2005; Kaufman et al., 2005; Prospero et al., 2014). Bennett et al.

(2008) suggested the potential importance of hydrothermal vent sources to the deep sea iron
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budget. Tagliabue et al. (2010) expanded upon this research and used a global biogeochemi-

cal model to suggest that hydrothermal sources are important for simulating Southern Ocean

iron concentrations and may act to buffer iron inventories against short term atmospheric

dust variability. Recycling of biogenic iron is also an important component of re-supply of

iron to the ocean. Biogenic iron is recycled in surface water by zooplankton, heterotrophic

bacteria and viruses and has been dubbed the ferrous wheel (Lee and Fisher, 1993; Hutchins

et al., 1994; Kirchman, 1996). Studies have also noted other iron source such as icebergs

(Raiswell et al. 2008; Lin et al., 2011) and rivers (Gibbs et al., 1973; Krachler et al., 2005;

Rijkenberg et al., 2014).

Major removal processes for iron include biological uptake and scavenging by sinking parti-

cles. Uptake of iron by phytoplankton in surface waters can vary widely by species and in

response to ambient iron concentrations (Sunda and Huntsman 1997; Twining and Baines

2013). Much of what has been learned about iron scavenging has been through studying the

scavenging of Thorium isotopes. Scavenging of iron, and other trace metals, can be described

as a reversible exchange of the metal and some particle between the dissolved and particu-

late phases (Nozaki et al., 1987; Honeyman et al., 1988). A proposed mechanism by which

is this happens is Brownian-Pumping, sometimes referred to as colloidal pumping (Honey-

man and Santschi 1989). A strong control on scavenging removal is particle concentration

where increased particle concentration facilitates higher rates of scavenging (Honeyman et

al. 1988).

Much has been learned about iron cycling in the oceans. However a great amount of un-

certainty still remains for iron cycling rates and processes. The Iron Model Intercomparison

Project (FeMIP) quantified this uncertainty amongst global biogeochemical ocean models

and showed that rates of source inputs can vary by as much as an order of magnitude across

models (Tagliabue et al., 2016). Despite the large variability in source rates, the models

produced similar iron concentrations to one another and observations by tuning of the scav-
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enging parameters. The large uncertainty in the source and sink parameters for iron may

produce an unrealistic simulated response to different climate scenarios. Sensitivity experi-

ments varying the rates of source and sink processes amongst the models would show their

relative impacts on simulated iron concentrations and help to interpret the response to differ-

ent climate forcings. In this study, we conduct sensitivity experiments with the CESM-BEC

to better understand and quantify the impact iron sources have on dissolved iron inventories

and distributions in the model.

3.3 Methods

3.3.1 CESM-BEC Model Description

The model used for these sensitivity experiments is Community Earth System Model - Bio-

geochemical Elemental Cycling model (CESM-BEC; Hurrell et al., 2013; Moore et al., 2004;

2013). The CESM is an Earth System model which includes land, ocean, atmosphere and

cryosphere components with dynamic feedbacks between systems (Hurrell et al., 2013). For

these simulations we use the physical ocean model (Parallel Ocean Program model; Gent et

al., 2011) coupled to the ecosystem/biogeochemical module (Biogeochemical Elemental Cy-

cling model; Moore et al., 2013) at a nominal resolution of three degrees and sixty vertical

levels. The CESM-BEC tracks the dissolved nutrients, nitrate, ammonium, silicate, iron,

phosphate as well as oxygen, dissolved organic carbon, dissolved organic nitrogen, dissolved

organic phosphorus, dissolved inorganic carbon and alkalinity. Sinking particulate fractions

of carbon, nitrogen, phosphorus, iron, calcium carbonate, biogenic silica and mineral dust

are also tracked in the model. The CESM-BEC represents the following phytoplankton func-

tional groups: diatoms, diazotrophs, small phytoplankton of the pico-nano- size class and

an adaptive zooplankton group. A more detailed description of the ecosystem model can be

found in Moore et al. (2004; 2013).
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Dissolved iron sources include sediments, atmospheric deposition, hydrothermal vents and

rivers at fluxes of 18, 11.1, 10 and 0.33 Gmol/year respectively (Figure 3.1). All iron inputs

are balanced by consumption by biology or scavenging losses and eventually lost to sediments

via the sinking particulate iron pool. Iron inputs from sediments are a function of particulate

organic carbon flux to the bottom grid cells and based on Elrod et al. (2004), but here with

a lower iron efflux rate. A full description of the sedimentary iron source can be found in

Moore and Braucher (2008). Iron from dust is 3.5% by weight and the soluble fraction of

iron at the surface ocean is variable. Dust climatology and variable solubility of the iron

within dust as well as dFe from combustion sources are from Luo et al. (2008). The CESM

also includes subsurface release of iron from sinking dust particles. The model includes two

fractions of iron within dust for the subsurface dissolution source (Moore and Braucher,

2008). A small fraction of the iron (1.5%) is released in the upper water column with an

e-folding length scale of 150 meters for the soft fraction. A much longer length scale is

used for the remaining dust, such that about 0.1% would dissolve through a 4000m water

column. Hydrothermal vent locations were compiled from the InterRidge Vents Database

and from spreading ridge locations from earthchem.org (Beaulieu et al., 2013). To account

for displacement of hydrothermal vent waters by buoyancy, we move the source flux up 300m

from the depth of the bottom grid cell (Tagliabue et al., 2010). We apply a constant flux of

iron for each grid box that has vents, and then apply a scaling factor to all vent locations

so the total hydrothermal vent iron flux is equal to 10 Gmol/year. River iron inputs are

simulated assuming constant iron concentration in river waters of 10 nM as they enter the

ocean.

The model considers particulate and dissolved iron pools. All sources are in the dissolved pool

of iron which encompasses the colloidal size fraction. Removal processes include biological

uptake in the surface ocean and particle scavenging and adsorption throughout the water

column. Iron that is scavenged is routed to the sinking particulate iron pool. Iron from biotic

pools is routed to both the dissolved and sinking particulate iron pools via mortality (Moore
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et al., 2004; Misumi et al., 2014). Remineralization and physical desorption of particulate

iron occur throughout the water column. Physical desorption is released as a constant

fraction of the particulate iron flux and remineralization is defined over a prescribed length

scale (Moore et al., 2004). We have previously examined the sensitivity of simulated dissolved

distributions to variations in the desorption rate (Sherman et al., in prep.).

The model also includes explicit simulation of ligands and iron-ligand speciation (Sherman

et al., 2016 in prep.). Ligand concentrations are prognostically simulated with sources from

particulate organic matter remineralization and dissolved organic matter production (Boyd

et al., 2010). Ligand sinks include biological uptake, bacterial degradation, photochemical

degradation and scavenging/adsorption to sinking particles. The model explicitly simulates

one strong ligand class and implicitly represents weaker ligands through modification of the

scavenging parameters (Sherman et al, in prep.). Stronger scavenging rates apply where

iron exceeds the local ligand concentration. We assume that almost all of this free iron

will actually be bound to weaker ligands that are not explicitly simulated. This represents

the large background concentration of weaker ligands and the increased scavenging rates

represent the weaker affinity they have for iron, but scavenging rates are still lower than

they would be for truly free iron ions. This allows the simulated dissolved iron to exceed the

concentration of our simulated strong binding ligands in areas with high iron inputs to the

oceans, and improves the match to observed distributions (Sherman et al., in prep.).

3.3.2 Fe sensitivity experiments

The goal of these experiments is to better understand how iron source processes influence

dissolved iron distributions in the ocean. The CESM-BEC has four primary iron sources:

sediments, atmospheric deposition, hydrothermal vents and river inputs. In each experiment

one of the sources was turned off while the others remained active. All other iron cycling and

biogeochemical parameters remained the same throughout the experiments. Atmospheric
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iron deposition is a two component iron source. 1) instantaneously soluble iron fraction for

the surface ocean and 2) a fraction of iron that dissolves at depth. Experiments are run

where each component of the atmospheric iron source is turned off while the other remains

active.

3.4 Results

3.4.1 Control simulation

The control run is able to simulate realistic iron concentrations and distributions compared

to observations from the Tagliabue et al (2012) and GEOTRACES (Mawji et al., 2014)

datasets. Table 3.1 shows statistics comparing averaged simulated and observed iron over

10◦x10◦ boxes over the specified depth intervals. The highest correlations to observations

are in the upper 1000m with low root mean squared error throughout the water column.

Simulated iron in the surface ocean closely matches observations. The model is able to

capture high iron in areas of high dust deposition, along continental margins and upwelling

regions (Figure 3.2). The model also simulates low iron concentrations in the center of ocean

basins and in the HNLC regions. At intermediate depths the model is able to capture the

trend of high iron near land masses with decreasing concentrations moving towards the center

of ocean basins. Modest overestimations occur in the North and tropical Atlantic and Arctic

Ocean, with underestimations in the North Pacific. Its difficult to ascribe error to specific

sources or removal processes as there is a large amount of uncertainty in the flux rates for

iron source and sink processes (Tagliabue et al., 2016). Increasing a source or decreasing

a removal process may improve one region at the cost of another. Further observational

constraints are needed on the source and removal rates for iron to better constrain model

parameters.
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3.4.2 Sedimentary iron source sensitivity experiment

Removing sedimentary iron inputs produced large decreases in iron concentrations along

continental margins and modest decreases near bottom ocean sediments compared to the

control run (Figure 3.3). Decreases between 0.2 and 0.4 nM are seen in the western boundary

currents in the upper ocean above 1000m (Figure 3.3). Sedimentary iron also had a large

impact on dissolved iron concentrations deep in the water column. At depths below 2000m

iron concentrations decreased by 33% compared to the control simulation (Table 3.2). A

greater than 70% decrease in iron concentrations occurred in the Arctic for the upper 1000m

compared to the control simulation, the largest decline of any basin. The Arctic Ocean is

unique in that it is relatively shallow with a large continental shelf. The relatively shallow

water column, large shelf and minimal dust inputs make the Arctic Ocean iron concentrations

very sensitive to the sedimentary iron source. Regions with significant dust inputs, like the

North Atlantic, were more resilient to changes in sedimentary iron inputs, although still

showed decreases between 23% and 27% compared to the control simulation. Some very

minor increases in iron are seen along land masses or regions where iron inputs from either

dust or hydrothermal inputs are high. In the surface this is due to decreases in biological

production, which decreased the sinking flux and alleviated scavenging losses. The increases

near vent systems are likely due to decreases in scavenging from decreasing the sinking mass

flux due to the surface productivity decline.

The biogeochemical impacts of removing the sedimentary iron sources are quantified in Table

3.3. Decreases of 3% for net primary production (NPP), 8% for export production and 31%

for nitrogen fixation occurred compared to the control simulation. Regions of iron limitation

increased by 59%, 36% and 51% for the diatoms, diazotrophs and small phytoplankton

respectively compared to the control simulation.
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3.4.3 Atmospheric iron deposition source sensitivity experiment

In the upper 100m iron concentrations decreased similar to the pattern of dust deposition

when removing the surface atmospheric iron source (Figure 3.4). The largest decreases in

surface waters of 0.3 to 0.6 nM occurred in the Indian and Pacific basins and in regions where

dust deposition is high like the mid-Atlantic. Below 100m decreases in iron still resembles

fields of dust deposition. Increases in iron concentrations are also seen below 100m. Increases

in iron concentrations are generally below 0.1 nM which increase to ∼0.3 nM below 2000m.

The increase in subsurface iron is due to reductions in the sinking mass flux from severe iron

limitation of the biology in surface waters. The sinking mass flux decreased by 9.31% at

100m, 21.39% at 1000m and 21.18% at 2000m compared to the control run. Comparatively,

removing the sedimentary input decreased the sinking mass flux by 7.56% at 100m, 14.97%

at 1000m and 11.76% at 2000m. Removing the subsurface atmospheric iron source decreased

iron concentrations under regions of dust deposition throughout the water column but had

less impact in surface iron concentrations in the gyres than the surface atmospheric iron

source. Decreases of iron in the gyres was generally less than 0.1 nM. Larger decreases

between 0.4 nM and 1 nM were seen in the mid Atlantic and Arabian Sea where dust

deposition is high. Increases in iron concentration generally less than 0.1 nM are seen deeper

in the water column of the Southern Ocean.

The atmospheric surface iron source had the largest impact on biology and biogeochemistry

in the CESM. NPP decreased by 7.21%, export production by 8.77%, nitrogen fixation by

39.05% compared to the control run. Regions of iron limitation for diatoms increased by 76%,

diazotrophs to 46% and small phytoplankton to 57% compared to the control simulation.

The atmospheric subsurface iron source had less of an impact on biogeochemistry than

atmospheric surface iron. NPP decreased by 1%, export production decreased by 2% and

nitrogen fixation decreased by 4%. Regions of iron limitation increased by 9% for diatoms

and diazotrophs, and by 8% for small phytoplankton compared to the control simulation.
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3.4.4 Hydrothermal vent iron source sensitivity experiment

Removing the hydrothermal iron source had minimal effect on iron concentrations in the

upper 1000m (Figure 3.5, Table 3.2). More significant reductions in iron occurred below

1000m, specifically along ocean ridges. Iron concentrations decreased by 22% between 1-2

km and by 35% below 2 km across all basins. The largest decreases in iron concentrations

occurred in the deep Atlantic, South Pacific and Southern Ocean basins where mid ocean

ridges are pervasive. Overall hydrothermal vents had little influence on biology and other

biogeochemical processes. There was less than a one percent change in primary production,

export production and nitrogen fixation.

Tagliabue et al. (2010) conducted similar sensitivity experiments with the PICES model

varying the strength of their hydrothermal vent source. The BEC hydrothermal source is 10

Gmol/year and we compare to the results of Tagliabue et al. (2010) that used a hydrother-

mal source of 9 Gmol/year. Our results generally support the findings of Tagliabue et al.

(2010). The BEC showed a better match to observed iron for the deep ocean when including

hydrothermal vent inputs, similar decreases in mean iron concentrations to Tagliabue et al.

(2010) for the upper and deep ocean and decreases in carbon export for the Southern Ocean

(Tagliabue et al., 2010). Tagliabue et al. (2010) found inclusion of a hydrothermal vent

source increased iron by 0.07 nM for the upper 2000m and we also found an increase of

0.07 nM. The authors found an increase in iron of 0.312 nM below 2000m and we found an

increase of 0.22 nM. A stronger influence on iron concentrations in the southern hemisphere

was also observed in the CESM. However, we do not find as strong of an impact on Southern

Ocean carbon export as Tagliabue et al. (2010). The authors found increases of carbon

export at 100m of 5% globally and 15% in the Southern Ocean due to the hydrothermal

vent source. The BEC produced increases of 0.67% globally and 3.42% in the Southern

Ocean. Figure 3.6 shows export production for the control simulation, no hydrothermal iron

simulation and the percent change between simulations. Our results show that there was a
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larger percent decrease in export production for the NW North Pacific. Iron from shallow

hydrothermal vents in the North West Pacific is advected by the Kuroshio Current fueling

production in the North Pacific. This highlights the importance of shallow vent systems may

have on primary production.

3.4.5 River iron source sensitivity experiment

The iron river source had a very minor impact on iron concentrations. Iron decreased by

1.5% in the upper 100m and less than 1% below 100m across all basins compared to the

control simulation. The largest decrease for a basin occurred in the upper 100m of the Arctic

with a decrease in iron concentration of 3%. More significant decreases of between 0.1 and

0.3 nM occurred at river mouths (Figure 3.7). NPP and export production did not change

compared to the control simulation. Nitrogen fixation decreased by 2% and iron limitation

for phytoplankton groups increased no more than 2.4% compared to the control simulation.

Mean dissolved iron profiles from the simulations are shown in Figure 3.8. Removing the

sedimentary iron source leads to sharp declines throughout the water column. Removing the

atmospheric source lowers surface concentrations sharply relative to our control. Turning off

the hydrothermal vent source results in large declines at mid-depths, but has relatively little

impact on surface waters.

3.5 Discussion

3.5.1 Sediment iron impacts on biogeochemistry

The conducted sensitivity experiments show the relative impacts of iron source processes

on iron distributions and biogeochemistry in the CESM . The sedimentary iron source gen-
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erally had the strongest control on iron concentrations through the water column, except

where dust inputs were large. Removing the sedimentary source highlighted the strong sen-

sitivity of Arctic Ocean iron to the sediments, along continental margins and in deep ocean

water close to sediments. In the upper ocean iron concentrations decreased the most near

continental margins. Lesser change was seen in the gyres. Removing the sedimentary iron

source decreased total phytoplankton biomass by 7.73% from the control run and shifted

the community towards small phytoplankton (Table 3.4). This shift in the phytoplankton

community composition mitigated the reduction in NPP because small phytoplankton are

able to grow at faster rates than larger phytoplankton and exported less efficiently than di-

atoms (Moore et al., 2004). For the small decrease in NPP there was a comparatively large

decrease in export production (8%). There was a 26% reduction in diatom biomass from the

control run. Diatoms do well in high nutrient environments, such as coastal and upwelling

regions where the sedimentary iron source is strong. Any changes to the iron flux in these

regions will likely influence phytoplankton communities and resulting biogeochemical cycles.

Although diazotroph biomass changed very little, there was a large decrease in nitrogen fix-

ation (31%, Table 3.3). The largest decreases in nitrogen fixation occurred mostly in the

subtropical gyres of the Pacific. The lateral advection of iron from the continental shelves

in the Pacific is a important process for new iron to enter the subtropical gyres in the model

(see also Moore and Braucher, 2008). Removing the supply of iron inhibited diazotrophs

from fixing nitrogen in these regions the most. High atmospheric iron puts in the Atlantic

and Indian oceans helped mitigate the reduction in nitrogen fixation in these basins.

3.5.2 Atmospheric iron deposition impacts on biogeochemistry

In the surface ocean, removing the surface atmospheric iron source caused iron concentra-

tions to decrease sharply in regions near dust sources but appreciable decreases also occurred

within subtropical gyres. Surface deposition is an important iron source in the CESM for
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the gyre systems. Although advection of sedimentary iron is also important, it needs to be

advected far from continental margins to reach the gyres. The residence time of iron in the

upper 100m in the CESM is 0.89 years. Residence times increase with depth and biological

uptake rapidly removes iron in the upper 100m. Much of the lateral transport from continen-

tal margins takes place below the euphotic zone. Letscher et al. (2016) recently showed that

lateral transport supplies approximately 50% of the macronutrient inputs that support gyre

productivity. Lateral fluxes of dFe appear to be equally important. Below the surface layer

iron decreases in regions of high dust input, but generally increases elsewhere. The increase

in iron concentration in the subsurface is driven by the reduction in the sinking mass flux,

which reduces scavenging losses of iron. The largest decreases in export production, nitro-

gen fixation and primary production occurred when removing the surface atmospheric iron

source. These large biogeochemical changes are due to the strong and widespread influence

atmospheric iron inputs have on surface iron concentrations. Removing this source created

widespread iron nutrient limitation. Compared to removing the sedimentary iron source, the

relative change in NPP and export production were similar. This is because the proportion

small phytoplankton to diatoms (Table 3.4) is essentially the same compared to the control

simulation. Removing the surface atmospheric iron source did not change iron distributions

enough to significantly shift phytoplankton community composition.

Removing subsurface atmospheric iron decreased iron concentrations throughout the water

column, with increases less than 0.2 nM in the Southern Ocean. Iron limitation across

phytoplankton groups increased by ∼9% compared to the control run, but generally had

little impact on surface ocean biogeochemistry. Inclusion of a subsurface atmospheric iron

source in biogeochemical models may be an important additional component of the overall

atmospheric iron source. Inclusion of this source improves the match to observations in high

dust flux regions.
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3.5.3 Hydrothermal iron impacts on biogeochemistry

Simulated iron concentrations were only sensitive to hydrothermal vent inputs in the subsur-

face ocean, with the southern hemisphere iron being more sensitive than northern hemisphere

iron. The largest changes in iron concentration from the control simulation occurred near

spreading ridges where the majority of hydrothermal vents in the CESM exist. Inclusion of

hydrothermal vent sources produced a better match between observed and simulated iron

in the deep ocean. GEOTRACES data from the Atlantic and Pacific show dissolved iron

in the deep oceans are greatly impacted by hydrothermal vents (Rijkenberg et al., 2015;

Resing et al., 2015; Conway and John, 2015; Buck et al., 2015). Inclusion of hydrothermal

iron sources in biogeochemical models is necessary to reproduce realistic dissolved iron dis-

tributions for the deep ocean (Tagliabue et al., 2016). Omission of this source could lead

biogeochemical models to bias their sedimentary sources high to compensate. Our results

showed hydrothermal iron inputs had little effect on surface ocean biogeochemistry and do

not support the hypothesis that hydrothermal iron has any significant impact on carbon

uptake into the oceans for the contemporary period. Although the total change in export

production between the sensitivity and control simulation was small (0.05 GtC/year, Table

3.2), the percent change in some regions of the Southern Ocean and North Pacific were larger

(Figure 3.6). The NW North Pacific showed a percent change greater than 25%. This large

change in export production is driven by shallow coastal hydrothermal vents in the NW

Pacific. Iron from these vents are advected by the Kuroshio Current into the iron limited

waters of the North Pacific. This highlights the importance of shallow hydrothermal vents

on ocean productivity. The distribution and flux of iron from hydrothermal vents is highly

unconstrained and further research is needed to fully understand their impacts on carbon

cycling and climate. We release only dissolved iron from the hydrothermal vents in our

simulations. Resing et al. (2015) showed how including a vent source for ligands could dra-

matically alter the lifetimes and resulting iron distributions, leading to larger biogeochemical
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impacts. Ligand release from vent sites will be a future subject of research with the CESM.

3.6 Conclusions

The model results show the sensitivity of iron concentrations and biogeochemical processes

to major iron sources in the CESM. Sedimentary and atmospheric iron inputs had the largest

impact on iron concentrations and biogeochemistry. Sedimentary iron inputs are significant

along continental margins and upwelling regions where nutrients are generally high. Remov-

ing iron inputs in these areas caused a large shift in phytoplankton community composition

from diatoms to small phytoplankton. This shift in the phytoplankton community caused

less change in NPP but a relatively large change in export production. Iron concentrations

were sensitive to atmospheric iron inputs near dust sources and within the subtropical gyre

in the surface ocean. NPP, export production and nitrogen fixation are most sensitive to

iron inputs from the atmosphere in the CESM. Iron concentrations were most sensitive to

hydrothermal vent iron inputs in the deep ocean, specifically along spreading ridges. The

insensitivity of surface iron concentrations to hydrothermal vent iron caused little change

in biogeochemistry on a global scale. However, shallow vents may have significant regional

influence. More observations of hydrothermal vent inputs and locations will help elucidate

their influence on iron concentrations and biogeochemistry. River sources had small im-

pacts on iron concentrations and biogeochemistry, with mainly local impacts near large river

mouths.

Our results show the sensitivity of iron concentrations to iron sources for one model. To

better understand the impacts of iron sources on iron concentrations and biogeochemistry,

additional experiments should be conducted with other global biogeochemical models and

compared. The FeMIP project noted a large uncertainty in iron source rates (Tagliabue et

al., 2016). Further constraints on iron source or sink rates would greatly aid modeling efforts
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and help close the marine iron budget.

3.7 Figures

Figure 3.1: Iron source and sink fluxes (mol Fe/year) for the CESM-BEC.
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Figure 3.2: Panels A-D show CESM-BEC simulated iron averaged over the specified depth
intervals. Panels E-H show observed iron for the specified depth intervals.
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Figure 3.3: Difference in iron concentration between the control simulation and simulation
with no sedimentary iron, averaged over specified depth intervals.
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Figure 3.4: Difference in iron concentration between the control simulation and simulation
with no surface atmospheric iron, averaged over specified depth intervals.
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Figure 3.5: Difference in iron concentration between the control simulation and simulation
with no hydrothermal vent iron, averaged over specified depth intervals.
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Figure 3.6: Top panel shows sinking POC flux at 100m for the simulation with no hy-
drothermal vent iron inputs. Middle panel shows sinking POC flux at 100m for the control
simulation. Bottom panel shows the percent difference in POC flux at 100m between simu-
lations.

58



Figure 3.7: Difference in iron concentration between the control simulation and simulation
with river iron, averaged over specified depth intervals.
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Figure 3.8: Iron averaged at each model depth for the iron source sensitivity and control
experiments.
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3.8 Tables
 

  r rmse r avg rmse avg 
0-100m 0.389 0.733 0.615 0.407 
100-1000m 0.333 0.706 0.625 0.292 
1000-2000m 0.03 0.93 0.181 0.321 
2000-5000m 0.168 1.42 0.231 0.315 

Table 3.1: Statistics for comparing simulated iron from the control and observed iron at
the same geographic location and depth (r and rsme) and averaged over 10x10 degree boxes
(r avg and rmse avg).
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Table 3.2: Average iron concentrations for model simulations for varying depths and ocean
basins. Percent difference from control simulation is in parenthesis.
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  Control No Sediment No Vents 
No Surface 

Atm 

No 
Subsurface 
Atm 

NPP (PgC/year) 49.9 48.4 (-3.01) 49.7 (-0.40) 46.3 (-7.21) 49.4 (-1.00) 
Exp P (PgC/year) 7.41 6.82 (-7.96) 7.36 (-0.67) 6.76 (-8.77) 7.26 (-2.02) 

N Fix (TgN/year) 195.9 134.8 (-31.19) 194.6 (-0.66) 119.4 (-39.05) 188.1 (-3.98) 

Dait % Fe limited 40.69 64.69 (58.98) 41.09 (0.98) 71.58 (75.92) 44.27 (8.80) 
Diaz % Fe limited 37.72 51.25 (35.87) 38.17 (1.19) 55.03 (45.89) 41.2 (9.23) 
Sp % Fe limited 50.69 76.42 (50.76) 51.66 (1.91) 79.51 (56.86) 54.77 (8.05) 

Table 3.3: a is net primary production. b is export production. c is nitrogen fixation. d

is the percent of ocean area where iron is the limiting nutrient. Parenthesis show percent
change relative to the control simulation.
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  Control No Sediment No Atm 

% biomass spa 0.50 0.59 0.51 
% biomass diatb 0.47 0.38 0.46 
% biomass diazc 0.03 0.03 0.03 
% change sp from ctrld 

 
8.54 -1.78 

% change diat from ctrle 

 
-25.52 -6.01 

% change diaz  from ctrlf 

 
-1.61 -2.36 

% change total  from ctrlg 

 
-7.73 -3.78 

Table 3.4: a The percent of total phytoplankton biomass that are small phytplankton. b

The percent of total phytoplankton biomass that are diatoms. c The percent of total biomass
that are diazotrophs. d The percent change in small phytoplankton biomass from the control
simulation. e The percent change in diatom biomass from the control simulation. f The
percent change in diazotroph biomass from the control simulation. g The percent change in
total phytoplankton biomass from the control simulation.
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Chapter 4

Temperature influece on phytoplankton

community growth rates

As appears in:

Sherman, E., Moore, J. K., Primeau, F., Tanouye, D. “Temperature influence on

phytoplankton community growth rates,” Global Biogeochemical Cycles, 2016

4.1 Abstract

A large database of field estimates of phytoplankton community growth rates in natural

populations was compiled and analyzed to determine the apparent temperature effect on

phytoplankton community growth rate. We conducted an ordinary least squares regression to

optimize the parameters in two commonly used growth-temperature relations (Arrhenius and

Q10 models). Both equations fit the observational data equally with the optimized parameter

values. The optimum apparent Q10 value was 1.47 ±0.08 [95% C.I.]. Microzooplankton

grazing rates closely matched the temperature trends for phytoplankton growth. This likely

reflects a dynamic adjustment of biomass and grazing rates by the microzooplankton to

match their available food source, illustrating tight coupling of phytoplankton growth and

microzooplankton grazing rates. The field-measured temperature effect and growth rates
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were compared with estimates from the satellite Carbon-based Productivity Model (CbPM)

and three Earth System Models (ESMs), with model output extracted at the same month

and sampling locations as the observations. The optimized, apparent Q10 value calculated

for the CbPM was 1.51, with overestimation of growth rates. The apparent Q10 value in

the Community Earth System Model (CESM V1.0) was 1.65, with modest underestimation

of growth rates. The GFDL-ESM2M and GFDL-ESM2G models produced apparent Q10

values of 1.52 and 1.39 respectively. Models with an apparent Q10 that is significantly greater

than ≈1.5 will overestimate the phytoplankton community growth response to the ongoing

climate warming, and will have spatial biases in estimated growth rates for the current era.

4.2 Introduction

In order to accurately simulate marine carbon cycling, it is essential for models to accu-

rately simulate marine net community production and export production. As global climate

models and earth system models continue to grow in complexity, it is beneficial to revisit

parameterizations as new data and findings come forth. A study comparing simulated ma-

rine primary production from numerical models of varying complexity has concluded that

to improve modeled primary production there needs to be a better understanding of the

temperature effect on photosynthesis and better parameterization of the maximum photo-

synthetic rate (Carr et al., 2006). The temperature influence on community phytoplankton

growth rates is fundamental to simulating current and future marine primary production,

and a reevaluation of this parameterization is needed to constrain how productivity will

respond to climate change (Taucher and Oschlies 2011).

The influence of temperature on growth rates exist due to the control temperature exerts over

metabolic rates (Raven and Geider 1988; Brown et al., 2004). A commonly used function
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that describes the relation between temperature and growth rate is the Q10 model,

g = go ·Q10
T−To

10 (4.1)

where go is a reference growth rate (day−1) at the reference temperature To = 303.15 K

(30◦C), and the Q10 value gives the factor change in growth rate for a 10 degree change in

temperature. All temperatures used in the Q10 model are in Kelvin. Another commonly

used function is the Arrhenius equation,

g = A · e
−E
kT (4.2)

where A is an adjustable constant (day−1), E is the activation energy (eV), and k is the

Stefan-Boltzmann constant (8.617 10−5 eV K−1). In both equations the temperature, T, is

measured in Kelvin. Both equations can be used to describe the influence of temperature on

phytoplankton growth assuming other factors such as light and nutrients are held constant.

One key early study, compiling mostly laboratory growth rate data, suggested a phytoplank-

ton Q10 value of 1.88 (Eppley 1972), while another suggested a value of 2.08 (Goldman and

Carpenter 1974). At the time, growth rate data were scarce, and mostly from lab cultures.

As a result, the sample size of early synthesis efforts was relatively small and limited to

species in culture. Thus, the described temperature effects may not be representative of in

situ rates for natural populations. Calbet and Landry (2004) compiled field estimates of

phytoplankton community growth rates, and showed increasing growth rates as one moved

from polar to tropical waters. However, the change in growth rate implied a weaker temper-
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ature effect than a Q10 value of 1.88 or 2.0 would imply. This study attempts to build on

these efforts by collecting and analyzing a large database of field observations of phytoplank-

ton community growth rates, in comparison with satellite and Earth System Model (ESM)

estimates.

4.3 Methods

The goal of this study is to evaluate the temperature effect on phytoplankton community

growth rates, and to estimate optimal growth-rate parameters for marine ecosystem models,

based on either the Arrhenius equation or the Q10 model. To this end we compiled from the

literature a large dataset of in situ phytoplankton community growth rates (n = 835, Table

4.1, Figure 4.1; building on a previous compilation by Calbet and Landry (2004)) measured

using the dilution method (Landry and Hassett 1982). (Refer to supplementary material for

the compiled database). The dilution method of Landry and Hassett (1982) provides esti-

mates of phytoplankton community growth rate and total microzooplankton grazing rate.

Additional ancillary information was compiled where available, including geographic loca-

tion, depth, chlorophyll concentration (mg/m3), nitrate concentration (µM), temperature

(◦C), and sampling month. To minimize the role of light limitation, we only included up-

per water column experiments (< 30 m depth). We also excluded experiments where the

linear regression used to estimate phytoplankton growth rate had a low r2 value (< 0.33).

Temperature was reported for 576 of these experiments, and showed a good correlation with

the sea surface temperature predicted from the Community Earth System Model (CESM) -

Biogeochemical Elemental Cycling (BEC) ocean biogeochemical model (Moore et al., 2004)

(r = 0.937, Figure 4.2). Therefore, where temperature was not reported we substituted the

monthly mean model sea surface temperature from the 1990s for that location (hereafter

referred to as the combined temperature dataset). The CESM sea surface temperatures are

a good match to the observations for the 1990s (r=0.99, Moore et al., 2013).
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The satellite product analyzed was from the Carbon-based Productivity Model (CbPM), and

was extracted at the same geographic location and month as the in situ data (Behrenfeld et

al., 2005; Westberry et al. 2008; www.science.oregonstate.edu/ocean.productivity/index.php).

A monthly climatology of CbPM growth rate estimates was created from 1999 to 2008.

Growth rate estimates from the original CbPM from the Behrenfeld et al. (2005) study had

a tendency to overestimate water column production from errors in photic zone depth. An

updated version of the CbPM was used in this study (Westberry et al. 2008). The updated

CbPM uses euphotic zone depths that are calculated from reconstructed profiles of irradi-

ance based on profiles of chlorophyll/carbon and biomass. Temperature from our combined

temperature dataset and CbPM growth rates were used to find the apparent Q10 coefficient

and reference growth rate for the CbPM, subsetting the satellite data at the same month

and location as the data in our in situ database. The CbPM does not include an explicit

temperature effect on growth rates, but estimates growth as a function of the phytoplankton

chlorophyll/carbon ratio (Behrenfeld et al., 2005; Westerberry et al., 2008).

The CESM-BEC model includes ecosystem and biogeochemical components. Three phyto-

plankton functional groups (diatoms, diazotrophs, and small phytoplankton) and the cycling

of key biogeochemical elements (C, N, P, Fe, Si and O) are represented (Moore et al., 2004;

Moore and Braucher, 2008). The Q10 model is used to simulate the temperature depen-

dence on phytoplankton growth rates (Explicit Q10 = 2.0). The BEC model runs within

the Parallel Ocean Program model, which is a part of the larger Community Earth System

Model (CESM 1.0) (Gent et al., 2011; Danabasoglu et al., 2012; Moore et al., 2013). The

GFDL models also include multiple phytoplankton groups and a Q10 model of temperature

impacts on growth (Explicit Q10 = 1.88) (Bopp et al., 2013; Dunne, 2013). We define the

explicit Q10 as the value assigned to individual phytoplankton groups within the models.

This can differ from the emergent, or apparent Q10 factor, for the influence of temperature

on community growth rates when the model output is analyzed in the same manner as the

field data.
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The three ESM simulations used in this study are from the Coupled Model Intercompari-

son Project 5 (CMIP5). Model simulations were conducted following the CMIP5 guidelines

(http://cmip-pcmdi.llnl.gov, see Moore et al. 2013 for details). Model resolution for the BEC

is ∼1 degree, and 1 degree for the GFDL models. Phytoplankton community growth rates

were calculated by weighting the net primary production of each phytoplankton functional

group (diatoms, diazotrophs and small phytoplankton) and dividing by the fractional com-

ponent of community biomass in the upper 20m of the water column. A monthly climatology

for 1990s period was created for community phytoplankton growth rates from the CESM (see

Moore et al., 2013 for additional details and validation comparisons with observed biogeo-

chemical and physical oceanographic fields). Modeled growth rates were extracted at the

same location and sampling month as the in situ observations. The same approach was used

for the GFDL-ESM2M and GFDL-ESM2G models. Averaged historical CMIP5 output from

years 1990 to 1995 were used to construct a monthly climatology. Primary carbon production

by phytoplankton (CMIP5 variable pp, [mol m−3 s−1]) was divided by phytoplankton carbon

concentration (CMIP5 variable phyc, [mol m−3]) at the in situ observational locations over

the upper 20m to estimate community net growth rates.

Using the temperature and the phytoplankton community growth rates (from the field data

and from each model) we fit the temperature equations to determine the apparent phyto-

plankton community temperature-growth relationship. We define the apparent Q10 as the

calculated optimal value fitting the Q10 model to the growth and temperature data. Thus

the apparent, community Q10 value is calculated in the same way for the field measurements

and for the models (model output sub-sampled only at the locations of the field observa-

tions). The explicit Q10 is the parameter value specified in numerical models for individual

plankton groups, which can differ from the phytoplankton community apparent Q10 value.

To estimate the parameters of the Q10 and Arrhenius models we applied a logarithmic

transformation to each model to make them linear in their adjustable parameters. We then
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used ordinary least squares to estimate ln(Q10) and ln(go) for the Q10 model and to estimate

ln(E) and ln(A) for the Arrhenius model. For temperatures in the range found in the oceans,

the curvature of the graph of 1/kT versus T (when T is measured in units of K) is negligible -

for the temperature range between ◦C to 32◦C the relative error made in approximating 1/kT

by a linear function of T is less than one part in 105 - so that the temperature dependence

of both models is practically identical (Dixon and Webb,1964). This makes it impossible to

select one model over the other based only on the quality of their respective fit to the in situ

data. For the temperature range between -2◦C and 32◦C we can relate E to Q10 using Q10

= exp((δT E)/(kT̄ 2)), where δT = 10 K and T̄= 288.15K (Dixon and Webb,1964).

To assign uncertainties to our estimates of the optimized parameter values, we assumed

normally distributed errors for the logarithmically transformed growth rate data and reported

95% confidence intervals assuming uniform prior probabilities for the parameters. For the

Arrhenius model there is a very strong correlation in the posterior probability of E and

log(A), (p=0.9995). This makes the optimal value of A extremely sensitive to the value of

E. We have therefore reported the uncertainty for A conditioned on E fixed at its optimal

value. The unconditional uncertainty for A, obtained after marginalizing out E, is A = (3.5

±2.80
13.50 × 104)day−1.

4.4 Results

There is a strong influence of temperature on growth rates apparent in the observational

dataset. Mean phytoplankton community growth rates, averaged within 3◦C temperature

bins, are plotted against temperature in Figure 4.3a. We estimated an optimal apparent Q10

value of 1.47 ± 0.08 [95% C.I.] with a reference growth rate at 30◦C of 0.89 (±0.08
0.07)day

−1 [95%

C.I.] (without log transformation the optimal Q10 value was 1.38) . We estimate an optimal

activation energy of E = 0.28 (±0.04) eV [95% C.I.] for the Arrhenius equation. The optimal
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value of A depends sensitively on the assumed choice for the activation energy. Conditioned

on E fixed at its optimal value of 0.277 eV, we estimate A = (3.5 ±2.80
13.50×104)day−1 [95% C.I.].

Figure 4.3 shows that both optimized models fit the data equally well, with approximately

the same root mean square error of 0.45 day−1 (Table 4.1).

Our estimated activation energy of 0.28 (±0.04) eV is in good agreement with other es-

timates. Previous studies have found activation energies that range from 0.29 eV to 0.32

eV (Allen et al., 2005; Lopez-Urrutia et al., 2006; Regaudie-de-Gioux and Duarte 2012).

However, our apparent Q10 value of ∼1.5 is significantly lower than the canonical value of

2.0 often used when assigning explicit Q10 values in models (Eppley 1972; Goldman and

Carpenter 1974; Bissinger 2008). An apparent Q10 value of 2.0 overestimates the effect of

temperature on community phytoplankton growth rates. This is illustrated in Figure 4.3,

which compares our optimized equations with the growth rate computed as a function of

temperature for a fixed apparent Q10 value of 2.0, and an optimized reference growth rate

of 1.33 day−1 (blue line). Note the much steeper slope compared with the observational

dataset.

To assess the influence of nutrient limitation in the observational dataset we compare subsets

of the data from the studies that estimated growth rates both with and without nutrient

addition (n= ∼200, Table 4.1). We calculated the apparent Q10 value for subsets of the

data both with and without nutrient addition. The apparent Q10 value calculated from the

experiments with nutrient additions is 1.48, and the apparent Q10 value calculated from the

data without nutrient additions is 1.42, with overlapping 95% confidence intervals (Table

4.1). The very similar apparent Q10 values strongly suggest that spatial or temperature-

correlated patterns in the degree of nutrient stress are not strongly skewing our optimized

apparent Q10 values. However, the reference growth rate was higher in the nutrient-addition

subset (1.1 day−1 versus 0.65 day−1 without nutrient addition, Table 4.1), demonstrating

significant nutrient limitation of the in situ community growth rates. The estimated reference

72



growth rate with nutrient limitation was 65% of the reference growth rate with no nutrient

limitation value. These results together indicate that the degree of nutrient limitation was

not correlated with temperature, but was in fact very similar across different regions.

To further explore the role of nutrient and light limitation, we analyze output from the

CESM-BEC model. We take the existing simulation results and calculate what the growth

rate would have been without the nutrient and/or light limitation terms. This is a simplified

approach, in that we assume that phytoplankton biomass and community composition are

not changed, and by removing the light-limitation term we assume a saturating light field

24 hours per day. Then we re-fit the Q10 model with the modified growth rates. Modeled

growth, both with and without nutrient limitation, was extracted at the same location and

month as all of the in situ observations. Figure 4.4a shows BEC simulated growth (with

nutrient limitation) versus temperature. Figure 4.5a shows BEC simulated growth without

any nutrient limitation (assuming that phytoplankton biomass and community composition

remain the same) versus temperature. The apparent Q10 value for CESM-BEC growth

with nutrient limitation is 1.65±(0.06) with a reference growth rate of 0.86±(0.100.09), while

the apparent Q10 value without nutrient limitation is 1.70±(0.02) with a reference growth

rate of 1.73±(0.03). Much like in the observational dataset, we only see a modest nutrient

influence on the apparent Q10 factor, but the reference growth rate is again significantly

different. The reference growth rate with nutrient limitation for the BEC was 50% of the

estimated rate without nutrient limitation. Overall, the CESM-BEC model (with nutrient

limitation) slightly underestimates phytoplankton community growth rates in comparison to

the in situ observations with the largest underestimation at low temperatures (Figure 4.4d).

Light limitation could potentially skew our analysis of the temperature influence on commu-

nity phytoplankton growth rates. Figure 4.5b shows CESM-BEC community phytoplankton

growth, at the in situ locations, without nutrient or light limitation. There is only a mod-

est difference in apparent Q10 values without nutrient limitation (apparent Q10=1.7025)
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and without nutrient and light limitation (apparent Q10=1.8982). The large majority of

the field dilution experiments were sampled near the surface (∼5m) and incubated on deck

(we excluded deep euphotic zone experiments). We therefore believe light limitation is not

significantly skewing our results. Growth rates calculated without light limitation assume a

24 hours per day photoperiod, resulting in unrealistically high growth rates at low latitudes.

Accounting for the latitudinal variations in summer-season photoperiod length would tend

to flatten the growth-temperature relation (longer photoperiod at high latitudes), which may

partially explain the ∼0.2 difference in apparent Q10 values noted above.

Diazotrophs have inherently slower growth rate than other phytoplankton (i.e., Falcon et

al., 2005; Breitbarth et al., 2007), which has been incorporated in the CESM-BEC (Moore

et al., 2004). The diazotrophs are excluded from high-latitude waters in the model by

temperature constraints (Moore et al., 2004). If phytoplankton community biomass was

weighted more towards diazotrophs in warmer regions, this may skew the apparent Q10

value low. Figure 4.5c shows BEC community phytoplankton growth rates without nutrient

and light limitation while also excluding diazotrophs from the phytoplankton community at

the in situ locations. Comparing the apparent Q10 value without nutrient and light limitation

(apparent Q10=1.8982) and the apparent Q10 value without nutrient and light limitation

and excluding diazotrophs (apparent Q10=2.0) we find the difference to be 0.1018. These

results suggest that diazotrophs are not strongly skewing the in situ apparent Q10 estimation,

which would still be an apparent Q10 value significantly lower than 2.0. The diazotrophs

typically only account for 1-3% of primary production in the CESM, even in warm water,

nutrient depleted regions. Diazotrophs would be included in the field estimates as well, and

may contribute to the apparent modest flattening of the growth versus temperature relation

at the warmest temperatures (Figure 4.3).

Although there is no explicit temperature effect included in the CbPM, there is a posi-

tive correlation between temperature and phytoplankton growth rates. The CbPM growth
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rates are driven by the satellite estimates of the phytoplankton chlorophyll/carbon ratio. It

appears that this ratio must correlate strongly with temperature at the global scale. We

estimated an apparent Q10 value of 1.51(0.06) with a reference growth rate of 1.39(±0.10
0.09) at

30◦C. Figure 4.4b shows CbPM growth rates versus temperature and estimated growth rates

using the Q10 model and apparent CbPM Q10 value and reference growth rate values. The

CbPM matches well the growth-temperature relation seen in the field data, but consistently

overestimates community growth rates (Figure 4.4d).

Using data from the CMIP5 archives we also calculated apparent Q10s and reference growth

rates for the GFDL-ESM2M and GFDL-ESM2G models (Figure 4.6). The GFDL-ESM2M

apparent Q10 is 1.52±(0.02) with a reference growth rate of 1.08±(0.03). This apparent Q10

value closely matches the observation-based estimate of 1.47, however the reference growth

rate is higher than in the observations, leading to a modest overestimation of community phy-

toplankton growth rates that increases with temperature (Figure 4.6). The GFDL-ESM2G

apparent Q10 is 1.39±(0.02) with a reference growth rate of 0.82±(0.02).

Chen et al. (2012) reported a positive correlation between increasing temperatures and

microzooplankton grazing rate/phytoplankton community growth rate for eutrophic condi-

tions. Contrary to the findings of Chen et al. (2012) and Rose and Carons (2007) trophic

decoupling by temperature theory, we found no temperature influence on the ratio of mi-

crozooplankton grazing rate/phytoplankton community growth rate (Figure 4.7a). We note

that our examination of microzooplankton grazing rate/phytoplankton community growth

rate was not assessed with respect to chlorophyll concentrations as was done in Chen et al.

(2012).

There was a strong temperature trend for the microzooplankton grazing rates, nearly exactly

matching that observed for phytoplankton growth rates (Figure 4.7b). Fitting our Q10 equa-

tion to the grazing rates gives an apparent Q10 value of 1.470.08 with a reference grazing

rate at 30◦C of 0.57±0.05 day−1. This likely reflects not only the temperature sensitivity
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of the grazer populations, whose respiration likely scales more strongly with temperature

(Lopez-Urrutia et al., 2006; Regaudie-de-Gioux and Duarte 2012), but also a dynamic ad-

justment of grazing pressure (by modifying microzooplankton biomass and grazing rates) to

match available food resources (a function of phytoplankton growth and biomass) (Peters,

1994). Most of the time, over much of the ocean there is a relatively tight coupling between

primary production and grazing (Calbet and Landry 2004; and references therein). There

was no correlation observed between phytoplankton community growth rates and nitrate

or chlorophyll concentrations for the subset of studies that reported ambient nitrate and

chlorophyll (Table 4.1, Figure 4.8).

The global mean growth rate for all the field observations was 0.71 day-1 and the mean

grazing rate was 0.47 day−1, indicating that on average about 66% of daily production was

grazed by the microzooplankton. Dividing our computed reference grazing rate (0.57 day−1)

by the reference growth rate (0.89 day−1), gives a similar value of 64% of daily production

being grazed. The Calbet and Landry (2004) dataset had similar mean values of 0.67 day−1

for growth and 0.41 day−1 for grazing, which implies 61% of daily production on average

being grazed. There are additional mortality terms in the model including a non-grazing

mortality loss meant to account for losses to viruses, excretion, and respiration, and an

additional loss to aggregation and sinking (Moore et al., 2004).

4.5 Discussion

It is perhaps not surprising that a weaker temperature-growth relation is observed in natural

phytoplankton communities across ecosystems than has been observed in culture studies with

single species. At the global scale, the dominant component of phytoplankton communities

will be well-adapted to ambient temperatures. For example, phytoplankton can adapt to low

temperatures by modifying internal resource allocations to compensate for some of the most
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temperature sensitive metabolic reactions (Raven and Geider, 1988). Our results indicate

that such adaptations may weaken, but certainly do not erase the temperature influence

on metabolism and growth. It is important to keep in mind that our findings apply to the

phytoplankton community growth rate at the global scale. It is possible that individual

species, which typically thrive only in a fairly narrow temperature range (i.e., Eppley, 1972),

but are well adapted for those temperatures, could all exhibit growth-temperature relations

with an apparent Q10 value of 2.0, but when combined at the community level produce a

weaker apparent growth-temperature relation as we report here. Phytoplankton may have

more mechanisms to optimize and acclimate for growth at low temperatures than for high

temperatures, for example by producing more substrates for the most temperature sensitive

metabolic reactions (Raven and Geider, 1988). The longer summer-season photoperiod at

high latitudes likely also plays a role in weakening the growth-temperature relation.

There was considerable spread in the data for any given temperature range (about one

order of magnitude, Figure 4.3a, 4.3b). This could be due to several factors, including the

seasonally varying nutrient and light fields, species-specific differences, bloom progression

status, and experimental error in the measurements. One might expect the warmer waters

to be more strongly nutrient limited, with a stronger suppression of growth rates. There

is little indication of the growth rates falling off the optimal trend line, except at the very

highest temperatures in the binned data (Figure 4.3a).

It appears that as community composition shifts in response to nutrient availability, often

correlated with temperature, the resulting community growth rates and the relative degree

of nutrient stress are similar across marine ecosystems at the global-scale, even as ambient

nutrient concentrations and total phytoplankton biomass vary widely. This effect is seen in

the relatively constant apparent Q10 values with and without nutrient stress in both the

field observations and the CESM-BEC model output. The very small phytoplankton that

dominate the community in warm, stratified regions, where nutrients are typically scarce,

77



are extremely efficient at taking up nutrients (Agawin et al., 2000; Raven 1998). This allows

them to grow relatively quickly even when ambient nutrient concentrations are quite low. In

regions with higher ambient nutrient concentrations, a larger fraction of the phytoplankton

community will be made up of larger species, such as diatoms, that are much less efficient

at nutrient uptake. The shifting community structure appears to adjust so that the relative

degree of nutrient stress for the community is similar across biomes.

Our results show that the apparent Q10 value for phytoplankton community growth rates for

natural populations is approximately 1.5. Utilizing the Arrhenius equation with an activation

energy of ∼0.28 eV would be equally good at predicting the growth response to changing

temperatures. Global-scale marine ecosystem models with only one phytoplankton group, or

a few phytoplankton functional types, should strive to match the apparent Q10 value seen in

our observational dataset. This may require explicit Q10 values imposed in the model that

are less than the values of 1.88 or 2.0 often used today (or an equivalent Arrhenius model).

Models that include a large number of phytoplankton types, or that explicitly account for

internal resource allocation strategies to adapt to low temperatures, could a include a range

of group-specific explicit Q10 values, but their integrated community growth rates should

be compared with the observational dataset compiled here to ensure that the phytoplankton

community growth rate displays a temperature sensitivity equivalent to an apparent Q10

value of ∼1.5.

Parameterization of the temperature effect on phytoplankton growth rates is important for

simulating net primary production, especially under climate change scenarios (Taucher and

Oschlies, 2011). Laufkotter et al. (2015) examined a suite of the CMIP5 ocean biogeochemi-

cal models, and suggested that the temperature-growth relationship could be as important as

nutrient concentrations in driving NPP-climate interactions at the lower latitudes. Models

with stronger temperature sensitivity (i.e., apparent Q10 value = 2.0) in their phytoplankton

community growth rates, will overestimate the response to ongoing ocean warming, and will
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have strongly biased growth rates in some regions for the current era.
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4.7 Figures

Figure 4.1: Spatial plot showing locations and observed phytoplankton community growth
rates from the in situ dataset.
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Figure 4.2: Scatter plot of BEC model sea surface temperature versus observed temperature
for locations where temperature was reported in the field experiments.
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Figure 4.3: Observed phytoplankton community growth rates are plotted versus temper-
ature averaged within 3◦C bins (4.3a). Error bars show the 95% confidence intervals. The
green line displays the modeled growth-temperature relation with the best fit to the Q10
equation (apparent Q10 value of 1.47). The red line (nearly identical to green) is the modeled
growth-temperature relation with the best fit of the Arrhenius equation (activation energy
of 0.28 eV, A coefficient value of 3.53 x 104, see text for details). The blue line shows the
modeled growth-temperature relation with the best fit of the Q10 growth equation, imposing
an apparent Q10 value of 2.0. Panel 4.3b displays the original un-binned data with the same
three trend lines.
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Figure 4.4: Panel 4.4a shows BEC community phytoplankton growth rates versus tem-
perature at in situ sampling locations. Panel 4.4b shows CbPM community phytoplankton
growth rates versus temperature at in situ sampling locations. Panel 4.4c shows in situ ob-
servations versus temperature. Panel 4.4d shows the Q10 modeled growth from panels 4.4a,
4.4b, and 4.4c plotted against temperature. Reported Q10 values are apparent values.

83



Figure 4.5: All growth rates shown are phytoplankton community growth rates. Panel
4.5a shows BEC growth without nutrient limitation versus temperature. Panel 4.5b shows
BEC growth without nutrient or light limitation versus temperature. Panel 4.5c shows BEC
growth without nutrient, light, or diazotrophs versus temperature. Panel 4.5d shows the Q10
modeled growth from panels 4.5a, 4.5b, and 4.5c plotted against temperature. Reported Q10
values are apparent Q10 values.
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Figure 4.6: Q10 modeled growth, using respective apparent Q10 values and reference
growth rates, for in situ observations, CbPM, CESM-BEC, GFDL-ESM2M and GFDL-
ESM2G.
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Figure 4.7: The ratio of observed microzooplankton grazing rate / phytoplankton com-
munity growth rate is plotted as a function of temperature (4.7a). Panel 4.7b displays the
microzooplankton grazing rate as a function of temperature, with an optimal fit of the Q10
equation (here as the Q10 function multiplied by a reference grazing rate at 30 ◦C, see text
for details)

Figure 4.8: Observed phytoplankton community growth rates are plotted against observed
nitrate in plot 4.8a, and observed phytoplankton community growth rates are plotted against
observed chlorophyll concentrations in plot 4.8b.
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4.8 Tables 

 All BothAdd BothNoAdd 

N 835 203 209 

Temp (C°) 16.9626 20.9541 21.4408 

Chl (μg/L) 1.3963 1.4475 1.2243 

Nitrate (μM) 5.4873 5.0837 4.7001 

Growth (day-1) 0.7055 0.9367 0.6526 

Grazing (day-1) 0.4685 0.4939 0.5137 

Grazing/Growth 0.6641 0.5272 0.7872 

Fitted Q10 1.47  1.48 1.42 

Fitted Q10 Ref. Growth Rate 0.89 1.1 0.65 

Fittted Q10 rmse 0.4465 0.4541 0.4467 

Fitted A coefficient 3.5315x104 5.9886x104 1.2013x104 

Fitted E 0.2770 0.2852 0.2568 

Fitted Arrhenius rmse 0.4462 0.4541 0.4468 

Imposed Q10 2.0 2.0 2.0 2.0 

Imposed Q10 2.0, Fitted 

Reference Growth Rate 1.33 1.41 0.88 

Imposed Q10 2.0, rmse 0.4619 0.4619 0.4882 

Table 4.1: Shown are the mean values and fitted growth equations for the entire observa-
tional database, and for the BothAdd and BothNoAdd subsets. These subsets include results
from the field where experiments were conducted both with and without nutrient addition.
BothAdd represents experiments where nutrients were added. BothNoAdd are experiments
where nutrient additions were omitted.
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Chapter 5

Conclusions

The iron cycle is an important component of biogeochemistry in the oceans as it’s a strongly

limiting micronutrient for phytoplankton. Dissolved iron is stabilized through complexation

with organic ligands, which help prevent losses to particle scavenging. Research into the

cycling of iron-binding ligands is still developing and large uncertainties remain with regards

to its cycling processes. Identifying and quantifying the major cycling terms for iron-binding

ligands will help elucidate what controls the distribution of dissolved iron in the oceans.

Large uncertainties also exist for iron cycling processes. The Iron Model Intercomparison

Project highlighted these uncertainties and how they have manifested into global biogeo-

chemical ocean models (Tagliabue et al., 2016). Rates of iron source processes can vary by

a factor of ten amongst models, yet all models can generally reproduce observed iron con-

centrations. This is because modelers tune their scavenging losses to best match observed

concentrations. Due to the wildly differing source and sink rates for iron between models,

the strength of the feedbacks between iron and other biogeochemical processes and climate

could differ greatly. Sensitivity experiments of iron source processes should be conducted for

global ocean biogeochemical models to quantify their sensitivity to iron sources and impacts

on other biogeochemical processes. This would provide a baseline for interpretation and

comparison amongst model results. The work presented in this dissertation aims to reduce

the described unknowns of the marine iron cycle.
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In chapter one we present results from the CESM which includes modifications to explicitly

simulate iron-binding ligands and its speciation with iron. A ligand tracer, variable in space

and time, was implemented into the CESM with explicit source and sink processes. The

ligand component of the CESM was able to simulate ligand concentrations that compared

well against observations along the GEOTRACES GA03 transect. Inclusion of a dynamic

ligand tracer also improved the simulation of iron. The simulated ligand distributions appear

a bit conservative compared to observations from Gerringa et al. (2015). This suggests we

are likely missing some ligand source and sink processes. Many models assume a constant

ligand concentration of ∼1 nM. Our results show that assuming a constant ligand concen-

tration poorly matches observed ligands and places a strong constraint on the upper bound

concentration for iron and the total iron inventory. Current knowledge of ligand cycling

suggests it is strongly mediated by biology. Prescribing a constant ligand concentration may

be problematic for simulation different climate scenarios as it will not capture the feedbacks

between iron, ligands, biology and other biogeochemistry.

In chapter two we conduct sensitivity simulations of iron sources to better understand how

each iron source impacts dissolved iron distributions and biogeochemistry in the model. Each

iron source is turned off while the others remain active. The iron sources include: surface

soluble iron from atmospheric dust, subsurface iron release from dust, sedimentary iron,

river iron and iron from hydrothermal vents. Our results show that sedimentary iron had

the largest impact on iron concentrations throughout the water column, except for regions of

high dust deposition where the atmospheric dust source is more influential. Surface soluble

iron from dust had the largest impact on biogeochemistry producing the largest reductions

in NPP, export production, nitrogen fixation and iron limitation. However the sedimen-

tary iron source still strongly impacted ocean biogeochemistry and shifted phytoplankton

community composition towards small phytoplankton. Iron from hydrothermal vents had a

strong impact on iron concentrations in the deep ocean. Our results suggest that hydrother-

mal vents have little impact on biogeochemistry on a global scale, but that shallow vents
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may have regional importance. River iron did not significantly impact iron concentrations

or biogeochemistry but may be important for coastal biogeochemistry.

The third chapter we reevaluate the temperature influence on community phytoplankton

growth rates for use in global ocean biogeochemical and ecosystem models. We compile

a dataset of in situ community phytoplankton growth rates and conduct an ordinary least

squares regression to optimize the parameters for the Q10 and Arrhenius temperature-growth

models. Our results show that both models are able to fit the data equally. The optimal

apparent Q10 value was 1.47 and activation energy is 0.28 eV. Our optimized Q10 value

is lower than what is traditionally used in models. Models with an apparent Q10 greater

than ∼1.5 will likely overestimate the growth response to a warming climate. We also

find that zooplankton grazing rates closely matched the temperature trend for community

phytoplankton growth. This likely suggests an adjustment of zooplankton grazing rates to

the available food source.

This dissertation helped to reduce uncertainties associated with the cycling of ligands in

the ocean and their impacts on dissolved iron, modeling the iron cycle and the temperature

influence on community phytoplankton growth rates. However, a great deal of uncertainty

still exists for the dissolved iron budget of the ocean. Because of the influence iron has as a

limiting nutrient, the influence on nitrogen fixation and the associated biogeochemical feed-

backs it is imperative that the iron budget in the oceans is resolved. Ocean biogeochemical

and Earth System models may predict an incorrect climate response to changes in the iron

cycle without better observational constraints on the iron budget. The closing of the marine

iron budget is currently the most important question in iron biogeochemistry.

To close the iron budget one would need to know the total flux of sources or sinks assuming

a steady state. There are multiple sources for iron in the oceans, and creating datasets that

encompass all of the sources heterogeneity in space and time is challenging. Atmospheric dust

deposition is highly seasonal and patterns of deposition are highly dependent on the weather.
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The solubility of the iron within the dust is highly variable and is influenced by processing

in the atmosphere during transit. To quantify the benthic flux of iron would require a

network of flux chambers dispersed throughout the world’s continental shelves and along

the ocean floor. Hydrothermal iron inputs are also challenging to quantify as they occur in

one the planet’s most inhospitable environments and the locations of all hydrothermal vents

are unknown. A more convenient way to close the iron budget may be through isotopes of

thorium and iron.

Removal in the surface ocean is partly due to biological uptake. Estimations of biological

removal could come from models and constraints from observed Fe to carbon ratios in phy-

toplankton. The dominant removal term for iron through the water column is scavenging

by sinking particles. Estimating the scavenging removal for iron is challenging because iron

is constantly remineralized, desorbed from and scavenged onto sinking particles making, the

total iron in sinking particles an unreliable estimate for scavenging removal. A convenient

tracer to estimate scavenging removal would be produced uniformly throughout the oceans

at a known rate and only be removed via scavenging by sinking particles. These properties

happen to be that of 230Thorium and 234Thorium. 230Thorium and 234Thorium are produced

uniformly throughout the oceans from decay of 234Uranium and 238Uranium respectively,

and are only removed by scavenging of sinking particles (Savoye et al., 2006; Cheng et al.,

2013). Knowing the rate of thorium production and water mass age would provide the tho-

rium isotope concentration without removal due to scavenging. The difference between this

calculated value and an observed value at the same location would provide an estimate of the

amount of thorium that was lost to scavenging. Relating the amount of thorium scavenged

to observed sinking mass fluxes would help to derive relationships of scavenged elements as

a function of sinking mass and provide insights into scavenging losses. Data within low and

high particle flux regions would be of particular importance as the upper and lower bounds

of scavenging removal are not known. Both thorium isotopes and iron are highly particle

reactive and it is thought that all trace metals susceptible to scavenging behave in a similar
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fashion (Honeyman et al., 1988). Knowing the loss of thorium to scavenging would help

quantify the loss of iron to scavenging.

Iron isotopes and their fractionation provide insights into iron source processes. Each iron

source has a unique isotope fractionation. A study by Conway and John (2014) used iron iso-

topes and end-member mixing to construct a budget for iron sources along the GEOTRACES

GA03 (west to east) transect in the Atlantic Ocean. This method does not calculate the flux

of iron, but does provide the relative proportion of iron from each source. These values could

be used in ocean biogeochemical models to help constrain iron source fluxes into the ocean.

The GEOTRACES program will be instrumental for closing the iron budget by greatly ex-

panding iron observations, and by constraining iron scavenging via thorium isotopes and

iron sources from iron isotopes. The GEOTRACES campaigns measure a multitude of trace

elements including thorium isotopes, iron isotopes and sinking mass fluxes. Programs such

as GOSHIP, CLIVAR and GEOTRACES will be imperative to understanding the cycling of

iron and other trace elements in the ocean. GEOTRACES has completed 41 basin transects

with 21 planned over the next few years. GEOTRACES process studies will also provide

insights into the mechanistic controls on marine iron cycling.
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cycle of african dust transport to the caribbean basin and south america and its impact
on the environment and air quality. Global Biogeochemical Cycles, 28(7):757–773, 2014.

101



[113] J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill. Environmental
characterization of global sources of atmospheric soil dust identified with the nimbus
7 total ozone mapping spectrometer (toms) absorbing aerosol product. Reviews of
geophysics, 40(1), 2002.

[114] R. Raiswell, L. Benning, L. Davidson, and M. Tranter. Nanoparticulate bioavailable
iron minerals in icebergs and glaciers. Mineralogical Magazine, 72(1):345–348, 2008.

[115] J. Raven. The twelfth tansley lecture. small is beautiful: the picophytoplankton.
Functional ecology, 12(4):503–513, 1998.

[116] J. A. Raven, M. C. Evans, and R. E. Korb. The role of trace metals in photosynthetic
electron transport in o2-evolving organisms. Photosynthesis Research, 60(2-3):111–150,
1999.

[117] J. A. Raven and R. J. Geider. Temperature and algal growth. New phytologist,
110(4):441–461, 1988.

[118] A. Regaudie-de Gioux and C. M. Duarte. Temperature dependence of planktonic
metabolism in the ocean. Global Biogeochemical Cycles, 26(1), 2012.

[119] R. T. Reid, D. H. Livet, D. J. Faulkner, and A. Butler. A siderophore from a marine
bacterium with an exceptional ferric ion affinity constant. 1993.

[120] J. A. Resing, P. N. Sedwick, C. R. German, W. J. Jenkins, J. W. Moffett, B. M. Sohst,
and A. Tagliabue. Basin-scale transport of hydrothermal dissolved metals across the
south pacific ocean. Nature, 523(7559):200–203, 2015.

[121] M. J. Rijkenberg, L. J. Gerringa, I. Velzeboer, K. R. Timmermans, A. G. Buma, and
H. J. de Baar. Iron-binding ligands in dutch estuaries are not affected by uv induced
photochemical degradation. Marine Chemistry, 100(1):11–23, 2006.

[122] M. J. Rijkenberg, R. Middag, P. Laan, L. J. Gerringa, H. M. van Aken, V. Schoemann,
J. T. de Jong, and H. J. de Baar. The distribution of dissolved iron in the west atlantic
ocean. PloS one, 9(6):e101323, 2014.

[123] J. M. Rose and D. A. Caron. Does low temperature constrain the growth rates of
heterotrophic protists? evidence and implications for algal blooms in cold waters.
Limnology and Oceanography, 52(2):886–895, 2007.

[124] E. L. Rue and K. W. Bruland. Complexation of iron (iii) by natural organic lig-
ands in the central north pacific as determined by a new competitive ligand equi-
libration/adsorptive cathodic stripping voltammetric method. Marine Chemistry,
50(1):117–138, 1995.

[125] E. L. Rue and K. W. Bruland. The role of organic complexation on ambient iron
chemistry in the equatorial pacific ocean and the response of a mesoscale iron addition
experiment. Limnology and Oceanography, 42(5):901–910, 1997.

102



[126] G. Sarthou, D. Vincent, U. Christaki, I. Obernosterer, K. R. Timmermans, and C. P.
Brussaard. The fate of biogenic iron during a phytoplankton bloom induced by natural
fertilisation: Impact of copepod grazing. Deep Sea Research Part II: Topical Studies
in Oceanography, 55(5):734–751, 2008.

[127] M. Sasakawa and M. Uematsu. Relative contribution of chemical composition to acid-
ification of sea fog (stratus) over the northern north pacific and its marginal seas.
Atmospheric Environment, 39(7):1357–1362, 2005.

[128] M. Sato, S. Takeda, and K. Furuya. Iron regeneration and organic iron (iii)-binding
ligand production during in situ zooplankton grazing experiment. Marine Chemistry,
106(3):471–488, 2007.

[129] N. Savoye, C. Benitez-Nelson, A. B. Burd, J. K. Cochran, M. Charette, K. O. Buesseler,
G. A. Jackson, M. Roy-Barman, S. Schmidt, and M. Elskens. 234 th sorption and
export models in the water column: a review. Marine Chemistry, 100(3):234–249,
2006.

[130] C. Schlosser and P. Croot. Controls on seawater fe (iii) solubility in the mauritanian
upwelling zone. Geophysical Research Letters, 36(18), 2009.

[131] C. Schlosser, J. K. Klar, B. D. Wake, J. T. Snow, D. J. Honey, E. M. S. Woodward,
M. C. Lohan, E. P. Achterberg, and C. M. Moore. Seasonal itcz migration dynamically
controls the location of the (sub) tropical atlantic biogeochemical divide. Proceedings
of the National Academy of Sciences, 111(4):1438–1442, 2014.

[132] P. N. Sedwick, E. R. Sholkovitz, and T. M. Church. Impact of anthropogenic combus-
tion emissions on the fractional solubility of aerosol iron: Evidence from the sargasso
sea. Geochemistry, Geophysics, Geosystems, 8(10), 2007.

[133] R. Strzepek, M. Maldonado, J. Higgins, J. Hall, K. Safi, S. Wilhelm, and P. Boyd.
Spinning the ferrous wheel: The importance of the microbial community in an iron
budget during the fecycle experiment. Global biogeochemical cycles, 19(4), 2005.

[134] W. G. Sunda. Trace metal interactions with marine phytoplankton. Biological Oceanog-
raphy, 6(5-6):411–442, 1989.

[135] W. G. Sunda. Bioavailability and bioaccumulation of iron in the sea. IUPAC Series
on Analytical and Physical Chemistry of Environmental Systems, 7:41–84, 2001.

[136] W. G. Sunda and S. A. Huntsman. Interrelated influence of iron, light and cell size on
marine phytoplankton growth. Nature, 390(6658):389–392, 1997.

[137] W. G. Sunda and S. A. Huntsman. Interactive effects of external manganese, the toxic
metals copper and zinc, and light in controlling cellular manganese and growth in a
coastal diatom. Limnology and Oceanography, 43(7):1467–1475, 1998.

103



[138] A. Tagliabue, O. Aumont, R. DeAth, J. P. Dunne, S. Dutkiewicz, E. Galbraith, K. Mis-
umi, J. K. Moore, A. Ridgwell, E. Sherman, et al. How well do global ocean biogeo-
chemistry models simulate dissolved iron distributions? Global Biogeochemical Cycles,
2015.

[139] A. Tagliabue, L. Bopp, J.-C. Dutay, A. R. Bowie, F. Chever, P. Jean-Baptiste, E. Buc-
ciarelli, D. Lannuzel, T. Remenyi, G. Sarthou, et al. Hydrothermal contribution to the
oceanic dissolved iron inventory. Nature Geoscience, 3(4):252–256, 2010.

[140] A. Tagliabue, T. Mtshali, O. Aumont, A. Bowie, M. Klunder, A. Roychoudhury, and
S. Swart. A global compilation of dissolved iron measurements: focus on distributions
and processes in the southern ocean. Biogeosciences, 9(6):2333–2349, 2012.

[141] J. Taucher and A. Oschlies. Can we predict the direction of marine primary production
change under global warming? Geophysical Research Letters, 38(2), 2011.

[142] B. M. Toner, M. A. Marcus, K. J. Edwards, O. J. Rouxel, and C. R. German. Measuring
the form of iron in hydrothermal plume particles. 2012.

[143] B. S. Twining and S. B. Baines. The trace metal composition of marine phytoplankton.
Annual review of marine science, 5:191–215, 2013.

[144] P. Van Cappellen and Y. Wang. Cycling of iron and manganese in surface sediments;
a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen,
sulfur, iron, and manganese. American Journal of Science, 296(3):197–243, 1996.

[145] C. Völker and A. Tagliabue. Modeling organic iron-binding ligands in a three-
dimensional biogeochemical ocean model. Marine Chemistry, 173:67–77, 2015.

[146] L. Vong, A. Laës, and S. Blain. Determination of iron–porphyrin-like complexes at
nanomolar levels in seawater. Analytica chimica acta, 588(2):237–244, 2007.

[147] T. Wagener, E. Pulido-Villena, and C. Guieu. Dust iron dissolution in seawater:
Results from a one-year time-series in the mediterranean sea. Geophysical Research
Letters, 35(16), 2008.

[148] T. Westberry, M. Behrenfeld, D. Siegel, and E. Boss. Carbon-based primary productiv-
ity modeling with vertically resolved photoacclimation. Global Biogeochemical Cycles,
22(2), 2008.

[149] A. E. Witter, B. L. Lewis, and G. W. Luther III. Iron speciation in the arabian sea.
Deep Sea Research Part II: Topical Studies in Oceanography, 47(7):1517–1539, 2000.

[150] J. Wu and E. Boyle. Iron in the sargasso sea: Implications for the processes controlling
dissolved fe distribution in the ocean. Global Biogeochemical Cycles, 16(4), 2002.

[151] U. L. Zweifel, B. Norrman, and A. Hagstrom. Consumption of dissolved organic car-
bon by marine bacteria and demand for inorganic nutrients. Marine Ecology-Progress
Series, 101:23–23, 1993.

104


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Background
	Ligand Sources and Sinks
	Iron Sources and Sinks
	Iron Distributions
	Research Objectives

	Controls on iron binding ligand distrubtions in the oceans
	Abstract
	Introduction
	Methods
	CESM-BEC model description
	Iron cycling processes
	Description of iron-ligand models
	Ligand source and sink processes
	Model experiments

	Results
	Ligand and dFe distributions in the Explicit Dynamic model
	Comparison of dissolved iron distributions from Explicit Dynamic, Explicit Constant, and Implicit models

	Discussion
	Ligand distributions in the Explicit Dynamic model
	Comparison of model iron simulations
	Desorption sensitivity experiments
	``Free'' iron scavenging sensitivity experiments

	Conclusions
	Figures
	Tables

	Controls on dissolved iron in the oceans
	Abstract
	Introduction
	Methods
	CESM-BEC Model Description
	Fe sensitivity experiments

	Results
	Control simulation
	Sedimentary iron source sensitivity experiment
	Atmospheric iron deposition source sensitivity experiment
	Hydrothermal vent iron source sensitivity experiment
	River iron source sensitivity experiment

	Discussion
	Sediment iron impacts on biogeochemistry
	Atmospheric iron deposition impacts on biogeochemistry
	Hydrothermal iron impacts on biogeochemistry

	Conclusions
	Figures
	Tables

	Temperature influece on phytoplankton community growth rates
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	Figures
	Tables

	Conclusions
	Bibliography



