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PRIMARY RESEARCH

Development of syngeneic murine cell lines 
for use in immunocompetent orthotopic lung 
cancer models
Kyle Nolan1, Gregory Verzosa1, Tim Cleaver1, Darinee Tippimanchai1, Lisa N. DePledge2, Xiao‑Jing Wang2, 
Christian Young2, Anh Le3, Robert Doebele3, Howard Li1,5 and Stephen P. Malkoski1,4* 

Abstract 

Background: Immunocompetent animal models are required to study tumor‑host interactions, immunotherapy, 
and immunotherapeutic combinations, however the currently available immunocompetent lung cancer models 
have substantial limitations. While orthotopic models potentially help fill this gap, the utility of these models has been 
limited by the very small number of murine lung cancer cell lines capable of forming orthotopic tumors in immuno‑
competent C57BL/6 hosts.

Methods: Primary lung tumors with specific genetic alterations were created in C57BL/6 background mice. These 
tumors were then passaged through other animals to increase tumorigenicity and select for the ability to grow in a 
non‑self animal. Once tumors demonstrated growth in a non‑self host, cell lines were established. Successful cell lines 
were evaluated for the ability to produce orthotopic lung tumors in immunocompetent hosts.

Results: We produced six murine lung cancer lines capable of orthotopic lung tumor formation in immunocom‑
petent C57BL/6 animals. These lines demonstrate the expected genetic alterations based on their primary tumor 
genetics.

Conclusions: These novel cell lines will be useful for evaluating tumor‑host interactions, the impact of specific onco‑
genic alterations on the tumor microenvironment, and immunotherapeutic approaches. This method of generating 
murine lines capable of orthotopic growth can likely be applied to other tumors and will broaden the applicability of 
pre‑clinical testing of immunotherapeutic treatment regimens.
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Background
Although immunotherapy is the biggest treatment 
advance in metastatic lung cancer in over 30  years 
most patients do not respond to this approach and a 
better basic understanding of tumor-immune interac-
tions is required for immunotherapy to reach its full 

potential [1]. Unfortunately, the immunocompetent 
animal models required for these studies are extremely 
limited. While genetically engineered mouse mod-
els (GEMMs) produce tumors in an immunocompe-
tent background, many GEMMs generate multifocal 
tumors of low malignant potential that may not accu-
rately recapitulate the complex tumor-host inter-
actions present during disease progression [2]. In 
addition, the low mutational burden of GEMM tumors 
may limit their utility for studying immunotherapy 
where therapeutic response is partially dependent on 
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tumor neoantigens [3, 4]. That the viral vectors com-
monly used to initiate tumor formation also transduce 
resident immune cells further complicates the use of 
these models [5, 6]. Finally, generating tumors and 
monitoring therapeutic responses in GEMMs is com-
plicated and costly.

Orthotopic systems where tumor cells are directly 
injected into the lungs of recipient mice can also be 
used to model tumor-host interactions. While this bet-
ter models metastatic disease and allows for signifi-
cantly shorter studies then GEMMs [7], this approach 
has been limited by the small number of transplant-
able murine lung cancer cell lines. To the best of our 
knowledge, there are only two commercially available 
C57BL/6 derived murine lung tumor lines capable of 
forming orthotopic lung tumors in immunocompetent 
hosts. The Lewis Lung Carcinoma (LLC) line was sub-
cloned from a spontaneous lung tumor in 1951 [8, 9] 
while CMT167 was sub cloned for metastatic potential 
from the CMT64 line derived from a spontaneous lung 
tumor in 1976 [10, 11]. More recently, GEMM-derived 
lines developed in a mixed genetic background have 
been described [12–14], however the broad utility of 
these lines is unclear as these lines may have limited 
tumorigenicity in C57BL/6 mice. An exception is a 
KrasG12D.p53−/− line derived in a C57BL/6 background 
that forms lung tumors in C57BL/6 mice after tail vein 
injection [15]. The development of lines capable of 
orthotopic growth specifically in a C57BL/6 host is crit-
ical as many genetic tools for manipulating the murine 
immune system in vivo exist in this background.

In addition, all the above mentioned cell lines har-
bor activating Kras mutations [12–16] which may limit 
generalizability to other oncogenic drivers. Although 
the mechanistic relationships between oncogenic driv-
ers and immunotherapeutic response remains unclear, 
human tumors with targetable oncogenic drivers 
appear poorly responsive to programmed death ligand 
1 (PD-L1) blockade [17]. Moreover, the best character-
ized murine lung cancer cell lines (CMT and LLC) have 
disparate responses to programmed death ligand-1 
(PD-L1) blockade [16], suggesting it will be difficult 
to discern the relationship between oncogenic driver 
and immunotherapeutic response without substan-
tial additional tools. Herein, we describe a process for 
developing murine lung cancer cell lines with a variety 
of genetic alterations that are capable of forming ortho-
topic lung tumors in C57BL/6 hosts. This approach 
will facilitate assessment of tumor-host interactions in 
the context of different genetic drivers. These lines will 
be useful for testing combinations of chemotherapy, 
immunotherapy, and radiation therapy in preclinical 
models.

Material and methods
Mouse strains and background
All studies were IACUC approved (protocol 
B-95517(05)1E). All strains were backcrossed into 
C57BL/6 mice (JAX Laboratory, Bar Harbor, ME) until a 
> 95% C57BL/6 genetic background was obtained by SNP 
analysis (Dartmouse https ://dartm ouse.org/). Both male 
and female animals were used as detailed in “Results”and 
“Discussion”. Mice with the following alleles were used: 
KrasLSL-G12D knock-in (JAX #8179) [18], phosphatidylin-
ositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
(Pi3kca) mutant knock-in (R26StopFLP110*, JAX#12343) 
[19], conditional TP53 deletion (p53flox, JAX#8462) [20], 
conditional phosphatase and tensin homolog deletion 
(Ptenflox, JAX#6440) [21], conditional Mitogen-Activated 
Protein Kinase Kinase Kinase 7 deletion (Map3k7flox) 
[22] (kindly provided by Dr. Scott Cramer, University 
of Colorado Anschutz Medical Campus), conditional 
Smad4 deletion (Smad4flox, JAX#17462) [23], condi-
tional transforming growth factor type II receptor dele-
tion (Tgfbr2flox) [24], mTomato/mGFP (mT/mG) tracking 
allele  (ROSAmTmG, JAX #7576) [25]. Genotyping was 
performed as described in the primary references for the 
specific alleles.

Primary tumor formation
Adenovirus with Cre recombinase under the control 
of the cytomegalovirus (CMV) promoter (Ad5-CMV-
Cre) or the surfactant protein C (SPC) promoter (Ad5-
SPC-Cre) was purchased from the University of Iowa 
Viral Vector Core (Iowa City, IA). Adenovirus capable of 
mediating the echinoderm microtubule-associated pro-
tein-like 4 (EML4) anaplastic lymphoma kinase (ALK) 
gene fusion (Ad-EA) [26] was purchased from Viraquest 
(North Liberty, IA) with the permission of Dr. Andrea 
Ventura (Memorial Sloan Kettering). Tumor formation 
was initiated by injecting 2 µl of virus directly into the left 
lung or by tracheal instillation as previously described 
[27, 28] and as detailed in the Results. Cre recombinase 
viruses were used in animals harboring alleles for condi-
tional oncogene knock-in and/or conditional tumor sup-
pressor deletion while Ad-EA was used in C57BL/6 wild 
type mice. Animals harboring primary tumors were euth-
anized 11–36 weeks after tumor initiation.

Tumor passaging
Primary tumors were dissected from surrounding lung 
tissue then minced with razor blades. An aliquot of the 
minced homogenate was suspended in Hanks’ Bal-
anced Salt Solution (HBSS, 14170-112, Gibco, Grand 
Island, NY) supplemented with 1.3  mg/ml Matrigel 
(#354234, Corning, Oneonta, NY); 40 µl of this suspen-
sion was injected into the left lung of a recipient animal 

https://dartmouse.org/
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as previously described [7] while 400 µl was injected into 
the right flank of the same recipient. Animals harboring 
transplanted tumors were monitored until flank tumor 
size exceeded 1  cm or until animals showed signs sug-
gestive of internal tumor burden (weight loss, hunched 
posture) or for up to 9  months. At this point, recipient 
animals were euthanized and tumors collected for pas-
saging as described above and culture as described below. 
At each passage, lung tumors > 5  mm were passaged 
separately (i.e., into separate recipient animals) from 
flank tumors while lung tumors < 5 mm were combined 
with flank tumors from the same animal and passaged 
together (i.e., into the same recipient animal). To reduce 
the probability of rejection, sex matched recipients were 
used and all tumor recipients were genetically > 90% 
C57BL/6 by SNP analysis.

Cell culture
Cell lines were cultured in Dulbecco’s Modified Eagle 
Medium containing 4.5  g/l d-glucose, l-glutamine, and 
sodium pyruvate (11885–084, Gibco), supplemented 
with 10% (v/v) fetal bovine serum (16000-044, Gibco) 
and 100  μg/ml primocin (ANT-PM2, Invivogen, San 
Diego, CA) at 37  °C in a humidified atmosphere of 5% 
 CO2. Tumors were minced with razorblades then cul-
tured in 6-well plates (CC7682-7506, CytoOne). Lung 
tumors < 5 mm were combined with flank tumors (from 
the same animal) for culture while lung tumors > 5 mm 
were cultured independently from flank tumors.

Assay for orthotopic tumor formation
Once lines were established in  vitro, they were myco-
plasma tested, treated if positive, and used between pas-
sages 5–10 for orthotopic experiments. Cell suspensions 
in 50% HBSS/50% Matrigel were created then 500,000 
cells in 400  µl were injected into the right flank and 
250,000 cells in 40 µl were injected into the left lung as 
previously described [7]. Recipient mice were monitored 
until flank tumors exceeded 1 cm or until animals showed 

signs of internal tumor burden (weight loss, hunched 
posture) or for up to 45 days. If flank tumors developed 
too quickly to reliably evaluate lung tumor formation, 
flank and lung tumor formation was assessed in separate 
animals. At least four animals (two male and two female) 
were used to determine the tumorigenicity of each cell 
line. Lines were deemed successful if they formed tumors 
in at least 75% of recipient animals.

Cell line validation
Once the ability to form orthotopic tumors was estab-
lished, lines were assayed for the anticipated genetic 
rearrangements by PCR of genomic DNA as previ-
ously described: KrasG12D [29], Smad4 [30], Tgfbr2 [31], 
Map3k7 [22], Tp53 [20], Pten [21], R26StopFLP110* 
[32], Eml4-Alk [26]. PCR primer sequences are shown 
in Table  1. Presence or absence of target gene products 
(or downstream targets) was also evaluated by West-
ern blotting as previously described [33] using the fol-
lowing antibodies:  KRASG12D (Cell Signaling #14429 
1:1000), SMAD4 (Abcam #ab40759 1:5000), TGFBR2 
(R&D Systems #AF532), TP53 (Cell Signaling #32532 
1:1000), PTEN (Cell Signaling #9559 1:1000), MAP3K7 
(Cell Signaling #4505 1:1000), pAKT-Ser473 (Cell Sign-
aling #4058 1:1000), total AKT (Cell Signaling #4691 
1:1000), GAPDH (Abcam #ab8245 1:10,000). CMT167 
and LLC control cells were kindly provided by Dr. Raph-
ael Nemenoff (University of Colorado Anschutz Medi-
cal Campus). These cells were mycoplasma tested upon 
receipt, treated if positive, and used between passages 
10–20 (from receipt).

To assess GFP expression, cultured cells were heat 
fixed (95  °C for 5  min) to glass slides, counterstained 
with DAPI and examined at 510 nm. Western blotting for 
pAKT and pERK after crizotinib (Selleck, Houston, TX) 
treatment was performed as previously described [34] 
using the following antibodies: pAKT S437 (Cell Signal-
ing #4058), total AKT (Cell Signaling #2920), pERK1/2 
T202/Y204 (Cell Signaling clone D13.14.4E), total 

Table 1 PCR primers used to validate cell lines

Target Recombinant PCR-forward Recombinant PCR-reverse Recombinant PCR-reverse 2

p53 CAC AAA AAC AGG TTA AAC CCA GAA GAC AGA AAA GGG GAG GG

Kras GGG TAG GTG TTG GGA TAG CTG TCC GAA TTC AGT GAC TAC AGA TGT ACA GAG 

PTEN ACT CAA GGC AGG GAT GAG C AAT CTA GGG CCT CTT GTG CC GCT TGA TAT CGA ATT CCT GCAGC 

SMAD4 TCC CAC ATT CCT CTT AGT TTTGA CCA GCT TCT CTG TCC AGG TAGTA 

PIK3CA CAC AGC TCG CGG TTG AGG TGC TCG ACG TTG TCA CTG AA CGG GTG TAC TCC TCA TAT AACA 

TGFβR2 AGG GAT GAA TGG GCT TGC TT CTC ACC TCA GAG CCT GAT TA

TAK1 GCA ACT TCG ACA ACT TGC CTT CCT GTG GCA CTT GAA TTA GCG GCC GCA AGC TTA TAA CT

EML‑ALK GAG CCT TGT TGA TAC ATC GTTC TAG GAG GCA GTT TGG GCT AC CAA GGC AGT GAG AAC CTG AA
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ERK1/2 (Cell Signaling clone L34F12). In  vitro cell via-
bility assay was performed as previously described [35]. 
Briefly, cells were plated into 96-well plates at 1000 cells/
well 24 h prior to drug treatment then treated with serial 
dilutions of the ALK inhibitor TAE-684 (Selleck) for 
72 h and viability determined by MTS assay (CellTiter96 
AQueous Kit, Promega). Percent inhibition and IC50 
were calculated using GraphPad.

Results
General approach to development of syngeneic murine 
lines with orthotopic growth potential
We generated mice for primary tumor formation using 
combinations of conditionally activated tumor-initiating 
oncogenes (KrasLSL-G12D  or R26StopFLP110*) and con-
ditionally deleted tumor suppressor alleles (Smad4flox, 
Tgfbr2flox, Map3k7flox, PTEN flox, p53flox; an example is 
shown in Fig.  1a). Specific oncogene/tumor suppressor 
combinations were selected based on prior work [36–38] 
and ongoing projects. Tumors were initiated by injecting 
adenovirus that expresses Cre recombinase directly into 
the left lung [27, 28]. Upon Cre recombinase exposure, 
oncogenes are activated via excision of an upstream loxP-
stop-loxP sequence while tumor suppressors are deleted 
via LoxP sites surrounding exons. Some animals also har-
bored a tracking allele (ROSAmTmG) in which cells switch 
from expressing mTomato to mGFP after recombination; 
an example of a primary tumor is shown in Fig. 1b.

To enhance the development of tumor lines that could 
grow in a non-self host, primary tumors were passaged 
through the flanks and lungs of recipient animals. At 
each passage after P1, we attempted to establish cell lines 
from passaged tumors. Once cell lines were established, 
we tested their ability to form orthotopic tumors. If a 
cell line was capable of forming orthotopic tumors, we 
assessed the line for the expected genetic and molecular 
changes as described in methods and shown in subse-
quent figures. Workflow is shown in Fig. 1c. Generation 
of these lines was time intensive, taking 300–500  days 
from the time that primary tumors were initiated through 
the time that orthotopic tumor formation was established 
(Table  2); this excludes time required for breeding and 
genotyping animals prior to tumor initiation and time for 

validating lines after orthotopic tumor formation ability 
was established. This process is also relatively inefficient 
with only 5% (6/113) primary tumors ultimately leading 
to lines capable of orthotopic tumor formation (Fig. 1d). 
Interestingly, the majority of failures (77%; 87/113) 
occurred at P1; if a successful P1 tumor was established, 
6/26 (23%) tumors ultimately led to a cell line capable of 
orthotopic tumor formation.

Development and validation of a KrasG12D.Smad4+/− cell line
A 6 week old KrasLSL-G12D/+.Smad4fl/+ male mouse was 
injected with 2 µl of  1010 PFU/ml Ad5-CMV-Cre into the 
left lung. When this animal was euthanized 26 week later, 
a 12 mm primary tumor was passaged into a male recipi-
ent animal. After 3 passages through recipient animals 
(two of which included small lung tumors), cell line X577 
was established that was capable of forming orthotopic 
tumors in immunocompetent C57BL/6 animals (Fig. 2a). 
As expected, X577 cells demonstrate genetic recom-
bination at the Kras and Smad4 loci (Fig. 2b). By West-
ern blot, X577 cells express  KRASG12D but not SMAD4 
(Fig. 2c).

Development and validation of a KrasG12D.Tgfbr2−/− cell line
A 6 wk old KrasLSL-G12D/+.Tgfbr2fl/fl male mouse was 
injected with 2 µl of  1010 PFU/ml Ad5-SPC-Cre into the 
left lung. When this animal was euthanized 29 week later, 
a 9 mm primary tumor was passaged into a male recipi-
ent. After two passages through recipient animals (one of 
which included a lung tumor), cell line X911 was estab-
lished that was capable of forming orthotopic tumors 
in C57BL/6 animals (Fig.  3a). As expected, X911 cells 
exhibit genetic recombination at the Kras and Tgfbr2 
loci (Fig.  3b) and express  KRASG12D but not TGFBR2 
(Fig. 3c).

Development and validation of a KrasG12D.Map3k7−/−.GFP+ 
cell line.
An 8 wk old KrasLSL-G12D/+.Map3k7fl/fl. ROSAmTmG male 
mouse was injected with 2 µl of  109 PFU/ml Ad5-CMV-
Cre into the left lung. When this animal was euthanized 
26 week later, an 8 mm primary tumor was passaged into 
a male recipient. After two passages through the flanks of 

Fig. 1 Strategy for developing syngeneic tumor lines with orthotopic growth potential. a Example of a genetic background that could be used for 
primary tumor formation. This animal harbors a Cre‑inducible tumor‑initiating oncogene (KrasLSL-G12D), a Cre‑deletable tumor suppressor (p53flox), 
and a tracking allele (ROSAmTmG). Homozygous or heterozygous tumor suppressor deletion can promote tumor formation depending on the tumor 
suppressor. b Example of a primary adenocarcinoma showing recombination of the ROSAmTmG tracking allele. Tumor cells express mGFP while 
the surrounding non‑recombined lung expresses mTomato. c Workflow for producing cell lines capable of orthotopic tumor growth. Detailed 
procedural details are included in the methods. d Outcome of attempts to establish cell lines capable of orthotopic tumor formation. There was no 
discernable pattern or marker that predicted which tumors were likely or unlikely to successfully move through the various stages of development 
other than establishment of a first passage tumor

(See figure on next page.)
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Number (% total)
Primary tumor initiated 113 (100%)

Failed to grow in first passage (P1) 87 (77%) 
Failed to grow at later passages (P2+) 11 (10%)

Failed to grow in culture 4 (3.5%)
Failed to form orthotopic tumor 5 (4.4%)

Successful orthotopic tumor formation 6 (5.3%)
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recipient animals, cell line E889 was established that was 
capable of forming orthotopic tumors in C57BL/6 ani-
mals (Fig. 4a). This line demonstrates genetic recombina-
tion at the Kras and Map3k7 loci (Fig. 4b) and expresses 
 KRASG12D but not MAP3K7 (Fig.  4c) by Western blot. 
Because this line was derived from an animal harboring 
the ROSAmTmG tracking allele [25], it also expresses GFP 
(Fig. 4d).

Development and validation of a KrasG12D.PTEN+/−.p53+/−.
GFP+ cell line
A 7 week old KrasLSL-G12D/+.PTENfl/+.p53fl/+.ROSAmTmG 
male mouse was injected with 2 µl of  1010 PFU/ml Ad5-
SPC-Cre into the left lung. When this animal was eutha-
nized 19 week later, multiple primary tumors between 
1 and 3  mm were passaged together into a recipient 

animal. After 3 passages two of which were through the 
lung, cell line X381 was established that was capable of 
forming orthotopic tumors in C57BL/6 animals (Fig. 5a). 
This line demonstrates genetic recombination at the 
Kras, Pten, and Tp53 loci (Fig.  5b). As expected, X381 
cells express  KRASG12D but have reduced expression of 
PTEN and TP53 (Fig. 5c). Because this line was derived 
from an animal harboring the ROSAmTmG tracking allele, 
it also expresses mGFP (Fig. 5d).

Development and validation of a Pi3kca+.p53+/− cell line
A 20 wk old R26StopFLP110* fl/+.p53fl/+ female mouse 
was injected with 2 µl of  109 PFU/ml Ad5-CMV-Cre into 
the left lung. When this animal was euthanized 11 week 
later, a 6 mm left lung tumor was combined with multi-
ple metastasis (contralateral lung, pericardial, pleural) 

b 
No 
DNA

600bp

500bp

400bp

recomb
Smad4

400bp

300bp

200bp

X577 LLCCMT

recomb Kras
wt Kras

a 

c 

Smad4

CMT LLCX577

KrasG12D

GAPDH

20 kDa
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Fig. 2 Validation of a KrasG12D.Smad4+/– cell line. a H&E stain showing orthotopic lung tumor formation by cell line X577. Scale bar is 100 µm 
and the red line denotes the tumor border. b PCR showing the recombinant KrasG12D allele (305 bp) and Smad4 allele (500 bp) in X577 cells 
but not in CMT or LLC controls. Although both CMT and LLC cells harbor Kras mutations [16], the 265 bp band in the Kras PCR from CMT and 
LLC cells represents the wild type (non‑engineered) Kras allele. c Western blot showing  KRASG12D expression and SMAD4 loss in X577 cells. The 
 KRASG12D‑specific antibody detects the  KRASG12V mutation in CMT cells but not the  KRASG12C mutation in LLC cells. The complete absence of SMAD4 
expression suggests that the wild type Smad4 allele has undergone mutation, loss of heterozygosity, or transcriptional silencing
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then passaged into a female recipient animal. After one 
passage through the flank, cell line Y856 was established; 
this line was capable of forming orthotopic tumors in 
C57BL/6 animals (Fig.  6a). Y856 demonstrates genetic 
recombination of the Pik3ca and Tp53 alleles (Fig.  6b) 
and reduced TP53 expression (Fig.  6c). Consistent with 
constitutive PIK3CA activation, Y856 cells demonstrate 
increase pAKT expression without increased total AKT 
(Fig. 6c).

Development and validation of an EML4-ALK mutant cell 
line
An 8 wk old C57BL/6 female mouse was treated with 
30  µl of  106 PFU/ml Ad-EA by tracheal instillation as 
previously described [27, 28]. The Ad-EA vector has an 
Ad5 backbone and harbors Cas9 and guide RNAs that 
lead to the EML4-ALK gene fusion [26]. When this ani-
mal was euthanized 14 week later a group of multifocal 
tumors 3–5 mm in size were combined and passaged into 
a recipient animal. For this line, tumors formed in both 

lung and flank; these tumors were combined and then 
passaged together into both lung and flank sites of recipi-
ent animals. Subsequently, a cell line (Y143) was estab-
lished that was capable of forming orthotopic tumors 
in C57BL/6 animals (Fig.  7a). The EML4-ALK genetic 
rearrangement was validated using PCR as previously 
described [26] (Fig. 7b). In Y143 cells treatment with the 
EML4-ALK inhibitor crizotinib inhibits phosphorylation 
of AKT and ERK is inhibited in a dose dependent man-
ner (Fig. 7c) and treatment with the ALK kinase inhibitor, 
TAE684, inhibits growth of Y143 cells (Fig. 7d).

Discussion
Rationale for developing syngeneic murine lung cancer 
cell lines
Better immunocompetent murine lung cancer models 
are required to study tumor-immune interactions and 
optimize immunotherapeutic approaches. GEMMs are 
limited by the production of multifocal tumors of rela-
tively low malignant potential with limited mutational 
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Fig. 3 Validation of a KrasG12D.Tgfbr2−/− cell line. a H&E stain showing orthotopic tumor formation by line X911. Scale bar is 100 µm and the red line 
denotes the tumor border. b PCR showing the recombinant KrasG12D allele (305 bp) and Tgfbr2 allele (220 bp) in X911 cells but not in CMT or LLC 
cells. c Western blot showing  KRASG12D expression and TGFBR2 loss in X911 cells. The band at ~ 70 kD is nonspecific (NS)
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burden [2–4] while orthotopic models are limited by 
the small number of transplantable murine lung cancer 
cell lines and limited diversity of driver mutations. Our 
goal was to develop a systematic approach for produc-
ing murine lung cancer cell lines with different genetic 
alterations that were capable of orthotopic tumor forma-
tion in C57BL/6 background recipients. This is of par-
ticular relevance as most immune system genetic models 
exist in a C57BL/6 background and changing the genetic 
background is labor intensive and expensive. Table  2 
summarizes the developmental details of our six novel 
murine lung cancer lines and illustrates that this process 
is time intensive, requiring 10–18  months from tumor 
initiation plus additional time to generate animals for 
primary tumor formation and validate cell line genetics. 
Because of the length required to establish successful cell 
lines, these lines assuredly acquired other genetic altera-
tions that contribute to cell survival, immune evasion, 
or other characteristics typical of cancers. Transcrip-
tome characterization of lines during development could 

provide interesting insight into the common pathways 
required for both in  vivo tumor formation and in  vitro 
propagation.

Developing syngeneic murine lung cancer cell lines: 
maximizing primary tumor malignancy
Although  KrasLSL-G12D/+ mice treated with tracheal 
Ad5-CMV-Cre expire 2–4  months of tumor initia-
tion with lungs that are several times normal in size, 
most tumors are small adenomas or well differentiated 
adenocarcinomas [18]. This may explain our limited 
success in generating tumor lines from  KrasLSL-G12D/+ 
animals (not shown). To address this issue, we initi-
ated primary tumor formation via direct injection of 
virus into the left lung [27]. While tumor production 
takes significantly longer (4–8  months depending on 
genotype and virus), this approach allows the devel-
opment of significantly larger and presumably more 
malignant tumors. Perhaps not surprisingly, half of our 
tumor lines originated from primary tumors that were 

a b 

1000bp
900bp

recomb
MAP3K7

400bp

300bp

200bp

E889 LLCCMT No
DNA

recomb Kras
wt Kras

d 

c

GAPDH

KrasG12D

CMT LLCE889
25 kDa

20 kDa

100 kDa

75 kDa MAP3K7

Fig. 4 Validation of a KrasG12D.Map3k7−/−.GFP+ cell line. a H&E stain showing orthotopic tumor formation by line E889. Scale bar is 100 µm and the 
red line denotes the tumor border. b PCR of genomic DNA showing recombination of the KrasG12D allele (305 bp) and Map3k7 allele (1.2 kb) in E889 
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larger than 5 mm (Table 2). That we had two cell lines 
develop after combining small tumors at the initial 
passage, suggests this can also be a successful strategy. 
Although primary tumor histology was not assessed, 
all orthotopic tumors except Y856 (which may have 
undergone EMT) had clear adenocarcinoma morphol-
ogy (see Figs. 2a, 3, 4, 5, 6, 7a). This is consistent the 
observation that most GEMMs produce predominantly 
adenocarcinoma spectrum tumors.

Developing syngeneic murine lung cancer cell lines: 
minimizing host rejection
We hypothesized that passaging tumors through a sec-
ond animal would allow for additional tumor growth and 
might select for tumors more likely to grow in a non-
self host, however this approach must consider genetic 
background as murine lung cancer lines developed from 
mixed backgrounds [12, 39] do not form orthotopic 
tumors in C57BL/6 hosts (personal communication 
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Howard Li). Accordingly, we generated primary tumors 
in animals that were > 95% C57BL/6 by SNP analysis 
and used tumor recipients for passaging that were > 90% 
C57BL/6 with no SNP mismatches on chromosome 17 
where the mouse major histocompatibility locus (MHC) 
is located. We also sex-matched primary tumors and 
tumor recipients to reduce the chances of tumor rejec-
tion based on sex specific proteins. Despite these steps, 
greater than 75% (87/113) of primary tumors failed at 
the first passage while 23% (6/26) of tumors that success-
fully completed a first passage ultimately gave rise to lines 
capable of forming orthotopic tumors. Because our goal 

was to produce lines capable of orthotopic growth in an 
immunocompetent host, we did not assess the impact of 
creating cell lines as the first step in cell line generation.

Potential utility of syngeneic murine tumors models
The lines described herein are capable of forming both 
lung and flank tumors in both male and female recipi-
ents (not explicitly shown) however there are clear differ-
ences in the flank and lung tumor microenvironment and 
these differences can critically alter immunotherapeutic 
responses [16]. For monitoring purposes we passaged 
through flank to allow for tumor amplification and ease 
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of monitoring. While it is unknown what effects this may 
have had on cell line phenotype, 4 of the 6 lines that were 
successfully established were also passaged through the 
lung during development. While all tumor lines formed 
tumors in at least 75% of recipient C57BL/6 host lungs 
(not shown); tumorigenicity in other background strains 
was not assessed. Our goal was to establish tumorigenic-
ity of these cell lines in the lungs of C57BL/6 hosts; future 
investigators will have to optimize experimental condi-
tions with respect to the number of cells injected and the 
timing of experimental endpoints that balance primary 
tumor formation and metastases development.

Although we did not directly compare the responses of 
the novel cell lines to immunotherapy we did find that IFNγ 
treatment increases PD-L1 mRNA expression in CMT167, 
Y856, X577, E889, and X381 cells (Additional file 1: Figure 
S1); this characteristic is associated with sensitivity to anti-
PD-1 treatment in vivo [40]. That LLC and X911 cells fail 
to respond to INFγ stimulation (and that Y143 cells are 
equivocal) illustrates how having a broader array of cell lines 
to test in vivo potentially increases the generalizability of a 
given observation and also allows investigators to explore 
mechanistic differences underpinning a specific characteris-
tic. In addition, as these lines have defined oncogenic drivers 
and retain responsiveness to inhibition of these drivers (at 
least in the case of the EML4-ALK line), this sets the stage 
for experiments combining small molecule inhibitor and 
immunotherapeutic approaches which had previosly been 
beyond the scope of a typical orthotopic experiment.

Conclusions
We produced six novel murine lung cancer cell lines 
capable of orthotopic tumor formation in syngeneic 
immunocompetent animals. These lines will be invalua-
ble for preclinical studies of small molecule inhibitor and 
immunotherapy combinatorial approaches. Our meth-
ods provide a broader road map for the development of 
additional murine cancer cell lines capable of orthotopic 
tumor formation in immunocompetent hosts.
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Additional file 1: Figure S1. Upregulation of PD‑L1 in murine lung can‑
cer cells in response to treatment with IFNγ. Cancer cell lines were treated 
with recombinant murine IFNγ (100 ng/mL R&D Systems) or vehicle 
for 16 h. RNA was isolated using an RNeasy Mini Kit (Qiagen) and cDNA 
synthesized using an iScript cDNA Synthesis Kit (Bio‑Rad). Real‑time PCR 
analysis was conducted in an iCycler (Bio‑Rad). PD‑L1 mRNA expression 
was determined by qRT‑PCR and normalized to β‑actin. Data represent 
the mean ± SEM of three independent experiments. Primer sequences: 
PD‑L1 (For: 5′‑TGC TGC ATA ATC AGC TAC GG‑3′, Rev: 5′‑GCT GGT CAC ATT GAG 
AAG CA‑3′), β‑actin (For: 5′‑GGC TGT ATT CCC CTC CAT CG‑3′, Rev: 5′‑CCA GTT 
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