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Abstract 

Many everyday activities involve the use of one action to 
modify the effects of another: When driving, shifting 
gears modifies the influence of pressing the gas pedal on 
acceleration; when cooking, the rate of adding a 
particular ingredient modifies the influence of stirring on 
viscosity.  Here, we investigate a general ability to learn 
how to use actions to control schedules of reinforcement.  
In Experiment 1, participants quickly discovered the 
optimal rate of responding on an action that controlled 
the rate of reward contingent on performing a different 
action.  In Experiment 2, when the modifying action was 
itself rewarded, participants failed to discover the optimal 
rate.  Implications for formal theories of instrumental 
behavior are discussed. 

Keywords: Schedules of reinforcement; reward learning; 
instrumental contingencies. 

Introduction 
Since the early 20th century, researchers have 
investigated the influence of various reward schedules 
on the rate and selection of instrumental responses. For 
example, ratio schedules, in which reward delivery 
depends on the number of responses since the last 
reward, produce higher rates of responding than do 
interval schedules, in which reward delivery depends on 
the time elapsed since the last reward (Fester & Skinner, 
1957).  When two or more action alternatives are 
available, that which yields the greatest, most 
immediate, or most certain reward is, all other things 
being equal, generally that most frequently selected 
(e.g., Rachlin et al., 1991).  However, in the real world, 
many responses serve only to modulate the effects of 
other actions: The rate and pattern of pressing strings on 
a guitar does not itself yield music, but profoundly 
impacts the sounds produced by strumming.  Here, we 
assess a domain-general capacity for learning about 
actions that control schedules of reinforcement on other 
actions.   

Formally, the relationship between a particular action 
and its outcome has been modeled as a complex 
associative structure (Dickinson & Balleine, 1993), as 
the difference between probabilities of reward given the 
presence versus absence of the action (Hammond, 
1980), as the probability and subjective utility of the 
outcome given the action (Savage, 1954), or as a cached 
value assigned to the action based on its reinforcement 
history (Watkins, 1989).  What these diverse approaches 
have in common is that they address the identity and/or 

latency of a single action at a time, ignoring situations in 
which multiple actions are performed in concert and 
potentially interact. In our paradigm, an intermediate 
rate of responding on one action maximizes the reward 
contingent on performing a different, concurrently 
available, action.  

Experiment 1 

Methods 
Participants Thirty undergraduates at the University of 
California, Irvine (22 females; mean age=20±2.17) 
participated in the study for course credit. All 
participants gave informed consent and the study was 
approved by the Institutional Review Board of the 
University of California, Irvine. 

 
Task & Procedure The task is illustrated in Figure 1.  
We used a free operant paradigm in which participants 
were allowed to respond at will on either or both of two 
concurrently available actions, graphically represented 
on the computer screen, by pressing the corresponding 
keys on the computer keyboard. Whenever a response 
was made a selection square appeared around the chosen 
action for 300ms.  If the response was rewarded, an 
image of a quarter appeared center screen for 500ms and 
a count of the cumulative monetary earning, 
continuously displayed above the quarter image 
location, would increment by +$0.25.  The task was 
comprised of ten 2-minute blocks separated by brief rest 
periods.  All monetary earnings were fictitious. 

In the “Modify” group (n=15), the rate of responding 
on a “modifying” action influenced the probability that 
the concurrently available “modified” action would 
produce a reward.  When the modifying action was 
performed at an “optimal” rate of 1.25 to 2.75 presses 
per second, the probability of reward given a response 
on the modified action was 0.9.  When response rates on 
the modifying action were outside of the 1.25 to 2.75 
range, the probability of reward given the modified 
action was 0.  The modifying action did not itself 
produce any reward. Response rates on the modifying 
action were tracked using a differential equation that 
increased by an impulse of 1 at the time of a response 
and decayed each impulse at a linear rate of 0.2 per 
second, so that each impulse from a response decayed to 
zero after 5 seconds.  
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Specifically, for an impulse (ai), which was 1 if an 
action were taken during the current iteration of the 
program and 0 otherwise, a decay rate of 0.2, a counter 
for the number of responses that occurred within the last 
5 seconds (N5) and the difference in time between the 
current iteration of the program and the previous 
iteration (dt), the response rate variable (R) was updated 
on each iteration i by: 

Ri ← Ri−1 + ai − 0.2N5dt  
This method adjusts more quickly to changes in 
response rate than the commonly used approach of 
dividing the number of responses in a time window by 
the length of the window (e.g., Soto et al., 2006). The 
probability of reward on the modified action was set to 
0.9 whenever the response rate variable, R, was in the 
optimal, 1.25 to 2.75, range and 0.0 otherwise.   

Note that the optimal rate of responding on the 
modifying action was intermediate; this was done to rule 
out the contribution of systematic biases of either very 
high or very low responding.  On the other hand, an 
intermediate rate might represent an average towards 
which most responders converge in free operant tasks.  
To address this possibility, a second, “Yoked”, group 
was included (n=15), in which the rate of responding on 
the modifying action had no influence, while the 
probability of reward on the modified action was yoked 
to that of a participant in the Modify group.  We 
predicted that, by the end of the session, participants in 
the Modify group would respond on the modifying 
action at a rate falling within the optimal range, while 
those in yoked group would not.  
 

	

 
 

Figure 1: Task Illustration, see text for details.   

Results 
We divided the number of responses on the modifying 
action in each 5-second bin of task performance with 5 
(i.e., responses per second), and computed the distance 
of this response rate from the bounds of the optimal 
range, for the first and last 5 seconds of the task.  We 
then used a mixed analysis of variance (ANOVA) with 
“group” as the between-subject factor and “bin” as the 
within-subject factor to assess a change in optimal 
responding between the first and last bins.  There was 
no main effect of bin, F(1,28)=3.19, p=0.09, but a main 
effect of group, F(1,28)=6.53, p<0.05, and, critically, a 

bin-by-group interaction, F(1,28)=5.78, p<0.05.  
Planned comparisons revealed that while the two groups 
did not differ with respect to optimal responding on the 
modifying action in the first bin, t(28)=0.13, p=0.89, by 
the last bin, participants in the Modify group were 
significantly closer to the optimal response rate than 
were participants in the Yoked group, t(28)=3.61, 
p<0.01.  As can be seen in Figure 2, while the mean 
deviation from the optimal rate significantly decreased 
from the first to the last bin in the Modify group, 
t(14)=2.69, p<0.05, they remained unchanged across 
bins in the Yoked group, t(14)=0.05, p=0.63. The 
apparent absence of a change in optimal responding by 
Yoked participants reflects a tendency to either increase 
or decrease responding on the modifying action across 
blocks, resulting in no net change for the group; in 
contrast participants in the Modify group coherently 
converged towards the optimal rate.  

 
Figure 2: Mean deviation of response rates on 
the modifying action from the optimal range in 
the first and last 5 seconds of task performance, 
for subjects in the Modify (black) and Yoked 
(blue) groups, and for the single group of 
Experiment 2, in which the modifying action 
was rewarded (red). Error bars=SEM. 

We also assessed performance in terms of the proportion 
of bins with optimal response rates, early and late in the 
task.  Bins were scored as optimal if the windowed (5 
seconds) response rate was in the optimal range of 1.25 
to 2.75 responses per second.  For each subject, we 
assessed the number of optimal 5-second bins in the first 
and last 30 seconds of the task.  (We used 30 seconds, 
rather than the full 2-minute blocks, to ensure that the 
index of early learning did not include already 
asymptotic performance.)  The results using this metric 
were consistent with those described above: The groups 
did not differ in the first 30-second block, t(28)=1.12, 
p=0.24, but by the last 30-second block, the mean 
proportion of optimal bins was significantly greater for 
the Modify group than for the Yoked group, t(28)=6.93, 
p<0.01.  Indeed, while the proportion of optimal bins 
increased significantly from the first to the last block in 
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the Modify group, t(14)=3.60, p<0.01, it decreased, 
albeit with marginal significance, t(14) = 2.09, p=0.06, 
in the Yoked group.  The mean proportion of optimal 
bins in each 30-second block throughout the task is 
shown in Figure 3.  

 
Figure 3: Mean proportion of bins with an 
optimal response rate on the modifying action in 
each 30-second block of the task for the Modify 
(black) and Yoked (blue) groups of Experiment 
1, and for the Reward group of Experiment 2 
(red). Shading=SEM. 

With respect to the modified action, response rates 
were, overall, higher than those on the modifying action, 
for both the Modify, t(14)=3.10, p<0.05, and Yoked, 
t(14)=6.76, p<0.05, groups.  This likely reflects the fact 
that, while the probability of reward given the modified 
action was either a function of (Modify) or independent 
of (Yoked) responding on the modifying action, the 
actual delivery of reward was contingent only on 
performing the modified action.    

Experiment 2 
A well-studied phenomenon closely related to our query 
is that of “melioration” – a tendency to select an action 
alternative that produces a greater immediate pay-off, 
but that, when selected repeatedly, lowers the overall 
rate of reward (Herrnstein, 1991).  Such tendencies are 
commonly attributed to impulsivity (Herrnstein, 1991; 
Otto, Markman, & Love, 2012), but have also been 
described as rational choices under uncertainty 
(Gureckis & Love, 2009a, 2009b; Sims et al., 2013).  
Other related paradigms, such as delay discounting 
(Ainslie, 1975; Johnson & Bickel, 2002) and differential 
reinforcement of low response rates (Wilson & Keller, 
1953; Carter & MacGrady, 1966), have convincingly 
demonstrated the interfering influence of salient reward 
on rational decision-making (Ainslie, 1975; Van den 
Broek, Bradshaw, & Szabadi, 1987). 

In Experiment 2, we assess whether the lure of an 
immediate reward results in a failure to suppress 
responding on the modifying action, thus interfering 

with the ability to control the schedule of reinforcement 
on the modified action. 

Methods 
Participants Fifteen undergraduates at the University of 
California, Irvine (10 females; mean age=19.7±1.1) 
participated in the study for course credit. All 
participants gave informed consent and the study was 
approved by the Institutional Review Board of the 
University of California, Irvine. 
 
Task & Procedure Participants performed a task that 
was identical to that of the Modify group in Experiment 
1, with one exception: In addition to modulating the 
schedule of reinforcement on the modified action, the 
modifying action was itself rewarded by $0.25, with a 
probability of 0.2.  Note that, since this reward 
probability is much lower than the conditional, 0.9, 
probability of reward on the modified action, 
maintaining an optimal, intermediate, response rate on 
the modifying action dramatically increases the average 
reward rate.  

Results 
We computed the same measures of optimal responding 
as those used in Experiment 1. Comparing the first and 
last 5 seconds of performance, there was no change in 
the deviation of response rates on the modifying action 
from the bounds of the optimal rate, t(14)=0.48, p=0.64 
(see Figure 2). Likewise, the proportion of optimal bins 
did not differ between the first and last 30-second 
blocks of the task, t(14)=0.00, p=1.00. In the absence of 
random assignment, we refrain from making any 
statistical comparisons between the results of this 
experiment and those obtained in Experiment 1.  
Nonetheless, it is worth noting that, as illustrated in 
Figures 2 and 3, when the modifying action was itself 
rewarded, the rate of responding on the modifying 
action was apparently closer to that in the Yoked group 
than in the Modify group.  Finally, although, overall, 
response rates were again higher on the modified than 
the modifying action, unlike for the groups in 
Experiment 1, this difference was only marginally 
significant, t(14)=2.09, p=0.06, presumably reflecting 
the fact that, in Experiment 2, reward delivery was 
potentially contingent on performing either action.   

General Discussion 
In two experiments, we assessed the discovery and 
performance of an action that controlled the schedule of 
reinforcement on another, concurrently available, 
action.  In Experiment 1, participants quickly discovered 
and implemented an optimal, intermediate, response rate 
on a modifying action that, while not producing any 
rewards itself, modulated the reward contingent on a 
distinct, concurrently available, action.  Response rates 
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in a yoked control group confirmed that convergence to 
the optimal rate was due to the influence of the 
modifying action on the reward schedule of the 
modified action.  In Experiment 2, consistent with a 
large literature on the failure to suppress inappropriate 
responding in the face of immediate reward (Ainslie, 
1975; Carter & MacGrady, 1966; Van den Broek et al., 
1987; Wilson & Keller, 1953), reinforcement of the 
modifying action apparently prevented discovery of the 
optimal response rate. The focus in the existing 
literature on the disruptive effects of immediate reward 
has largely overshadowed the question raised here of 
whether, and how, agents learn about actions that 
modify schedules of reinforcement.  Our results suggest 
that, in the absence of interfering or competing reward 
contingencies, increasing levels of instrumental control 
can be achieved by incorporating information about 
dependencies between actions. 

In a model-free reinforcement learning account of 
free operant responding, Niv et al. (2007) proposed that, 
for each decision, the agent selects both the latency and 
the identity of the to-be-executed action, based on the 
relative degree to which that action increases the 
average reward rate.  Although it is possible that 
participants in the Modify group of Experiment 1 
similarly learned about the modifying action based on 
its reinforcement history, several aspects of our task 
depart from the specification of Niv et al. (2007).  Most 
notably, participants in our task would have to include a 
representation of the modified action in their state space 
when updating the value of the modifying action – that 
is, assess the value of a particular latency of the 
modifying action given that the modified action is 
simultaneously1 or proximally performed – since the 
modifying action is never itself rewarded.  Likewise, the 
value of the modified action has to be specified 
conditional on the performance of the modifying action, 
since the probability of reward on the former is zero 
whenever responding on the latter falls outside the 
optimal range.  It is of course possible to specify a 
model-free learner that has enough conditionals built 
into its state-representation to identify the combination 
of responding on modifying and modified actions that 
maximizes reward2.  

An alternative, model-based, approach is for the agent 
to create a graphical probabilistic model representing 

                                                             
1 Note that even the possibility of simultaneously performing 
multiple responses falls outside the scope of Niv et al.’s (2007) 
model, according to which all action-latency pairs are serially 
implemented (i.e., no alternative actions may be executed 
while the time indicated by the chosen latency passes). 
2 Indeed, Niv et al.’s (2007) model hard-codes into the 
definition of each state several variables that are needed to 
discover an optimal policy in the environments addressed by 
the model (e.g., the time elapsed since the last response when 
modeling interval schedules and the number of presses since 
the last reward when modeling ratio schedules). 

the dependencies between actions, states and rewards 
(e.g., Acuna & Schrater, 2010).  Although initially 
ignorant of the nature of these dependencies, a Bayesian 
reinforcement learner generates beliefs over a set of 
possible dependency structures and updates those 
beliefs, after each observation, using Bayesian 
inference. For example, a learner in our task might 
postulate two possible worlds: one in which the latency 
to respond on an action can modulate the probability of 
reward given that same, or some other, action, and one 
in which response latencies have no influence on 
schedules of reinforcement.  The former possibility must 
of course be further partitioned into several putative 
structures, each with a particular set of links (e.g., an 
action modifying its own probability of reward vs. that 
of a different action) and associated parameters.  The 
learner then updates the belief distribution over 
structures based on sequences of actions, latencies and 
rewards. 

Critically, the approach sketched in the previous 
paragraph, to address model-based inferences regarding 
action dependencies, can also be used to explain some 
of the most basic aspects of instrumental behavior, such 
as the distinction between interval and ratio schedules – 
Recall that, whereas on interval schedules a response is 
rewarded based on the amount of time elapsed since the 
last reward, on ratio schedules a response is rewarded 
based on the number of responses since the last reward. 
 These qualitatively different schedules produce distinct 
response profiles (Fester & Skinner, 1957), suggesting 
some, implicit or explicit, discrimination by the agent. 
 Notably, the interval schedule can be conceptualized as 
a case in which the rate of performing an action 
modifies the schedule of reinforcement, rather than just 
the rate of reward: Specifically, on a given interval 
schedule, any response rate greater than “one per the 
required interval” will decrease the probability of 
reward conditional on that action.  Other well-
established schedules, such as differential reinforcement 
of high or low responding (Van den Broek, et al., 1987) 
can also be characterized as actions modifying 
schedules of reinforcement, as can the “seeking” 
component of seeking-taking schedules (Balleine, 
Garner, Gonzalez, & Dickinson, 1995).  Thus, the 
framework proposed here potentially applies to a wide 
range of instrumental phenomena. 

At the neural level, model-free and model-based RL 
approaches have been mapped to dissociable neural 
substrates, with the ventral striatum, posterior putamen 
and premotor cortex being implicated in model-free 
responding (Glascher et al., 2010; Lee et al., 2014; 
Tricomi et al., 2009; de Wit et al., 2012), and the 
caudate, ventromedial prefrontal cortex and inferior 
parietal lobule in model-based computations (de Wit et 
al., 2012; Liljeholm et al., 2011, 2013, 2015; Lee et al., 
2014). It should be noted, however, that, with some 
exceptions (e.g., Liljeholm et al., 2013), the work 
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identifying such dissociations has focused on relatively 
simple model-based processes, such as the encoding of 
individual action-outcome contingencies or sensitivity 
to changes in an outcomes utility.  In contrast, the 
model-based learner postulated here engages in complex 
reasoning regarding how actions may be used to control 
action-outcome relationships.  Such processes may 
warrant the involvement of brain regions known to 
support relational and inductive reasoning, including the 
rostolateral and dorsolateral prefrontal cortex (e.g., 
Krawczyk et al., 2011).  

Finally, an important point regarding action 
dependencies such as those addressed here is how they 
relate to the actual representations of actions. In our 
task, the instructions and materials clearly defined and 
distinguished between action alternatives (see Figure 1), 
so that there could be little doubt about how many, and 
exactly what, actions were available.  It is interesting to 
consider how inferences and performance might have 
differed had the grouping of elements into discrete 
action alternatives been more ambiguous.  One 
possibility is that increasing ambiguity would afford a 
more rapid acquisition of relevant dependencies 
(Pezzulo, Rigoli, & Friston, 2015) and, further, that 
those inferred dependencies might serve to configure 
action elements into more clearly delineated action 
representations based on reinforcement learning 
principles (e.g. Reynolds, & O’Reilly, 2009).       

In conclusion, we have demonstrated a domain-
general ability to learn about, and take advantage of, an 
action that modifies the schedule of reinforcement on a 
different action.  We have also sketched a model that, by 
making inferences about dependencies between 
response latencies and conditional reward probabilities, 
might account for behavior across a wide range of 
instrumental schedules.  Future work will focus on 
extensions of our experimental paradigm, further 
development of formal accounts, and investigations of 
mediating neural substrates.  
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