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Abstract
The Nonlinear autoregressive exogenous (NARX)
model, which predicts the current value of a time
series based upon its previous values as well as the
current and past values of multiple driving (exoge-
nous) series, has been studied for decades. De-
spite the fact that various NARX models have been
developed, few of them can capture the long-term
temporal dependencies appropriately and select the
relevant driving series to make predictions. In this
paper, we propose a dual-stage attention-based re-
current neural network (DA-RNN) to address these
two issues. In the first stage, we introduce an in-
put attention mechanism to adaptively extract rel-
evant driving series (a.k.a., input features) at each
time step by referring to the previous encoder hid-
den state. In the second stage, we use a temporal
attention mechanism to select relevant encoder hid-
den states across all time steps. With this dual-stage
attention scheme, our model can not only make
predictions effectively, but can also be easily in-
terpreted. Thorough empirical studies based upon
the SML 2010 dataset and the NASDAQ 100 Stock
dataset demonstrate that the DA-RNN can outper-
form state-of-the-art methods for time series pre-
diction.

1 Introduction
Time series prediction algorithms have been widely applied
in many areas, e.g., financial market prediction [Wu et al.,
2013], weather forecasting [Chakraborty et al., 2012], and
complex dynamical system analysis [Liu and Hauskrecht,
2015]. Although the well-known autoregressive moving av-
erage (ARMA) model [Whittle, 1951] and its variants [As-
teriou and Hall, 2011; Brockwell and Davis, 2009] have
shown their effectiveness for various real world applications,
they cannot model nonlinear relationships and do not dif-
ferentiate among the exogenous (driving) input terms. To
address this issue, various nonlinear autoregressive exoge-
nous (NARX) models [Lin et al., 1996; Gao and Er, 2005;
∗Most of this work was performed while the first author was an

intern at NEC Labs America.

Diaconescu, 2008; Yan et al., 2013] have been developed.
Typically, given the previous values of the target series,
i.e. (y1, y2, · · · , yt−1) with yt−1 ∈ R, as well as the cur-
rent and past values of n driving (exogenous) series, i.e.,
(x1, x2, · · · , xt) with xt ∈ Rn, the NARX model aims to
learn a nonlinear mapping to the current value of target se-
ries yt, i.e., ŷt = F (y1, y2, · · · , yt−1, x1, x2, · · · , xt), where
F (·) is the mapping function to learn.

Despite the fact that a substantial effort has been made for
time series prediction via kernel methods [Chen et al., 2008],
ensemble methods [Bouchachia and Bouchachia, 2008], and
Gaussian processes [Frigola and Rasmussen, 2014], the draw-
back is that most of these approaches employ a predefined
nonlinear form and may not be able to capture the true un-
derlying nonlinear relationship appropriately. Recurrent neu-
ral networks (RNNs) [Rumelhart et al., 1986; Werbos, 1990;
Elman, 1991], a type of deep neural network specially de-
signed for sequence modeling, have received a great amount
of attention due to their flexibility in capturing nonlinear re-
lationships. In particular, RNNs have shown their success in
NARX time series forecasting in recent years [Gao and Er,
2005; Diaconescu, 2008]. Traditional RNNs, however, suffer
from the problem of vanishing gradients [Bengio et al., 1994]
and thus have difficulty capturing long-term dependencies.
Recently, long short-term memory units (LSTM) [Hochre-
iter and Schmidhuber, 1997] and the gated recurrent unit
(GRU) [Cho et al., 2014b] have overcome this limitation and
achieved great success in various applications, e.g., neural
machine translation [Bahdanau et al., 2014], speech recog-
nition [Graves et al., 2013], and image processing [Karpathy
and Li, 2015]. Therefore, it is natural to consider state-of-the-
art RNN methods, e.g., encoder-decoder networks [Cho et al.,
2014b; Sutskever et al., 2014] and attention based encoder-
decoder networks [Bahdanau et al., 2014], for time series pre-
diction.

Based upon LSTM or GRU units, encoder-decoder net-
works [Kalchbrenner and Blunsom, 2013; Cho et al., 2014a;
Cho et al., 2014b; Sutskever et al., 2014] have become popu-
lar due to their success in machine translation. The key idea
is to encode the source sentence as a fixed-length vector and
use the decoder to generate a translation. One problem with
encoder-decoder networks is that their performance will dete-
riorate rapidly as the length of input sequence increases [Cho
et al., 2014a]. In time series analysis, this could be a con-
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Figure 1: Graphical illustration of the dual-stage attention-based recurrent neural network. (a) The input attention mechanism computes the
attention weights αk

t for multiple driving series {x1, x2, · · · , xn} conditioned on the previous hidden state ht−1 in the encoder and then feeds
the newly computed x̃t = (α1

tx
1
t , α

2
tx

2
t , · · · , αn

t x
n
t )
> into the encoder LSTM unit. (b) The temporal attention system computes the attention

weights βt
t based on the previous decoder hidden state dt−1 and represents the input information as a weighted sum of the encoder hidden

states across all the time steps. The generated context vector ct is then used as an input to the decoder LSTM unit. The output ŷT of the last
decoder LSTM unit is the predicted result.

cern since we usually expect to make predictions based upon
a relatively long segment of the target series as well as driv-
ing series. To resolve this issue, the attention-based encoder-
decoder network [Bahdanau et al., 2014] employs an atten-
tion mechanism to select parts of hidden states across all the
time steps. Recently, a hierarchical attention network [Yang
et al., 2016], which uses two layers of attention mechanism
to select relevant encoder hidden states across all the time
steps, was also developed. Although attention-based encoder-
decoder networks and hierarchical attention networks have
shown their efficacy for machine translation, image caption-
ing [Xu et al., 2015], and document classification, they may
not be suitable for time series prediction. This is because
when multiple driving (exogenous) series are available, the
network cannot explicitly select relevant driving series to
make predictions. In addition, they have mainly been used
for classification, rather than time series prediction.

To address these aforementioned issues, and inspired by
some theories of human attention [Hübner et al., 2010] that
posit that human behavior is well-modeled by a two-stage at-
tention mechanism, we propose a novel dual-stage attention-
based recurrent neural network (DA-RNN) to perform time
series prediction. In the first stage, we develop a new atten-
tion mechanism to adaptively extract the relevant driving se-
ries at each time step by referring to the previous encoder
hidden state. In the second stage, a temporal attention mech-
anism is used to select relevant encoder hidden states across
all time steps. These two attention models are well integrated
within an LSTM-based recurrent neural network (RNN) and
can be jointly trained using standard back propagation. In
this way, the DA-RNN can adaptively select the most rele-
vant input features as well as capture the long-term temporal
dependencies of a time series appropriately. To justify the
effectiveness of the DA-RNN, we compare it with state-of-
the-art approaches using the SML 2010 dataset and the NAS-
DAQ 100 Stock dataset with a large number of driving series.
Extensive experiments not only demonstrate the effectiveness
of the proposed approach, but also show that the DA-RNN is
easy to interpret, and robust to noisy inputs.

2 Dual-Stage Attention-Based RNN
In this section, we first introduce the notation we use in this
work and the problem we aim to study. Then, we present the
motivation and details of the DA-RNN for time series predic-
tion.
2.1 Notation and Problem Statement
Given n driving series, i.e., X = (x1, x2, · · · , xn)> =
(x1, x2, · · · , xT ) ∈ Rn×T , where T is the length of window
size, we use xk = (xk1 , x

k
2 , ·, xkT )> ∈ RT to represent a driv-

ing series of length T and employ xt = (x1t , x
2
t , · · · , xnt )> ∈

Rn to denote a vector of n exogenous (driving) input series at
time t.

Typically, given the previous values of the target series,
i.e. (y1, y2, · · · , yT−1) with yt ∈ R, as well as the cur-
rent and past values of n driving (exogenous) series, i.e.,
(x1, x2, · · · , xT ) with xt ∈ Rn, the NARX model aims to
learn a nonlinear mapping to the current value of the target
series yT :

ŷT = F (y1, · · · , yT−1, x1, · · · , xT ). (1)

where F (·) is a nonlinear mapping function we aim to learn.

2.2 Model
Some theories of human attention [Hübner et al., 2010] ar-
gue that behavioral results are best modeled by a two-stage
attention mechanism. The first stage selects the elementary
stimulus features while the second stage uses categorical in-
formation to decode the stimulus. Inspired by these theories,
we propose a novel dual-stage attention-based recurrent neu-
ral network (DA-RNN) for time series prediction. In the en-
coder, we introduce a novel input attention mechanism that
can adaptively select the relevant driving series. In the de-
coder, a temporal attention mechanism is used to automat-
ically select relevant encoder hidden states across all time
steps. For the objective, a square loss is used. With these two
attention mechanisms, the DA-RNN can adaptively select the
most relevant input features and capture the long-term tem-
poral dependencies of a time series. A graphical illustration
of the proposed model is shown in Figure 1.
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Encoder with input attention
The encoder is essentially an RNN that encodes the input
sequences into a feature representation in machine trans-
lation [Cho et al., 2014b; Sutskever et al., 2014]. For
time series prediction, given the input sequence X =
(x1, x2, · · · , xT ) with xt ∈ Rn, where n is the number of
driving (exogenous) series, the encoder can be applied to
learn a mapping from xt to ht (at time step t) with

ht = f1(ht−1, xt), (2)

where ht ∈ Rm is the hidden state of the encoder at time t, m
is the size of the hidden state, and f1 is a non-linear activation
function that could be an LSTM [Hochreiter and Schmidhu-
ber, 1997] or gated recurrent unit (GRU) [Cho et al., 2014b].
In this paper, we use an LSTM unit as f1 to capture long-term
dependencies. Each LSTM unit has a memory cell with the
state st at time t. Access to the memory cell will be controlled
by three sigmoid gates: forget gate ft, input gate it and output
gate ot. The update of an LSTM unit can be summarized as
follows:

ft = σ(Wf [ht−1; xt] + bf ) (3)
it = σ(Wi[ht−1; xt] + bi) (4)
ot = σ(Wo[ht−1; xt] + bo) (5)

st = ft � st−1 + it � tanh(Ws[ht−1; xt] + bs) (6)
ht = ot � tanh(st) (7)

where [ht−1; xt] ∈ Rm+n is a concatenation of the previous
hidden state ht−1 and the current input xt. Wf , Wi, Wo,
Ws ∈ Rm×(m+n), and bf , bi, bo, bs ∈ Rm are parameters to
learn. σ and� are a logistic sigmoid function and an element-
wise multiplication, respectively. The key reason for using
an LSTM unit is that the cell state sums activities over time,
which can overcome the problem of vanishing gradients and
better capture long-term dependencies of time series.

Inspired by the theory that the human attention system can
select elementary stimulus features in the early stages of pro-
cessing [Hübner et al., 2010], we propose an input attention-
based encoder that can adaptively select the relevant driving
series, which is of practical meaning in time series prediction.

Given the k-th input driving series xk = (xk1 , x
k
2 , ·, xkT )> ∈

RT , we can construct an input attention mechanism via a de-
terministic attention model, i.e., a multilayer perceptron, by
referring to the previous hidden state ht−1 and the cell state
st−1 in the encoder LSTM unit with:

ekt = v>e tanh(We[ht−1; st−1] + Uexk) (8)

and
αk
t =

exp(ekt )∑n
i=1 exp(e

i
t)
, (9)

where ve ∈ RT , We ∈ RT×2m and Ue ∈ RT×T are parame-
ters to learn.We omit the bias terms in Eqn. (8) to be succinct.
αk
t is the attention weight measuring the importance of the
k-th input feature (driving series) at time t. A softmax func-
tion is applied to ekt to ensure all the attention weights sum
to 1. The input attention mechanism is a feed forward net-
work that can be jointly trained with other components of the
RNN. With these attention weights, we can adaptively extract
the driving series with

x̃t = (α1
tx

1
t , α

2
tx

2
t , · · · , αn

t x
n
t )
>. (10)

Then the hidden state at time t can be updated as:

ht = f1(ht−1, x̃t), (11)

where f1 is an LSTM unit that can be computed according
to Eqn. (3) - (7) with xt replaced by the newly computed
x̃t. With the proposed input attention mechanism, the en-
coder can selectively focus on certain driving series rather
than treating all the input driving series equally.

Decoder with temporal attention
To predict the output ŷT , we use another LSTM-based recur-
rent neural network to decode the encoded input information.
However, as suggested by Cho et al. [2014a], the performance
of the encoder-decoder network can deteriorate rapidly as
the length of the input sequence increases. Therefore, fol-
lowing the encoder with input attention, a temporal attention
mechanism is used in the decoder to adaptively select rele-
vant encoder hidden states across all time steps. Specifically,
the attention weight of each encoder hidden state at time t
is calculated based upon the previous decoder hidden state
dt−1 ∈ Rp and the cell state of the LSTM unit s′t−1 ∈ Rp

with

lit = v>d tanh(Wd[dt−1; s′t−1] + Udhi), 1 ≤ i ≤ T (12)

and
βi
t =

exp(lit)∑T
j=1 exp(l

j
t )
, (13)

where [dt−1; s′t−1] ∈ R2p is a concatenation of the previ-
ous hidden state and cell state of the LSTM unit. vd ∈ Rm,
Wd ∈ Rm×2p and Ud ∈ Rm×m are parameters to learn. The
bias terms here have been omitted for clarity. The attention
weight βi

t represents the importance of the i-th encoder hid-
den state for the prediction. Since each encoder hidden state
hi is mapped to a temporal component of the input, the atten-
tion mechanism computes the context vector ct as a weighted
sum of all the encoder hidden states {h1, h2, · · · , hT },

ct =
T∑

i=1

βi
thi. (14)

Note that the context vector ct is distinct at each time step.
Once we get the weighted summed context vectors,

we can combine them with the given target series
(y1, y2, · · · , yT−1):

ỹt−1 = w̃>[yt−1; ct−1] + b̃, (15)

where [yt−1; ct−1] ∈ Rm+1 is a concatenation of the decoder
input yt−1 and the computed context vector ct−1. Parameters
w̃ ∈ Rm+1 and b̃ ∈ R map the concatenation to the size the
decoder input. The newly computed ỹt−1 can be used for the
update of the decoder hidden state at time t:

dt = f2(dt−1, ỹt−1). (16)

We choose the nonlinear function f2 as an LSTM
unit [Hochreiter and Schmidhuber, 1997], which has been
widely used in modeling long-term dependencies. Then dt

can be updated as:

f′t = σ(W′f [dt−1; ỹt−1] + b′f ) (17)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2629



Table 1: The statistics of two datasets.

Dataset driving
series

size
train valid test

SML 2010 16 3,200 400 537
NASDAQ 100 Stock 81 35,100 2,730 2,730

i′t = σ(W′i[dt−1; ỹt−1] + b′i) (18)
o′t = σ(W′o[dt−1; ỹt−1] + b′o) (19)

s′t = f′t � s′t−1 + i′t � tanh(W′s[dt−1; ỹt−1] + b′s) (20)

dt = o′t � tanh(s′t) (21)
where [dt−1; ỹt−1] ∈ Rp+1 is a concatenation of the previous
hidden state dt−1 and the decoder input ỹt−1. W′f , W′i, W′o,
W′s ∈ Rp×(p+1), and b′f , b′i, b′o, b′s ∈ Rp are parameters to
learn. σ and� are a logistic sigmoid function and an element-
wise multiplication, respectively.

For NARX modeling, we aim to use the DA-RNN to ap-
proximate the function F so as to obtain an estimate of the
current output ŷT with the observation of all inputs as well as
previous outputs. Specifically, ŷT can be obtained with

ŷT = F (y1, · · · , yT−1, x1, · · · , xT )

= v>y (Wy[dT ; cT ] + bw) + bv,
(22)

where [dT ; cT ] ∈ Rp+m is a concatenation of the decoder
hidden state and the context vector. The parameters Wy ∈
Rp×(p+m) and bw ∈ Rp map the concatenation to the size of
the decoder hidden states. The linear function with weights
vy ∈ Rp and bias bv ∈ R produces the final prediction result.

Training procedure
We use minibatch stochastic gradient descent (SGD) together
with the Adam optimizer [Kingma and Ba, 2014] to train the
model. The size of the minibatch is 128. The learning rate
starts from 0.001 and is reduced by 10% after each 10000 iter-
ations. The proposed DA-RNN is smooth and differentiable,
so the parameters can be learned by standard back propaga-
tion with mean squared error as the objective function:

O(yT , ŷT ) =
1

N

N∑
i=1

(ŷiT − yiT )2, (23)

where N is the number of training samples. We implemented
the DA-RNN in the Tensorflow framework [Abadi et al.,
2015].

3 Experiments
In this section, we first describe two datasets for empirical
studies. Then, we introduce the parameter settings of DA-
RNN and the evaluation metrics. Finally, we compare the
proposed DA-RNN against four different baseline methods,
interpret the input attention as well as the temporal attention
of DA-RNN, and study its parameter sensitivity.
3.1 Datasets and Setup
To test the performance of different methods for time series
prediction, we use two different datasets as shown in Table 1.

SML 2010 is a public dataset used for indoor temperature
forecasting. This dataset is collected from a monitor system
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Figure 2: NASDAQ 100 Index vs. Time. Encoder-Decoder (top) and
Attention RNN (middle), are compared with DA-RNN (bottom).

mounted in a domestic house. We use the room temperature
as the target series and select 16 relevant driving series that
contain approximately 40 days of monitoring data. The data
was sampled every minute and was smoothed with 15 minute
means. In our experiment, we use the first 3200 data points as
the training set, the following 400 data points as the validation
set, and the last 537 data points as the test set.

In the NASDAQ 100 Stock dataset1, we collected the stock
prices of 81 major corporations under NASDAQ 100, which
are used as the driving time series. The index value of the
NASDAQ 100 is used as the target series. The frequency of
the data collection is minute-by-minute. This data covers the
period from July 26, 2016 to December 22, 2016, 105 days
in total. Each day contains 390 data points from the opening
to closing of the market except that there are 210 data points
on November 25 and 180 data points on December 22. In our
experiments, we use the first 35,100 data points as the training
set and the following 2,730 data points as the validation set.
The last 2,730 data points are used as the test set. This dataset
is publicly available and will be continuously enlarged to aid
the research in this direction.

3.2 Parameter Settings and Evaluation Metrics
There are three parameters in the DA-RNN, i.e., the num-
ber of time steps in the window T , the size of hidden states
for the encoder m, and the size of hidden states for the de-
coder p. To determine the window size T , we conducted a
grid search over T ∈ {3, 5, 10, 15, 25}. The one (T = 10)
that achieves the best performance over validation set is used
for test. For the size of hidden states for encoder (m) and
decoder (p), we set m = p for simplicity and conduct grid
search over m = p ∈ {16, 32, 64, 128, 256}. Those two (i.e,

1http://cseweb.ucsd.edu/∼yaq007/NASDAQ100 stock data.html
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Table 2: Time series prediction results over the SML 2010 Dataset and NASDAQ 100 Stock Dataset (best performance displayed in boldface).
The size of encoder hidden states m and decoder hidden states p are set as m = p = 64 and 128.

Models
SML 2010 Dataset NASDAQ 100 Stock Dataset

MAE
(×10−2%)

MAPE
(×10−2%)

RMSE
(×10−2%) MAE MAPE

(×10−2%) RMSE

ARIMA [2011] 1.95 9.29 2.65 0.91 1.84 1.45
NARX RNN [2008] 1.79±0.07 8.64±0.29 2.34±0.08 0.75±0.09 1.51 ±0.17 0.98±0.10

Encoder-Decoder (64) [2014b] 2.59±0.07 12.1±0.34 3.37±0.07 0.97±0.06 1.96±0.12 1.27±0.05
Encoder-Decoder (128) [2014b] 1.91±0.02 9.00±0.10 2.52±0.04 0.72 ±0.03 1.46±0.06 1.00±0.03

Attention RNN (64) [2014] 1.78±0.03 8.46±0.09 2.32±0.03 0.76±0.08 1.54±0.02 1.00±0.09
Attention RNN (128) [2014] 1.77±0.02 8.45±0.09 2.33±0.03 0.71±0.05 1.43±0.09 0.96±0.05

Input-Attn-RNN (64) 1.88±0.04 8.89±0.19 2.50±0.05 0.28±0.02 0.57±0.04 0.41±0.03
Input-Attn-RNN (128) 1.70±0.03 8.09±0.15 2.24±0.03 0.26±0.02 0.53±0.03 0.39±0.03

DA-RNN (64) 1.53±0.01 7.31±0.05 2.02±0.01 0.21± 0.002 0.43± 0.005 0.31± 0.003
DA-RNN (128) 1.50± 0.01 7.14± 0.07 1.97± 0.01 0.22± 0.002 0.45± 0.005 0.33± 0.003

m = p = 64, 128) that achieve the best performance over
the validation set are used for evaluation. For all the RNN
based approaches (i.e., NARX RNN, Encoder-Decoder, At-
tention RNN, Input-Attn-RNN and DA-RNN), we train them
10 times and report their average performance and standard
deviations for comparison.

To measure the effectiveness of various methods for time
series prediction, we consider three different evaluation met-
rics. Among them, root mean squared error (RMSE) [Plu-
towski et al., 1996] and mean absolute error (MAE) are two
scale-dependent measures, and mean absolute percentage er-
ror (MAPE) is a scale-dependent measure. Specifically, as-
suming yt is the target at time t and ŷt is the predicted value at

time t, RMSE is defined as RMSE =
√

1
N

∑N
i=1(y

i
t − ŷit)2

and MAE is denoted as MAE = 1
N

∑N
i=1 |yit − ŷit|.

When comparing the prediction performance across different
datasets, mean absolute percentage error is popular because it
measures the prediction deviation proportion in terms of the
true values, i.e., MAPE = 1

N

∑N
i=1 |

yi
t−ŷ

i
t

yi
t
| × 100%.

3.3 Results-I: Time Series Prediction
To demonstrate the effectiveness of the DA-RNN, we com-
pare it against 4 baseline methods. Among them, the au-
toregressive integrated moving average (ARIMA) model is a
generalization of an autoregressive moving average (ARMA)
model [Asteriou and Hall, 2011]. NARX recurrent neural
network (NARX RNN) is a classic method to address time se-
ries prediction [Diaconescu, 2008]. The encoder-decoder net-
work (Encoder-Decoder) [Cho et al., 2014b] and attention-
based encoder-decoder network (Attention RNN) [Bahdanau
et al., 2014] were originally used for machine translation
tasks, in which each time step of the decoder output should
be used to produce a probability distribution over the trans-
lated word codebook. To perform time series prediction, we
modify these two approaches by changing the output to be
a single scalar value, and use a squared loss as the objective
function (as we did for the DA-RNN). The input to these net-
works is no longer words or word representations, but the n
scalar driving series of length T . Additionally, the decoder
has the additional input of the previous values of the target
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Figure 3: Plot of the input attention weights for DA-RNN from a
single encoder time step. The first 81 weights are on 81 original
driving series and the last 81 weights are on 81 noisy driving series.
(left) Input attention weights on NASDAQ100 training set. (right)
Input attention weights on NASDAQ100 test set.

series as the given information.
Furthermore, we show the effectiveness of DA-RNN via

step-by-step justification. Specifically, we compare dual-
stage attention-based recurrent neural network (DA-RNN)
against the setting that only employs its input attention mech-
anism (Input-Attn-RNN). For all RNN-based methods, the
encoder takes n driving series of length T as the input and
the decoder takes the previous values of the target series as
the given information for fair comparison. The time series
prediction results of DA-RNN and baseline methods over the
two datasets are shown in Table 2.

In Table 2, we observe that the RMSE of ARIMA is gen-
erally worse than RNN based approaches. This is because
ARIMA only considers the target series (y1, · · · , yt−1) and
ignores the driving series (x1, · · · , xt). For RNN based ap-
proaches, the performance of NARX RNN and Encoder-
Decoder are comparable. Attention RNN generally outper-
forms Encoder-Decoder since it is capable to select relevant
hidden states across all the time steps in the encoder. Within
DA-RNN, the input attention RNN (Input-Attn-RNN (128))
consistently outperforms Encoder-Decoder as well as Atten-
tion RNN. This suggests that adaptively extracting driving se-
ries can provide more reliable input features to make accurate
predictions. With integration of the input attention mech-
anism as well as temporal attention mechanism, our DA-
RNN achieves the best MAE, MAPE, and RMSE across two
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Figure 4: RMSE vs. length of time steps T over SML 2010 (left)
and NASDAQ 100 Stock (right).

datasets since it not only uses an input attention mechanism
to extract relevant driving series, but also employs a temporal
attention mechanism to select relevant hidden features across
all time steps.

For visual comparison, we show the prediction result of
Encoder-Decoder (m = p = 128), Attention RNN (m = p =
128) and DA-RNN (m = p = 64) over the NASDAQ 100
Stock dataset in Figure 2. We observe that DA-RNN gener-
ally fits the ground truth much better than Encoder-Decoder
and Attention RNN.

3.4 Results-II: Interpretation
To study the effectiveness of the input attention mechanism
within DA-RNN, we test it with noisy driving (exogenous)
series as the input. Specifically, within NASDAQ 100 Stock
dataset, we generate 81 additional noisy driving series by
randomly permuting the original 81 driving series. Then,
we put these 81 noisy driving series together with the 81
original driving series as the input and test the effective-
ness of DA-RNN. When the length of time steps T is 10
and the size of hidden states is m = p = 128, DA-RNN
achieves MAE: 0.28 ± 0.007, MAPE: (0.56 ±0.01)×10−2
and RMSE: 0.42 ± 0.009, which are comparable to its per-
formance in Table 2. This indicates that DA-RNN is robust
to noisy inputs.

To further investigate the input attention mechanism, we
plot the input attention weights of DA-RNN for the 162 in-
put driving series (the first 81 are original and the last 81
are noisy) in Figure 3. The plotted attention weights in Fig-
ure 3 are taken from a single encoder time step and similar
patterns can also be observed for other time steps. We find
that the input attention mechanism can automatically assign
larger weights for the 81 original driving series and smaller
weights for the 81 noisy driving series in an online fashion
using the activation of the input attention network to scale
these weights. This demonstrates that input attention mecha-
nism can aid DA-RNN to select relevant input driving series
and suppress noisy input driving series.

To investigate the effectiveness of the temporal attention
mechanism within DA-RNN, we compare DA-RNN to Input-
Attn-RNN when the length of time steps T varies from 3,
5, 10, 15, to 25. The detailed results over two datasets are
shown in Figure 4. We observe that when T is relatively large,
DA-RNN can significantly outperform Input-Attn-RNN. This
suggests that temporal attention mechanism can capture long-
term dependencies by selecting relevant encoder hidden states
across all the time steps.
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Figure 5: RMSE vs. size of hidden states of encoder/decoder over
SML 2010 (left) and NASDAQ 100 Stock (right).

3.5 Results-III: Parameter Sensitivity
We study the sensitivity of DA-RNN with respect to its pa-
rameters, i.e., the length of time steps T and the size of hid-
den states for encoder m (decoder p). When we vary T or
m (p), we keep the others fixed. By setting m = p = 128,
we plot the RMSE versus different lengths of time steps in
the window T in Figure 4. It is easily observed that the
performance of DA-RNN and Input-Attn-RNN will be worse
when the length of time steps is too short or too long while
DA-RNN is relatively more robust than Input-Attn-RNN. By
setting T = 10, we also plot the RMSE versus different
sizes of hidden states for encoder and decoder (m = p ∈
{16, 32, 64, 128, 256}) in Figure 5. We notice that DA-RNN
usually achieves the best performance when m = p = 64 or
128. Moreover, we can also conclude that DA-RNN is more
robust to parameters than Input-Attn-RNN.

4 Conclusion
In this paper, we proposed a novel dual-stage attention-based
recurrent neural network (DA-RNN), which consists of an en-
coder with an input attention mechanism and a decoder with
a temporal attention mechanism. The newly introduced in-
put attention mechanism can adaptively select the relevant
driving series. The temporal attention mechanism can nat-
urally capture the long-range temporal information of the en-
coded inputs. Based upon these two attention mechanisms,
the DA-RNN can not only adaptively select the most relevant
input features, but can also capture the long-term temporal
dependencies of a time series appropriately. Extensive exper-
iments on the SML 2010 dataset and the NASDAQ 100 Stock
dataset demonstrated that our proposed DA-RNN can outper-
form state-of-the-art methods for time series prediction.

The proposed dual-stage attention-based recurrent neural
network (DA-RNN) not only can be used for time series pre-
diction, but also has the potential to serve as a general feature
learning tool in computer vision tasks [Pu et al., 2016; Qin et
al., 2015]. In the future, we are going to employ DA-RNN
to perform ranking and binary coding [Song et al., 2015;
Song et al., 2016].
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