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Abstract

Flexibly adapting behavior to different contexts is a critical
component of human intelligence. It requires knowledge to
be structured as coherent, context-dependent action rules, or
task-sets (TS). Nevertheless, inferring optimal TS is compu-
tationally complex. This paper tests the key predictions of a
neurally-inspired model that employs hierarchically-structured
reinforcement learning (RL) to approximate optimal inference.
The model proposes that RL acts at two levels of abstrac-
tion: a high-level RL process learns context-TS values, which
guide TS selection based on context; a low-level process learns
stimulus-actions values within TS, which guide action selec-
tion in response to stimuli. In our novel task paradigm, we
found evidence that participants indeed learned values at both
levels: not only stimulus-action values, but also context-TS
values affected learning and TS reactivation, and TS values
alone determined TS generalization. This supports the claim
of two RL processes, and their importance in structuring our
interactions with the world.

Keywords: Reinforcement learning; structure learning; hier-
archical representation; task sets

Introduction
Humans structure their knowledge of the world in a way
that allows them to adapt to complex, ever-changing envi-
ronments. Specifically, humans create different behavioral
strategies (or ”task sets”, TS) for different contexts. For ex-
ample, the TS of using the Mac operating system contains the
set of behavioral rules that can be applied to Mac computers.
More generally, contexts elicit specific TS, which in turn trig-
ger the responses to environmental stimuli, a crucial function
of cognitive control (Miller & Cohen, 2001). The Mac TS,
for example, might be elicited by context cues such as Apple
computers.

Previous research has employed models incorporating in-
ference of latent structure to explain human learning and gen-
eralization in complex environments. For example, (Collins
& Koechlin, 2012; Donoso, Collins, & Koechlin, 2014) used
approximate Bayesian inference to capture how humans learn
and select TS in different contexts. Human strategy selection
approximates Bayes-optimal solutions for selecting context-
appropriate TS, creating TS in new contexts, and assessing
the reliability of current TS.

Nevertheless, the complexity of conducting Bayesian in-
ference on latent variables such as TS makes it unlikely that
this model provides a mechanistic description of human cog-
nitive processes. Collins & Frank (2012) suggested that
a hierarchically-structured reinforcement learning (RL) al-
gorithm with a biologically plausible architecture underlies
these processes. Crucially, they showed that such an algo-

rithm can approximate Bayes-optimal inference using much
simpler computations (Collins & Frank, 2013).

The hierarchical RL model makes several predictions about
human behavior that go beyond the Bayesian model. The goal
of the current study is to test some of these predictions. Most
notably, the RL model predicts that humans select TS based
on ”TS values” (see below for details), and that these TS val-
ues influence behavior in several ways. Crucially, previous
models based on Bayesian inference do not track TS values
and thus predict no effects of TS values.

Figure 1: Schematic of the hierarchical RL model. The high-
level loop (blue) selects TS based on TS values; the low-level
loop (green) selects actions based on action values. TS values
are based on context cues and action values are based on the
selected TS and the current stimulus. TS and action values
are learned over time from a continuous feedback signal that
specifies the amount of reward obtained.

The hierarchical RL model relies on RL theory (Sutton &
Barto, 2017). One basic principle of RL is the computation
of stimulus-action values, which estimate how much cumula-
tive future reward should be expected if an action is selected
in response to a specific stimulus. A simple but reliable RL
algorithm learns values by updating its estimates in propor-
tion to a reward prediction error signal. Previous research has
shown that RL algorithms provide good models for human
and animal learning (Daw, Gershman, Seymour, Dayan, &
Dolan, 2011) and capture important aspects of reward-based
learning in the brain (Schultz, Dayan, & Montague, 1997),
likely implemented in cortico-striatal loops (Alexander, De-
Long, & Strick, 1986). However, in their simplest form, RL
algorithms learn values independently for all stimulus-action
pairs, and thus cannot account for generalization of learned
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TS to new contexts. The hierarchical RL model tested here
aims to integrate the strengths of both approaches in order to
explain human reasoning in complex environments.

In the model, a low-level RL loop acquires associations
between stimuli and actions by learning stimulus-action val-
ues through reinforcement (Fig. 1, green loop). Crucially, ac-
tion values that are acquired in the same context are grouped
into TS (coherent sets of stimulus-action mappings). An-
other, high-level loop learns associations between contexts
and these TS by learning context-TS values (Fig. 1, blue
loop). TS values guide the activation of TS in response to
contexts. When a new context is encountered, the agent can
either retrieve an old TS or create a new one, potentially in-
formed by existing TS (see Collins & Koechlin, 2012, for an
example of a similar model).

Taken together, the high-level loop in the hierarchical RL
model influences the workings of the low-level loop by se-
lecting the current TS, which determines action values. The
low-level loop uses these action values to select actions. Cru-
cially, both loops employ the same RL algorithms to com-
pute values, and both are assumed to be implemented in sim-
ilar neural substrate, cortico-striatal loops that only differ in
their position on the anterior-posterior axis (Alexander et al.,
1986). This model is supported both by knowledge about the
brain’s structural and functional organization (Alexander et
al., 1986; Badre & Frank, 2012), and by computational mod-
els of human behavior (Frank & Badre, 2012). The model’s
key prediction is that humans perform RL at different levels
in parallel, learning values at different levels of abstraction
from a single feedback signal.

Here, we test qualitative predictions of this model. Future
work will include quantitative model simulations, fitting and
comparison; the current work focuses on behavioral analy-
sis. First, we verify that participants create TS and flexi-
bly reactivate them if needed. We then test whether partic-
ipants acquire TS values and if these values affect behavior.
Specifically, we predict that 1) TS values affect learning, such
that higher-valued TS are acquired faster; 2) TS values influ-
ence context preferences, such that participants select higher-
valued contexts when asked to choose; 3) TS are selected
based on TS values, such that participants preferentially ac-
tivate TS of higher values in new or unknown contexts; 4)
TS values influence generalization, such that newly created
TS are more similar to higher-valued TS. Our results support
these predictions.

Methods
Current study
In order to test these predictions, we designed a reward-based
associative learning task, in which participants encountered
different contexts and learned the TS for each one. Contexts
specified unique mappings between stimuli, responses, and
outcomes, such that stimuli that were associated with high re-
wards in one context might be associated with small rewards
in others (Fig. 2). After initial learning of the TS, participants

underwent multiple testing phases, which aimed to test each
of our predictions.

Task details
In our novel task, participants encountered four aliens and
were asked to ”help each one grow as much as possible”.
In each trial, participants saw one of four aliens along with
three items. Participants selected one item by button press
and received feedback as to how much the alien grew in re-
sponse, indicated by the length of a measuring tape (reward).
In each context, only one item led to a high reward for a given
alien (correct action), whereas the other two items had simi-
lar small effects (incorrect actions). Therefore, each TS was
specified by the correct mapping between each of the four
aliens (stimulus) with one item (response).

Participants learned a different TS for each of three con-
texts (hot, cold, and rainy ”seasons”; Fig. 2A), such that there
was a one-to-one mapping between contexts and TS. Partic-
ipants got 52 trials for each context (13 per alien) before en-
countering a new context, for a total of three repetitions per
context during initial learning. The reward value associated
with each correct context-alien-item mapping was normally
distributed around a fixed mean, with standard deviation 0.5.
The mean reward values were predetermined such that TS dif-
fered in average reward (”TS value”), while aliens and items
did not (Fig. 2B). This manipulation allowed us to test par-
ticipants’ sensitivity to TS values, while ruling out confounds
based on stimulus and action values.

The different phases of the alien task are described in ta-
ble 1. To minimize confounds, the mappings between con-
texts and TS were randomized between participants, as were
the images of aliens and items.

Figure 2: TS mappings and values at all levels. A) Three con-
texts (top row) were associated with three TS, as explained in
the main text. B) Reward sizes differed between stimulus-
response mappings (top), leading to differences in TS values,
but not alien (stimulus) or item (action) values (bottom).

Participants
We tested 51 participants (26 women). One participant was
excluded because the performance criterion of 50% was not
reached in the practice round. The mean age was 22.1 years
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Table 1: Description and purpose of the task phases.

Phase Description Purpose

Initial
Learning
(Phase 1)

Participants see one of four
aliens at a time, select one
item, and receive feedback;
trials of the same context
are presented in a block;

context order is
pseudo-randomized

Participants
acquire different

TS in each of three
contexts, through

trial and error

Re-
fresher
(Inter-
leaved)

Similar to initial learning,
but fewer trials; interleaved

between testing phases

Restore TS,
alleviate

carry-over effects

Hidden
Context

(Phase 2)

Similar to initial learning,
but current context is

invisible; context changes
are signaled

Test whether
participants have

acquired TS

Compar-
ison

(Phase 3)

Participants see two stimuli
at a time and indicate their

preferred one; two
contexts, items, aliens, or

context-alien combinations
are presented at a time

Test whether
participants learn

TS values
(high-level) and
stimulus values

(low-level)
General-
ization

(Phase 4)

Similar to initial learning,
but in a novel context,

without feedback

Test whether TS
values affect

generalization

(sd: 1.5 years). Participants were recruited from the UC
Berkeley research participation pool and gave informed con-
sent prior to participation.

TS are created and reactivated
Reactivation of TS in old contexts
We used the hidden-context phase to test whether partici-
pants learned coherent, context-specific TS, rather than non-
hierarchical context-stimulus-response associations. In the
hidden-context phase, participants were presented with a
background of thick clouds instead of seeing the current con-
text. The task still signaled when the context changed. Af-
ter each context change, participants at first needed to guess
which actions were correct because the new context was un-
known. After a few trials, the received feedback allowed them
to infer the context and to apply the correct TS (Collins &
Koechlin, 2012).

A TS is a coherent, interdependent assembly of stimulus-
response mappings that apply in a specific context. Because
of the interdependence between mappings, certainty about
some mappings should facilitate recall of the remaining map-
pings: for example, if participants successfully selected an
umbrella for the red alien, they should infer that the context
was ”hot” and select the bed for the purple alien, before hav-
ing observed this association (Fig. 2).

In order to test whether participants had formed TS, we
first focused on trials in which participants saw an alien for
the first time after a context change. In this situation, partic-
ipants had not yet received any information about the correct
item for this alien, i.e., they had no direct evidence about the
stimulus-response mapping. We compared two different con-
ditions within these trials, (1) when participants had not yet

selected the correct item for any other alien, and (2) when par-
ticipants had at least once selected the correct item for another
alien. We expected that knowledge about some stimulus-
response (alien-item) mappings within a TS would facilitate
the recall of the remaining mappings, such that participants
would select the correct item more often in condition (2) than
(1). Note that this prediction is specific to models with latent
structure, such as the Bayesian model proposed by Collins &
Koechlin (2012) and our hierarchical RL model.

This was indeed the case. In condition (1), participants se-
lected the correct item in 36.9% of trials, compared to 45.8%
in condition (2) (chance: 33.3%; Fig. 3B). The difference
was statistically significant (t(49)=2.5, p=0.014), suggest-
ing that participants retrieved stimulus-response mappings for
unseen aliens based on knowledge about already-seen alien-
item mappings within the same TS. These results were con-
firmed in a regression model encompassing all trials of the
hidden-context phase, rather than just the subset used above.
In this model, each trial’s accuracy was predicted from four
factors, including (1) participants’ performance in the pre-
vious trial of the same stimulus-response mapping (”ACC
same”), and (2) participants’ performance in the previous tri-
als of the other three stimulus-response mappings combined
(”ACC other”). As expected, both factors significantly af-
fected performance (table 2).

Similar patterns were evident in the initial-learning phase
and the two refresher periods. In these phases, the back-
ground pictures provided perfect cues for the current TS, as
opposed to the hidden-context phase. The fact that certainty
about other mappings (ACC other) still affected performance
suggests that participants used partial knowledge about TS as
a cue for the remaining mappings even when a perfect cue for
the TS was given.

Taken together, the interdependence between stimulus-
response mappings within contexts provides evidence that
participants acquired coherent, stable, consistent TS. This
replicates prior results (Collins & Frank, 2013) and is a pre-
condition to test our novel predictions.

Transfer of TS to new contexts
Evidence for the reactivation of existing TS also comes from
the generalization phase of our task. In this phase, partici-
pants were presented with the same four aliens, but in a novel
context. Like before, participants were tasked with selecting
the correct item for each alien, but no feedback was given,
such that participants were continuously forced to guess.

We found that participants did not guess randomly, but
instead reactivated prior TS. Items that were correct in a
previously-learned TS were selected more often (90.5% of
valid trials) than expected from random behavior (chance
was 83.3%=10/12 because 10 out the 12 possible stimulus-
response mappings were valid in at least one TS), t(49)=4.35,
p < 0.001. This shows that when encountering novel con-
texts, participants reactivated old TS, rather than trying out
novel stimulus-response mappings, in accordance with prior
findings (Collins & Frank, 2013).
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Table 2: Logistic mixed-effects regression predicting trial-
wise accuracy from accuracy on the same (ACC same) and
other mappings (ACC other).

Task phase Predictor β p
Initial learning ACC same 1.09 < 0.001

ACC other 0.41 < 0.001
interaction 0.31 0.028
Repetition 0.18 <0.001

Refresher 1 ACC same 1.74 < 0.001
ACC other 1.39 < 0.001
interaction -0.65 0.020
Repetition 0.02 0.74

Refresher 2 ACC same 1.91 < 0.001
ACC other 1.79 < 0.001
interaction -1.11 0.005
Repetition 0.03 0.64

Hidden context ACC same 1.18 < 0.001
ACC other 0.72 < 0.001
interaction 0.45 0.027
Repetition 0.14 0.013

Sensitivity to TS values
So far, we have established that participants created TS and
flexibly reactivated them when the context was hidden or
novel. This replicates prior findings and is also predicted by
non-RL models of latent learning. We next assessed whether
and in which ways TS values affected behavior, a prediction
that is novel and specific to RL-based models.

TS values affect learning
To this aim, we analyzed the initial-learning phase of the task,
in which participants first learned to associate each alien with
the correct item, in each context. To test the effects of both
stimulus-action values (low-level RL loop) and context-TS
values (high-level loop), we used a regression model predict-
ing accuracy in each trial from four factors: (1) the value of
the current stimulus (low-level), (2) the value of the current
TS (high-level), (3) the trial index, in order to account for
learning within a context block, and (4) the repetition index,
which accounts for learning across context blocks (Fig. 3A).
The model revealed a significant effect of stimulus values (ta-
ble 3), as predicted by classic non-hierarchical RL models.
This shows that participants performed better when correct
responses were rewarded more. But the model also revealed
an effect of TS values, after controlling for stimulus values.
This additional influence of TS values goes beyond predic-
tions of classic non-hierarchical RL models, but is predicted
by our model.

TS values affect context selection
We next assessed whether TS values influenced context se-
lection, such that participants would prefer contexts that had
been associated with higher-valued TS to those associated
with lower-valued TS. We tested this prediction in the com-
parison phase of the task. Here, participants were presented
with the images of two different contexts and were asked to
select their preferred one.

Figure 3: A) Influence of TS and stimulus values on perfor-
mance in the initial-learning phase. B) Effect of performance
in other mappings on performance in the current mapping,
within a TS. Left: No prior correct responses in other map-
pings; right: at least one correct response. C) Effect of TS
values on context selection. Value difference between chosen
and unchosen items (left) and TS (right).

Table 3: Logistic mixed-effects regression predicting trial-
wise accuracy from stimulus values, TS values, and trial in-
dex.

Task phase Predictor β p
Initial learning Stimulus value 0.19 < 0.001

TS value 0.037 0.24
Trial index 0.14 < 0.001
Repetition 0.30 < 0.001

Refresher 1 Stimulus value 0.12 < 0.001
TS value 0.18 < 0.001
Trial index 0.31 < 0.001
Repetition 0.16 0.053

Refresher 2 Stimulus value 0.12 < 0.001
TS value 0.18 0.0026
Trial index 0.27 < 0.001
Repetition 0.22 0.019

Hidden context Stimulus value 0.20 < 0.001
TS value 0.09 0.048
Trial index 0.27 < 0.001
Repetition 0.22 0.0038

We calculated individual TS values for each participant,
based on individual learning history. Participants indeed
chose contexts more often that had been associated with
higher-valued TS (68.9% of trials), t(49)=5.07, p < 0.001,
resulting in a significant difference between TS values of
chosen (4.56) and unchosen contexts (3.75), t(49)=5.00, p <
0.001 (Fig. 3C). This shows that participants indeed selected
contexts based on the values of associated TS.

A similar pattern arose for action (item) values. We again
calculated individual values. (Although items did not differ
in their objective values, slight differences arose because of
participants’ individual decision histories.) Participants chose
higher-valued items more often (62.5 % of trials), t(49)=3.47,
p= 0.001, although the difference between chosen (4.14) and
unchosen items (4.09) was not significant, t(49)=1.09, p =
28, presumably because of the lack of spread in item values
(Fig. 3C). The first result still implies that participants had
learned action values in addition to TS values.
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We also aimed to confirm that participants had acquired
traditional stimulus values. To test this, we asked participants
to select between two aliens in the same context. We expected
that participants would prefer the aliens that were associated
with larger rewards, as has been shown many times before
(Frank, Seeberger, & O’Reilly, 2004). Unfortunately, due to
a technical error, we were unable to confirm this here. Over-
all, our results imply that participants learned different sets
of values, as predicted by our model. High-level TS values
influenced TS learning and guided TS selection. Low-level
stimulus values affected stimulus-response learning and are
expected to affect stimulus selection.

TS values affect generalization
Having shown that participants learned values for TS and that
TS values affected learning and context selection, we next
tested whether TS values also affected TS reactivation and
generalization. We tested this in three ways. First, we asked
whether higher-valued TS were reactivated more readily than
lower-valued TS in the hidden-context phase. Second, we as-
sessed whether TS values predicted error types in the initial-
learning phase and the refreshers. Third, we tested whether
higher-valued TS had a larger influence on the creation of new
TS than lower-valued ones (generalization phase).

With respect to our first question, we have shown above
that TS values influenced accuracy in the hidden-context
phase (table 3). One potential reason for this is that par-
ticipants more readily reactivated higher-valued than lower-
valued TS, leading to higher accuracy in higher-valued TS as
a whole. This is in accordance with our model, which predicts
that TS are selected based on TS values.

Our second assessment concerned errors, specifically in-
trusions from other TS. We defined intrusion as the selection
of an action that is correct in a context other than the cur-
rent one. In the initial-learning phase, if participants made
errors by selecting incorrect items uniformly at random, 75%
of all errors would be intrusions (due to the specific way
TS were defined). Participants instead produced 78.4% in-
trusion errors, a small but significant increase, t(49)=6.69,
p < 0.001. Within these intrusions, TS values significantly
affected item selection, as shown in a logistic mixed-effects
regression model (table 4). The effect was not driven by stim-
ulus values. This confirms that TS values influenced TS reac-
tivation, to the point of introducing incorrect mappings from
other TS.

Lastly, we tested the influence of TS values on the creation
of new TS, hypothesizing that higher-valued TS would influ-
ence TS creation more than lower-valued TS. This should be
evident in the generalization phase of our task, in that partici-
pants would apply mappings from higher-valued TS more of-
ten than mappings from lower-valued TS. We found that par-
ticipants chose actions according to TS0 (largest value), TS1
(intermediate value), and TS2 (lowest value) in an average of
30.1%, 23.9%, and 14.1% of trials, respectively, compared
to chance levels of 3/12=25%, 3/12=25%, and 2/12=16.7%
(Fig. 4). Participants chose actions that were correct in more

Table 4: Logistic mixed-effects regression predicting intru-
sion errors from stimulus values and TS values.

Task phase Predictor β p
Initial learning Stimulus value 0.01 0.09

TS value 0.05 0.007
Trial index -0.10 <0.001
Repetition -0.18 <0.001

Refresher 1 Stimulus value 0.02 0.32
TS value 0.01 0.68
Trial index -0.30 <0.001
Repetition -0.16 0.02

Refresher 2 Stimulus value 0.008 0.67
TS value 0.13 0.003
Trial index -0.25 <0.001
Repetition -0.11 0.09

Hidden context Stimulus value 0.02 0.035
TS value 0.03 0.29
Trial index -0.24 <0.001
Repetition -0.12 0.05

than one TS in 22.4% of trials (chance 2/12=16.7%), and ac-
tions that were not correct in any TS in 9.4% of trials (chance
2/12=16.7%).

To test for differences between TS, we analyzed the effect
of TS values on the ratio of participant-selected to chance-
expected choices, using linear regression. The effect of TS
values was significant, controlling for two potential con-
founds, the values of individual stimulus-response mappings
(low-level values), and participants’ performance on each TS,
a proxy for their confidence in the TS (table 5). In summary,
these results suggest that action selection in the novel context
was driven by previously-acquired TS, especially those of
high value. Crucially, participants did not select items based
on the values of individual alien-item mappings, or based on
elevated confidence with certain TS.

Table 5: Linear mixed-effects regression predicting TS
choices from stimulus values, TS values, and TS confidence.

Task phase Predictor β p
Generalization phase Stimulus value -0.03 0.59

TS value 0.14 0.045
TS confidence 0.19 0.48

Discussion
We have shown evidence that supports a model of human
learning about latent structure proposed by Collins & Frank
(2013). In this model, complex Bayes-optimal reasoning is
approximated by a simpler, biologically plausible architec-
ture. Two RL loops are combined hierarchically that operate
on state and action spaces at different levels of abstraction. In
our task, participants learned different behavioral strategies
(TS) in different contexts, and showed behavior consistent
with predictions derived from this model.

Participants acquired coherent interdependent TS, repli-
cating prior findings (Collins & Koechlin, 2012; Collins &
Frank, 2013). Participants also acquired RL-like values at
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Figure 4: The distribution of TS choices in the generalization
phase shows an effect of TS value.

different hierarchical levels in parallel, including the levels of
stimuli (items), responses (aliens), and TS (contexts). Fur-
thermore, TS values affected participants’ behavior in mul-
tiple ways: participants learned faster and made fewer er-
rors in higher-valued TS; their errors tended to reflect higher-
valued TS; they preferred contexts that had been associated
with higher-valued TS; and participants were more likely to
generalize higher-valued TS to new contexts. Taken together,
participants’ behavior confirmed a sensitivity to TS values
that is not predicted by many models of latent learning, such
as the one proposed by Collins & Koechlin (2012). Our re-
sults are also inconsistent with flat RL models that lack con-
text sensitivity or mechanisms to represent latent structure.
The results are, however, compatible with our hypothesis that
human learning is based on hierarchical RL mechanisms be-
cause in this model, TS selection is guided by TS values that
are learned from reinforcement.

Nevertheless, other models might be able to account for
our results as well. For example, a non-hierarchical neural
network model including multiple dynamic scales has been
shown to account for some aspects of behavioral and neural
responses during TS learning (Bouchacourt, 2016), although
it cannot capture all aspects of transfer. Non-hierarchical dis-
tributed models might account for our results if they are based
on non-trivial mechanisms, such as joint learning of several
context-stimulus-response pairs in conjunction with stochas-
tic pattern completion of contexts. Models that are based on
such clustering principles share their basic ideas with the no-
tion of TS. Future work is necessary to arbitrate between po-
tential models. We will implement our proposed as well as
alternative models to quantify their competing predictions via
simulations, and to allow for formal model comparison.

Another avenue for future research pertains to the neu-
ral structures that underlie structured, feedback-based learn-
ing. Our model is explicitly modeled to accord with the neu-
ral substrates that underlie RL and abstraction in the brain
(Alexander et al., 1986). Future work needs to address these
predictions specifically. Studies employing functional Mag-

netic Resonance Imaging (fMRI) will be necessary to assess
whether the modeled processes are implemented in the pre-
dicted brain areas. Electroencephalography (EEG) could re-
veal whether the proposed mechanisms have their counter-
parts in patterns of brain activity, and shed light on the rela-
tionships between different processes.
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