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Abstract: Algorithms that exhibit irregular memory access patterns are known to show poor 
performance on multiprocessor architectures, particularly when memory access latency is 
variable. Many common data structures, including graphs, trees, and linked-lists, exhibit these 
irregular memory access patterns. While FPGA-based code accelerators have been successful on 
applications with regular memory access patterns, they have not been further explored for 
irregular memory access patterns. Multithreading has been shown to be an effective technique in 
masking long latencies. We describe the compiler generation of concurrent hardware threads  
for FPGAs with the objective of masking the memory latency caused by irregular memory  
access patterns. The CHAT compiler extends the ROCCC toolset to generate customised state 
information for each dynamically generated thread. Initial results show a speed-up of 50x. 
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1 Introduction 

Algorithms exhibiting irregular memory access behaviour 
have been notoriously difficult to speed-up because of their 
poor data locality. It is not possible to co-locate data and 
computation on the same node and data caches cannot be 
efficiently exploited. Multithreaded architectures, such as 
the Tera MTA (Alverson et al., 1990, 1992; Snavely et al., 
1998), are designed to mask memory long latency by 
rapidly switching between concurrent threads; hence, they 
are ideally suited for irregular applications. 

Field programmable gate arrays (FPGAs) are well 
known for their speed and efficiency on regular algorithms 
that operate on massive datasets. In an FPGA-based 
hardware acceleration the most frequently executed 
computation(s) is synthesised as a customised data path 
through which the large amount of data is streamed. 
Applications that have been demonstrated to benefit from 
FPGA acceleration include signal and image processing, 
computer vision, data mining, bioinformatics, financial 
analysis, etc. All of these applications exhibit regular 
memory accesses. 

In this paper we introduce and describe custom 
hardware accelerated threads (CHAT) a novel approach to 
multithreading on FPGAs. CHAT compiles the code to a 
custom circuit on the FPGA, however, when a thread 
performs a long latency memory operation its state is saved 
to a queue of waiting threads and the execution switches to 
another ready thread. Upon the return of the data from 
memory, the relevant thread resumes its execution. By 
overlapping execution with memory access CHAT masks 
the memory latency thereby achieving a high throughput 
and speedup. The CHAT implementation builds upon the 
ROCCC compiler toolset (Villarreal et al., 2010; ROCCC, 
http://roccc.cs.ucr.edu/). The compiler generates the 
necessary hardware structures to synchronise the results 
with the related threads. Initial experimental evaluation  
on the convey computers HC-1 (Brewer, 2010) shows a 
speed-up higher than 50x over software using a single 
Xilinx Virtex 5 LX330 FPGA. 

The paper is organised as follows: Section 2 summarises 
the related work. A classification of irregular applications is 
given in Section 3. Section 4 describes the CHAT compiler 
framework, and toolset. Sample applications are presented 
and explained in Section 5. The experimental results, run on 
the convey HC-1 machine, are reported and discussed in 
Section 5.2. 

2 Related work 

2.1 Multithreaded architectures 

In the late 1980s research into multi-processor systems with 
large shared memory was being conducted. The Horizon 
architecture (Kuehnand and Smith, 1988; Thistle and Smith, 
1988) was built with 256 custom processors. Research 
showed an average of 50–80 clock cycles per memory 
accesses, and most all memory request were completed 
within 128 cycles. The processor in the Horizon architecture 

was thus built to manage the state information for  
128 concurrent threads. Hence it can support up to  
128 outstanding memory requests masking the memory 
latency caused by having 256 processors sharing a common 
memory. 

In the early 90s the Tera Corporation, starting from the 
experience acquired with the Horizon machine, built the 
Tera MTA (Alverson et al., 1990, 1992). The MTA design 
consisted of 256 processors sharing 64 GB of memory 
organised as a distributed NUMA architecture. Its 
interconnection network allowed better scaling to a larger 
number of processors. It also forced instruction requests 
through a shared cache lowering the network traffic. 
Custom processors supported the issuing of one memory 
request per thread per cycle. The maximum memory latency 
from any processor to any memory module was 128 cycles. 
Each processor could support up to 128 active threads. The 
MTA design (Snavely et al., 1998) was later evolved into 
the Cray XMT (Feo et al., 2005). While the MTA had  
only 256 processors the XMT machine could support  
up to 8,192 processors, but the largest ones built had  
512 processors. The shared memory was also increased 
from 1 TB to 128 TBs for the MTA, and the clock speed 
was improved from 220 MHz to 500 MHz. 

2.2 Heterogeneous platforms 

The 1980s also saw reconfigurable fabrics being integrated 
into large supercomputers. These include a large number of 
cutting edge CPUs coupled with a number of FPGA devices 
with full or partial sharing of memory. Notable among these 
is the Cray XD1. The Cray XD1 evaluated by the Naval 
Research Laboratory (Osburn et al., 2006) consisted of  
432 dual-core processors with 144 Virtex-II FPGAs and six 
Virtex-4 FPGAs. The machine consisted of 150 nodes each 
with one FPGA, two processor cores and 8GBs of shared 
memory. Of these, 144 had one Virtex-II, and another six 
had one Virtex-4 FPGA. 

The convey computers HC-1 (Brewer, 2010) is the first 
heterogeneous machine to support cache coherent shared 
virtual memory accesses from both the software (CPU 
execution) and the hardware (FPGA execution). This virtual 
memory allows an application to switch execution between 
software and hardware. Without the need to offload data this 
switch can be made with little overhead. The HC-1 has four 
Virtex-5 LX330 FPGAs, further allowing multiple sections 
of an application to be written to a FPGA without need of 
reconfiguration at runtime. In the HC-1ex the Virtex 6 
LX760 is used instead of the Virtex 5. 

2.3 Parallel irregular applications 

The CHAOS (Das et al., 1994) runtime system is a set of 
libraries developed for parallel irregular applications in the 
mid 90s. It analyses the indexes into array access to break 
loops into smaller sections which can be optimised 
individually. It then generates an inspector to manage 
memory, and communication with other processors. Ideally 



260 R.J. Halstead et al.  

the inspector and portioning is done once so execution time 
is amortised over the application’s lifetime. 

The LocalWrite (Han and Tseng, 2000) approach 
developed for shared memory processors architectures 
works to identify mutually exclusive datasets in an 
application. This helps minimise the replicated buffers, and 
eliminate any synchronisation when writing back. However 
it may require re-computation of edge data elements shared 
between datasets. 

For applications with more complex irregular access, 
patterns libraries like KeLP (Fink et al., 1998) can help 
designers manage them. After segmenting the application 
into blocks the designer can manipulate how the blocks 
interact, and control their communication schedules. KeLP 
then generates the low-level data structures. 

2.4 High level synthesis tools 

Many commercial and open source high-level  
synthesis tools, like CatapultC (http://www.mentor.com/), 
ImpulseC (http://www.impulseaccelerated.com/), ROCCC 
(http://roccc.cs.ucr.edu/) and Zhang et al. (2008), have 
appeared since the early 2000s. They can improve an 
application’s performance by identifying parallelism in 
existing code, or they may require programmers to identify 
and rewrite the parallel regions. Because the programming 
methodologies for software and hardware are so different 
these tools may limit a high-level language’s functionality 
when specifying hardware regions. This can be done by 
accepting a subset of the language’s constructs, or by 
restricting how certain constructs can be used. For example, 
the tool may accept pointers, but not allow dynamic 
memory allocation, or dynamic indexing. 

These language limitations are acceptable in these tools 
because of the target applications they were built for. Most 
of these HLS tools are optimised for streaming applications 
which usually exhibit regular memory accesses. But, 
CHAT’s goal is to extend these HLS tools to irregular 
applications. When analysing the DFG the CHAT compiler 
identifies and classifies dynamic memory accesses where 
typical tools will give an error. 

3 Irregular applications 

Irregular applications exhibit unstructured patterns in the 
access of data in memory: consecutive memory reads have 
no or very little correlation to previous reads. The poor 
temporal and spacial locality cause a large number of cache 
misses hindering the applications performance. In this 
section we attempt to classify irregular accesses patterns 
into categories based on discernible knowledge of the 
number of threads and the number of memory accesses per 
thread at compile time. Based on this knowledge the 
compiler can then generate a custom FPGA kernel for the 
given application. The application category helps determine 
the type of components needed for the kernel. 

3.1 Determinable threads and determinable memory 
requests 

In the first category of irregular applications the compiler 
can determine the number of threads, and the number of 
memory requests per thread. These values are set at the 
kernel’s initialisation. Kernels of this form are typically the 
simplest irregular applications. An example of this type of 
application is given in Algorithm 1. The compiler can 
statically infer that size_i elements will be written to the 
result array, and thus size_i threads will be needed at 
runtime. All threads will perform the same operation, and 
always need size_j elements from array B. In this way the 
number of threads, and memory request are known once the 
kernel is initialised with size_i and size_j. 

Algorithm 1 The compiler can determine both the number of 
threads needed and the number of memory 
accesses per thread 

int ∗A, ∗B, ∗result; 

for (int i = 0; i < size i; ++i) 

 for (int j = 0; j < size j, ++j) 

  result [i] = op (A, B [j], i); 

Algorithm 2 The compiler can determine the number of threads 
needed, but not the number of memory accesses 
per thread 

int ∗A, ∗B, ∗C, ∗result; 

for (int i = 0; i < size i; ++i) 

 for (int j = 0; j < C [i]; ++j) 

  result [i] = op (A, B [j], i); 

Algorithm 3 The compiler can determine the number of 
memory accesses per thread, but not the number 
of threads 

while (! terminate) { 

 for (int i = 0; i < size i; ++i) 

  process (i); 

} 

Algorithm 4 Simplified BFS algorithm 

Queue Q; 

while (! Q. empty ( )) { 

 process (Q. to p ( )); 

 Q. pop ( ); 

} 

Note: The compiler cannot determine either the number 
of threads needed, or the number of memory 
accesses per thread. 
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3.2 Determinable threads and undeterminable 
memory requests 

In the second category of irregular applications the compiler 
can determine the number of threads, but the number of 
memory requests per thread cannot be determined until 
runtime. Again the number of threads is set at the kernel’s 
initialisation, but each thread’s memory accesses are not 
specified by an initialisation variable. An example of this 
type of application is shown in Algorithm 2. The application 
will require size_i threads, but each thread requests C[i] 
elements from array B. Because each thread has a unique 
number of memory requests the kernel must manage a 
unique state for each thread. 

3.3 Undeterminable threads and determinable 
memory requests 

In the third category of irregular applications the compiler 
can determine the number of memory accesses a thread will 
make, but cannot determine the number of threads that will 
be needed. Having a static memory access pattern for a 
thread can allow the compiler to optimise the outgoing 
requests. Possible optimisations could be sending multiple 
requests per cycle, or buffering data to reduce the number of 
accesses. Algorithm 3 shows how applications in this 
category could be written. The application runs until its 
termination condition is met, and each iteration will 
accesses the data with a known pattern. 

3.4 Undeterminable threads and undeterminable 
memory requests 

In the fourth category of irregular applications the number 
of threads, and the number of memory requests is 
undeterminable at compile time. This is the most general 
category of irregular applications. They typically execute 
over dynamic data structures like trees or graphs using 
pointers to determine the next node. Consider the breath 
first search (BFS) algorithm on a graph, as shown in 
Algorithm 4. Each node in the graph would be a thread of 
execution, and the nodes adjacency list is the number of 
memory requests needed for the thread. Graph data 
structures do not always provide a size, and BFS may not 
require searching the entire graph. Because of this the kernel 
will not know how many threads are needed, or how many 
memory requests each thread will require. As the kernel 
processes one thread it will be dynamically creating new 
ones. 

4 The CHAT compiler 

The CHAT compiler is designed to help developers better 
implement irregular applications on FPGAs using a 
multithreaded execution model. At a high level CHAT is a 
C to VHDL compiler. Applications are specified in C, and 
the compiler generates a custom kernel that manages all the 
necessary memory request, and data-path components. 

CHAT’s goal is to help developers by abstracting away low 
level implementation details such as the synchronisation 
within a thread, context switching, and low-level HDL 
design. Allowing the developer to focus on the application’s 
functionality. Thus, it helps improve productivity by 
reducing the development time. Another goal is easy 
portability between architectures. To do this CHAT 
provides a simple, but general interface to the generated 
VHDL for requesting memory. 

4.1 Execution model 

The fundamental execution model for CHAT it to use 
concurrent threads in hardware. The execution of a thread is 
suspended following its memory accesses, and resumed 
when the accessed data is available. When a thread is 
suspended the execution switches to the next available 
thread from a queue of ready threads. Thread states are kept 
locally on the FPGA allowing this context switch to be done 
in one cycle. To cope with memory access latency CHAT 
generated kernels provide support for multiple outstanding 
memory requests. In this model it is assumed that the 
memory system can support multiple outstanding memory 
requests and that they are returned in the requested order. In 
some instances, the memory system supports multiple 
concurrent memory channels, these can be either physical or 
virtual. 

CHAT analyses the C application to identify the 
memory access patterns, and determine the kernel’s main 
functionality. Based on this functionality a pipelined data 
path is generated. Memory accesses are classified as regular 
or irregular based on static analysis of their indexes. Custom 
components generated for regular accesses can request 
memory with no data from a thread’s state. Irregular access 
components generate data-paths that read thread state data 
to request memory. 

4.2 Thread model 

In CHAT each output value is assigned to its own hardware 
thread. All memory requests needed to generate the output 
are part of this thread. These memory requests are not 
always unique to a thread. They can be shared to reduce the 
kernel’s overall memory accesses. As an example, memory 
requests to B in Algorithm 1 are shareable between threads. 
The management of all threads is done by the custom 
architecture generated by CHAT. 

CHAT’s custom architectures are meant to be portable 
across many platforms. Including platforms with long 
memory latencies which are not common for most FPGA 
applications. To cope with a long overhead CHAT kernels 
will processes multiple threads in parallel, and issue 
multiple memory requests from them to mask latency. 
CHAT merges the memory accesses it can at compile time, 
but this does not prevent independent threads from 
requesting identical memory locations. It is the developers 
responsibility to account for this when designing their 
application. However, a cache could be placed outside the 
CHAT kernel to mitigate these types of applications, but the 
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designer must add the cache by hand. A single thread may 
not require enough memory accesses the fully mask the 
latency. For this reason CHAT kernels support multiple 
thread execution by the custom components. This is done by 
saving thread states in the components. 

By statically analysing the C code CHAT determines the 
number of memory channels and the dependencies between 
them. With this a data flow for the threads can be created. 
Threads request data from the controllers, and to insure full 
utilisation of the memory channels threads are queued in 
FIFOs and wait to be processed. 

If needed, the data from the requests will be saved in the 
FIFOs as part of the thread’s state. Data can be saved until 
the thread’s computation data-path, or in the case of 
irregular memory requests until a memory controller needs 
it. We can use FIFOs to hold thread states because all 
threads will follow the same data flow. If a memory channel 
is ever shared between multiple threads then the request is 
stalled until all threads are ready to read it. 

As an example, after compiling Algorithm 1 CHAT 
would generate a kernel similar to Figure 1. We can assume 
the operation is compiled into a datapath, and we can also 
assume the operation requires memory locations A[B[j]]. 
Note two address generation units (AGUs) will be created. 
One for A which is irregular and one for B that is a regular 
request unit. A given thread will need sizej requests from 
both B and A. The thread can begin requesting data from B 
immediately, and the returned data will be queued in a 
FIFO. As data from B becomes ready A reads it and begin 
issuing its own memory requests. Returned data for A is 
queued in another FIFO for the datapath to read. Because 
memory requests are independent they can be issued in 
parallel, and the thread’s data is kept between two FIFOs. 
The threads current state can be determined by the state of 
FIFOs A, and B. 

4.3 Performance optimisations 

The overall performance of a kernel is greatly affected by 
the efficiency of the data-path, and the amount of concurrent 
execution it can achieve. So, fully utilising the FPGA is a 
priority. However, performance is also dependent upon the 
specific FPGA being used. With the wide array of FPGA 
options available to developers it is impractical to have the 
compiler optimise for any FPGA. Thus, CHAT allows the 
developer to customise the generated kernel to their specific 
FPGA. 

User specifiable parameters to the CHAT allow a 
developer to unroll a kernel, better utilising the area of the 
FPGA. Unrolling also increases the number of concurrent 
thread data-paths a kernel can execute. It would also 
increase the number of memory channels needed for a 
design. However, analysis of unrolled designs can  
identify identical memory channels and combine them  
into one shared memory channel. CHAT manages all 
synchronisation between the threads, and memory channels. 

For portability and performance developers can design 
their own FIFO implementations. This is done because most 

FPGAs offer custom on-chip BRAMs which may be 
preferred for FIFOs over LUT-based implementations. 
However, the FIFOs must adhere to a specific interface, and 
functionality. 

Figure 1 CHAT kernel example showing regular and irregular 
memory request component (see online version for 
colours) 

 
Notes: An AGU is created for both memory channels. B 

is a regular request from 0 to size_j, and A is an 
irregular request using data requested by B. 

4.4 Implementation of CHAT 

CHAT is implemented using the ROCCC compiler’s 
(Villarreal et al., 2010; ROCCC, http://roccc.cs.ucr.edu/) 
infrastructure. CHAT does analysis at two levels as shown 
in Figure 2. High level analysis is done using the SUIF 2.0 
toolset (Wilson et al., 1994) which builds a data flow graph 
(DFG) and generates an intermediate representation (IR), 
this IR is then further optimised with low level analysis 
using the LLVM compiler (Lattner and Adve, 2004). 
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Figure 2 CHATs design flow (see online version for colours) 

 

ROCCC is a C to VHDL compiler toolset designed 
specifically for the generation of FPGA-based code 
accelerators. Its distinguishing features are its extensive set 
of compiler transformations and optimisations. ROCCC was 
not designed to create hardware for entire applications, but 
instead focuses on the critical regions of large software 
systems. The critical regions typically consist of a loop nest 
performing extensive computation on large amounts of data. 
Hence, the ROCCC code takes advantage of the extensive 
amount of parallelism available on FPGAs and the ability to 
implement large computational pipelines on streams of data 
while attempting to minimise off-chip memory fetches and 
control flow, which are better handled on microprocessors. 
Among the ROCCC design goals: maximise throughput, 
minimise memory accesses, minimise the size of the 
generated circuit, support code reuse through the import of 
modules in C, VHDL or as IP cores, generate platform 
independent code and support fast design space exploration. 
In its current design ROCCC supports codes that have 
memory accesses whose order is compile-time 
determinable. These can be in one, two or N dimensional 
arrays. CHAT extends the ROCCC compiler to support 
irregular memory accesses. This extension is currently 
designed for the convey HC-1 but could be extended to 
other platforms that can support multiple outstanding 
memory request and where masking memory latency can be 
beneficial. 

The high-level analysis of an application is implemented 
using the SUIF toolset which generate the application’s 
DFG. The DFG’s components consist of the memory 
channels (marked as regular or irregular), and the main 
computation data-path for the application. Regular memory 
components in the DFG store the start, end, and stride 
elements for memory requests. Irregular memory 
components store what thread state data should be used, and 
how it should be processed. If the design is unrolled all 
components are first duplicated in the DFG. Then any 
components that are duplicates will be merged into one 
component in the graph. Finally, the DFG is encoded in a 
cirrf and passed to the next stage of the CHAT compiler; 
low-level analysis and implementation. 

Low level implementations are done with custom passes 
in the LLVM compiler. Each component from the DFG is 
assigned to a basic block, and subsequent passes evaluate it 
at this level. The thread state FIFOs are added to the DFG to 
create a control flow graph (CFG). CHAT does not specify 
how the FIFOs are built. It assumes dual clocked FIFOs 
with no fall-though, and a specific port list, but the 

implementation is left to the designer. FIFOs can thus be 
implemented fully in logic, or with board specific 
constructs. With all FIFOs inserted in the CFG the kernel 
components are generated in VHDL. Synchronisation logic 
is added to the kernel ensuring proper execution. This step 
ensures a thread state is not read if all components needing 
it are not ready. It also ensures a component stops 
requesting if the FIFO it must write to is full. 

The implementation of CHAT differers from ROCCC in 
a few major ways. First, ROCCC assumes that all memory 
accesses follow a regular pattern. We extend the framework 
to detect and support irregular memory access in CHAT. 
Focusing on irregular applications expands the set of 
applications compilable onto reconfigurable fabrics. 
However, compiling these applications requires the removal 
of certain optimisations that were possible when assuming 
only regular accesses. An example of this would be smart 
buffering of memory requests. The final kernel format for 
CHAT also diverged from the standard ROCCC format. 
ROCCC kernels have three main components; an input 
controller, an output controller, and the data-path. All 
incoming memory channels are managed by the input 
controller, and likewise for the output controller. Always 
having three components allows a simple implementation 
for the global system synchronisation that ROCCC uses. 
ROCCC manages a global state machine to ensure proper 
kernel execution. ROCCC only moves the thread state 
forward once all necessary data elements are ready. This 
model would hinder performance in irregular kernels 
because the kernel uses more data-paths than just the main 
computation one. Each irregular memory controller has its 
own data-path. Generating a global state manager for an 
arbitrary number of data-paths quickly becomes a difficult 
task. For this reason CHAT removes the global memory 
controllers used in ROCCC in favour of many smaller 
decoupled memory controllers for each channel. Allowing 
each component to manage its own state, and send its output 
data to the next component in the data flow when it is done. 

5 Experimental evaluation 

In this section we explore the performance potential gained 
with memory masking on the FPGA vs. software. CHAT 
generates the irregular memory hardware which is attached 
to the optimised data paths generated by ROCCC. This 
allows for kernels that can operate on a subset of data from 
a larger dataset like processing SQL queries, or sparse 
algebra operations. Most kernels already supported by 
ROCCC are also supported by CHAT with a few 
exceptions, namely systolic array generation. However, 
when measuring performance we want to minimise any 
improvements from data path optimisation. We do this by 
studying kernels with memory access bottlenecks. Two 
kernels are shown in Algorithms 5 and 6: both of them sum 
values over arbitrary columns of a matrix. They differ by 
which columns are selected per row. Algorithm 5 will 
always choose the same columns while Algorithm 6 can 
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have unique columns per row. Both kernels are executed in 
hardware and software on the convey computers HC-1. 

Algorithm 5 Summation with 1-dimensional index stream  

void summation (int ∗∗A, int ∗B, int ∗C, int m, int p) { 
 int i, j; 
 for (j = 0; j < m; ++j) 
  for (i = 0; i < p; ++i) 
   C [j] += A [j] [B[i]]; 
} 

Algorithm 6 Summation with 2-dimensional index stream  

void summation (int ∗∗A, int ∗∗B, int ∗C, int m, int p) { 
 int i, j; 
 for (j = 0; j < m; ++j) 
  for (i = 0; i < p; ++i) 
   C [j] += A [j] [B[j][i]]; 
} 

While kernels that fit into the known threads and known 
memory access category are typically easy to implement by 
hand they are a necessary first step into the compilation of 
more complex kernels. This paper outlines the management 
of threads where everything is known at compile time. 
Future work will consider multithreading on kernels where 
this is not the case. Cases, like SpMV or graph traversal, 
where parts of the kernel are unknown until runtime. 

The convey uses Intel Xeon CPUs for software 
processing. These are not the fastest processors available, 
but are still orders of magnitude faster than the FPGAs. The 
CPU clock frequency is 2.13 GHz, while the FPGA clock is 
limited to 150 MHz. The CPU processors are acceptable for 
our purpose because the application’s bottleneck will be 
memory access time. The global memory of the HC-1 is 
shared between both hardware and software making it ideal 
to test our memory masking approach. 

5.1 Evaluation kernels 

5.1.1 One dimensional indexing 

The kernel shown in Algorithm 5, and expressed by 
Equation 1 will sum specific columns of a given row in a 
matrix. Through the kernel’s execution each row will sum 
the same columns, and the selected columns are specified by 
array B which is a one dimensional array. Each thread in the 
kernel will be the summation for a single row. When 
unrolling the design to process multiple rows concurrently 
the data read from memory channel B will be shared 
between all executing threads. Thus, CHAT will generate a 
kernel that uses only one memory channel to access B, and 
synchronising it among all thread data-paths. 
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The kernel as a whole takes a two dimensional array A[m, n] 
of values, and a list of indexes B[p] as input, where all 
values in B are less than n. The application runs each row, 
m, of A through its data path summing the values in the 
columns specified in B and storing each result into the 
corresponding element of C. 

For Algorithm 5 each thread data-path created has  
three major components shown in Figure 3. The  
increment component is a regular memory generator.  
At runtime the number of columns per row to sum is 
specified by p, and the incriminator requests the index  
into B for each of these columns. The index into A  
is dependent upon the value returned from B making it  
an irregular memory access. The address path component 
tracks the current row, m, and uses the index provided  
by B to generate a request into A. The data-path is a  
simple summation that takes the values returned to A  
and produces the result which then gets written back to 
memory. 

Figure 3 Summation of a single row 

 

Notes: Values are first fetched from B. Processing these 
values determines a new location in A. The value 
stored at this location is accumulated into the 
final result. This is repeated for each row in A. 

5.1.2 Two dimensional indexing 

The kernel presented in this section is similar to the one 
dimensional kernel presented above, but instead B is a two 
dimensional array. This allows the summation of 
independent columns on a per row basis. With each  
row summing different columns unrolled designs can  
no longer share a memory channel. The design, as  
written, requires each row to still select the same number  
of columns. This limitation in the kernel places it in the  
first category of irregular applications where the total 
number of threads, and memory access are known for each 
data-path. 
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5.2 Experimental results 

In this section we describe in more detail the convey 
computers HC-1 system where we performed our tests. We 
provide a comparison between our kernels and their 
software implementations. We use one of the CPUs, and 
compared it to only one of the FPGAs on the HC-1. Finally 
we discuss the affects shared streams have on performance 
of the kernels. 

5.2.1 Convey computers HC-1 platform 

The convey computers HC-1 system (Brewer, 2010) is the 
first heterogeneous machine to support cache coherent 
shared virtual memory accesses from both the software 
(CPU execution) and the hardware (FPGA execution). This 
virtual memory allows an application to easily switch its 
execution between software and hardware. The HC-1 has 
eight 2.13 GHz Xeon CPU cores and a hybrid co-processor 
with four application engines (AEs) consisting of four 
Xilinx Virtex 5LX330 FPGAs1. An outline of the HC-1’s 
FPGA and memory interface layout is shown in Figure 6. 

The whole system consists of two 1U chassis, the host 
motherboard and the co-processor. The four AEs interface 
to memory via eight full duplex memory controllers, each 
implemented on a Virtex 5LX150, through a full crossbar 
itself implemented in FPGAs as well. The cumulative  
peak bandwidth to memory is 80 GB/s when the data is 
uniformly distributed across all memory modules (20 GB/s 
per AE). The interface to memory can be run at 300 MHz or 
150 MHz. The latter allows for 16 memory channels  
per AE which increases parallelism but with a fixed 
bandwidth. Each channel is 64-bits. The memory interface, 
implemented with the Intel Front Side Bus (FSB) protocol, 
is fully cache coherent (snoopy protocol) with the host 
memory allowing for one global shared address space. 
Unlike PCI-based FPGA co-processors, the memory 
coherence on the HC-1 is fully transparent and does not 
require explicit data movements to maintain coherence  
with the host data. The data returned from memory,  
within memory channels, can be returned in order. This 
accomplished by reorder buffers in the memory controllers. 

An application engine hub (AEH) consists of two 
FPGAs. One is the co-processor interface to the host FSB, it 
implements the snoopy coherence protocol and maintains 
the page tables for the co-processor. The other FPGA 
implements a soft processor that is the effective host of the 
co-processor. It is connected to each AE, it loads the 
programming file for AE and every call to an accelerator 
code on an AE is issued by the soft processor. The 
accelerator code that runs on the AEs is developed with the 
convey personality development kit (PDK) consisting of a 
set of Verilog programmes and makefiles. The PDK defines 
all the non-programmable components of the accelerators, 
such as the crossbar and the memory controllers. It supports 
hardware/software co-simulation (with Mentor Graphics 

ModelSim) of the accelerator code. In addition to the 
accelerator code, a hardware wrapper is instantiated by the 
PDK on each AE that implements the memory interfaces. It 
occupies about 20% of the BRAMs and 10% of the slices on 
each FPGAS of the HC-1 (much smaller percentage on the 
HC-1ex). The accelerator code clock frequency is fixed at 
150 MHz. Only one of the four AEHs is used for results in 
this paper, and is compared to one CPU processor. 

5.2.2 Runtime, speedup and utilisation 

The execution time for the 1-dimensional kernel is shown in 
Figure 4 with a logarithmic scale. Note that The FPGA is 
reported for three distinct cases; no unrolling, 2x unrolling 
and 7x unrolling. The execution for all three cases is 
approximately constant, at about 10 msec, up to a dataset 
size of ten million elements. This is where the startup and 
initialisation costs of the HC-1 accelerators dominate the 
total execution time. 

Figure 4 Execution time (sec), on a logarithmic scale, of  
1-dimensional hardware kernels and their software 
equivalent (see online version for colours) 

 

Each accelerator FPGA on the HC-1 has 16 memory 
channels. In the 1-dimensional kernel the B occupies a 
channel and the A and C arrays are unrolled up to seven 
times. In the 2-dimensional kernel each instance of A, B  
and C requires a separate channel so the maximum unrolling 
is 5x. 

Figure 5(a) shows the speedup achieved by the first 
kernel over software. Note that the speedup with no 
unrolling is 8x over software, due to the ability of the 
multithreaded model to mask memory latency. Because the 
index stream B is shared each initial response to B produces 
a memory request from A equivalent to the unroll factor. 
When fully unrolled (at 7x) a single response to B will result 
in seven requests for A. This is the reason behind the 50x 
speedup over software when fully unrolled, and 15x 
speedup when unrolled by a factor of 2x. Execution time is 
lowered from 21 seconds in software to 1.3 seconds when 
unrolled by 2x, and under 0.5 seconds when fully unrolled 
on the largest dataset. 
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Figure 5 Speedup over software achieved, varying the dataset size, (a) 1-dimensional index stream B (b) 2-dimensional index stream B 
(see online version for colours) 

  
 (a)       (b) 

Figure 6 Convey HC-1 architecture (see online version for colours) 

 

Figure 7 Utilisation of memory channels (%) versus the dataset size, (a) utilisation in 1-dimensional index stream kernel (b) utilisation in 
2-dimensional index stream kernel (see online version for colours) 

  
 (a)       (b) 
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The speedup results for the 2-dimensional kernel are shown 
in Figure 5(b). Note that this kernel does not benefit from 
the sharing of the index stream B. This results in poorer 
caching performance in the software execution and a higher 
speedup for the FPGA execution with no unrolling (10x). 
Other observations are that the dip is at four million 
elements and is less pronounced than the first kernel. The 
maximum speedup is achieved earlier than the previous 
kernel (at 50 million elements versus 100 million). 

In Figures 5(a) and 5(b) we can observe a discontinuity 
in the speed-up curve around dataset sizes with eight million 
elements. This is probably due to the distribution of the data 
across the memory modules that can result in collisions 
when the pressure on the memory system is high as it is 
with 7x and 5x unrolling respectively. 

The utilisation is another performance measure we have 
evaluated. In this context we define utilisation as the 
percentage of cycles a memory channel is busy reading 
memory, aggregated over all the memory channels used. It 
is shown in Figures 7(a) and 7(b). The following 
observations can be made: the not unrolled code quickly 
saturates the few memory channels allocated to it; the fully 
unrolled 1-dimensional kernel does not saturate the memory 
system achieving just about 50% utilisation; the 2-
dimensional kernel rapidly approaches 80% utilisation of 
the available memory bandwidth. 

5.2.3 Area 

We report the kernel’s area results with the convey interface 
wrapper attached on a Virtex 5 LX330 FPGA. To guarantee 
in-order memory accesses, the wrapper has an optional 
crossbar that was added. Because of this it occupies a large 
portion of the designs slices. The CHAT framework is 
BRAM intensive because it uses FIFOs to store all thread 
states, and data for its designs. This can be seen in Table 1 
where the CHAT kernels greatly increase BRAM utilisation, 
and only slightly increase slice utilisation. The frameworks 
for 1D and 2D kernels are very similar. The main difference 
is in the kernel logic, and because of this we see a small 
increase in slice while BRAM usage is almost identical. 

Table 1 Area requirement for both 1, and 2 dimensional 
kernels on a Virtex 5 LX330 FPGA 

Design Slices BRAMS 

Convey wrapper 14,620 (28%) 34 (12%) 
1D not unrolled 16,651 (32%) 55 (19%) 
1D 2 unrolled 17,083 (33%) 59 (20%) 
1D 7 unrolled 19,004 (37%) 79 (27%) 
2D not unrolled 16,977 (33%) 55 (19%) 
2D 2 unrolled 17,235 (33%) 60 (21%) 
2D 5 unrolled 19,598 (38%) 75 (26%) 

Note: All results are reported with the convey wrapper 
attached. 

6 Conclusions 

Because of their lack of data locality, irregular applications 
have been notoriously hard to parallelise. Multithreaded 
execution with support for multiple concurrent threads fixed 
in the hardware at design time have been shown to be a 
viable approach to the masking of long memory  
latencies and hence are a good option for irregular 
applications. In this paper we have introduced CHAT, a 
compilation tool that generates customised hardware 
support for multithreaded execution on FPGAs. We describe 
its execution model and implementation and report on the 
initial stages of its performance evaluation as implemented 
on the convey computers HC-1. Using just one accelerator 
FPGA we show a speed-up of up to 50x over a single Intel 
Xeon on simple irregular kernels. 
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