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Resultant Fields for Mixed Plate Bending Elements

Shmuel L. Weissman & Robert L. Taylor

Department of Givil Engineering
University of California, Berkeley

ABSTRACT

In this work the Hellinger-Reissner variational principle is used to formulate plate
bending elements based upon Reissner-Mindlin plate theory. The formulation introduces
an explicit coupling between interpolations of the shear and moment stress resultant
fields. Because of the coupling, shear locking is avoided at the element level rather than
at the global level. The coupling term is obtained by constraining the shear and moment
resultant fields, that are initially assumed independent, to perform no work when sub-
jected to a set of incompatible displacement modes. The resultant fields are formulated
as a complete polynomial expansion in the element’s natural coordinates and then
transformed to the physical domain. Thus, frame invarant elements are always
obtained. The resulting elements are shown to perform well on a set of standard prob-
lems for thin and thick plates.

1. Introduction

1.1 Background.

Plate bending solutions pose a difficult problem for the classical finite element displacement
method. If the Kirchoff-Love plate theory is used, C! shape functions are required and the elements
are restricted to thin plate applications. For this reason, most elements presented recently in the
literature are based on a Reissner-Mindlin plate theory that requires only C° shape functions and also
is applicable to both thin and thick plate applications. Unfartunately, many of the proposed elements
fail at the thin plate limit because of a phenomenon known as shear locking.

Development of a general class of elements free of shear locking in all applications has been the
focus of much research during the past two decades. The first successful developments were based
upon reduced integration and selective reduced integration, concepts which were proposed simultane-
ously by Zienkiewicz, Taylor & Too [1971] and Pawsey & Clough [1971]. Malkus & Hughes [1978]
demonstrated that both reduced integration and selective reduced integration fall within the scope of

a mixed finite element method.

Unfortunately, reduced integration often leads to an unstable element because spurious zero-
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energy modes are present. Selective reduced integration uses full integration on the bending term
and reduced integration on the shear terms. Furthermore, selective reduced integration elements are
rank deficient, and thus exhibit spurious zero-energy modes. By careful choice of the boundary con-

ditions, however, these modes can be controlled ( see e.g. Hughes [1987], pp. 334).

Hughes & Tezduyar [1981] presented a four-node element, known as T1, which is free of
zero-energy modes. In addition, it does not exhibit shear locking on reasonable meshes. The T1 ele-
ment was obtained by observing that the number of constraints on the element as a result of shear
may be reduced by sharing terms across element boundaries. Thus, a non-locking element is
obtained. A closely related formulation based upon the Hu-Washizu functional and discrete con-
straints on shear strains was presented by Bathe & Dvorkin [1984]. In the case of parallelogram ele-

ments, both formulations are identical.

Pian & Sumihara [1984] presented a plane stress element based upon the Hellinger-Reissner
variational principle. The assumed independent stress field was subjected to constraint equations.
These equations are interpreted as satisfying the equilibrium equations in a weak sense relative to
assumed incompatible modes. Initially the formulation required a quadratic perturbation of the ele-
ment shape in order to obtain the required number of independent constraint equations. Recently,
Pian & Wu [1988] presented a new formulation which avoids element perturbation. The constraint
equations are obtained by constraining the stress field to perform no work along the element boun-

dary when subjected to a set of incompatible displacement modes.

1.2 Overview of the paper.

The objective of this paper is to present a formulation for plate elements based upon the
Reissner-Mindlin plate theory, which is free from shear locking and spurious zero-energy modes.

The Hellinger-Reissner functional for plate bending is stated in terms of moment and shear
resultant fields together with compatible and incompatible displacement fields. The terms associated
with the incompatible modes are then required to vanish. This introduces constraints on the assumed
independent shear and moment resultant fields. These constraint equations are used to reduce the

number of independent coefficients in the shear and moment resultant fields. The final structure is
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similar to the shear field presented by Bathe & Devorkin [1984] and a bending field similar to the
Pian & Sumihara [1984] formulation. In addition, a coupling between the shear and moment stress

resultant fields is introduced.

The independent resultant fields are assumed to be complete polynomials in the natural coordi-
nates. The resultant fields are then transformed into physical coordinates. The coordinate transfor-
mation is similar to the one used to transform second Piola-Kirchhoff stresses into Cauchy stresses.
In order to meet the patch test requirements, the coordinate transformation is based on only a con-
stant value computed at the element center ( Pian & Sumihara [1984]). It follows that the resulting

elements are frame invariant.

Inclusion of the coupling terms results in elements that are free of shear locking. This will be
proved and illustrated through the analysis of standard test problems. Imposing the coupling explicitly
is consistent with the equilibrium equations and avoids introducing ad-hoc assumptions that would be
necessary to overcome shear locking.

The proposed formulation is presented in Section 2. In Section 3, a proof is given in which, as
thickness is reduced to zero, results obtained by the proposed elements converge to the thin plate
solution and do not lock in shear. Section 4 presents the finite element approximations used for the

four-node elements presented here. Numerical examples are presented in Section 5.

2. General formulation

Working within the framework of Reissner-Mindlin plate theory, the Hellinger-Reissner func-
tional is used as the starting point for the new formulation. The first part of this section is devoted to
the formulation of appropriate constraint equations. Application of the constraint equations to the
stress resultant field approximations yields an explicit coupling between the assumed independent
shear and moment resultant fields. In the second part of this section, the stiffness matrix is formu-
lated.

Ignoring boundary terms, (which play no role in issues relating to shear locking), the
Hellinger-Reissner functional can be stated as follows in the case of plate bending;



Shmuel L. Weissman & Robert L. Taylor 4

I, =£ {—;—(MTCM+QTcQ)+M’L”U+QTL‘U}dQ—£ UpdQ 2.1)
where :

C - elastic compliances (bending).

¢ - elastic compliances (shear).

L? - strain displacement operator (bending), given by:

[ 3 |
00 -
d
b — L
L 0 3y 0
d d

L* - strain displacement operator (shear), given by:

d
L axOl
i
y 10

U - displacement field, givenby: U’ =< w89, ,6, >

M - moment resultant field, given by: M’ =< M, , M, , M, >

Q - shear resultant field, given by: Q7 =< Q, , 0,>

p - transverse body force.

Q - domain of interest.

I', - the part of the boundary of {) (closure of Q ) on which tractions are specified.

Sign conventions for the rotations are shown in figure 2.1, and sign conventions for shear and

moment resultants are shown in figure 2.2.

The first variation of (2.1) yields:
dllg =f8M’(L”U—CM)dQ+fﬁQT(L‘U—cQ)dQ
i} o
+f {(L"GU)TM+(L‘8U)TQ -3UTp }d.Q
0

The first two terms are the constitutive equations. After integration by parts, the last term in combi-



Shmuel L. Weissman & Robert L. Taylor 5

nation with the traction boundary conditions, provides balance of momentum equations for the plate.

A finite element solution based upon (2.1) requires the approximation of M and Q in Q and U
in QJT,. In this study, the stress resultants M and Q are approximated independently in each ele-
ment. The displacement parameters are approximated by the sum of compatible and incompatible
displacement fields. The incompatible fields satisfy constraints to ensure that the patch test is satis-
fied (Taylor, Zienkiewicz, Simo & Chan [1986]). Accordingly, the displacement field approximation

1S written as:

U=U°+U
where :

U¢ - compatible displacement field.
U’ - incompatible displacement field.

(2.1) may now be written as:

0
In (2.2), it is assumed that the work done by the loading term on the incompatible displacements

I =J {-%(MTCM+QTcQ) +MILA(UF + U )+ Q7L (UF +U")}dQ —fUcpdQ (2.2)
0

may be ignored so that variation with respect to the incompatible displacements yields the following :

8H,-=_‘[;(MTL” SU + QT L* 3UF )dQ=0 (2.3)
Satisfaction of (2.3) leads to a set of constraints on the stress resultant fields approximation. These
constraints can be used to reduce the number of independent parameters in M and Q. If M and Q
satisfy (2.3), then, because of the bilinear structure of (2.3), all references to the incompatible dis-

placements disappear since:

II; =‘_j;{MTL”U" +QTL’U"}dQ=O
Furthermore, this condition is met if the overall solution is required to be independent of incompati-
ble modes and thus, to satisfy general uniqueness conditions.
In this study, each element is used as the domain in which these constraints are satisfied. The

moment resultants M and shear resultants Q are approximated by a polynomial expansion in each
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element. Incompatible modes are introduced to ensure that the resulting elements are free from
spurious zero-energy modes and to prevent shear locking in the thin plate limit. The latter point is
proved in Section 3 and a set of numerical examples is used to demonstrate the technique in Section
5.

2.1 Constraint equations.

Because incompatible displacements are present in (2.2), internal energy is dependent upon the
internal partition of the domain. It follows that the internal energy may not be uniquely defined nor
may it necessarily equal the external energy. In order to overcome this problem, the energy produced
by the incompatible displacements is constrained to be zero. As shown above, this is equivalent to

setting the variation with respect to U’ equal to zero. The following constraint is introduced :

IJ; =f{MTLbU" +QTL‘U"}dQ=O (2.4)
Q

Evaluation of (2.4) using the definitions for L? and L* yields the set of independent equations:

H,-1=f{q, wi +g, w‘;y}dﬂ=0

[0}

Hi2=f{MW9;,y+MxyO;’, —qyﬂ}'}dﬂ=0 (2.5)
[4)

I1; =f{MnBy",, +M,6;, —q,Oy"}dQ=0
0
Since moment and shear resultants are approximated independently in each element, these con-

straints may be imposed on each individual element.

It should be noted that the above equations are independent of material properties and are
therefore generally applicable. In finite element application, the above equations provide a set of
algebraic equations on each element, which may be used to reduce the number of independent

parameters in the stress resultant fields approximation. The number of constraint equations for each

element is defined by the number of independent terms in the incompatible displacement field U*.

In addition to the above constraints, U’ is selected so that elements pass the patch test.

Accordingly, for a constant stress resultant state, the approximation for U is required to satisfy:
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fwfu dQ=0
0 d

and

J6igdQ=0
o
where both « and B may stand for x or y.
It should be noted that 6, is not constrained since this condition does not result from a con-

stant overall stress resultant state ( i.e., these constants, Q., would require M, g to vary linearly in

each element ).

REMARK 2.1.1 : Equations (2.5) represent in each element 3n equations where n is the
number of independent incompatible modes assumed in each element. Thus, the number of incom-
patible modes assumed can be deduced from the number of independent resultant parameters to be
eliminated. Furthermore, the number to be eliminated may be assessed based on the required rank
of the final stiffness matrix.

REMARK 2.1.2 : The structure of the constraint equations results in an explicit coupling
between the shear and moment resultant fields, through (2.5), and (2.5);. Although this coupling
requires additional computation, it eliminates shear locking without resorting to ad-hoc assumptions.
This coupling also is present in the equilibrium equations; thus, the constraint equations impose

explicitly a consistent constraint form.

2.2 Stiffness matrix formulation.

Starting with the first variation of the Hellinger-Reissner functional, the Euler-Lagrange equa-
tions are deduced. Elimination of the stress resultants yields the stiffness matrix. In the remainder
of this section, only the compatible displacement field is considered, since (2.5) is assumed to be
satisfied. For simplicity the superscript ¢ denoting compatible field is omitted.

At this point, it is essential to decide how the coupled system should be constructed. The struc-

ture of the constraint equations suggests the following choice’ :

t Alternatives could couple the moment and/or shear interpolations.
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M=Mm +Sgq (2.6a)
Q=Qgq (2.6b)
where M and Q are the reduced resultant fields (i.e., those which satisfy (2.5)). The finite element
approximation of the displacement field is :
U= N1d1

Where N, is the (compatible) shape function associated with node I, summation convention is
implied and d; are the nodal displacements. Applying the strain displacement operators L® and L*
to the assumed displacement field yields :

LbU= Blbdl

and

L*U=Bjd,

Where B} and By are the finite element strain displacement matrices.
Utilizing the assumed fields as given above, the first variation of the Hellinger-Reissner func-
tional is given by :
Il =£[8m’ (-Hb,m—-H.q+Gid )+
8" ( —HYm-H.q-H q+Gld+G'd)+ (2.7
3" (Gm+Glq+GTq)]dQ=2ad"f
where f is the force vector resulting from transverse loading and boundary conditions and
H,’,’,,,=£I\7ITC1\7IdQ x H,{’“=£MTCS-dQ ;
H,’;=£§TC§dQ : H’=_‘];QTch.Q ; (2.8)
Gi=[M'B* dQ ; G¢=[STB* dQ ; G = [T dQ
a o 0
In (2.8) H};, H; and G reflect the effect of coupling on stress interpolations. In the absence

of "loading” terms from the constitutive equations (e.g., thermal terms ), the Euler-Lagrange equa-

24160

tions may be written as:

where
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Hf, HE Gy, m
Elimination of the stress resultant parameters for all elements gives:
Kd=f (2.11)
where
K=G'HG (2.12)

which is the stiffness matrix for the plate. Since stress resultant interpolations are independent in

each element, the reduction may be performed at the element level.

3. Shear locking analysis.

Shear locking occurs at the thin plate limit when the element becomes overconstrained. As a
result, bending energy becomes negligible in comparison with shear energy. In this section it is
proved that elements which include coupling between the shear and moment stress resultant fields
converge to the thin plate solution and do not lock in shear, provided H is invertible and H? , defined

below, satisfies some rank conditions.

Throughout this section it is assumed that the stress resultant fields are given by (2.6). Further-
more, in order to satisfy the mixed patch test (Zienkiewicz, Qu, Taylor & Nakazawa [1986]), for the
mixed implementation of the Reissner-Mindlin plate theory it is assumed that for all admissible
boundary conditions on w, 6, and 6, (i.e.,d;)

My + Ny =ng

and

ng =n,,
where n,; and n,, are the number of shear coefficients and moment coefficients respectively, ng is the
number of rotational degrees of freedom, and n,, is the number of transverse displacement degrees of

freedom.

To simplify notations, the following definitions are introduced :

H* = HZ () B, ~HY,

and
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Gb =Gt -G?
Proposition 3.1 : If the stress resultant fields are given by (2.6) and H? and H are invertible,
then, as thickness is reduced to zero, g = F; d and m = F, d where F; and F, are O(z3).
Proof : First note that H,, HE,, H2 are O(:~3); H* is O(t™1); and G, G? and G* are
independent of t.

By (2.8), (2.9) and (2.10), q is given by:

q=[H’ -H ]"![G* -G* ]d=F,d
As the thickness is reduced to zero, H* becomes negligible in comparison with H?. As a result,

q=1>A;d and F; =13 A, where A, is a matrix independent of t. Hence, F, is O(s3).
By (2.8), (2.9) and (2.10), m is given by:

m=(HE, )" [-HE F + G4 ld = F,d
Consequently, m=1r>A,d and F,=r>A, where A, is a matrix independent of t. Hence, F, is
O(z?). =
Proposition 3.2 : If the stress resultant fields are given by (2.6) and F, and F, are O(:3), then,

as thickness is reduced to zero, the shear strain energy is negligible in comparison to the bending

strain energy.
Proof : By (2.7):
m' H,, m=m" G5 d -m" H., q (3.1)
and
Q" G/d=q Him+q Hiq+q" ' q—¢" G* d (3.2)

The strain energy part of the Hellinger-Reissner functional (2.1) is given by:

I = —;—(mTH.i’.,..m+m’H£’“q+qTH.?Zm+q’H,",q+qTH‘ q)
+m' GLd+q Gbd+q' G d (3.3)
Substituting (3.1) and (3.2) into (3.3) yields:

Ty = (w7 GLd+q" HETm+ q7 HS q + o7 H¥ q) (3.4)
It follows from the assumptions that as the thickness is reduced to zero, the last term in (3.4), which
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is associated with shear strain energy, is negligible compared to the first three terms, which are asso-
ciated with bending strain energy. Consequently, as the thickness is reduced to zero, the shear strain
energy is negligible in comparison to the bending strain energy. =

Proposition 3.3 : Shear locking is avoided if and only if the shear strain energy is negligible in
comparison to the bending strain energy.

Proof : Assume the shear strain energy is negligible in comparison to the bending strain
energy; then it follows immediately from the definition of shear locking that it does not occur.

Now assume that shear locking does not occur. Since M and Q are determined by equilibrium
and thus are O(:%), it follows that m and q are O(:%). F; is O(r®) independent of the coupling, it
follows that d is O(r~3). Thus, it follows from (3.4) that the shear strain energy is negligible in com-
parison to the bending strain energy. =

The restriction that H® should always be invertible may be too strong. This restriction is
relaxed below. As a first step spectral decomposition of H? is performed.

H> =PT AP
where P” P =1 the identity matrix. H is represented in the generalized coordinates (P) as :
H =P PH P P=PIF P
By (2.8), (2.9) and (2.10) :

(A+H)q=Gd (3.5)
where
q=Pq G=P(G* -G°) (3.6a)
AO - - - — -
and
= [ .
g G

Substituting (3.6) into (3.5) yields:

(ﬁ;1+x] ] (q 1
= = | 1= ={g}d (3.7
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Let q; =F;d and q, = F,d. It follows from (3.7) that F; is O(r3) while F; is O(z1).

Proposition 3.4 : Given that H? is rank deficient of degree less than or equal to the maximum
number of constraints allowed per element by the constraint count method (see e.g., Hughes [1987]),
then q, is O(1%).

Proof : First note that d is O(r~3), as in proposition 3.3. Since F; is O(¢3), it follows that q; is
O(z°). F, on the other hand is O(t) and so g, is at worst O(t ~2).

As a result of meeting the constraint count requirement, shear locking does not occur. It fol-
lows from proposition 3.3 together with (3.4) that q is O(z*), where o> —1. Q is given by equili-

brium, and so is O(z°). As a result, « =0. This result contradicts the previous result for qs.

n N a a
Let d= 3 r"-3d,. The above contradiction is resolved if and only if dy and d, are orthogonal
i=0

t0 qy. As a result, gy is O(z?). =

Proposition 3.5 : The vector G, d is O(r -1y if and only if qj is independent of t.

Proof : This result follows immediately from (3.7) once it is noted that d is O(r3) and q, is
o(:0). »

Proposition 3.6 : If Q and M are O(:°) and the formulation is based on the Hellinger-Reissner
functional, then the components of the shear strain tensor are O(r~!) while the components of the

curvature tensor are O(z ~3).
Proof : The Hellinger-Reissner functional may be viewed as a special case of the Hu-Washizu
functional, where the assumed shear strain tensor is given by :

y=¢Q
and the assumed curvature tensor is given by :

k=CM
Since both M and Q are O(z?), the desired result follows immediately. =
Remark 3.1 : Without the coupling between the shear and moment stress resultant fields F; is
O(t), while F, is O(?). It follows that if the coupling is neglected, then as the thickness is reduced

to zero, the first three terms in (3.4), associated with bending strain energy, are negligible in
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comparison to the last term, which is associated with shear strain energy. As a result, by proposition
3.3 the element locks in shear at an element level. Thus, analysis at a global level is required to

determine whether shear locking occurs.

Remark 3.2 : The functional presented in (3.4) is not useful in formulating elements since the
constitutive equations were used to obtain it; (3.4) can be used to obtain bounds on the strain
energy.

Remark 3.3 : It follows from the above propositions that the formulation proposed in this paper

guarantees elements which do not lock in shear (provided H is invertible and H? is of the appropri-
ate rank).

Remark 3.4 : It follows from proposition 3.6 that as the thickness is reduced to zero the solu-
tion obtained by the proposed formulation converges to the thin plate solution (Kirchhoff theory). It
must be noted that the solution converges to the thin plate solution only when the analytical solution
obtained for the Reissner-Mindlin theory converges to the thin plate solution (e.g., when point loads
are considered, the thin plate solution under the load is bounded while the Reissner-Mindlin solution
is not).

Remark 3.5 : As H* becomes negligible(i.e., numerically zero), the mixed patch test require-
ment for the full recovery of Qisn, +ng= ngz where n,; is the number of q, parameters. In order
to maintain a robust implementation for this case q, would be taken as global variables (i.e.,
Lagrange multipliers). When a rectangular mesh of n X n elements, with clamped boundary condi-

tions, is considered, the number of parameters in g, is

2n? S1 element
nia=12n(n+1) TI or Bathe-Dvorkin
=2n? for elements presented in Section 4 of this paper

and the number of displacement parameters is n, + ng=3(n —1)? Hence, a full solution for all

variables is achievable only when

6 — Sl element
n =1 7 — TI or Bathe-Dvorkin
=6 — for elements presented in Section 4 of this paper
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4. Finite element approximation.

The formulation presented in Section 2 is now used to obtain four-node quadrilateral plate ele-

ments. Accordingly, the N, are gven by the bilinear interpolation
Ni(Em) = }1—(1 +&£)(1+mm) where £ and n are natural coordinates on the interval [1,1] and
& ,my are the values of the natural coordinates at the node I. The assumed independent shear and

moment resultant fields are presented first. Next, two options for the incompatible modes are

presented leading to two elements.

4.1 Assumed resultant fields

The assumed shear and moment resultant fields are formulated in the element natural coordi-
nates and then transformed into the physical space by means of a transformation identical to the one
used to transform the second Piola-Kirchhoff stresses into Cauchy stresses. However, in order for

the element to pass the patch test, the transformation is based on values at the center of the element
(Pian & Sumihara [1984]).
4.1.1 Assumed Moment Resultant field.

The assumed moment resultant field is a complete linear field in the element natural coordi-

nates and is expressed as:

my
Mgl [1eEq000000] |m
M=, t=l0001&en000[{-} (4.1)
M,| l0000001¢n
mg
\ J

Since complete polynomials are used to express the moments, (4.1) could be used for M
directly. However, the reduction to (2.6a) for satisfaction of the constraints would require selection
of different parameters in each element ( i.e., there would be a dependence on element orientation
of £ and m with respect to x and y ). This dependence may be avoided by using the transformation
procedure described next.
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The following definitions are introduced:

1
xs:%ﬁﬂl 5 H=%‘ﬂ111 > Xh=Z(§'n)1xI
1 1 1
=&y 5 w=guyn 5 yh=g(&n )y
Following Zienkiewicz [1977], the Jacobian of the coordinate transformation from (£,m) to (x,y) is
given by :
J=Jg+J1E+J5m
where,

Jo=xs-yt —xt-ys
Ji=xs-yh —xh-ys
Jy=xh -yt —xt-yh
The resultant moments in the physical space are obtained by using the following transforma-

tion:

1 .
M;; = EFuFﬂMu

where both i and j take the values x or y, and both I and J take the values £ or m, and F,; = g%,
etc.

At the center of the element, F is given by:

FIE =xs FX'I] =x
Fy=ys ; Fyn=y
After redefining the independent coefficients, the assumed moment resultant field is given by :

)
my
My, 100 x%m x% x% xa?n 2xoxé2xsxan]||m
M=1M, t=1010 y2 y% yX% y= 2yyE2yyn|{-t (42
M, 001 xsysmayrE xsys€ xytm AE Anm :
nig
\

where

A=xsyt+xtys

my= 71-(]—(xs2mi +xt2my +2xs xt m3 )

1 » L L
my= 70—(yszm1 +ytzm4 +2ysyt my )
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my= (o mi 4y + (ot b ) i)

_ 1 .
m,—'""-o""'lj

with

(i ,J')6{(4,3),(5,5),(6,2),(7,6),(8,8),(9,9)}

It is convenient to write M in the following form:

a

a o~ o |y
1\'1'_-[1"11“”2],;.2
where

AT AT
my =<my,my,my,mg,ms> ; Wh=<mg,my,mg,ng>

with the above construction the parameter set m, may always be selected as the set to use in satisfy-
ing (2.5).
4.1.2 Assumed Shear Resultant Field.

The shear resultant field is constructed in a manner similar to that described above for M.

Accordingly, let the assumed linear shear resultant field be given by:

\

q1
. (%) [1emoo0o0] %
Q={;}=[0001§n]‘:’ e
g6
L)

The resultant shear field in the physical space is obtained by means of the following transformation :

0= Tl‘Fﬂ or
0

where i takes the values x or y and I takes the values £ or . After redefining the independent shear
cocfficients, the assumed shear resultant field in the physical space is given by:

\

q1

{Qx} [1 Oxsm g xs€ xxm 92

0, -t (4.4)

o =01y yEyeyn|]

g6
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where
_ 1 . .
‘11-70‘(”‘11'*‘ﬂ44)
1 L ] L
qz=J—o(ysq1+ﬁq4)
1 .
@~ 159
with

(i ’j)6{(373)7(4’5)’(5’2)’(6’6)}

It is convenient to write Q in the following form:

a

A 'A 11
] q2

~T T
q1=<q1vQZsQS’Q4> v @ =<¢gs5,96>
with the above construction the parameter set q, may always be selected as the set to use in satisfying

@2.5).

4.2 Assumed Incompatible Modes.

The assumed incompatible modes used in the constraint equations are presented in this section.
To pass the patch test, the first derivative with respect to x and y must integrate to zero. A number
of functions that satisfy this requirement are presented in the finite element literature. Here, two
types of functions were chosen. The first was presented by Wu et al. [1987] and the second by Taylor
et al. [1986]. While these two functions are used, they are by no means optimal.

The first type of incompatible modes used were presented by Wu et al. [1987]. The functions

are given by :
L 20y, 2],
. 2
Ni = ,rl2 + __Jl g - __212 (45b)
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'The second set of the incompatible modes was presented by Taylor et al. [1986]. In order to
obtain a more compact form, the incompatible modes given below are a linear combination of the

modes originally presented. The functions are given by :

. J J
N =(1-Fm) (1-8)+ 7-6(1-7) (4.62)

0 0

i Jl 2 .12
Nb=(1-F-6)(1-m)+ Fn(1-8) (4.6b)

0 0
In order to see the difference between the functions in (4.5) and (4.6), consider the case of a
constant Jacobian element. In this case, the two approaches differ by a constant. As a result, the
functions presented by Taylor et al. [1986] are compatible at the nodes, while the ones presented by

Pian & Wu [1987] are not. Examining the constraint equations shows the coupling term to be the

only term affected by this difference.

4.3 The Elements.

Two elements are presented in this paper. The independent moment and shear resultant fields
presented in (4.2) and (4.4), respectively, are used for both elements. The difference lies in the
incompatible modes used in the constraint equations. The class of elements developed here is termed
Coupled Resultants Bending (CRB). The element associated with the incompatible modes given by

(4.5) is CRBI, while the element associated with the incompatible modes given by (4.6) is CRB2.

There are six constraint equations that are used to eliminate q, and m,. The structure of the

constraint equations in (2.5) implies that g, is a function of q;, and m, is a function of both m, and

q.

For both elements, the elastic compliances are given by:

1 = 0
- 1 0 4.7
0 02(1+v)

12
E

for bending, and

SEt
for shear ( Hughes [1987]) where t is the element thickness, E is Young’s modulus, and v is

= 12(1+v) [(1) (1)] (4.8)
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Poisson’s ratio. Furthermore, a shear correction factor of 5/6 has been assumed in (4.8).

5. Numerical examples.

The performance of the proposed plate elements is evaluated using a set of problems selected
from the literature. The purpose of these evaluations is to test the formulation’s sensitivity to the
specific choice of incompatible modes as well as their overall performance. Evaluations are done with
circular plates, square plates, and a highly skewed rhombic plate. Sensitivity to mesh distortion is
also examined. Convergence of results is compared with the four-node selective reduced integration.
Results are presented for the following elements:

CRBI1 - New formulation, incompatible modes (3.5).

CRB2 - New formulation, incompatible modes (3.6).

S1 - Four-node selective reduced integration ( Hughes [1987] ).

Three types of boundary conditions are used :

SS1 - Simply Supported, w = 0, M, = 0, M, = 0.

SS2 - Simply Supported, w =0, 6, = 0, M, = 0.

Qamped -w= 0,6, = 0,6, =0.

Convergence in the energy norm is the natural convergence test for the finite element method
(Strang & Fix [1973]). It is common practice in the literature, however, to examine convergence of
the finite element solution by analyzing the displacements at characteristic points. In this paper, con-
vergence is examined in terms of both energy norm and center displacement (strain energy reported

is twice the internal strain energy). All tables and figures show the center displacement/energy norm
as a function of the number of elements ( denoted nel ) used in the corresponding mesh.

5.1 Circular Plates.

A circular plate is modeled using 3, 12, 48 and 192 elements. Due to symmetry, only one qua-
drant is discretized. A typical mesh is shown in Figure 5.1. While the three-element mesh results

are retained, it should be noted that significant errors result in approximating the domain. SS1 and
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clamped boundary conditions are reported.

Material Properties
E v t R

Thin Plate | 10920 | 0.3 | 0.1 | 5.0
Thick Plate | 1.365 | 0.3 | 2.0 | 5.0

E3

m)—= 1.0.

These properties indicate that the plate stiffness D =

‘Two loading types are examined: (1) Uniform transverse unit load and (2) Unit point load at the

center of the plate.

5.1.1 Uniform Transverse Unit Load.
Results are compared with the analytical solution. In case of a clamped boundary, the center

transverse displacement is given by:

qR*

2
w(0)=Gpllt 3K(18—v) [;T] ]

and the strain energy is given by:

_ RS 4 (o)
Ea =“5gp 11+ k(1—-v) [R] ]
ust

¢ is the sector analyzed, and is equal to >

in the present examples. For the simply supported case,

the center transverse displacement is given by:

_gR* 5+ 8 e )
v(O= G5l Tt i) [1?]]

and the strain energy is given by:

2
2 p6
_ 9°R°d (T+v 4 t
Bss = 304D [1+v+x(1—v)[R]]

K=

for all examples. It should again be noted that the above energy expressions represent the total

NI

work by the external transverse loads and thus are twice the actual strain energy.

Simply supported thin plate.

Results for SS1 boundary conditions are summarized in Table 5.1 and shown in Figure 5.2.
The exact solutions are w =39.83156 and Egs =359.08748.
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Table 5.1  Gircular Plate - Uniform load,
SS1,t = 0.1
nel CRB1 CRB2 S1
disp. energy disp. energy disp. energy

3 | 33.42998 | 244.54439 | 36.50937 | 282.52226 | 30.22337 | 210.01115

12 | 38.25803 | 327.44936 | 39.37985 | 345.96120 | 37.06431 | 314.57406

48 | 39.49348 | 351.18592 | 39.84320 | 356.66770 | 39.13917 | 347.41788
192 | 39.74969 | 357.11690 | 39.84496 | 358.55001 | 39.65848 | 356.14125

Monotonic convergence is obtained for all three elements in both the energy norm and the
center displacement. The CRB2 element shows a dear superiority over the other two elements
reported. With only three elements in the mesh, 78.7% of the exact strain energy and 91.7% of the

exact center transverse displacement is obtained.

Clamped thin plate.

Results for a clamped boundary are summarized in Table 5.2 and shown in Figure 5.3. The
exact solutions are w =9.78348 and E; =64.09118.

Monotonic convergence in both the energy norm and center displacement is obtained in the
case of all elements. Both the CRB1 and CRB2 elements converge from above for the clamped
boundary, while for SS1 boundary conditions, convergence was from below. The CRB2 element,
which performed well for the SS1 boundary conditions, yields very flexible results for this example:
177.7% of the exact energy for three elements and 136.1% for twelve elements. However, error
analysis on the results shows that quadratic rate of convergence in energy is obtained. The CRBI
element yields the best result for this problem. With twelve elements in the mesh, 106.8% of the

exact strain energy and 104.7% of the center transverse displacement is obtained.

Table 5.2  Gircular Plate - Uniform load,
Qamped, t = 0.1
nel CRB1 CRB2 S1
disp. energy disp. energy disp. energy

3 | 11.07388 | 70.40178 | 15.36831 | 113.87654 | 7.18244 | 33.69067
12 | 10.24633 | 68.44072 | 11.60705 | 87.22176 | 8.93063 | 54.09140
48 | 9.92960 | 65.43534 | 10.29889 | 70.86546 | 9.57239 | 61.67277
192 | 9.82260 | 64.44775 | 9.91879 | 65.85591 | 9.73120 | 63.4829
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Simply supported thick plate.

Results are summarized in Table 5.3 and shown in Figure 5.4. The exact solutions are

w =46.95656 and Eg5 =429.03701.

Table 5.3  Gircular Plate - Uniform load,
SS1, t= 2.
nel CRBL1 CRB2 S1
disp. energy disp. energy disp. energy

3 | 41.22420 | 298.80969 | 44.35011 | 336.93226 | 36.98856 | 261.32771
12 | 45.52658 | 393.25690 | 46.85908 | 412.18318 | 44.07056 | 379.42456
48 | 46.59817 | 419.80374 | 46.97144 | 425.41230 | 46.23842 | 416.07601
192 | 46.86700 | 426.73833 | 46.96275 | 428.17104 | 46.77711 | 425.76041

Monotonic convergence in the energy norm is obtained for all three elements. However, in
terms of the center transverse displacement, the CRB2 element does not converge monotonically.
This illustrates the difficulty of comparing solutions at a single point and why energy is the more
natural basis for comparison. As in the case of the simply supported thin plate, convergence is
obtained from below and the CRB2 element yields the best results. With only three elements,
78.5% of the exact energy and 94.4% of the exact center transverse displacement is obtained. When
a twelve element mesh is used, 99.8% of the exact center transverse displacement and 96.1% of the

exact strain energy is obtained for the CRB2 element.

Clamped thick plate.

Results are summarized in Table 5.4 and shown in Figure 5.5. The exact solutions evaluated
from the above are w =16.90848 and E;, =134.04070.

Table 5.4  QGrcular Plate - Uniform load,
(lamped, t = 2.
nel CRBI1 CRB2 S1
disp. energy disp. energy disp. energy

3 | 18.29822 | 123.25616 | 21.87458 | 165.41479 | 13.85127 | 85.09326
12 | 17.36156 | 133.54089 | 18.73937 | 152.52507 | 15.94038 | 119.79678
48 | 17.02945 | 134.10303 | 17.40752 | 139.54992 | 16.67009 | 130.33612
192 | 16.93933 | 134.06845 | 17.03586 | 135.47738 | 16.84915 | 133.10516

Monotonic convergence in both the energy norm and center transverse displacement is
obtained for CRB2 and S1 elements. The CRB1 element converges monotonically only in center dis-
placement. Both the CRB1 and CRB2 elements converge from above in terms of the center
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transverse displacement. However, the CRB1 element converges from below in the energy norm,
while the CRB2 converges from above. As in the clamped thin plate, the CRB2 element is too flexi-
ble for coarse meshes. The CRBI element again yields excellent results for the clamped problem.
With only three elements, 92.0% of the strain energy and 108.2% of the center transverse displace-

ment is obtained.

5.1.2 Concentrated Transverse Unit Load at the Center.

'The case of a unit point loading yields a strain energy equal to the displacement under the load
and therefore, the strain energy need not be reported. In the thick plate case, the exact center
transverse displacement is infinite. The finite element method however, because it is a weak approxi-
mation, gives a finite displacement. This example is included to test the sensitivity of the formulation

to singularity in the solution.

Simply supported thin and thick plates.
Results for simply supported plates are summarized in Table 5.5 and shown in Figures 5.6 (thin
plate) and 5.7 (thick plate). The exact displacement at the center for the thin plate is w =1.26253

(Timoshenko & Woinowsky-Krieger [1959]). As noted above the displacement at the center for the

thick plate solution is infinite (due to shear deformation).

Table 5.5  Circular Plate - Point load,
SS1

nel t=.1 t=2.
CRBI1 CRR2 S1 CRB1 CRB2 S1

3 1.23384 | 1.41495 | 1.24773 | 1.87239 | 2.04916 | 1.93862
12 | 1.25908 | 1.31392 | 1.22777 | 1.94858 | 2.03346 | 2.17221
48 | 1.27140 | 1.29140 | 1.25529 | 2.04870 | 2.07849 | 2.44954
192 | 1.26863 | 1.27617 | 1.26347 | 2.16517 | 2.17449 | 2.70885

Monotonic convergence for all three elements is obtained for the thick plate case. When rate of
convergence for the thick plate is examined, the best result is obtained by the S1 element. This is
due to the singularity of this element as will be shown in the next example. In the thin plate case,
results for the CRB2 and S1 elements converge monotonically while results for CRB1 element do

not.
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Clamped thin and thick plates.

The results for both thin and thick plates are summarized in Table 5.6 and shown in Figure 5.8
(thin plate) and Figure 5.9 (thick plate).

Table 5.6  Circular Plate - Point load,
Clamped
nel t=.1 t=2.
CRBI1 CRB2 S1 CRBI1 CRB2 S1

3 | 0.51034 | 0.66957 | 0.42038 | 1.13124 | 1.34436 | 1.16862
12 | 0.50512 | 0.55652 | 0.46327 | 1.19051 | 1.28218 | 1.44900
48 | 0.50799 | 0.52902 | 0.49040 | 1.28538 | 1.31671 | 1.72465

192 | 0.50385 | 0.51168 | 0.50316 | 1.40055 | 1.41022 | 1.98356

Monotonic convergence in the thin plate case is obtained for the CRB2 and S1 elements, but

not for CRB1 . In the thick plate case however, all three elements show monotonic convergence.

The thick plate case is used next to demonstrate the stability of the new formulation. The
transverse displacements along the radius, for a mesh with 48 elements, are summarized in Table 5.7
and exhibits in Figure 5.10. The exact solution can be found in Lukasiewicz [1979]. The S1 ele-
ment shows a known instability ( Hughes [1987] ). On the other hand, the CRB1 and CRB2 ele-

ments produce excellent results.

Table 5.7  Thick clamped circular plate,
transverse displacements along the radius.

I CRBL1 CRB2 S1 EXACT

0. 1.28538 | 1.31671 | 1.72465 e
0.625 | 0.82288 | 0.84102 | 0.42266 | 0.77877
1.25 | 0.63154 | 0.64307 | 0.90043 | 0.59442
1.875 | 0.46784 | 0.47606 | 0.23844 | 0.44186
2.5 0.32564 | 0.33267 | 0.49660 | 0.30781
3.125 | 0.20610 | 0.21212 | 0.05851 | 0.19312
3.75 | 0.10956 | 0.11407 | 0.20740 | 0.10111
4.375 | 0.03979 | 0.04229 | -0.01478 | 0.03552
S. 0. 0. 0. 0.

5.2 Square Piates.

A square plate is modeled using meshes of uniform square elements. Due to symmetry, only
one quadrant is discretized, and a typical mesh is shown in Figure 5.11.
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Material Properties
E v t L
Thin Plate | 10.92E+6 | 0.3 | 0.01 | 5.0
Thick Plate | 1.365 03120 | 5.0

Using these properties, the plate bending stiffness D = 1.0.
Only the case of uniform loading is examined. The boundary conditions examined are : SSI,
SS2 and clamped.

The "exact” energy reported is computed from:

E=(J;q(x,y)W(x,y)dQ

using a Fourier series solution and, thus, is twice the actual strain energy.

5.2.1 Thin Plate.
Results are compared to an analytical solution (in a series form) given by Timoshenko &
Woinowsky-Krieger [1959]. In the case of a simply supported plate, analytical results are given only

for SS2 boundary conditions.

Simply supported plate.
Results for a thin plate with SS1 and SS2 boundary conditions are summarized in Tables 5.8

and 5.9, respectively, and shown in Figure 5.12. The exact solution is w =40.623 and E =425.6276.

Table 5.8  Square Plate - Uniform load,

SS1, t = 0.01
nel CRBL1 CRB2 S1
disp. energy disp. energy disp. energy

1 | 49.80058 | 311.81615 | 39.00275 | 243.76716 | 60.09651 | 375.60319
4 | 42.82542 | 398.80376 | 42.24268 | 389.90478 | 43.24200 | 402.47456
16 | 41.14819 | 418.93874 | 40.95346 | 418.30261 | 41.28000 | 419.80500
64 | 40.77255 | 424.12572 | 40.71770 | 424.07838 | 40.78936 | 424.20080
256 | 40.70100 | 425.63930 | 40.68911 | 425.69397 | 40.67196 | 425.35466

Monotonic convergence is obtained for all three elements in the energy norm for the SS1 boun-
dary condition. With the exception of the one element mesh, the three elements yield almost identi-

cal results.
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Table 5.9  Square Plate - Uniform load,
SS2, t = 0.01
nel CRBI1 CRB2 S1
disp. energy disp. energy disp. energy

1 | 31.89756 | 199.35976 | 31.89659 | 199.35372 | 31.88811 | 199.30070
4 | 39.69936 | 364.09940 | 39.69458 | 364.05563 | 39.69009 | 364.00955
16 | 40.44459 | 410.13559 | 40.42559 | 409.94346 | 40.41444 | 409.80934
64 | 40.66742 | 422.70231 | 40.61320 | 422.15320 | 40.57234 | 421.64838
256 | 40.69900 | 425.62046 | 40.69314 | 425.65472 | 40.61095 | 424.63303

26

For the SS2 boundary condition, monotonic convergence in both the energy norm and center

transverse displacement is obtained for all three elements. Again the three elements yield almost

identical results.

Clamped plate.

Results are summarized in Table 5.10 and shown in Figure 5.13. The thin plate solution is

w=12.6 (Timoshenko & Woinowsky-Krieger [1959]).

Table 5.10  Square Plate - Uniform load,
Clamped, t = 0.01
nel CRB1 CRB2 S1
disp. energy disp. energy disp. energy

1 0.00011 | 0.00670 0.00011 | 0.00670 0.00004 0.00223

4 12.11830 | 75.75949 12.11691 | 75.75084 | 12.11266 | 75.70555
16 | 12.52712 | 91.88611 12.52163 | 91.84711 | 12.50715 | 91.66355
64 | 12.68109 | 96.59564 12.67157 | 96.57340 | 12.61672 | 95.86400
256 | 12.70854 | 97.63482 12.75608 | 98.36972 | 12.64424 | 96.92734

All three elements yield nearly identical results (if results for one-element mesh are ignored).

With only four-element mesh, 96.0% of the exact center transverse displacement is obtained.

It is noted that all three elements lock when the one-element mesh is used. This is expected

since all rotational degrees-of-freedom are constrained and thus rotations are identically zero. Under

these constraints, for thin plates where shear deformations are negligible, the derivatives of the

transverse displacement are negligible. As a result, the transverse displacement tends to zero as the
plate thickness approaches zero.
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5.2.2 Thick Plates.

Simply supported plate.

Results for SS1 and SS2 boundary conditions are summarized in Tables 5.11 and 5.12 respec-
tively, and shown in Figure 5.14. While convergence is obtained in both cases, it is of interest to
note that the converged solution for SS1 boundary condition is about 13% higher in both the energy

norm and the center transverse displacement than results using the SS2 restraints.

Table 5.11  Square Plate - Uniform load,

SSL, t = 2.
nel CRBL1 CRB2 S1
disp. energy disp. energy disp. energy

1 | 63.99719 | 399.98244 | 57.54543 | 359.65891 | 74.38187 | 464.88668
4 | 58.61877 | 551.24726 | 61.82475 | 595.31737 | 56.54353 | 538.24175
16 | 55.96186 | 585.20271 | 57.76508 | 610.13517 | 55.65013 | 584.16547
64 | 55.52584 | 596.38017 | 56.07810 | 604.04344 | 55.49343 | 596.64229
256 | 55.46432 | 599.72511 | 55.61035 | 601.75198 | 55.46040 | 599.83988

The analytical solution for SS2 boundary condition (series solution which includes shear deformation)

is w=49.043 and E =526.04.

Table 5.12  Square Plate - Uniform load,

S2,t = 2.
nel CRBL1 CRB2 S1
disp. energy disp. energy disp. energy

1 | 61.73804 | 385.86275 | 56.57157 | 353.57232 | 46.17347 | 288.58418
4 | 55.36514 | 522.66899 | 57.53090 | 552.09748 | 49.21366 | 460.73333
16 | 50.65914 | 526.73375 | 51.39402 | 537.55077 | 49.05768 | 509.26852
64 | 49.44576 | 526.29476 | 49.63552 | 529.14510 | 49.04449 | 521.81896
256 | 49.14365 | 526.10835 | 49.19135 | 526.82857 | 49.04333 | 524.98282

Monotonic convergence in the energy norm is obtained only for the S1 element. The CRBI yields

excellent results, with only four elements in the mesh, 99.4% of the exact strain energy and 112.9%

of the center transverse displacement is obtained.

Clamped plate.

Results are summarized in Table 5.13 and shown in Figure 5.15. The S1 element yields the
best results among the three elements considered. Both the CRB1 and CRB2 elements yield flexible
results. However, the CRB1 element is just slightly flexible for the coarse meshes, 116.7% of the

result obtained for 256 elements while the CRBR is very flexible, 152% of the result obtained for 256
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elements (the four-element mesh results are used).

Table 5.13  Square Plate - Uniform load,

Qamped, t = 2.
nel CRBL1 CRB2 S1
disp. energy disp. energy disp. energy

1 | 20.52723 | 128.29521 | 31.20194 | 195.01214 | 14.28571 | 89.28571
4 | 25.45333 | 215.82077 | 32.89409 | 300.06833 | 21.77378 | 176.36950
16 | 22.84967 | 208.66491 | 24.84375 | 234.74044 | 21.73858 | 196.77579
64 | 22.01024 | 205.08661 | 22.51119 | 211.82512 | 21.72456 | 201.99788
256 | 21.79410 | 204.09345 | 21.91939 | 205.79011 | 21.72225 | 203.31405

5.3 Rhombic Plate.

A simply supported rhombic plate of side a = 100, material properties E = 10E+6, v = 0.3
and t = 1.0 is loaded by a unit uniform loading. A typical mesh used is shown in Fgure 5.16.
Results are summarized in Table 5.14 and shown in Figure 5.17. A comparison solution of 0.04455
has been obtained by Morely [1963].

Table 5.14  Rhombic Plate - Uniform load,
SSL,t=1.,a = 100., ©=30°

nel CRB1 CRB2 S1
disp. energy disp. energy disp. energy

4 0.04031 | 50.38521 | 0.07143 | 89.28845 | 0.02932 | 36.64600
16 0.04150 | 64.76201 | 0.04724 | 72.14388 | 0.04509 | 66.60848
&4 0.04304 | 72.32353 | 0.04538 | 76.54601 | 0.04438 | 72.56578
256 | 0.04456 | 76.33087 | 0.04620 | 79.00726 | 0.04482 | 76.30679
1024 | 0.04535 | 78.06687 | 0.04645 | 79.64557 | 0.04561 | 78.33507

The difficulty of this problem is due to the singularity of the solution for the moments and
shears at the obtuse vertices. Monotonic convergence in both the energy norm and the center

transverse displacement is obtained for both the CRB1 and S1 elements.

5.4 Mesh Distortion.

To study the sensitivity to mesh distortion, a coarse mesh modeling a clamped square plate is
used. Only four elements are used to model one quadrant of the plate. Material properties are as for
the thin square plate example. Two types of distortions are introduced. First, the center node of the
mesh is moved along the main diagonal of the plate as shown in Figure 5.18. Results are summarized

in Table 5.15, and shown in Figure 5.19.
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Table 5.15  Mesh Distortion - Symmetric
A CRBI1 CRB2 S1

-1.25 | 13.81498 | 24.22608 | 11.05384
-1.00 | 13.90309 | 19.35489 | 11.60235
-0.50 | 12.46806 | 12.84389 | 12.09558
0.00 | 12.11830 | 12.11691 | 12.11266
0.50 | 13.47277 | 13.31214 | 11.65238
1.00 | 13.43153 | 16.46809 | 10.59494
1.25 | 12.62252 | 19.47493 | 9.74557

The CRB2 becomes flexible as the mesh is distorted. The CRB1 on the other hand, is flexible
for the initial distortion and stiffens as the mesh is further distorted. None of the three elements
produce results that lock in shear.

Next, the center node is moved parallel to the edge as shown in Figure 5.20. Results are sum-

marized in Table 5.16 and shown in Figure 5.21.

Table 5.16 Mesh Distortion - Asymmetric
A CRBI1 CRB2 S1

0.00 | 12.11830 | 12.11691 | 12.11266
0.02 | 11.65779 | 11.65193 | 11.96376
0.04 | 10.74749 | 10.73900 | 11.54479
0.06 | 9.98084 9.97098 10.90864
0.08 | 9.47010 9.45938 10.12638
0.10 | 9.14%943 9.13807 9.26993
0.15 | 8.78086 8.76871 7.15812
0.20 | 8.67658 8.66506 5.41817
0.30 | 8.71685 8.71264 3.18270
0.50 | 9.07152 9.12362 1.35339
0.80 | 9.72854 | 10.08500 0.55073
1.00 | 10.09830 | 10.93894 0.35102
1.50 | 10.07783 | 13.89768 0.15030
2.00 | 7.66371 16.95343 0.08055
2.49 | 4.25383 19.67465 0.04951

The difficulty of this mesh is that there are aonly eight degrees-of-freedom. Thus, shear locking
becomes an important issue as the symmetry of the mesh is lost. Results show both CRB1 and
CRB2 elements do not lock in shear while the S1 does. This locking is dependent on the plate thick-
ness. Numerical results indicate that severe locking occurs as the distortion becames larger than
about twelve times the plate thickness. Thus, as the thickness is reduced, the S1 element becomes
more and more sensitive to mesh distortion. The CRB1 and CRB2 elements, on the other hand, do
not lock but show a faster deterioration than the S1 element in the initial distortion phase, as is evi-

dent form Figure 5.21.
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6. Concluding Remarks.

This paper has introduced a mixed formulatim.fcx plate bending finite elements based upon
the Reissner-Mindlin plate theory. Starting from the Hellinger-Reissner functional, the terms associ-
ated with incompatible displacements were forced to vanish. As a result, constraint equations on the
shear and moment stress resultant fields were introduced. Because of these constraint equations, a
coupling term between the assumed independent shear and moment stress resultant fields was intro-

duced.

As a result of the explicit coupling between the shear and moment stress resultant fields, the
resulting elements are free of shear locking and possess the correct rank, as proved and demonstrated
by the numerical results. Thus, without resorting to ad-hoc assumptions, elements free of shear lock-
ing can be obtained. The coupling term introduced is consistent with the Reissner-Mindlin plate

theory as is evident from the structure of the equilibrium equations.

Both the CRB1 and CRB2 elements presented in this paper yield good results for both thin and
thick plates. While flexible in the thick plate cases, rapid convergence was obtained. The mesh dis-
tortion test introduced in this paper shows the new formulation to be free of shear locking, even

when the S1 element locks in shear.

The remaining open question is how to choose the incompatible modes. As is illustrated in this
paper, the resulting element performance is heavily dependent upon the choice of the incompatible
modes. In this paper, the incompatible displacements were selected so that the resulting elements
would satisfy the patch test requirements. The objective was to show that the proposed formulation
leads to elements of the correct rank and free of shear locking. The question of optimal conditions
for the incompatible modes is left for future research.
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Figure 2.3 - Sign conventions for stress resultants on positive faces.
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Figure 5.1 - Circular plate. Due to symmetry only
one quadrant is discretized.
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Figure 5.2 - Convergence study for thin circular plate;
simply supported, uniform load.
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Figure 5.3 - Convergence study for thin circular plate;

clamped, uniform load.
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Figure 5.4 - Convergence study for thick circular plate;

simply supported, uniform load.
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Figure 5.5 - Convergence study for thick plate;

clamped, uniform load.
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Figure 5.6 - Convergence study for thin circular plate;

simply supported, concentrated load.
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Figure 5.7 - Thick circular plate; simply supported,
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Figure 5.8 - Thin circular plate; clamped
concentrated load.
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Figure 5.9 - Thick circular plate; clamped,

concentrated load.

Figure 5.10 - Transverse displacement along the

radius; clamped thick circular plate.
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Figure 5.11 - Square plate. Due to symmetry only one
quadrant is discretized.
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Figure 5.14 - Convergence study for thick square
plate; simply supported, uniform load.
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Figure 5.16 - Rhombic plate mesh.
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Figure 5.17 - Convergence study for rhombic plate.
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Figure 5.18 - Mesh distortion - symmetric.
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Figure 5.19 - Sensitivity to mesh distortion - symmetric.
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Figure 5.20 - Mesh distortion - asymmetric.
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Figure 5.21 - Sensitivity to mesh distortion -
asymmetric.





