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LEE G. COOPER, DANIEL KLAPPER, and AKIHIRO INOUE*

Managers are unlikely to keep current with advanced developments in
market-response analysis, and technical analysts often lack the market-
place knowledge of the many product categories they must track through
syndicated data; this is a recipe for bad decisions. The authors present
methods based on three-mode factor analysis and multivariate regres-
sion that can help both analysts and managers make better decisions
regarding whether UPCs should be aggregated into brand units and, if so,
how should the aggregation be done; which marketing instruments to
track; and how to disentangle correlated promotional strategies. The
practicality of this approach is demonstrated by an application to UPC-
level data (25 UPCs, seven marketing instruments, and 156 weeks). In
this example, to aggregate UPCs within a manufacturer into brand units
would distort the relations between the marketing instruments and market
responses. A multivariate regression from the competitive-component
scores provides a methodologically sound and practical method for

Competitive-Component Analysis:
A New Approach to Calibrating
Asymmetric Market-Share Models

calibrating market response in such cases.

The increased availability of syndicated, store-tracking
data has correspondingly increased the pressure to use this
valuable resource in brand planning by manufacturers and
in category management by retailers. But managers who
have the responsibility for planning are rarely equipped with
sufficient analytical knowledge to oversee the construction
of the sophisticated market-response models that are essen-
tial for those managers to do their jobs properly. Technical
staffs, who are more likely to possess the analytical skills,
are being asked to support more diverse brand-management
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teams and/or work in more product categories—to the point
where their marketplace knowledge of the brand categories
they analyze is stretched thin. So, the decisions involved in
building sensible market-response models from scanner data
require more technical knowledge than that possessed by
managers and more category knowledge than that possessed
by technical staffs.

Consider, for example, two decisions inevitably encoun-
tered in building market-response models from scanner
tracking data. First, should universal product codes (UPCs)
be aggregated into the brand units used in most analyses?
And, if so, how should this aggregation be done? Key-
account data for a relatively small category, such as catsup,
might have four brand names plus private-label brands, but
these translate into 25 different UPCs. Should we analyze
the five brand units, the 25 UPCs, or something in between?
If the UPCs within a brand are promoted using the same
strategy and mix and if consumers respond similarly to the
firm’s marketing effort, then nothing will be lost by the
aggregation. But how do we know this a priori? Second, in
some categories some of the seven marketing instruments
tracked in syndicated data (e.g., major newspaper advertise-
ments; line ads; end-aisle, front-aisle, or in-aisle displays;
in-ad coupons; price) are used much less than others. Major
newspaper advertisements may be used much more fre-
quently than line ads, but does this mean that we should
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exclude line ads from the model? Only a few of the UPCs
may ever employ store (in-ad) coupons. How infrequent
does usage have to be, or how few UPCs have to be
involved before it is tolerable to ignore a marketing instru-
ment? These are questions marketing managers are ill
equipped to resolve.

The answers to these questions have a practical impact on
the task of model building. A fully extended attraction (mul-
tiplicative, competitive-interaction [MCI] or multinomial
logit [MNL]) model, for example, allows for all possible
cross-competitive effects between the m brands and the K
marketing instruments—giving a total of (m?2 X K + m)
parameters to be estimated. For five brands and five market-
ing instruments, we must estimate 130 parameters; for 25
UPCs and seven marketing instruments, we must estimate
4400 parameters. There is a world of difference between the
effort needed to estimate and interpret such models.

Marketing managers are even less well equipped to deal
with the modeling issues that result from having highly cor-
related promotional strategies for a brand. Analysts of scan-
ner data often see that temporary price cuts (i.e., price pro-
motions) for leading brands are almost always announced in
major newspaper advertisements. It makes sense to
announce such events loudly. But under such circumstances,
it may be analytically difficult to disentangle the effects of
temporary price reductions and major advertisements. How
to parse the components of correlated marketing strategies is
a continuing puzzle.

We propose a combination of two methods that allows the
data to answer the questions about aggregation of UPCs into
brands, whether marketing instruments can be ignored, and
how to disentangle the components of correlated marketing
strategies. The first method is a special version of three-
mode factor analysis (Tucker 1966), which we call compet-
itive-component analysis, that portrays the competitive
structure underlying the UPCs, the marketing instruments,
and the time dimension—as well as the interrelations among
these competitive structures. By estimating component
scores for brands on combination modes of marketing
instruments over weeks, we can gain insight into the under-
lying competitive dimensions and greatly reduce the number
of parameters that must be estimated in the market-share
model. Application of competitive-component analysis to
the fairly typical case described later leads to the startling
conclusion that the standard practice of aggregating UPCs
into brand units distorts the underlying relation of marketing
instruments to market response.

If aggregation of UPCs is problematic and/or the number
of parameters to be estimated is dauntingly large, the second
method we discuss can be used—a multivariate-regression
model (Cooper and Nakanishi 1988, p. 148) from the com-
petitive-component scores (cf. Tucker 1957). In the applica-
tion described subsequently, the 25 UPCs were reduced to
12 brand components and the seven marketing instruments
were reduced to five instrument components at a loss of
almost no information. This approach decreased the number
of parameters to be estimated from 4400 to 732
(12 X [12 X 5 + 1]) for a fully extended market-share
model. Moreover, having known (inverse) transformations
from the competitive components back to the original UPCs
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and marketing instruments makes it straightforward to com-
pute the implied 4400 competitive parameters along with
their standard errors.

We first describe the multivariate-regression approach to
estimating the parameters of the fully extended attraction
(cross-effects) model. Next, we present competitive-compo-
nent analysis and the brand-strategy analysis it provides for
understanding the coordination of the marketing mix for each
competitor. We then describe how the multivariate regression
can be adapted to the competitive-component scores. Finally,
we present an application to the catsup market—using the
General Location Model (Little and Schluchter; 1985 Olkin
and Tate 1961) to impute the missing shares and prices for
UPCs not sold in a particular time period.

ESTIMATING THE CROSS-EFFECTS MODEL

To develop market-response models that are useful in
brand planning, we must reflect not only the differential
effectiveness with which different brands execute their mar-
keting strategies, but also the stable, cross-competitive
effects. Cross-competitive effects reflect that brands differ
in the degree to which they are influenced by the other
brands’ actions as well as the degree to which they exert
influence on the other brands.

The attraction version of the cross-effects model is (cf.
Cooper and Nakanishi 1988, p. 143):

K m
M Ay = e, e | ] a0

k=1 j=1

m
) Sup = Au / Z Aj(,

i=1
where

A;, = the attraction to brand i in time period t (t = 1, 2,....T),
a, = the brand-specific intercept for brand i, reflecting brand
loyalty and other constant components of attraction,
g;, = the error,
fie = a double-subscripted function in which k controls
whether an MCI or MNL form is used for a particular
marketing instrument and t controls whether raw scores,
exp(z-scores), or a zeta-score transformation is used on
the explanatory variables in time-period t (Cooper and
Nakanishi 1988, pp. 69-78),
Xt = the level of marketing instrument k of brand j in time
period t, and
By = the parameter showing the sensitivity of brand i to
changes in brand j’s marketing instrument k.

A straightforward approach to estimating the parameters
of this market-share model is through multivariate regres-
sion (Cooper and Nakanishi 1988, p. 148).!

A3) Y=X-8+E,

1)) Sp =Sy /8.

I0ther approaches to estimating cross-competitive effects similar to the
cluster asymmetry model (Vanden Abeele, Gijsbrecht, and Vanhuele 1990)
and the asymmetric, hierarchical market-share model (Foekens, Leeflang,
and Wittink 1992) require an a priori structuring of the market. This may
take more knowledge of the category than is available to an analyst.
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where

§., = the geometric mean of s; over i,
Y = the T X m matrix with elements {log s}, },
X =the T X (1 + m X K) matrix J | X, |X;]...| X
J =the T X 1 vector of ones,
X, =the T X m matrix with elements (log[f(XJk,)]}
j=(1,2,..,m),
B = the (1 + m X K) X m matrix (B, | 3,|...| B,).
B, = (o, | Bryt---Biim | -+ | Brit-—-Bkim)’» and

E = the T X m matrix of random errors {g;}.

The multivariate regression greatly simplifies estimation
compared with the Carpenter, Cooper, Hanssens, and
Midgley (1988; hereinafter CCHM) approach. Continuing
with our example of 25 UPCs, seven marketing instruments,
and 156 weeks of data, the CCHM approach would con-
struct a differential-effects matrix with 3900 rows (156 X
25) and 176 columns [1 + (7 X 25)], estimate the differen-
tial effects, cross-correlate the residuals with the marketing
instruments for the other brands, add the significant cross-
effects to the model, and reestimate parameters. Even if only
25% of the potential cross-effects are significant, this would
add almost 1000 parameters. So the expected minimum
cross-products matrix among the predictor variables would
be larger than 1000 X 1000, which would need to be invert-
ed to estimate parameters. The matrix to be inverted to solve
Equation 3 is only 176 X 176, generally a much less daunt-
ing task.

We should note, however, that the 176 X 176 cross-prod-
ucts matrix in this example is singular, because it is based on
a 156 X 176 original data matrix X. Although generalized
inverses can be used in this circumstance (cf. Tucker,
Cooper, and Meredith 1972), the competitive-component
analysis we describe subsequently will also resolve this
problem—and provide insight into the market and competi-
tive structure as well. Using only 12 brand components and
five instrument components reduces the problem to invert-
ing a 61 X 61 cross-products matrix—a trivial task for
microcomputers. Not only is the computation less onerous,
but also being able to calibrate a complete cross-effects
model for a singular cross-products matrix is a great asset to
this approach.

COMPETITIVE-COMPONENT ANALYSIS

The basic data for brand-planning track UPCs and mar-
keting instruments over time and form a three-way array
(Figure 1). Our three-way data are described by three differ-
ent modes (UPCs, Marketing Instruments, and Weeks),
where the term mode refers to different entities that build the
three-way array (e.g., Brands, Instruments, Time, Regions).
The term way refers to the various sides (rows, columns, or
slices) of the data array (Carroll and Arabie 1980).2 This
data cube holds the key to understanding market and com-
petitive structure. If UPCs should be aggregated into brands
and, if so, how UPCs should be aggregated depends on the

2Competitive maps (Cooper 1988), for comparison, analyze a two-mode,
three-way data cube (i.e., brands X brands X weeks).
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Figure 1
THE BASIC DATA
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competitive structure that underlies the brands (UPC) mode.
Whether all instruments need to be included depends on the
structure underlying the marketing-instruments mode. And
the events that shift the nature of the competition are reflect-
ed in the structure underlying the time mode.

But a firm’s strategies might include decisions to copro-
mote certain UPCs within a brand line. Strategies might
encourage coupons for large package sizes, while coordinat-
ing major ads and temporary price reductions for the more
popular package sizes. Strategies for a manufacturer’s own
line should be known (if the analysis is being done by a
manufacturer); detecting competitors’ strategies, however,
must come from analysis of the interactions contained with-
in this data cube.

Numerous methods have been developed, primarily in the
psychometric literature,3 for the exploratory analysis of such
three-mode, three-way data. These methods decompose the
three-mode, three-way array into one, two, or three compo-
nent matrices. For the analysis of the UPCs X Marketing
Instruments X Weeks array, we are interested in a decom-
position of all three modes simultaneously. The most gener-
al method that decomposes the three-way array into three
sets of components is the Tucker3 model.* Tucker (1966)
proposed this model for the three-mode principal compo-
nents analysis that reduces the dimensionality of all three

3For surveys see the works of Kiers (1991), Kroonenberg (1992), or Law
and colleagues (1984).

4The CANDECOMP/PARAFAC (Carroll and Chang 1970; Harshman
1970) model also analyzes three-mode three-way data but does not analyze
or even allow for interactions between the UPCs and the instruments over
the time. We defer discussion of this model until the end of this article.
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modes to describe the information in the data. Algebraically,
the Tucker3 model can be written as

P Q
5) X = Z Z Zaipbchtrgpqr * €ike
p=lq=

Ir=1

~

where x;, is an entry of the three-way data array with
i=1,.,mUPCs, k = 1,...Kinstruments and t = 1,...,T time
periods. In our application, a;; is a coefficient that shows
how strongly the ith UPC is related to the pth factor (or com-
petitive component) among the UPCs. The coefficient by,
shows how strongly marketing instrument k is related to the
qth factor (competitive component) underlying the market-
ing instruments. And the coefficient c,, shows how strongly
the tth week is related to the rth factor (competitive compo-
nent) underlying the time mode. The elements in the core
matrix G, gp, , indicate how strongly component p of brand
mode interacts with component q of instruments mode and
component r of time mode. The model is usually not decom-
posed into all possible components, but only into the first P,
Q, and R components, respectively, with P < m, Q <K, and
R < T, to provide a reduced-rank approximation. The ele-
ments e;, contain the errors resulting from the
approximation.

Tucker’s estimation method is based on stringing out the
data matrix in three different ways and performing princi-
pal-axes analysis on each of the resulting two-way data
matrices to get the component matrices A, B, and C. The
components of the matrices A, B, and C are then related
through the core matrix G. Because Tucker’s estimation
method produces only an approximate least-squares solution
to the three-way array, Kroonenberg and de Leeuw (1980)
developed an exact least-squares solution to the Tucker3
model (TUCKALS3) using an alternating least-squares
algorithm.

After developing the general representation of the three-
way array described by the modes of UPCs, instruments,
and time periods, the Tucker3 model must be related to the
problem of estimating differential and cross-competitive
effects in a market-share model. For this purpose it is useful
to express the Tucker3 model in matrix notation:

R
) X, = Al > ¢,G, [B' +E,.

r=1

Matrix X, is the tth frontal layer of the three-way array,
which contains the marketing strategies of the m UPCs for
the K instruments in the tth time period. G, is the rth layer of
the core matrix summarizing the relation between the com-
ponents of mode A and mode B for the rth time component.

The Tucker3 model also can be expressed by the follow-
ing representation:

%) X, = AHB' + E,,
where
R
®) H, = > ¢,G,
r=1
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H, is the linear combination of the R frontal layers G, of
the core matrix with each component of the time period t. In
his analysis of individual differences in multidimensional
scaling, Tucker (1972) called H, the individual characteris-
tic matrix. H, contains the strength of the interaction
between the P UPC components and the Q instruments com-
ponents for one time period. The element hy of the matrix
H; can be interpreted as the component score of the pth and
the gqth component in the tth period. Strung out into a row
vector, the matrix H, can serve as the tth observation for a
simplified version of the multivariate-regression model dis-
cussed previously (Tucker 1957). Now, instead of using the
whole data matrix X to estimate the differential and cross-
competitive effects, only the component scores for the t
periods are necessary. Instead of estimating m2 X K + m
parameters, only P2 X Q + P parameters need to be esti-
mated. The UPCs are bundled to brand factors that represent
one or more UPCs that follow a similar strategy in improv-
ing their sales and market shares. The instruments are bun-
dled to instrument components representing an instrument
strategy. From the overall fit of the model, we can judge
how well the brand components and the instrument compo-
nents represent the original information in the data. The fit
of the Tucker3 model is derived from the relation of the
explained variation to the original variation in the data:

giigfm
PR

=lk=1t=1

~
[}

—
-
[l

) SS(Fit) =

(10) lkt - Z Z Z alpbchtrgpqr

p=lg=lr=1

When the component matrices A, B, and C are restricted
to be columnwise orthonormal, the fit of the Tucker3 model
is summarized by the core matrix G, which contains all the
variation in the data. Each element of the core matrix gy,
indicates how much the combination of the pth component
of mode A, the g'h component of mode B, and the rth com-
ponent of mode C contributes to the overall fit of the model
(Kroonenberg 1983, p. 158). Just as each element of the core
matrix is related to the overall fit, the extended core matrix
(characteristic time matrix) can be related to the fit. The sum
of the squared elements of the P and Q components of
Z -1 3y Q -1 h2 . expresses how much variation of the tth
tlme perlo&l is explained by the characteristic matrix H,. This
expression allows for the estimation of time-specific good-
ness-of-fit measures.

The entries in H, are like interaction-effect components.
We also can inspect the scores of all combinations of levels
of two modes on the components of the third mode—more
like main-effect components. Thus, we can relate the char-
acteristic matrix for each time period to the components of
either the UPCs or the instruments. Component scores for
the instruments and time periods on the brand components
can be derived from the following equations:



228

P
(I Xk = Zaipdpkl + ek
p=1
Q R
(12) oo = D D bigCupar
a=lr=1

An element d;;; can be viewed as the component score of
an instrument in a time period on component p of the first
mode, the UPC components. If we focus on the issue of esti-
mating brand factors from UPCs, the elements in the matrix
A = {a;,} are analogous to brand factor loadings and the
elements in D = {dpkt} are analogous to brand factor scores.
Similarly, the component scores of the UPCs and the time
periods on the instrument components can be derived:

Q
(13) Xk = Zbkqfiqt +e|kt

-0

1
P R
(14) flqt = Zzbchtrgpqr'
p=lr=1

If we focus on the issue of estimating instrument factors
from UPCs, the elements in the matrix B = {byq} are anal-
ogous to instrument factor loadings and the elements in F =
{fiq} are analogous to instrument factor scores. The element
f,q is @ component score of a UPC in a time period on the
qﬂ1 component of mode B, the instruments mode.

Similar to the multivariate regression based on the char-
acteristic time matrix, a regression can be based on the com-
ponent scores in either matrix D (estimating [P2 X K + P]
parameters) or matrix F (estimating [m2 X Q + m]
parameters).

The next section describes the application of these meth-
ods to the analysis of store-tracking data from the catsup
category.

APPLICATION TO THE CATSUP CATEGORY

The data came from the Single-Source Database provided
by Nielsen Marketing Research. In one of the market areas,
five stores were found that had a common promotional envi-
ronment for the 25 UPCs in the catsup category. Isolating
these stores provided a data set that resembled key-account
data in one region. We aggregated the sales for these five
stores so that the data set consists of 3006 observations over
a period of 156 weeks from 1986 through 1988. Eleven vari-
ables were available:

. week,

UPC,

. dollar volume,

. UPC unit volume,
. line ads,

. major ads,

. end-aisle display,
. front-aisle display,
. in-aisle display,

. store coupon, and
. price per ounce.

—O VPN U R WLWN—~

—
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Measures 5-10 are reported as the percentage of UPC
volume sold when one of these promotion vehicles was in
use. As already indicated, 25 different UPCs are present in
this data set. They differ with respect to unit weight, pack-
age (glass, plastic, or can), special attributes (hot, tangy, lite,
or no salt), and price per ounce. Twenty of the 25 UPCs
belong to nationally or regionally distributed brands, and 5
UPCs are so-called private-label brands available only in
that particular chain. In Table 1, we provide the UPC
description and the market shares for the 25 UPCs. “Market
Share” is recorded as the percentage of total volume over
the 156 weeks, and price is recorded as the volume-weight-
ed, average cents per ounce.

We see a great variation in shares, from over 20% of the
market in UPC 23, a 32-ounce private-label brand, t0.12%
for Heinz Lite, a specialty UPC from the largest brand in the
category. Four UPCs (6, 19, 21, and 23) account for over
64% of the market, and the other 21 account for less than
36%. Note that two of the largest four UPCs are private
labels. These UPCs are usually aggregated regardless of
their sales volume—a decision that we reevaluate subse-
quently. Such wide variation and the presence of eight UPCs
each having less than .5% of the market also tempts many
analysts to aggregate. In Cooper’s (1993) study, for exam-
ple, all the Heinz UPCs were combined and all the private
labels were combined.

In Table 1, we also report the number of weeks during the
156-week period that each marketing-mix instrument was
used for each UPC. The integer values for line ads, major
ads, and store coupons reflect that these vehicles applied to
all five stores in the chain. The fractional values for the var-
ious forms of in-store displays indicate that these varied
from one store in the chain to another. These values aggre-
gate the fraction of all commodity volume for each UPC that
was sold using each instrument. Thus, if for three weeks one
UPC sold 40% of its volume using an end-aisle display, the
value would be 1.2 (3 X .4). We see that line ads are used by
just four UPCs and only one week each. Is this infrequent
enough to ignore? We will see if the proposed analysis can
help us answer such questions.

Data Preprocessing

Data preprocessing involves the decisions of how to stan-
dardize the data and deal with missing data. The choice of
how to standardize the data for three-mode analysis is an
important one that does affect the solutions we obtain.
Fortunately, however, the proper standardizations are dictat-
ed by the general attraction model we use here. The depen-
dent measures are log-centered using equations 3 and 4. In
this application we use exp(z-scores) to reflect the distinc-
tiveness of each marketing action (cf. Cooper and Nakanishi
1988, pp. 69-78). To correspondingly log-center the
explanatory variables in X, all we need to do is transform
each variable into z-scores within each time period.

The original data set is incomplete—only 9 of the 25
UPCs have all 156 weeks of data available. The other UPCs
have from 26 to 154 weeks of data available. In no single
week are all 25 UPCs available. The missing promotional
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Table 1
DESCRIPTIONS, MARKET SHARES, AND MARKETING MIX ACTIVITIES FOR THE 25 UPCS
Cents
Weight Market Line Major End Front In Store Per
Descritpion Ounces Share Ad Ad Aisle Aisle Aisle Coupon Ounce
I HEINZ KETCHUP LITE 13.25 .109 0 0 0 0 0 0 7.40
2 HEINZ KETCHUP 44.00 2.743 0 1 0 0 0 0 4.60
3 HEINZ KETCHUP PLS 40.00 1.815 0 4 0 0 0 0 5.63
4 HEINZ KETCHUP PLS 64.00 2.351 0 3 0 0 0 0 4.76
5 HEINZ KETCHUP 14.00 2.896 0 1 0 0 0 0 5.68
6 HEINZ KETCHUP 32.00 16.743 0 19 3.70 0 2.64 4 4.32
7 HEINZ KETCHUP PLS 28.00 7.754 0 4 35 0 0 0 5.66
8 HEINZ K N ON K PLS 28.00 .496 0 1 0 0 0 0 6.10
9 HEINZ KETCHUP 24.00 425 0 0 0 0 0 0 6.28
10 HEINZ KETCHUP HOT 14.00 239 0 0 0 0 0 0 6.40
11 BROOKS CATSUP TANGY 32.00 1.749 0 2 0 0 33 2 5.19
12 BROOKS CATSUP TANGY PLS 28.00 .524 0 0 0 0 0 0 5.67
13 DEL MONTE KETCHUP 32.00 3.998 0 6 9.77 0 0 428
14 DEL MONTE KETCHUP PLS 28.00 442 0 1 0 0 5.25 0 5.06
15 HUNT'S KETCHUP NO SALT 14.00 .180 0 0 0 0 0 0 6.17
16 HUNT'S KETCHUP 14.00 783 1 0 0 0 0 0 5.98
17 HUNT'S KETCHUP PLS&GLS 44.00 2.430 1 0 0 0 0 0 443
18 HUNT'S KETCHUP CAN 114.00 219 0 0 0 0 0 0 3.21
19 HUNT'S KETCHUP PLS&GLS 32.00 14.060 1 12 4.92 3.34 1.28 2 4.16
20 HUNT'S KETCHUP PLS 17.00 .308 0 0 0 0 0 0 6.15
21 CTL BR CATSUP X FANCY 32.00 13.145 1 18.34 1.24 2.65 1 2.34
22 CTL BR CATSUP CAN 115.00 215 0 0 0 0 0 0 243
23 CTL BR CATSUP FANCY 32.00 20.590 0 10 18.16 3.36 5.99 4 2.66
24 CTL BR CATSUP 14.00 1.309 0 0 0 0 0 0 4.09
25 CTL BR CATSUP FANCY PL 28.00 4.477 0 0 3.62 145 99 1 4.18

instruments are easily replaced by Os, but the missing prices
and sales are another matter. First, imputing sales values of
0 is not acceptable because in general these values must be
log-transformed. Second, because both sales and price data
are missing, previous imputation schemes used in marketing
are not appropriate. Malhotra’s (1987) algorithm is devel-
oped for missing dependent measures when we at least
know the sign of the missing entry, and Cooper, de Leeuw,
and Sogomonian (1991) concentrate on missing indepen-
dent variables.

We apply the General Location Model (Little and
Schluchter 1985; Olkin and Tate 1961) to impute values for
the missing prices and sales. (The procedure is described in
Appendix A.) After completing the data matrix, each mar-
keting instrument was standardized by computing z-scores
within each week. This procedure transformed the variables
into a form that can be directly input into the three-way
analysis or directly input into the multivariate regression
model (forming an MNL model in standard scores or an
MCI model with exp(z-scores)).

Singular-Value Decomposition of One-Mode Two-Way
Matrices

In this step of the analysis, the singular values of each
mode of the data set were obtained independently to help
determine the proper number of dimensions to retain.
Judgments made on the successive contribution of each
additional component were what Tucker (1966) used in his
original procedure. The three-way data were first strung out
in three different ways, and singular-value decompositions
of the three different cross-product matrices were estimat-
ed.> The rule of thumb Tucker used for selecting dimen-
sionality looked at the differences in the size of successive
singular values. All the components prior to the last large
drop in first differences were retained. This heuristic proce-
dure gives at best an approximate answer to the question of
dimensionality. The singular values of the cross-product
matrix P; (the UPC mode), where:

5The singular values (expressed as percentages of the trace of the corre-
sponding cross-products matrix) and the first difference between succes-
sive singular values are listed in Appendix B.
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(15) P, pll

S ST rad

indicated that we should retain 12 components (containing
98.5% of the singular-value sum) to represent the UPC
mode. The singular-value decomposition of the cross-prod-
uct matrix P, of the instruments, where

Pkk’ = Z - Z Xike X |kt
i=1

indicated that 5 components should be retained. The singu-
lar-value decompositions of the cross-product matrix P, of
the weeks, where

an fow =2 D0 xwxe)

indicated that 29 components should be retained.

In general, we expect the forces underlying marketing
efforts to be at least somewhat correlated with one another.
We expect price-related influences to cluster together into
one or more economy factors and different kinds of news-
paper features to cluster together into one or more feature
factors. But we also generally expect the economy factor(s)
and the feature factor(s) to be correlated, given the popular
strategy of announcing low prices in newspaper features.
Similarly, in the search for brand factors, we anticipate that
a collection of UPCs sharing a single brand name will relate
to more than one brand factor. If this occurs, we expect those
brand factors to be at least somewhat correlated with each
other due to copromotion, common advertising, or the brand
loyalty built over time. Because of these expectations, we
use an oblique rotation to represent the underlying struc-
tures. OBLIMIN, an oblique simple-structure rotation (cf.
Mulaik 1972), does a good job of avoiding the problem of
finding reference vectors that are too highly correlated with
each other. So we use the OBLIMIN-rotated component
matrices for the A (UPCs) and B (marketing instruments)
modes. We are free to choose rotations for interpretive ease,
because any nonsingular rotation does not affect the para-
meters of the multivariate regression (as is discussed subse-
quently in relation to Equation 27). Any nonsingular rota-
tion can be applied to the component matrices as long as the
core matrix is counter-rotated to preserve the relation to the
original data. Let

(16) P, =

R
(18 X, = ATT ' > ¢,G, @& +E,

r=1

and
R
(19) X, = A*| > c,G] B+ +E,,
r=1

where

A* = AT,

B*' = ®'B’, and

G*, = T-1G, P!
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The values of A* are displayed in Table 2.6 The first four
components are for all practical purposes, specific to the
four largest-share UPCs (see Table 1 for shares). The fifth
component is the only one that looks like a common factor
(i.e., multiple items loading on a single factor). The special-
ty UPCs (Heinz Lite and Heinz Hot) anchor the negative
pole and the giant-size cans (Hunts 114 oz. can and Ctl Br
115 oz. can) anchor the positive pole. The remaining seven
components are specific to seven smaller-sized UPCs, but in
a manner unrelated to market share. Even though the
retained components on the UPC mode accounted for 98.6%
of the sum of squares, nine UPCs have no major weights
(ajp > .2) on any component. Heinz UPCs weigh heavily on
five components, Del Monte UPCs on two, Hunts UPCs on
two, and the five private-label UPCs on four.” Note that no
pair of dimensions in the OBLIMIN solution is correlated as
high as .05—indicating this pattern is not the result of high
correlations between the oblique dimensions.

This pattern of weights casts serious doubt on the practice
of aggregating UPCs with common brand names. If UPCs
load on a common factor, they can be aggregated. If UPCs
load on two factors, one of which is essentially constant,
then the UPCs can be aggregated. But averaging (or total-
ing) results for brand units with a structure that spans multi-
ple factors creates what Estes (1956) calls functions modi-
fied by averaging. The form of the functional relation
between the explanatory variables for these aggregated
brand units and the dependent measure is distorted by aggre-
gation. The proper procedures in such cases are to calibrate
the market-response model based on either the 25 UPCs or
the 12 competitive-component scores. Neither approach will
be distorted by UPC aggregation.

Table 3 contains the OBLIMIN rotated pattern of the mar-
keting instruments. This pattern has no common factors. We
have essentially specific components for price, end-aisle
displays, major ads, in-aisle displays, and front-aisle dis-
plays. Line ads and store coupons have no major weights
(byq > -2) on these components. So the four store-weeks of
lme ads are apparently few enough to ignore, but general-
ization of this rule is tenuous. Note that store coupons were
used in 14 store weeks (see Table 1). Store coupons had no
major loading, whereas front-aisle displays that had fewer
store-weeks weighed heavily on Component 5. Again the
pattern is not the result of highly correlated oblique compo-
nents—there is no correlation higher than .20 in absolute
value.

The patterns for UPCs and for marketing instruments are
different from what factor analysts have come to expect in
such domains as attitude or ability measurement, achieve-
ment or aptitude testing, or personality assessment, in which
common factors are the rule. Perhaps we are naive to expect
familiar patterns when we are analyzing such unfamiliar
data. Although the excellent fit reassures us that we have
retained in these components the essential variation (infor-

6Many of the three-mode computations were performed using the
TUCKALS3 and TUCKALS?2 programs by P. M. Kroonenberg (e-mail:
kroonenb@rulfsw.leidenuniv.nl).

7This is not the result of retaining a large number of components.
Preliminary research retaining five, seven, and ten components revealed
conceptually similar patterns.
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Table 3
FINAL COMPONENT MATRIX MODE B: OBLIMIN ROTATED AND
REFLECTED

COMP! COMP2 COMP3 COMP4 COMPS5

| Line Ads .002 018 -.006 -.008 .042
2 Major Ads -.000 -.000 995 -.000 -.000
3 End-Aisle Display  -.000 1.000 .000 -001 -.001
4 Front-Aisle Display ~ .000 000 -.000 -.000 997
S In-Aisle Display -.000 000 -.000 1.000 -.000
6 Store Coupon -018 -.006 .097 -014 066
7 Price 1.000 .000 -.000 -.000 .000

mation) we need to estimate market-response parameter, we
must look deeper to understand competitive structure.

A Two-Mode Three-Way Analysis of UPC Strategies

To see the promotional strategy employed by each UPC,
we use Tucker’s (1972) generalization of the individual-dif-
ferences model for multidimensional scaling (Tucker and
Messick 1963). This analysis develops a common scaling
space that in our case shows the amalgam relations between
the ways marketing instruments are used by the various
UPCs. The analysis also provides individual characteristic
matrices that show how each UPC deviates from the com-
mon space. Individuals may differ in the amount of weight
placed on the dimensions of the common space or by how
strongly correlated common dimensions appear to be.

To obtain this solution, the original three-mode three-way
data array was transformed into a two-mode three-way array
with the UPC and instruments modes by the following steps:

1. The Euclidean (profile) distances between the instruments
over the observed period of 156 weeks were estimated for
each UPC separately.

2. The distances were converted to scalar products of vectors
emanating from the centroid of the instruments by the formu-
lae developed by Tucker and presented by Torgerson (1958,
p- 258),

20 8y = —%(wa - 8%, - 8% +82)

Each slice of the three-dimensional matrix could be ana-
lyzed UPC by UPC, but this procedure would ignore the
interactions between the UPCs. We followed a procedure
outlined by Tucker (1972) for the case of multidimensional
scaling of individual differences. Tucker shows that the sim-
ilarities among objects expressed by scalar products for an
individual (UPC) i can be decomposed in the following way:

@1 S, = Q¥,Q’,

where

S, contains the scalar products of the k = 1,...,K instruments for
individual i,

) is the common scaling space for the marketing instruments
for all individuals, and

W, is the individual characteristic matrix.

If we define a diagonal matrix W; with the square roots of
the diagonal entries in the matrix ¥;
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(22) W2 = Diag(V¥,),

the matrix S; can be transformed using the following
formulae:

(23) Z, = QW
24) R=wW, ' ww "
and

(25) S,=ZRZ/,
where

R, = the correlation matrix between the dimensions of the com-
mon space seen from the perspective of UPC i,

Z, = the matrix of coordinate for the instruments from the point
of view of UPC i, and

W, = the matrix of weights for the common dimensions from
the point of view of UPC i.

This method is sometimes called the Tucker2 model, and
the TUCKALS2 algorithm (Kroonenberg and de Leeuw
1977) fits this model in a least-squares sense. To determine
the dimensionality in the TUCKALS?2 approach, a singular-
value decomposition was used. The two-mode three-way
array was strung out into a two-way matrix, and the cross-
product matrix for the instruments was estimated (see
Equation 16). The singular-value analysis resulted in the
values reported in the first row of Table 4. We selected three
dimensions for the common scaling space—accounting for
97.1% of the variance in the scalar products.8 The common
scaling space (unrotated and after a OBLIMIN rotation) is
given in Table 5. The OBLIMIN is simpler to interpret than
the unrotated, common scaling space. The first dimension
strongly emphasizes price—with a slight contrast of price
with front-aisle and in-aisle displays. The second dimension
strongly emphasizes end-aisle displays—with a slight con-
trast of line ads and store coupons. The third dimension
emphasizes major ads—again with a slight contrast of both
front-aisle and in-aisle displays. These are the common
building blocks from which the marketing-mix strategies for
each UPC are constructed.

Singular-value analyses were undertaken for each indi-
vidual UPC. The results are shown in Table 4, with the bold
type indicating the number of dimensions we judged appro-
priate in each case.

Ten of the 25 UPCs are one-dimensional in their market-
ing strategies. In each of these cases, the single factor
involved price alone. Five of these ten were the UPCs we
already indicated weighed most heavily on Component 5 in
the UPC-mode analysis summarized in Table 5 (i.e., UPCs
1, 10, 18, 22, and 24). Four of the remaining five price-strat-
egy UPCs have weights between —.15 and —.19 on

8In the Tucker2 model, two of the component modes are supposed to
produce identical matrices. When four dimensions were retained (the num-
ber that seems subjectively correct to us) and this method applied, the two
component matrices were only identical for the first two components. The
third and the fourth components were different. The meaning of such an
outcome has not been discussed in the literature. We believed it would be
prudent to select the three-dimensional solution that had converged

properly.
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Table 4
THE SINGULAR VALUES (SV) FOR THE 25 SCALAR-PRODUCT MATRICES

svi sv2 sV3 sv4 %] sV6 sv7
Common 72.86 12.57 6.47 5.83 1.86 Al 00
UPCI 98.51 61 31 27 17 08 02
UPC2 55.99 31.54 5.96 3.15 1.9 1.03 31
UPC3 55.78 39.38 245 1.16 72 36 1
UPC4 71.16 13.89 4.00 2.42 1.48 78 23
UPCS 64.26 28.95 325 171 1.08 54 17
UPC6 52.49 18.55 15.23 10.62 2.95 1 01
UPC7 5234 41.74 352 118 72 35 1
UPC8 90.61 5.04 2.17 1.05 66 33 10
UPCY 95.62 1.73 94 83 51 26 08
UPCI0 96.05 1.60 84 73 45 23 07
UPCII 4485 31.44 14.53 5.97 2.48 59 09
UPCI2 87.37 5.45 2.59 222 1.40 71 22
UPCI3 60.69 27.90 10.34 59 30 13 04
UPCI4 84.85 8.83 4.33 1.02 58 28 08
UPCI5 94.64 2.43 1.03 92 57 29 09
UPCI6 77.89 16.85 1.95 1.24 1.04 67 33
UPCI7 49.61 37.50 5.52 2.74 2.43 1.39 78
UPCI18 96.94 1.26 65 55 34 17 05
UPCI19 38.29 25.33 15.31 7.85 6.37 4.59 2.23
UPC20 94.47 2.22 1.19 1.02 64 32 10
UPC21 57.69 18.35 10.19 6.23 5.03 130 1.19
UPC22 98.50 62 31 27 17 .08 02
UPC23 49.25 15.96 12.76 10.63 7.95 3.42 00
UPC24 89.45 3.98 2.38 2.04 1.27 65 20
UPC25 42.03 2092 16.32 12.98 7.08 59 .05

Component 5 (i.e., UPCs 8, 9, 15, and 20) with no larger
weight (in absolute value) on any other component. It seems
clear now that Component 5 represents UPCs that employ a
price-dominated strategy. Referring back to the original
description of marketing-mix activity in Table 1, we note
that nine of the ten UPCs we identified are the only UPCs
that employed no marketing instrument other than price.
The tenth UPC (UPC 8) had one week of a major ad as the
only marketing-mix activity other than price variation.

Seven of the UPCs in Table 4 employed two-dimensional
marketing strategies. Five of the seven (UPCs 2, 3, 4, 5, and
7) are Heinz brands that use a strategy that emphasizes price
and major ads. The other two are Hunts brands (UPCs 16
and 17) that weight price heavily and end-aisle displays
slightly.9

Five UPCs have three-dimensional strategies: UPCs 13,
19, and 21 have strong weights on price, major ads, and end-
aisle displays and use these marketing instruments actively.
UPC 11 weights price and major ads much more heavily
than end-aisle display. UPC 14 has modest weights that
emphasize major ads over price and price over end-aisle
displays.

Heinz 32-ounce (UPC 6) has a 16.7% share by itself. Its
strategy is four-dimensional—employing all marketing
instruments actively, except for line ads and front-aisle dis-
plays. Private-label UPCs 23 and 25 have five-dimensional
strategies. UPC 23 is the single largest seller, holding 20.6%

9Remember that we analyzed z-scores. So even though these UPCs are
not shown in Table 1 as using end-aisle displays, there could be a strategy
of changing price when other Hunts UPCs (such as UPC 19) use end-aisle
displays. Such coordination would be expected to show up as something
other than a pure price strategy.

of the market. Every marketing instrument except line ads is
used. UPC 25 has a 5.5% share. This UPC has proportional-
ly fewer promotions but still employs all marketing instru-
ments, except line and major ads.

The Tucker2 model has provided insight into the dimen-
sionality and structure of the marketing strategies down to
the UPC level. We find that the raw marketing-mix activities
(Table 1) are a less-than-perfect guide to understanding the
marketing strategies even within a brand line. We also have
gained insight into the structure underlying the UPC mode
displayed in Table 2. We now turn to estimating the relations
between the marketing-mix activity (on which all prior
analyses are based) and the market response.

A Multivariate Regression from Competitive Components

We are working with the results of a three-mode analysis
that provided a solution with P = 12 components in mode A
(UPCs), Q = S components in mode B (instruments), and R
= 29 components in mode C (time). The 12 X 5 X 29 com-
ponent solution yields a fit of 94.2%, which indicates that
the components account for almost all the variation in the
data and that the solution is a good basis for further analy-
sis. Tucker (1972) emphasizes looking for the last drop in
singular values (or eigenvalues). If we look just for large
drops (rather than the last large drop) and accept a lower-
dimensional solution (P = 2, Q = 2, and R = 5) the fit is
only 60.1%.

As outlined previously, the component scores of the week
or time characteristic matrices were estimated by Equation
8. The matrix H, was the tth case in the multivariate-regres-
sion model and the tth row in the regression matrix H, which
has P X Q + 1 columns, based on the P brand components,
the Q instrument components, and a column of ones for the



234

Table 5
THE TUCKALS2 SOLUTION FOR THE
SCALAR-PRODUCT MATRICES

Common Scaling Space—Unrotated.

Line Ads -.039 -.140 .288
Major Ads .078 -.555 =727
End-Aisle Display 579 .659 -.263
Front-Aisle Display .065 -.089 359
In-Aisle Display 135 -.072 316
Store Coupon -.023 =222 227
Price -.796 419 -.200

Common Scaling Space—Oblimin Rotated and Reflected.

Line Ads -157 -.256 -204
Major Ads -.031 -.027 910
End-Aisle Display -.027 910 -.025
Front-Aisle Display -244 -.196 -.287
In-Aisle Display =272 -.126 -.253
Store Coupon -.185 =279 -112
Price 915 026 -.028

brand-specific effects. Because the independent variables
have been reduced to component scores, the dependent mea-
sure had to be related to the component matrix A. In the
original data set, the dependent measures are in a matrix Y
of order T X m, withi = 1,...,m UPCs (see equations 3 and
4). The matrix Y can be related to the TUCKALS3 solution
by the following transformation:

(26) 1Y = 1Y m Ap.

With the matrices Y* and H, we obtain the following mul-
tivariate-regression model:

@n Y" = HBpg +E,

where Bpg contains the regression parameters for the P
brand components, the Q instrument components, and the
brand-specific intercepts. The subscripts PQ indicate the
number of parameters estimated for the brand components
(P) and the instrument components (Q). Equation 27 also
should make it clear that the choice of component rotation is
purely for interpretive ease, as H (and consequently Bpq) is
unaffected by any rotation of the UPC, instrument, or time-
period modes.

As outlined by Tucker (1966, p. 289), the rank of the
matrix H will be the rank of the component matrix C plus
one for the intercept. The component matrix C is a full col-
umn-rank matrix with rank 29. To estimate the coefficient
matrix Bpq, we performed a full-column rank singular-value
decomposition on the regression matrix H:

(28) H = UAV'".

As expected, only 30 singular values in the matrix D were
different from zero. The regression coefficient matrix Bpg*
can be obtained from the first 30 eigenvectors of U:

9 Brpo” =(UjUs) ' Uj Y = U3 Y™

An unbiased estimate of the coefficient matrix 3 can be
obtained from
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(30) Bro = V3oA3Bho-

The variance-covariance matrix of the residuals and the
variance of the 3 coefficients are:

G Spg = ﬁ(Y‘ ~ HBpg)'- (Y* - HBpg)
= i(Y' - UspAzVio VaoA3B o )
(Y" - U3pA3Vio V3A3Bho)
= S(Y" - UsBio) - (Y" - Unbiq)
and
32) Var(Bpg ) = Diag(HH) ™' ® Spq.

where ® is the Kronecker product. The subscripts on the
matrices Zpg and Bpg indicate that the matrix of errors and
the matrix of regression coefficients pertain to a solution
with P brand components on Q instrument components.

Although Bp, are the regression estimates for the compo-
nent scores of matrices A and B of the TUCKALS3 solution
and could be interpreted directly, we also are interested in
the regression estimates for the original UPCs on the Q
instrument components. The estimation of the parameters
for the 25 UPCs from the five instrument components and
the standard errors can be derived from the following pro-
cedure (the intercept-term is dropped from consideration):
First the matrix Bpy must be related back to the original m
UPCs. The information for the inverse transformation is
provided by component matrix A. Let I indicate an identity
matrix and A™ indicate the generalized inverse of A:

(33) BmQ = ([Q ®A)'(BRPQ'A-)a

where the indices mQ on the regression matrix indicate that
this matrix contains the coefficients for the m UPCs on the
Q instrument components, and the BRPQ are the regression
coefficients for P UPC components and the Q instrument
components with the R indicating that the brand-specific
coefficients removed from (.10

The regression matrix H column for brand-specific inter-
cepts removed are denoted as Hg and can be related to the
original m UPCs using

(34) XQ =HR‘ ([Q ® A_).

The corresponding variance-covariance matrices can be
estimated as

l ’
35) Imq =7 (Y-XqBm@) " (Y-XgBmo)
and
(36) Var(Bng) = Diag(XoXq) ' ® Zmo-

10Equation 33 does not provide an unbiased estimate of B, We could
get an unbiased estimate if instead of using H, we use the extended core in
Equation 27.
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The subscript Q indicates that the regression matrix refers to
the Q instrument components.

Furthermore, we can transform the regression parameters
on the Q instrument components back to the original K mar-
keting instruments. The information for this transformation
is provided by the components matrix B of the
instruments:!!

(€0)] Buk = B®Ip) Bmg-

The corresponding regression matrix X can be obtained
as follows:

(38) Xx = Xo-(B"®I,),

where B~ is the generalized inverse of B. The standard errors
of the fully extended cross-effects model are given by

(39 Tk = 3 (Y- XgBax (Y - XgBog)

and

(40) Var(B k) = Diag(Xk Xg) ' ® k-

The subscript K on the regression matrix X indicates that
this matrix belongs to the original K instruments. 12

Because we imputed the conditional means for missing
values, we must adjust the variance-covariances of residu-
als. According to Little and Rubin (1987, pp. 25, 44), the
following adjustment should be performed:

A _ A n-p
40 g, = G*ij(m-p)

where c/,-\ * is the sample covariance estimated on the basis
of n total 'samples, and m is the total number of observed
samples. This implies we can either multiply the variance-
covariance matrix of parameters by 1.393 = (3900 — 732)/
(3006 — 732) or divide the t-value matrix of parameters by
1.180 = V1.393 and infer the statistical significance as usual.
Alternatively, we can simply adjust the critical values we
use for testing statistical significance—multiplying the stan-
dard critical value by 1.18. In this case, we would use 1.94
instead of 1.645 (5% one-tailed o with infinite degrees of
freedom), or 2.31 instead of 1.96 (5% two-tailed a with infi-
nite degrees of freedom).

We use the adjusted one-tailed critical value (1.94) for
differential (self) effects, because we typically have natural
hypotheses regarding the direction of these effects (i.e.,
price has a negative differential [self] effect and all other
instruments have positive differential [self] effects). But we

HEquation 37 does not provide an unbiased estimator.

12An anonymous referee pointed out that these standard errors would
greatly overstate the certainty that can be ascribed to OLS coefficients,
because they are valid only if the market response is uncorrelated with the
collinear influences in the excluded components. To test whether this con-
dition applied to the current illustration, a multivariate regression was run
on all the excluded components (UPC components 13-25, instrument com-
ponents 6 and 7, and time components 30~156). The RV for this model was
.054. This indicates that the excluded components were relatively unrelat-
ed to the market response. In the current case, the standard errors do not
seem (o overstate our certainty about the regression parameters. We thank
the referee for this thought-provoking comment.
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use the nondirectional value for cross-competitive effects
because they represent the deviation of a cross-effect from
what we expect under the symmetric market hypothesis. The
symmetric market hypothesis basically asserts that when
one brand looses attraction, the other brands gain strictly in
proportion to their market shares (cf. Bell, Keeney, and
Little 1975). In analyzing a number of UPCs within a single
brand line, we do not expect the symmetric market hypoth-
esis to hold. What our cross-effects show is whether a par-
ticular effect is either more or less competitive than is
implied by the symmetric market hypothesis and thus has no
expected direction.

Overall, 31 of the 175 differential effects were significant
(18% significant at a = .05). Of the remaining 144 differ-
ential effects, four were extreme enough to be significant in
the wrong direction (2.8% wrong-signed and significant at o
= .05). Three of the bad signs were for the seldom-used line
ads, and none of these involved a UPC that actually used
line ads. The other bad sign involved in-aisle display, which
again the UPC did not use. All results involving differential
effects are far better than we could expect by random chance
alone. Among the major marketing instruments (price,
major ads, and end-aisle displays), 15 of 75 differential
effects were significant (20% significant at & = .05), and
there were no bad signs.!3

Approximately 14% of the 4200 potential cross-effects
were significant at &« = .05. This is certainly many more
than we expect by random chance alone. Over all marketing
instruments, these effects were split relatively evenly
between those indicating greater competition than the sym-
metric market hypothesis would imply and those indicating
greater cooperation. If we limit our count to the cross-effects
for the three major instruments and further limit it to just the
between-brand cross-effects, then 60% are competitive
cross-effects and 40% are cooperative cross-effects. Still,
we expect competitive cross-effects even within a brand line
if not all the UPCs are copromoted simultaneously. If a dis-
play does its job and not all UPCs within a brand line are on
the display, we expect cannibalization as well as competitive
effects on rivals.

The overall fit of the multivariate-regression models can
be assessed using the matrix correlation, RV (Ramsay, ten
Berge, and Styan 1984), between the predicted and original
values in the Y matrix. We can assess this correlation for
each of the three multivariate regressions performed. For the
12 brand components and five instrument components, the
correlation is .993; for the 25 UPCs and the five instrument
components, it is .985; and for the 25 UPCs and the original
seven marketing instruments, it is .985. As has been found
in the other applications, this style of market-share model
fits extremely well.

For comparison we estimated an approximation to the
fully extended model on the original scores!4 and a model
based on the CCHM specification, of asymmetric attrac-

13The complete tables are available on request.

14Because the fully extended model 1s singular, we first eliminated all
cross-effects for marketing instruments that were unused by the corre-
sponding UPC and then approximated the needed inverse using a general-
ized inverse based on the nonzero singular values. This provides a solution
that is usable for comparison purposes at least.
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tions. The RV for the approximate fully extended model is
.992—just lower than the solution based on competitive
component scores. The CCHM specification fit is .989. So,
the fit of the model based on competitive components is
much closer to the calibration fit of the fully extended model
than to that of the CCHM specification.

A validation study was conducted splitting the data into
104 weeks for calibration and 52 weeks for cross-validation.
When the same decisions on number of factors were
employed on this smaller data set, the cross-validity RV was
.977. The study also showed that the structures underlying
these data are generally robust. For a corresponding cross-
validation on the approximate fully extended model, the
cross-validity RV was .933 and for the CCHM specification,
the cross-validity fit was .924. So the competitive compo-
nent model holds up better in cross-validation than does the
fully extended model or the CCHM specification.

CONCLUSIONS

We present a combination of methods that enable us to
calibrate and cross-validate fully extended cross-effects
market-share models from UPC-level data. We included all
the marketing instruments tracked by syndicated data, even
though some of the instruments were rarely used in the mar-
keting mix of any UPC. Given almost 700 significant cross-
effects, the standard approach would have required inverting
an approximately 750 X 750 cross-products matrix—a major
undertaking. The current approach inverts a 61 X 61 matrix
—a trivial task on modern PCs. All the computations for the
three-mode analysis and the multivariate regression were
computed using a 20 megahertz 386 PC—old technology by
now. Demonstrating the practicality of this approach makes
it easier for technical staffs to undertake such analyses in
categories with which they are not familiar. What guides
decision making is the analysis, rather than an analyst’s mar-
ketplace knowledge regarding the brands in the category.

We also developed methods for investigating the structure
underlying marketing-mix strategies for each UPC. All the
unidimensional strategies were dominated by price. Most of
the two-dimensional strategies involved price and major
ads. We saw higher-dimensional strategies for the largest
UPCs. Even within a single brand line, the different UPCs
were found to vary in strategy. Marketing managers should
think through how multiple strategies can create synergies
that enhance cooperation and minimize cannibalization.

Our effort is limited in at least two important ways. First,
we cannot generalize the applicability of our new approach
on the basis of the catsup category alone. For one thing, the
catsup category has relatively few UPCs. The only other
major work at this level of disaggregation is Fader, Hardie,
and Walsh’s (1994) study involving 58 UPCs. We must con-
duct this style analysis in more categories to see if the
unusual factor patterns are typical for this style data.
Second, we did not perform multiple imputations of the
missing data. Although this would require corresponding
multiples of three-mode components analysis and multiples
of the multivariate regression, the effort would enable the
investigation of the statistical properties of the parameter
estimates. This is a prime candidate for further research.
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We could question if the particular combination of meth-
ods we use here is the best. After all, we do use a lot of
methods: the Tucker3 model, using OBLIMIN rotation and
the General Location Model for missing data, followed by a
multivariate regression from the competitive-component
scores. Any claim to being the best is based first and fore-
most on the generality of the Tucker3 model. Three-mode
models such as the CANDECOMP/PARAFAC (Carroll and
Chang 1970; Harshman 1970) or CANDELINC (Carroll,
Pruzansky, and Kruskal 1980) require the same number of
factors to underlie UPCs, marketing instruments, and time.
We have seen that different numbers of factors are needed
for these different modes—12 for UPCs, 5 for marketing
instruments, and 29 for time periods. These models also
allow no interactions between the modes (i.e., the frontal
slices of the core matrix must be diagonal). Such restrictions
seem substantively inappropriate in our general case.
Moreover, Kiers (1991) has demonstrated that because of
these restrictions, none of the constrained models can fit bet-
ter than the corresponding Tucker3 model.

Once we accept the Tucker3 model as most appropriate
for representing general three-mode three-way data, the
other choices are not as controversial. The General Location
Model simply provides the maximum-likelihood estimate of
the appropriate conditional mean for each missing sales or
price. No other method has been advanced in the marketing
literature that is equally advantageous for both dependent
and independent measures. The choice of OBLIMIN is
merely the choice of oblique simple structure as opposed to
an orthogonal approximation to simple structure as in VARI-
MAX. We have no reason to expect factors underlying
UPCs to be orthogonal. Throughout this exploration we
have emphasized methods that would enable us to see what
is there, as opposed to constraining the structure to fit one
preconceived notion or another. Restrictions in the other
models of the sorts we describe here imply a particular
direction for an analysis. Consequently they violate one of
the basic principles of leadership: If you do not know where
you are going, do not lead.

Methodologically, we have always known where we were
going. The goal was to have a series of methods that would
enable us to explore the causal data underlying market
response and connect the results of that exploration to the
parameters of a logically consistent market-share model. To
do this right, we had to maintain the metric quality of the
original data. Throughout all the transformations involved in
the methods we illustrate here, we have done so. The multi-
variate regression achieves this final goal.

In summary, we have presented methods that make ana-
lysts more able to do their job and provide marketing man-
agers a more fine-grained picture of strategies and competi-
tion within a brand line and between brand lines. Our find-
ings indicate it is a mistake to aggregate UPCs into brand
units. Such aggregation will distort the relation of the
brand’s actions to the market response. A multivariate
regression from competitive components, as discussed here,
provides a viable alternative that avoids this aggregation
problem altogether.
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Appendix B
SELECTING DIMESIONALITY FOR 3-MODE ANALYSIS

To simplify our application of the General Location
Model (Little and Schluchter 1985; Olkin and Tate 1961) we
represented all the marketing-mix instruments, except price,
as categorical (binary) variables. For the two continuous
variables (price and sales), we assume a bivariate-normal
distribution, with a mean that varies with each different
combination of the categorical variables. With six categori-
cal variables for each of 25 UPCs, we have, in essence, 1600
( = 26 X 25) cells, each of which has bivariate normal-den-
sity for the two continuous variables (price and sales). The
General Location Model posits a multinomial mixture of
multivariate-normal distributions in which the within-cell
covariance matrix is assumed to be the same across all the
cells. For categorical missing values, the logit model is
applied to impute values, and for continuous missing values,
the conditional normal regression model is used.

It should be noted that, whenever we had missing prices
and sales, the other six marketing instruments should have 0
values (i.e., if there were no sales for a UPC in a week, we
feel justified in assuming that there were no major ads, line
ads, displays, or store coupons). Hence, we imputed O for
missing marketing instruments. Thus, we had only to impute
values for the missing prices and sales. With the General
Location Model, we have the ability to create multiple
imputations (i.e., multiple data sets that vary in the values
imputed for the missing elements). Such multiple imputa-
tions are valuable in developing bootstrap estimates for
regression applications but are burdensome when an analy-
sis such as we are undertaking follows the imputation. So
we chose to complete our data matrix only once. This makes
our application of the General Location Model equivalent to
imputing the maximum-likelihood estimates of conditional
means for missing prices and sales (e.g., Little and Rubin
1987).
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