
UC Riverside
UC Riverside Previously Published Works

Title
Compiling irregular applications for reconfigurable systems

Permalink
https://escholarship.org/uc/item/3wz95681

Journal
International Journal of High Performance Computing and Networking, 7(4)

ISSN
1740-0562

Authors
Halstead, Robert J
Villarreal, Jason
Najjar, Walid A

Publication Date
2014

DOI
10.1504/ijhpcn.2014.062725

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wz95681
https://escholarship.org
http://www.cdlib.org/

258 Int. J. High Performance Computing and Networking, Vol. 7, No. 4, 2014

Copyright © 2014 Inderscience Enterprises Ltd.

Compiling irregular applications for reconfigurable
systems

Robert J. Halstead*
Department of Computer Science and Engineering,
University of California,
Riverside, CA 92507, USA
E-mail: rhalstea@cs.ucr.edu
*Corresponding author

Jason Villarreal
Jacquard Computing,
Riverside, CA 92507, USA
E-mail: jason@jacquardcomputing.com

Walid A. Najjar
Department of Computer Science and Engineering,
University of California,
Riverside, CA 92507, USA
E-mail: najjar@cs.ucr.edu

Abstract: Algorithms that exhibit irregular memory access patterns are known to show poor
performance on multiprocessor architectures, particularly when memory access latency is
variable. Many common data structures, including graphs, trees, and linked-lists, exhibit these
irregular memory access patterns. While FPGA-based code accelerators have been successful on
applications with regular memory access patterns, they have not been further explored for
irregular memory access patterns. Multithreading has been shown to be an effective technique in
masking long latencies. We describe the compiler generation of concurrent hardware threads
for FPGAs with the objective of masking the memory latency caused by irregular memory
access patterns. The CHAT compiler extends the ROCCC toolset to generate customised state
information for each dynamically generated thread. Initial results show a speed-up of 50x.

Keywords: irregular memory; custom hardware accelerated threads; CHAT; compilers; field
programmable gate array; FPGA; C to VHDL; irregular applications; reconfigurable systems.

Reference to this paper should be made as follows: Halstead, R.J., Villarreal, J. and Najjar, W.A.
(2014) ‘Compiling irregular applications for reconfigurable systems’, Int. J. High Performance
Computing and Networking, Vol. 7, No. 4, pp.258–268.

Biographical notes: Robert J. Halstead is currently a PhD student at the University of California,
Riverside. He is pursuing research in the fields of reconfigurable computing and HPC. In
particular his focus is on compiler technologies to ease development of FPGA-based designs. He
also focuses on heterogeneous FPGA systems.

Jason Villarreal is a Senior Engineer at Jacquard Computing, Inc. He received his PhD in
Computer Science from the University of California, Riverside in 2008. His research interests
include reconfigurable computing, compiler optimisations for hardware constructs, and hardware
acceleration of high performance computing applications.

Walid A. Najjar is a Professor in the Department of Computer Science and Engineering at the
University of California, Riverside. He received his PhD in Computer Engineering from the
University of Southern California in 1988. His research interests are in the fields of computer
architecture and compiler optimisations, embedded systems and sensor networks. Lately, he has
been very active in the area of compilation for FPGA-based code acceleration and reconfigurable
computing. NSF, DARPA and various industry sponsors have supported his research.

 Compiling irregular applications for reconfigurable systems 259

1 Introduction

Algorithms exhibiting irregular memory access behaviour
have been notoriously difficult to speed-up because of their
poor data locality. It is not possible to co-locate data and
computation on the same node and data caches cannot be
efficiently exploited. Multithreaded architectures, such as
the Tera MTA (Alverson et al., 1990, 1992; Snavely et al.,
1998), are designed to mask memory long latency by
rapidly switching between concurrent threads; hence, they
are ideally suited for irregular applications.

Field programmable gate arrays (FPGAs) are well
known for their speed and efficiency on regular algorithms
that operate on massive datasets. In an FPGA-based
hardware acceleration the most frequently executed
computation(s) is synthesised as a customised data path
through which the large amount of data is streamed.
Applications that have been demonstrated to benefit from
FPGA acceleration include signal and image processing,
computer vision, data mining, bioinformatics, financial
analysis, etc. All of these applications exhibit regular
memory accesses.

In this paper we introduce and describe custom
hardware accelerated threads (CHAT) a novel approach to
multithreading on FPGAs. CHAT compiles the code to a
custom circuit on the FPGA, however, when a thread
performs a long latency memory operation its state is saved
to a queue of waiting threads and the execution switches to
another ready thread. Upon the return of the data from
memory, the relevant thread resumes its execution. By
overlapping execution with memory access CHAT masks
the memory latency thereby achieving a high throughput
and speedup. The CHAT implementation builds upon the
ROCCC compiler toolset (Villarreal et al., 2010; ROCCC,
http://roccc.cs.ucr.edu/). The compiler generates the
necessary hardware structures to synchronise the results
with the related threads. Initial experimental evaluation
on the convey computers HC-1 (Brewer, 2010) shows a
speed-up higher than 50x over software using a single
Xilinx Virtex 5 LX330 FPGA.

The paper is organised as follows: Section 2 summarises
the related work. A classification of irregular applications is
given in Section 3. Section 4 describes the CHAT compiler
framework, and toolset. Sample applications are presented
and explained in Section 5. The experimental results, run on
the convey HC-1 machine, are reported and discussed in
Section 5.2.

2 Related work

2.1 Multithreaded architectures

In the late 1980s research into multi-processor systems with
large shared memory was being conducted. The Horizon
architecture (Kuehnand and Smith, 1988; Thistle and Smith,
1988) was built with 256 custom processors. Research
showed an average of 50–80 clock cycles per memory
accesses, and most all memory request were completed
within 128 cycles. The processor in the Horizon architecture

was thus built to manage the state information for
128 concurrent threads. Hence it can support up to
128 outstanding memory requests masking the memory
latency caused by having 256 processors sharing a common
memory.

In the early 90s the Tera Corporation, starting from the
experience acquired with the Horizon machine, built the
Tera MTA (Alverson et al., 1990, 1992). The MTA design
consisted of 256 processors sharing 64 GB of memory
organised as a distributed NUMA architecture. Its
interconnection network allowed better scaling to a larger
number of processors. It also forced instruction requests
through a shared cache lowering the network traffic.
Custom processors supported the issuing of one memory
request per thread per cycle. The maximum memory latency
from any processor to any memory module was 128 cycles.
Each processor could support up to 128 active threads. The
MTA design (Snavely et al., 1998) was later evolved into
the Cray XMT (Feo et al., 2005). While the MTA had
only 256 processors the XMT machine could support
up to 8,192 processors, but the largest ones built had
512 processors. The shared memory was also increased
from 1 TB to 128 TBs for the MTA, and the clock speed
was improved from 220 MHz to 500 MHz.

2.2 Heterogeneous platforms

The 1980s also saw reconfigurable fabrics being integrated
into large supercomputers. These include a large number of
cutting edge CPUs coupled with a number of FPGA devices
with full or partial sharing of memory. Notable among these
is the Cray XD1. The Cray XD1 evaluated by the Naval
Research Laboratory (Osburn et al., 2006) consisted of
432 dual-core processors with 144 Virtex-II FPGAs and six
Virtex-4 FPGAs. The machine consisted of 150 nodes each
with one FPGA, two processor cores and 8GBs of shared
memory. Of these, 144 had one Virtex-II, and another six
had one Virtex-4 FPGA.

The convey computers HC-1 (Brewer, 2010) is the first
heterogeneous machine to support cache coherent shared
virtual memory accesses from both the software (CPU
execution) and the hardware (FPGA execution). This virtual
memory allows an application to switch execution between
software and hardware. Without the need to offload data this
switch can be made with little overhead. The HC-1 has four
Virtex-5 LX330 FPGAs, further allowing multiple sections
of an application to be written to a FPGA without need of
reconfiguration at runtime. In the HC-1ex the Virtex 6
LX760 is used instead of the Virtex 5.

2.3 Parallel irregular applications

The CHAOS (Das et al., 1994) runtime system is a set of
libraries developed for parallel irregular applications in the
mid 90s. It analyses the indexes into array access to break
loops into smaller sections which can be optimised
individually. It then generates an inspector to manage
memory, and communication with other processors. Ideally

260 R.J. Halstead et al.

the inspector and portioning is done once so execution time
is amortised over the application’s lifetime.

The LocalWrite (Han and Tseng, 2000) approach
developed for shared memory processors architectures
works to identify mutually exclusive datasets in an
application. This helps minimise the replicated buffers, and
eliminate any synchronisation when writing back. However
it may require re-computation of edge data elements shared
between datasets.

For applications with more complex irregular access,
patterns libraries like KeLP (Fink et al., 1998) can help
designers manage them. After segmenting the application
into blocks the designer can manipulate how the blocks
interact, and control their communication schedules. KeLP
then generates the low-level data structures.

2.4 High level synthesis tools

Many commercial and open source high-level
synthesis tools, like CatapultC (http://www.mentor.com/),
ImpulseC (http://www.impulseaccelerated.com/), ROCCC
(http://roccc.cs.ucr.edu/) and Zhang et al. (2008), have
appeared since the early 2000s. They can improve an
application’s performance by identifying parallelism in
existing code, or they may require programmers to identify
and rewrite the parallel regions. Because the programming
methodologies for software and hardware are so different
these tools may limit a high-level language’s functionality
when specifying hardware regions. This can be done by
accepting a subset of the language’s constructs, or by
restricting how certain constructs can be used. For example,
the tool may accept pointers, but not allow dynamic
memory allocation, or dynamic indexing.

These language limitations are acceptable in these tools
because of the target applications they were built for. Most
of these HLS tools are optimised for streaming applications
which usually exhibit regular memory accesses. But,
CHAT’s goal is to extend these HLS tools to irregular
applications. When analysing the DFG the CHAT compiler
identifies and classifies dynamic memory accesses where
typical tools will give an error.

3 Irregular applications

Irregular applications exhibit unstructured patterns in the
access of data in memory: consecutive memory reads have
no or very little correlation to previous reads. The poor
temporal and spacial locality cause a large number of cache
misses hindering the applications performance. In this
section we attempt to classify irregular accesses patterns
into categories based on discernible knowledge of the
number of threads and the number of memory accesses per
thread at compile time. Based on this knowledge the
compiler can then generate a custom FPGA kernel for the
given application. The application category helps determine
the type of components needed for the kernel.

3.1 Determinable threads and determinable memory
requests

In the first category of irregular applications the compiler
can determine the number of threads, and the number of
memory requests per thread. These values are set at the
kernel’s initialisation. Kernels of this form are typically the
simplest irregular applications. An example of this type of
application is given in Algorithm 1. The compiler can
statically infer that size_i elements will be written to the
result array, and thus size_i threads will be needed at
runtime. All threads will perform the same operation, and
always need size_j elements from array B. In this way the
number of threads, and memory request are known once the
kernel is initialised with size_i and size_j.

Algorithm 1 The compiler can determine both the number of
threads needed and the number of memory
accesses per thread

int ∗A, ∗B, ∗result;

for (int i = 0; i < size i; ++i)

 for (int j = 0; j < size j, ++j)

 result [i] = op (A, B [j], i);

Algorithm 2 The compiler can determine the number of threads
needed, but not the number of memory accesses
per thread

int ∗A, ∗B, ∗C, ∗result;

for (int i = 0; i < size i; ++i)

 for (int j = 0; j < C [i]; ++j)

 result [i] = op (A, B [j], i);

Algorithm 3 The compiler can determine the number of
memory accesses per thread, but not the number
of threads

while (! terminate) {

 for (int i = 0; i < size i; ++i)

 process (i);

}

Algorithm 4 Simplified BFS algorithm

Queue Q;

while (! Q. empty ()) {

 process (Q. to p ());

 Q. pop ();

}

Note: The compiler cannot determine either the number
of threads needed, or the number of memory
accesses per thread.

 Compiling irregular applications for reconfigurable systems 261

3.2 Determinable threads and undeterminable
memory requests

In the second category of irregular applications the compiler
can determine the number of threads, but the number of
memory requests per thread cannot be determined until
runtime. Again the number of threads is set at the kernel’s
initialisation, but each thread’s memory accesses are not
specified by an initialisation variable. An example of this
type of application is shown in Algorithm 2. The application
will require size_i threads, but each thread requests C[i]
elements from array B. Because each thread has a unique
number of memory requests the kernel must manage a
unique state for each thread.

3.3 Undeterminable threads and determinable
memory requests

In the third category of irregular applications the compiler
can determine the number of memory accesses a thread will
make, but cannot determine the number of threads that will
be needed. Having a static memory access pattern for a
thread can allow the compiler to optimise the outgoing
requests. Possible optimisations could be sending multiple
requests per cycle, or buffering data to reduce the number of
accesses. Algorithm 3 shows how applications in this
category could be written. The application runs until its
termination condition is met, and each iteration will
accesses the data with a known pattern.

3.4 Undeterminable threads and undeterminable
memory requests

In the fourth category of irregular applications the number
of threads, and the number of memory requests is
undeterminable at compile time. This is the most general
category of irregular applications. They typically execute
over dynamic data structures like trees or graphs using
pointers to determine the next node. Consider the breath
first search (BFS) algorithm on a graph, as shown in
Algorithm 4. Each node in the graph would be a thread of
execution, and the nodes adjacency list is the number of
memory requests needed for the thread. Graph data
structures do not always provide a size, and BFS may not
require searching the entire graph. Because of this the kernel
will not know how many threads are needed, or how many
memory requests each thread will require. As the kernel
processes one thread it will be dynamically creating new
ones.

4 The CHAT compiler

The CHAT compiler is designed to help developers better
implement irregular applications on FPGAs using a
multithreaded execution model. At a high level CHAT is a
C to VHDL compiler. Applications are specified in C, and
the compiler generates a custom kernel that manages all the
necessary memory request, and data-path components.

CHAT’s goal is to help developers by abstracting away low
level implementation details such as the synchronisation
within a thread, context switching, and low-level HDL
design. Allowing the developer to focus on the application’s
functionality. Thus, it helps improve productivity by
reducing the development time. Another goal is easy
portability between architectures. To do this CHAT
provides a simple, but general interface to the generated
VHDL for requesting memory.

4.1 Execution model

The fundamental execution model for CHAT it to use
concurrent threads in hardware. The execution of a thread is
suspended following its memory accesses, and resumed
when the accessed data is available. When a thread is
suspended the execution switches to the next available
thread from a queue of ready threads. Thread states are kept
locally on the FPGA allowing this context switch to be done
in one cycle. To cope with memory access latency CHAT
generated kernels provide support for multiple outstanding
memory requests. In this model it is assumed that the
memory system can support multiple outstanding memory
requests and that they are returned in the requested order. In
some instances, the memory system supports multiple
concurrent memory channels, these can be either physical or
virtual.

CHAT analyses the C application to identify the
memory access patterns, and determine the kernel’s main
functionality. Based on this functionality a pipelined data
path is generated. Memory accesses are classified as regular
or irregular based on static analysis of their indexes. Custom
components generated for regular accesses can request
memory with no data from a thread’s state. Irregular access
components generate data-paths that read thread state data
to request memory.

4.2 Thread model

In CHAT each output value is assigned to its own hardware
thread. All memory requests needed to generate the output
are part of this thread. These memory requests are not
always unique to a thread. They can be shared to reduce the
kernel’s overall memory accesses. As an example, memory
requests to B in Algorithm 1 are shareable between threads.
The management of all threads is done by the custom
architecture generated by CHAT.

CHAT’s custom architectures are meant to be portable
across many platforms. Including platforms with long
memory latencies which are not common for most FPGA
applications. To cope with a long overhead CHAT kernels
will processes multiple threads in parallel, and issue
multiple memory requests from them to mask latency.
CHAT merges the memory accesses it can at compile time,
but this does not prevent independent threads from
requesting identical memory locations. It is the developers
responsibility to account for this when designing their
application. However, a cache could be placed outside the
CHAT kernel to mitigate these types of applications, but the

262 R.J. Halstead et al.

designer must add the cache by hand. A single thread may
not require enough memory accesses the fully mask the
latency. For this reason CHAT kernels support multiple
thread execution by the custom components. This is done by
saving thread states in the components.

By statically analysing the C code CHAT determines the
number of memory channels and the dependencies between
them. With this a data flow for the threads can be created.
Threads request data from the controllers, and to insure full
utilisation of the memory channels threads are queued in
FIFOs and wait to be processed.

If needed, the data from the requests will be saved in the
FIFOs as part of the thread’s state. Data can be saved until
the thread’s computation data-path, or in the case of
irregular memory requests until a memory controller needs
it. We can use FIFOs to hold thread states because all
threads will follow the same data flow. If a memory channel
is ever shared between multiple threads then the request is
stalled until all threads are ready to read it.

As an example, after compiling Algorithm 1 CHAT
would generate a kernel similar to Figure 1. We can assume
the operation is compiled into a datapath, and we can also
assume the operation requires memory locations A[B[j]].
Note two address generation units (AGUs) will be created.
One for A which is irregular and one for B that is a regular
request unit. A given thread will need sizej requests from
both B and A. The thread can begin requesting data from B
immediately, and the returned data will be queued in a
FIFO. As data from B becomes ready A reads it and begin
issuing its own memory requests. Returned data for A is
queued in another FIFO for the datapath to read. Because
memory requests are independent they can be issued in
parallel, and the thread’s data is kept between two FIFOs.
The threads current state can be determined by the state of
FIFOs A, and B.

4.3 Performance optimisations

The overall performance of a kernel is greatly affected by
the efficiency of the data-path, and the amount of concurrent
execution it can achieve. So, fully utilising the FPGA is a
priority. However, performance is also dependent upon the
specific FPGA being used. With the wide array of FPGA
options available to developers it is impractical to have the
compiler optimise for any FPGA. Thus, CHAT allows the
developer to customise the generated kernel to their specific
FPGA.

User specifiable parameters to the CHAT allow a
developer to unroll a kernel, better utilising the area of the
FPGA. Unrolling also increases the number of concurrent
thread data-paths a kernel can execute. It would also
increase the number of memory channels needed for a
design. However, analysis of unrolled designs can
identify identical memory channels and combine them
into one shared memory channel. CHAT manages all
synchronisation between the threads, and memory channels.

For portability and performance developers can design
their own FIFO implementations. This is done because most

FPGAs offer custom on-chip BRAMs which may be
preferred for FIFOs over LUT-based implementations.
However, the FIFOs must adhere to a specific interface, and
functionality.

Figure 1 CHAT kernel example showing regular and irregular
memory request component (see online version for
colours)

Notes: An AGU is created for both memory channels. B

is a regular request from 0 to size_j, and A is an
irregular request using data requested by B.

4.4 Implementation of CHAT

CHAT is implemented using the ROCCC compiler’s
(Villarreal et al., 2010; ROCCC, http://roccc.cs.ucr.edu/)
infrastructure. CHAT does analysis at two levels as shown
in Figure 2. High level analysis is done using the SUIF 2.0
toolset (Wilson et al., 1994) which builds a data flow graph
(DFG) and generates an intermediate representation (IR),
this IR is then further optimised with low level analysis
using the LLVM compiler (Lattner and Adve, 2004).

 Compiling irregular applications for reconfigurable systems 263

Figure 2 CHATs design flow (see online version for colours)

ROCCC is a C to VHDL compiler toolset designed
specifically for the generation of FPGA-based code
accelerators. Its distinguishing features are its extensive set
of compiler transformations and optimisations. ROCCC was
not designed to create hardware for entire applications, but
instead focuses on the critical regions of large software
systems. The critical regions typically consist of a loop nest
performing extensive computation on large amounts of data.
Hence, the ROCCC code takes advantage of the extensive
amount of parallelism available on FPGAs and the ability to
implement large computational pipelines on streams of data
while attempting to minimise off-chip memory fetches and
control flow, which are better handled on microprocessors.
Among the ROCCC design goals: maximise throughput,
minimise memory accesses, minimise the size of the
generated circuit, support code reuse through the import of
modules in C, VHDL or as IP cores, generate platform
independent code and support fast design space exploration.
In its current design ROCCC supports codes that have
memory accesses whose order is compile-time
determinable. These can be in one, two or N dimensional
arrays. CHAT extends the ROCCC compiler to support
irregular memory accesses. This extension is currently
designed for the convey HC-1 but could be extended to
other platforms that can support multiple outstanding
memory request and where masking memory latency can be
beneficial.

The high-level analysis of an application is implemented
using the SUIF toolset which generate the application’s
DFG. The DFG’s components consist of the memory
channels (marked as regular or irregular), and the main
computation data-path for the application. Regular memory
components in the DFG store the start, end, and stride
elements for memory requests. Irregular memory
components store what thread state data should be used, and
how it should be processed. If the design is unrolled all
components are first duplicated in the DFG. Then any
components that are duplicates will be merged into one
component in the graph. Finally, the DFG is encoded in a
cirrf and passed to the next stage of the CHAT compiler;
low-level analysis and implementation.

Low level implementations are done with custom passes
in the LLVM compiler. Each component from the DFG is
assigned to a basic block, and subsequent passes evaluate it
at this level. The thread state FIFOs are added to the DFG to
create a control flow graph (CFG). CHAT does not specify
how the FIFOs are built. It assumes dual clocked FIFOs
with no fall-though, and a specific port list, but the

implementation is left to the designer. FIFOs can thus be
implemented fully in logic, or with board specific
constructs. With all FIFOs inserted in the CFG the kernel
components are generated in VHDL. Synchronisation logic
is added to the kernel ensuring proper execution. This step
ensures a thread state is not read if all components needing
it are not ready. It also ensures a component stops
requesting if the FIFO it must write to is full.

The implementation of CHAT differers from ROCCC in
a few major ways. First, ROCCC assumes that all memory
accesses follow a regular pattern. We extend the framework
to detect and support irregular memory access in CHAT.
Focusing on irregular applications expands the set of
applications compilable onto reconfigurable fabrics.
However, compiling these applications requires the removal
of certain optimisations that were possible when assuming
only regular accesses. An example of this would be smart
buffering of memory requests. The final kernel format for
CHAT also diverged from the standard ROCCC format.
ROCCC kernels have three main components; an input
controller, an output controller, and the data-path. All
incoming memory channels are managed by the input
controller, and likewise for the output controller. Always
having three components allows a simple implementation
for the global system synchronisation that ROCCC uses.
ROCCC manages a global state machine to ensure proper
kernel execution. ROCCC only moves the thread state
forward once all necessary data elements are ready. This
model would hinder performance in irregular kernels
because the kernel uses more data-paths than just the main
computation one. Each irregular memory controller has its
own data-path. Generating a global state manager for an
arbitrary number of data-paths quickly becomes a difficult
task. For this reason CHAT removes the global memory
controllers used in ROCCC in favour of many smaller
decoupled memory controllers for each channel. Allowing
each component to manage its own state, and send its output
data to the next component in the data flow when it is done.

5 Experimental evaluation

In this section we explore the performance potential gained
with memory masking on the FPGA vs. software. CHAT
generates the irregular memory hardware which is attached
to the optimised data paths generated by ROCCC. This
allows for kernels that can operate on a subset of data from
a larger dataset like processing SQL queries, or sparse
algebra operations. Most kernels already supported by
ROCCC are also supported by CHAT with a few
exceptions, namely systolic array generation. However,
when measuring performance we want to minimise any
improvements from data path optimisation. We do this by
studying kernels with memory access bottlenecks. Two
kernels are shown in Algorithms 5 and 6: both of them sum
values over arbitrary columns of a matrix. They differ by
which columns are selected per row. Algorithm 5 will
always choose the same columns while Algorithm 6 can

264 R.J. Halstead et al.

have unique columns per row. Both kernels are executed in
hardware and software on the convey computers HC-1.

Algorithm 5 Summation with 1-dimensional index stream

void summation (int ∗∗A, int ∗B, int ∗C, int m, int p) {
 int i, j;
 for (j = 0; j < m; ++j)
 for (i = 0; i < p; ++i)
 C [j] += A [j] [B[i]];
}

Algorithm 6 Summation with 2-dimensional index stream

void summation (int ∗∗A, int ∗∗B, int ∗C, int m, int p) {
 int i, j;
 for (j = 0; j < m; ++j)
 for (i = 0; i < p; ++i)
 C [j] += A [j] [B[j][i]];
}

While kernels that fit into the known threads and known
memory access category are typically easy to implement by
hand they are a necessary first step into the compilation of
more complex kernels. This paper outlines the management
of threads where everything is known at compile time.
Future work will consider multithreading on kernels where
this is not the case. Cases, like SpMV or graph traversal,
where parts of the kernel are unknown until runtime.

The convey uses Intel Xeon CPUs for software
processing. These are not the fastest processors available,
but are still orders of magnitude faster than the FPGAs. The
CPU clock frequency is 2.13 GHz, while the FPGA clock is
limited to 150 MHz. The CPU processors are acceptable for
our purpose because the application’s bottleneck will be
memory access time. The global memory of the HC-1 is
shared between both hardware and software making it ideal
to test our memory masking approach.

5.1 Evaluation kernels

5.1.1 One dimensional indexing

The kernel shown in Algorithm 5, and expressed by
Equation 1 will sum specific columns of a given row in a
matrix. Through the kernel’s execution each row will sum
the same columns, and the selected columns are specified by
array B which is a one dimensional array. Each thread in the
kernel will be the summation for a single row. When
unrolling the design to process multiple rows concurrently
the data read from memory channel B will be shared
between all executing threads. Thus, CHAT will generate a
kernel that uses only one memory channel to access B, and
synchronising it among all thread data-paths.

[]
1

[] , []
p

i

C m A m B i
=

=∑ (1)

The kernel as a whole takes a two dimensional array A[m, n]
of values, and a list of indexes B[p] as input, where all
values in B are less than n. The application runs each row,
m, of A through its data path summing the values in the
columns specified in B and storing each result into the
corresponding element of C.

For Algorithm 5 each thread data-path created has
three major components shown in Figure 3. The
increment component is a regular memory generator.
At runtime the number of columns per row to sum is
specified by p, and the incriminator requests the index
into B for each of these columns. The index into A
is dependent upon the value returned from B making it
an irregular memory access. The address path component
tracks the current row, m, and uses the index provided
by B to generate a request into A. The data-path is a
simple summation that takes the values returned to A
and produces the result which then gets written back to
memory.

Figure 3 Summation of a single row

Notes: Values are first fetched from B. Processing these
values determines a new location in A. The value
stored at this location is accumulated into the
final result. This is repeated for each row in A.

5.1.2 Two dimensional indexing

The kernel presented in this section is similar to the one
dimensional kernel presented above, but instead B is a two
dimensional array. This allows the summation of
independent columns on a per row basis. With each
row summing different columns unrolled designs can
no longer share a memory channel. The design, as
written, requires each row to still select the same number
of columns. This limitation in the kernel places it in the
first category of irregular applications where the total
number of threads, and memory access are known for each
data-path.

 Compiling irregular applications for reconfigurable systems 265

5.2 Experimental results

In this section we describe in more detail the convey
computers HC-1 system where we performed our tests. We
provide a comparison between our kernels and their
software implementations. We use one of the CPUs, and
compared it to only one of the FPGAs on the HC-1. Finally
we discuss the affects shared streams have on performance
of the kernels.

5.2.1 Convey computers HC-1 platform

The convey computers HC-1 system (Brewer, 2010) is the
first heterogeneous machine to support cache coherent
shared virtual memory accesses from both the software
(CPU execution) and the hardware (FPGA execution). This
virtual memory allows an application to easily switch its
execution between software and hardware. The HC-1 has
eight 2.13 GHz Xeon CPU cores and a hybrid co-processor
with four application engines (AEs) consisting of four
Xilinx Virtex 5LX330 FPGAs1. An outline of the HC-1’s
FPGA and memory interface layout is shown in Figure 6.

The whole system consists of two 1U chassis, the host
motherboard and the co-processor. The four AEs interface
to memory via eight full duplex memory controllers, each
implemented on a Virtex 5LX150, through a full crossbar
itself implemented in FPGAs as well. The cumulative
peak bandwidth to memory is 80 GB/s when the data is
uniformly distributed across all memory modules (20 GB/s
per AE). The interface to memory can be run at 300 MHz or
150 MHz. The latter allows for 16 memory channels
per AE which increases parallelism but with a fixed
bandwidth. Each channel is 64-bits. The memory interface,
implemented with the Intel Front Side Bus (FSB) protocol,
is fully cache coherent (snoopy protocol) with the host
memory allowing for one global shared address space.
Unlike PCI-based FPGA co-processors, the memory
coherence on the HC-1 is fully transparent and does not
require explicit data movements to maintain coherence
with the host data. The data returned from memory,
within memory channels, can be returned in order. This
accomplished by reorder buffers in the memory controllers.

An application engine hub (AEH) consists of two
FPGAs. One is the co-processor interface to the host FSB, it
implements the snoopy coherence protocol and maintains
the page tables for the co-processor. The other FPGA
implements a soft processor that is the effective host of the
co-processor. It is connected to each AE, it loads the
programming file for AE and every call to an accelerator
code on an AE is issued by the soft processor. The
accelerator code that runs on the AEs is developed with the
convey personality development kit (PDK) consisting of a
set of Verilog programmes and makefiles. The PDK defines
all the non-programmable components of the accelerators,
such as the crossbar and the memory controllers. It supports
hardware/software co-simulation (with Mentor Graphics

ModelSim) of the accelerator code. In addition to the
accelerator code, a hardware wrapper is instantiated by the
PDK on each AE that implements the memory interfaces. It
occupies about 20% of the BRAMs and 10% of the slices on
each FPGAS of the HC-1 (much smaller percentage on the
HC-1ex). The accelerator code clock frequency is fixed at
150 MHz. Only one of the four AEHs is used for results in
this paper, and is compared to one CPU processor.

5.2.2 Runtime, speedup and utilisation

The execution time for the 1-dimensional kernel is shown in
Figure 4 with a logarithmic scale. Note that The FPGA is
reported for three distinct cases; no unrolling, 2x unrolling
and 7x unrolling. The execution for all three cases is
approximately constant, at about 10 msec, up to a dataset
size of ten million elements. This is where the startup and
initialisation costs of the HC-1 accelerators dominate the
total execution time.

Figure 4 Execution time (sec), on a logarithmic scale, of
1-dimensional hardware kernels and their software
equivalent (see online version for colours)

Each accelerator FPGA on the HC-1 has 16 memory
channels. In the 1-dimensional kernel the B occupies a
channel and the A and C arrays are unrolled up to seven
times. In the 2-dimensional kernel each instance of A, B
and C requires a separate channel so the maximum unrolling
is 5x.

Figure 5(a) shows the speedup achieved by the first
kernel over software. Note that the speedup with no
unrolling is 8x over software, due to the ability of the
multithreaded model to mask memory latency. Because the
index stream B is shared each initial response to B produces
a memory request from A equivalent to the unroll factor.
When fully unrolled (at 7x) a single response to B will result
in seven requests for A. This is the reason behind the 50x
speedup over software when fully unrolled, and 15x
speedup when unrolled by a factor of 2x. Execution time is
lowered from 21 seconds in software to 1.3 seconds when
unrolled by 2x, and under 0.5 seconds when fully unrolled
on the largest dataset.

266 R.J. Halstead et al.

Figure 5 Speedup over software achieved, varying the dataset size, (a) 1-dimensional index stream B (b) 2-dimensional index stream B
(see online version for colours)

 (a) (b)

Figure 6 Convey HC-1 architecture (see online version for colours)

Figure 7 Utilisation of memory channels (%) versus the dataset size, (a) utilisation in 1-dimensional index stream kernel (b) utilisation in
2-dimensional index stream kernel (see online version for colours)

 (a) (b)

 Compiling irregular applications for reconfigurable systems 267

The speedup results for the 2-dimensional kernel are shown
in Figure 5(b). Note that this kernel does not benefit from
the sharing of the index stream B. This results in poorer
caching performance in the software execution and a higher
speedup for the FPGA execution with no unrolling (10x).
Other observations are that the dip is at four million
elements and is less pronounced than the first kernel. The
maximum speedup is achieved earlier than the previous
kernel (at 50 million elements versus 100 million).

In Figures 5(a) and 5(b) we can observe a discontinuity
in the speed-up curve around dataset sizes with eight million
elements. This is probably due to the distribution of the data
across the memory modules that can result in collisions
when the pressure on the memory system is high as it is
with 7x and 5x unrolling respectively.

The utilisation is another performance measure we have
evaluated. In this context we define utilisation as the
percentage of cycles a memory channel is busy reading
memory, aggregated over all the memory channels used. It
is shown in Figures 7(a) and 7(b). The following
observations can be made: the not unrolled code quickly
saturates the few memory channels allocated to it; the fully
unrolled 1-dimensional kernel does not saturate the memory
system achieving just about 50% utilisation; the 2-
dimensional kernel rapidly approaches 80% utilisation of
the available memory bandwidth.

5.2.3 Area

We report the kernel’s area results with the convey interface
wrapper attached on a Virtex 5 LX330 FPGA. To guarantee
in-order memory accesses, the wrapper has an optional
crossbar that was added. Because of this it occupies a large
portion of the designs slices. The CHAT framework is
BRAM intensive because it uses FIFOs to store all thread
states, and data for its designs. This can be seen in Table 1
where the CHAT kernels greatly increase BRAM utilisation,
and only slightly increase slice utilisation. The frameworks
for 1D and 2D kernels are very similar. The main difference
is in the kernel logic, and because of this we see a small
increase in slice while BRAM usage is almost identical.

Table 1 Area requirement for both 1, and 2 dimensional
kernels on a Virtex 5 LX330 FPGA

Design Slices BRAMS

Convey wrapper 14,620 (28%) 34 (12%)
1D not unrolled 16,651 (32%) 55 (19%)
1D 2 unrolled 17,083 (33%) 59 (20%)
1D 7 unrolled 19,004 (37%) 79 (27%)
2D not unrolled 16,977 (33%) 55 (19%)
2D 2 unrolled 17,235 (33%) 60 (21%)
2D 5 unrolled 19,598 (38%) 75 (26%)

Note: All results are reported with the convey wrapper
attached.

6 Conclusions

Because of their lack of data locality, irregular applications
have been notoriously hard to parallelise. Multithreaded
execution with support for multiple concurrent threads fixed
in the hardware at design time have been shown to be a
viable approach to the masking of long memory
latencies and hence are a good option for irregular
applications. In this paper we have introduced CHAT, a
compilation tool that generates customised hardware
support for multithreaded execution on FPGAs. We describe
its execution model and implementation and report on the
initial stages of its performance evaluation as implemented
on the convey computers HC-1. Using just one accelerator
FPGA we show a speed-up of up to 50x over a single Intel
Xeon on simple irregular kernels.

Acknowledgements

This work has been supported in part by NSF Awards
0905509 and 0811416, by Jacquard Computing Inc. and by
the Air Force Research Lab.

References
Alverson, G., Alverson, R., Callahan, D., Koblenz, B., Porterfield,

A. and Smith, B. (1992) ‘Exploiting heterogeneous
parallelism on a multithreaded multiprocessor’, in Proc. of the
6th Int. Conf. on Supercomputing, ICS ‘92, pp.188–197,
ACM, New York, NY, USA.

Alverson, R., Callahan, D., Cummings, D., Koblenz, B.,
Porterfield, A. and Smith, B. (1990) ‘The tera computer
system’, in Proc. of the 4th Int. Conf. on Supercomputing, ICS
‘90, pp.1–6, ACM, New York, NY, USA.

Brewer, T.M. (2010) ‘Instruction set innovations for the
convey HC-1 computer’, IEEE Micro, March, Vol. 30, No. 2,
pp.70–79.

CatapultC [online] http://www.mentor.com/.
Das, R., Uysal, M., Saltz, J. and Hwang, Y.s. (1994)

‘Communication optimizations for irregular scientific
computations on distributed memory architectures’, Journal
of Parallel and Distributed Computing, Vol. 22, No. 3,
pp.462–478.

Feo, J., Harper, D., Kahan, S. and Konecny, P. (2005) ‘Eldorado’,
in Proceedings of the 2nd Conference on Computing
Frontiers, CF ‘05, pp.28–34, ACM, New York, NY, USA.

Fink, S.J., Baden, S.B. and Kohn, S.R. (1998) ‘Efficient run-time
support for irregular block-structured applications’, Journal of
Parallel and Distributed Computing, Vol. 50, Nos. 1–2,
pp.61–82.

Han, H. and Tseng, C-W. (2000) ‘Efficient compiler and run-time
support for parallel irregular reductions’, Parallel Computing,
Vol. 26, Nos. 13–14 pp.1861–1887.

ImpulseC [online] http://www.impulseaccelerated.com/.
Kuehnand, J. and Smith, B. (1988) ‘The Horizon supercomputing

system: architecture and software’, in Proc. of the 1988
ACM/IEEE Conf. on Supercomputing, Supercomputing ‘88,
pp.28–34, IEEE Computer Society Press, Los Alamitos,
CA, USA.

268 R.J. Halstead et al.

Lattner, C. and Adve, V. (2004) ‘LLVM: a compilation
framework for lifelong program analysis & transformation’,
in Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO ‘04), Palo Alto,
California, March.

Osburn, J., Anderson, W., Rosenberg, R. and Lanzagorta, M.
(2006) ‘Early experiences on the NRL Cray XD1’, in Proc. of
the HPCMP Users Group Conference, pp.347–353, IEEE
Computer Society, Washington, DC, USA.

ROCCC [online] http://roccc.cs.ucr.edu/.
Snavely, A., Carter, L., Boisseau, J., Majumdar, A., Gatlin, K.S.,

Mitchell, N., Feo, J. and Koblenz, B. (1998) ‘Multiprocessor
performance on the Tera MTA’, in Proceedings of the 1998
ACM/IEEE Conference on Supercomputing, Supercomputing
‘98, pp.1–8, IEEE Computer Society, Washington, DC, USA.

Thistle, M.R. and Smith, B.J. (1988) ‘A processor architecture for
Horizon’, in Proc. of the 1988 ACM/IEEE Conf. on
Supercomputing, Supercomputing ‘88, pp.35–41, IEEE
Computer Society Press, Los Alamitos, CA, USA.

Villarreal, J., Park, A., Najjar, W. and Halstead, R. (2010)
‘Designing modular hardware accelerators in c with ROCCC
2.0’, in Field-Prog. Custom Comp. Machines (FCCM), 2010
18th IEEE Annual International Symposium on, May,
pp.127–134.

Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P.,
Anderson, J.M., Tjiang, S.W.K., Liao, S-W., Tseng, C-W.,
Hall, M.W., Lam, M.S. and Hennessy, J.L. (1994) ‘SUIF: an
infrastructure for research on parallelizing and optimizing
compilers’, SIGPLAN Not., December, Vol. 29, No. 12,
pp.31–37.

Zhang, Z., Fan, Y., Jiang, W., Han, G., Yang, C. and Cong, J.
(2008) ‘Autopilot: A platform-based ESL synthesis system’,
High-Level Synthesis: from Algorithm to Digital Circuit,
Chapter 6, pp.99–112, Springer, Netherlands.

