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Vascular imaging plays a crucial role in the assessment of a variety of vascular 

diseases. In the past few decades, efforts have been made to establish various imaging 

modalities for the evaluation of vasculatures. For example, CT, PET, ultrasound, and 

MR, have all been shown to have the capability to visualize or quantify different 

vasculatures. MR vascular imaging, compared to other imaging modalities, has several 

unique advantages, and has evolved as an ever-attractive choice both in research and 

clinical studies. 
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 Based on the scale of the target vasculature, MR vascular imaging can be further 

classified into two subcategories: MR macrovascular imaging and MR microvascular 

imaging. Macrovascular imaging is developed to assess diseases of, for example, the 

aorta, the coronary, the sizable arteries in the brain, and etc. Classically, macrovascular 

imaging can be categorized into bright-blood and dark-blood techniques. As a bright-

blood technique, MR angiography has evolved as an important tool in the evaluation of 

macro vessels. Well dark-blood imaging, also called vessel wall imaging, has shown 

great potentials because of its ability to directly visualize pathological changes within the 

vessel wall. In contrast, MR microvascular imaging concentrates upon “micro” blood 

vessels, including small arteries, arterioles, and capillaries, with some biomarkers 

quantified to assess vessel changes at the microscopic level. Permeability and 

perfusion are two widely adopted biomarkers in this scenario that can be generated by 

dynamic contrast-enhanced MR, which is DCE-MR and dynamic susceptibility contrast-

enhanced MR, which is DSC-MR, respectively. In recent years, with the advancements 

in imaging technologies, both MR macrovascular imaging and microvascular imaging 

have been applied to real clinical workflows to help with diagnosis and prognosis. For 

example, MR macrovascular imaging, especially MRA, is nearly always adopted as an 

adjunct in stroke diagnosis and etiology evaluation, while MR microvascular imaging 

has been shown to provide insights into many different aspects of brain tumors, like 

surgical planning and treatment response assessment. However, the vascular imaging 

techniques adopted in current paradigm for both applications are suboptimal and have 

several limitations.  
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 The primary goal of the work in the dissertation is to address the limitations by 

developing advanced MR macroscopic and microscopic vascular imaging techniques 

that can assist in stroke diagnosis and etiology evaluation and brain cancer evaluation, 

respectively. Specifically, for stroke etiology evaluation, a comprehensive two-station 

stroke etiology evaluation technique covering both the head-neck vasculature and the 

heart was developed. Our goal is to develop a technique that can be easily incorporated 

into clinical workup, and hopefully improves the diagnostics and patient outcomes. The 

technical development was divided into two specific aims, where Aim 1 is to develop a 

novel motion-compensated, data-driven accelerated 3D MR vessel wall imaging for the 

evaluation of the head-neck vessels, and Aim 2 is to develop a novel ECG- and 

navigator-free multi-dimensional assessment of cardiovascular system technique for the 

evaluation of the thoracic aorta and the cardiac structures. As for brain cancer 

evaluation, we developed a novel dynamic imaging for cerebrovascular evaluation 

technique based on MR multitasking framework for simultaneous 3D permeability and 

leakage-insensitive perfusion quantification based on single-dose of contrast injection. 

Feasibility of each developed technique is evaluated on both healthy subjects and 

patients.  
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CHAPTER 1 

Introduction 

 

 

1.1 MR VASCULAR IMAGING 

Vascular imaging encompasses a wide variety of pathology and plays a critical role in the 

assessment of varied manifestations of vascular disease1. In the past decade, efforts 

have been made to establish various methodologies for the evaluation of vasculature, 

including magnetic resonance (MR) imaging, computed tomography (CT), positron 

emission tomography, ultrasonography, and optical coherence tomography2. MR, due to 

its non-invasive nature, superior soft-tissue contrast resolution and lack of ionizing 

radiation exposure, has evolved as an ever-attractive choice3. Based on the scale of the 

target vasculature, MR vascular imaging can be further classified into two subcategories: 

macroscopic vascular imaging and microscopic vascular imaging4. Macroscopic vascular 

imaging, as the name suggests, assesses diseases of any “macro” blood vessels, 

including the aorta, the coronary, and the sizable arteries in the brain and the limbs. 

Classically, macroscopic vascular imaging techniques can be categorized into bright-

blood and dark-blood techniques3. As a bright-blood technique, MR angiography, which 

can be achieved by exploiting either contrast-enhanced5,6 or non-contrast (i.e., time-of-

flight and steady-state free precession)7–9 technologies, has advanced to an 

indispensable tool in the evaluation of macro vessels in the routine clinical practice. Dark-

blood macroscopic vascular imaging, also called vessel wall imaging (VWI), has seen an 
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exponential increase in popularity and clinical applicability in recent years10,11, due to its 

ability to directly probe pathological changes within the vessel wall. In contrast, 

microscopic vascular imaging has concentrated upon “micro” blood vessels, including 

small arteries, arterioles, venules, and capillaries, with permeability and/or perfusion 

quantification used to assess vessel changes at the microscopic level4. Dynamic contrast-

enhanced MR (DCE-MR)12 and dynamic susceptibility contrast-enhanced (DSC-MR)13 

are two widely used methods for permeability and perfusion assessment, respectively. 

By administrating a paramagnetic contrast agent (CA) and rapidly acquiring sequential 

images during the passage of CA through a given microvascular environment, DCE-MR 

can quantify vascular permeability-related properties, such as fractional plasma volume 

(v"), transfer constant (K#$%&'), and fractional extravascular-extracellular volume (v(), and 

DSC-MR can quantify hemodynamic perfusion-related properties, such as cerebral blood 

volume (CBV), and cerebral blood flow (CBF). In recent years, with advancements in 

imaging and reconstruction technologies, both MR macroscopic vascular imaging and 

microscopic vascular imaging have been included in clinical workflows for a variety of 

diseases. For example, MR macroscopic vascular imaging, especially MR angiography, 

is nearly always adopted as an adjunct in stroke etiology evaluation workup14, while MR 

microscopic vascular imaging enables non-invasive evaluation of brain tumors, providing 

insights into their diagnosis, progression, and treatment response15. However, some 

major technical challenges of current MR macroscopic and microscopic vascular imaging 

techniques hinder the further exploiting of them in stroke etiology evaluation and brain 

cancer evaluation, respectively. Thus, the development of novel MR vascular imaging 
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techniques to overcome the limitations and enhance their values in real clinical evaluation 

workflows of different diseases is of great significance.  

 

1.2 MR MACROSCOPIC VASCULAR IMAGING IN STROKE ETIOLOGY 

EVALUATION 

1.2.1 Overview of ischemic strokes 

Stroke is a leading cause of death and disability worldwide. The majority of strokes are 

ischemic strokes. Each year in the United States, approximately 795,000 people 

experience a stroke of which 87% are ischemic in origin16. Ischemic strokes can result 

from a variety of causes17 and several diagnostic algorithms have been developed to 

categorize ischemic strokes according to the etiology18. Causative Classification of Stroke 

(CCS) system classifies stroke patients in clinical trials into 4 mechanism categories: 

strokes related to (a) large-vessel diseases, (b) lacunar strokes, (c) cardioembolic strokes 

and (d) cryptogenic strokes, which are symptomatic cerebral infarcts for which no 

probable cause is defined after diagnostic evaluation19. Rapid and accurate identification 

of the corresponding stroke etiology would allow for a prompt delivery of appropriate 

treatment and thus a better patient outcome20,21.  

1.2.2 Current stroke etiology evaluation workup 

In contemporary practice, the routine evaluation of the patient with ischemic stroke 

includes several components22, as demonstrated in Figure 1.1. The topographic features 

of the stroke (i.e., infarct location and multiplicity) are assessed by brain MR (typically by 
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diffusion sequences), or brain CT when brain MR is not available. The head, neck, and 

thoracic vessels are assessed by CT or MR angiography, which have been demonstrated 

to have similar sensitivity and specificity. Echocardiography is used to assess the 

existence of thrombi in the cardiac structure. Transthoracic echocardiography (TTE), 

which is better at ventricular imaging, is utilized first in patients with coronary artery 

disease, congestive heart failure, or other ventricular disease that is evident from history 

or electrocardiogram (ECG). Transesophageal echocardiography (TEE), which is better 

at atrial and aortic-arch imaging, is favored in patients with non-lacunar infarct and no 

indication of ventricular disease and as an additional test in patients with unrevealing TTE 

results. Cardiac dysrhythmias are initially assessed by 12-lead ECG and inpatient cardiac 

telemetry or 24-hour Holter monitor, and hematologic disorders are screened through red-

cell and platelet counts. 

  
Figure 1.1 Routine stroke etiology evaluation workup in current clinical practice. Redrawn after 

Saver (2016) 

1.2.3 Technical challenges and potential solutions with advanced MR 

macrovascular imaging 

As shown in Figure 1.1, medical imaging is a major component in routine stroke etiologic 

evaluations; yet, current paradigm is suboptimal, which potentially accounts for 15 to 40% 
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of all ischemic strokes diagnosed with cryptogenic after the standard etiology workup23. 

First, detection of vessel-related pathologies relies solely on the degree of vascular 

narrowing measured by lumen-based imaging modalities. However, since most vascular 

pathology commences within the vessel walls, these modalities may have decreased 

sensitivity in detecting early vascular changes24. For example, intracranial atherosclerotic 

changes begin with deposition of an intimal “fatty streak”, which causes inflammation and 

intimal thickening followed by luminal stenosis25. Therefore, caliber changes are 

secondary and may reflect late stages. In this sense, it would be preferrable to add MR 

VWI, a dark-blood technique for MR macroscopic vascular imaging, to the existing 

standard etiology evaluation. Second, diagnosis of certain etiologies is conducted by 

utilizing suboptimal and invasive imaging procedures. Specifically, echocardiography is 

the current gold-standard for examining the thoracic aorta and the cardiac structure26. 

Nonetheless, this imaging modality is inherently suboptimal due to inadequate acoustic 

windows and highly operator dependent, not to mention the invasiveness of TEE. Given 

the unique advantages of MR, introducing MR macrovascular imaging (i.e., VWI and MR 

angiography) to help detect thrombi in the thoracic aorta or the cardiac chambers would 

be the future trends.  
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1.3 MR MICROSCOPIC VASCULAR IMAGING IN BRAIN CANCER 

EVALUATION 

1.3.1 Overview of brain cancers 

Brain and other central nervous system cancers are among the most fatal cancers and 

account for substantial morbidity and mortality27. Approximately 67,900 new brain tumors 

are diagnosed each year in the United States (21 per 100,000 people), of which 44,910 

are malignant28. Despite considerable breakthroughs in various diagnostic and 

therapeutic techniques in recent years, the prognosis of malignant tumors remains dismal. 

Tumor-associated neovascularization is a typical tumor characteristic that indicates 

multiple biological behaviors, including tumor progression and resistance to therapy29. 

Hence, visualization of tumor microscopic vasculatures is of great importance for 

improved diagnosis, treatment planning, and post-therapy assessment of brain tumors30.  

1.3.2 Current brain cancer evaluation protocol 

As the mainstay of modern neuroimaging, MR is the standard-of-care imaging modality 

for brain cancer evaluation. Table 1.1 outlines the minimal consensus recommendations 

for routine brain cancer imaging with MR on 3-T31.  
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Table 1.1 Current consensus recommendations for a standardized brain cancer MR imaging 

protocol on 3-T 

 T1w Pre FLAIR DWI  T2w T1w Post 

Sequence IR-GRE TSE EPI 

C
A 

In
je

ct
io

n 

TSE IR-GRE 

Plane Sagittal/axial Axial Axial Axial Sagittal/axial 

Mode 3D 2D 2D 2D 3D 

TR 2100 ms > 6000 ms > 5000 ms > 2500 ms 2100 ms 

TE Min 100 - 140 ms Min 80 - 120 ms Min 

TI 1100 ms 2500 ms – – 1100 ms 

Flip angle 10° - 15°   90°/³ 160° 90°/180° 90°/³ 160° 10° - 15°   

FOV 256 mm 240 mm 240 mm 240 mm 256 mm 

Phase 256 ³ 256 128 ³ 256 256 

Frequency 256 ³ 256 128 ³ 256 256 

Thickness 1 mm 3 mm 3 mm 3 mm 1 mm 

PI Up to 2× Up to 2× Up to 2× Up to 2× Up to 2× 

Scan time 5 - 8 min 4 - 5 min 3 - 5 min 3 - 5 min 5 - 8 min 

Abbreviations: T1w Pre – pre-contrast T1-weighted imaging; FLAIR – fluid-attenuated inversion 

recovery; DWI – diffusion-weighted imaging; T2w – T2-weighted imaging; T1w Post – post-

contrast T1-weighted imaging; IR-GRE – inversion-recovery gradient-recalled echo; TSE – turbo 

spin-echo; EPI – echo-planar imaging; TR – repetition time; TE – echo time; TI – inversion time; 

FOV – field-of-view; PI – parallel imaging 

In the past decade, numbers of clinical trials have demonstrated that in addition to the 

conventional morphological imaging sequences listed in Table 1.1, MR microscopic 

vascular imaging techniques such as DCE-MR and DSC-MR are indispensable to the 

neurosurgeon and can make contributions to various applications, including tumor 

grading32–34, surgical planning35, and treatment response assessment36,37. Hence, in most 

cases, either DCE-MR or DSC-MR has been added to the recommended protocol prior 

to acquisition of post-contrast images38–40. Some guidelines even recommend inserting 2 

separate DSC-MR sequences to address the CA leakage issue due to blood-brain barrier 
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(BBB) breakdown41. Specifically, following standard pre-contrast sequences, low-flip 

angle (30°) DSC-MR imaging without contrast agent preload using a single bolus CA 

injection is performed. Subsequently post-contrast images are obtained, and a second 

DSC-MR imaging is conducted using an intermediate flip angle (60°) and otherwise 

identical acquisition parameters as the first DSC-MR acquisition.  

While both permeability and perfusion parameters are often cited for assessing 

microvascular environment of brain tumors, previous studies have demonstrated that they 

may provide different but complementary information34. For instance, at visual analysis, 

DCE-MR imaging usually shows superior sensitivity for identification of the viable tumor 

portion, and DSC-MR usually demonstrates superior specificity for diagnosing radiation 

necrosis42. Therefore, the comprehensive analysis of perfusion and permeability metrics 

may form a more complete basis for tumor evaluation than with either one alone and thus 

improve diagnostic and prognostic performance42,43. To achieve this, specifically, during 

the brain tumor evaluation session, DCE-MR imaging is performed with a single-dose of 

CA injection following the pre-contrast protocol. After a 5 – 8-minute interval, the DSC-

MR sequence is acquired followed by post-contrast scans.  

1.3.3 Technical challenges and potential solutions with advanced MR 

microvascular imaging 

As mentioned above, to achieve simultaneous permeability and perfusion analysis, the 

typical way is to acquire both DCE-MR and DSC-MR sequences separately within one 

imaging session44. However, this requires multiple doses of CA injections, which leads to 

a big concern throughout the entire radiology community – the gadolinium deposition in 
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body tissues. The safety of gadolinium-based CA has recently been brought to public 

attention due to the findings that gadolinium can deposit in the brain and other body parts 

in patient with normal renal function45–47. Although the long-term clinical effects of 

gadolinium deposition remain unclear, the benefits and hazards of using gadolinium-

based CA in clinical activities can be controversial. According to previous studies, 

gadolinium accumulation is dose-dependent, with more deposition seen in patients who 

received a higher cumulative dosage46, implying that a lower dose may lessen the 

potential risks induced by gadolinium deposition. Hence, given the recent restrictions 

implemented by the Food and Drug Administration on the use of CA48,49, it would be 

preferable to develop novel microscopic vascular imaging techniques with lower 

gadolinium injection that can provide permeability and perfusion information simultaneous 

without losing the diagnosis power.  

 

1.4 OBJECTIVE 

According to the discussions in previous sections, based on the current states of MR 

macroscopic and microscopic vascular imaging in specific clinical applications, the broad, 

long-term goal of the project in this dissertation is two-fold. First, we aim to develop a 

novel 2-station MR macroscopic vascular imaging strategy which could serve as a 

complement for current standard evaluation for stroke etiology to better leverage the 

inherent advantages of MR imaging and to enhance the clinical values of MR vascular 

imaging in stroke etiology evaluation (Aim 1 and Aim 2). Second, we aim to develop an 

optimized MR microscopic vascular imaging framework that can achieve simultaneous 
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permeability and perfusion quantification with a single dose of CA injection to improve the 

overall workflow for brain cancer evaluation (Aim 3).  

1.4.1 Aim 1: To develop a novel motion-compensated, data-driven accelerated 3D 

MR VWI for the evaluation of the head-neck arteries 

In Aim 1, we present the first component of our novel 2-station MR macrovascular imaging 

strategy that focuses on the head-neck vasculature. Specifically, a dark-blood VWI 

technique is proposed, which enables direct visualization of the pathologic changes within 

the vessel wall structures. The technique is implemented based on 3D variable-flip-angle 

turbo spin-echo (TSE) sequence, the basic physics of which are provided in Chapter 2. 

Our technical development is comprised of two subprojects. First, because of the 

submillimeter spatial resolutions and 3D encoding strategy, VWI is inherently susceptible 

to patient motion. In Chapter 3, we first investigate the effect of localized movement on 

3D MR VWI and develop a novel motion-compensation approach combining volumetric 

navigator (vNav) and self-gating (SG) to simultaneously compensate for bulk and 

localized movements. The proposed vNav-SG technique is validated on 15 healthy 

subjects and 3 ischemic stroke patients with overall image quality and vessel wall 

sharpness adopted as evaluation metrics. Another drawback of conventional VWI is the 

relatively long scan time, which may affect patient experiences and potentially exacerbate 

the motion problem. In Chapter 4, a deep learning-based image reconstruction framework, 

cascaded multi-scale wavelet with iterative refinement network (CAMWARE), is 

presented for accelerated MR VWI. Evaluated on 6 ischemic stroke patients clinically 

diagnosed of intracranial atherosclerosis, CAMWARE is compared with conventional 

reconstruction methods and a state-of-the-art deep learning-based model (i.e., variational 
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network). Vessel wall sharpness and atherosclerotic plaque delineation are measured to 

assess the application-specific performance of CAMWARE.  

1.4.2 Aim 2: To develop a novel MR multitasking-based multidimensional 

assessment of cardiovascular system (MT-MACS) technique for the evaluation of 

the thoracic aorta and the cardiac chambers 

In Aim 2, another component of the 2-station MR macrovascular imaging strategy is 

developed which produces multidimensional assessment of cardiovascular system with 

ECG-free and respiratory navigator-free data acquisition. Specifically, within a clinically 

feasibility scan time, the proposed MT-MACS technique offers multiple image contrasts 

and phase-resolved image series for comprehensive evaluation. The technical 

development is based on MR multitasking framework, the general introduction of its 

image model and reconstruction pipeline are described in Chapter 2. In Chapter 5, the 

developed MT-MACS technique with a basic Cartesian sampling trajectory is first applied 

to thoracic aortas for proof of concept. In Chapter 6, we further extend the spatial 

coverage of MT-MACS to cover the entire heart as well as the thoracic arteries and switch 

the sampling trajectory from Cartesian to advanced tiny-golden-angle radial sampling to 

resolve more complex cardiac motion. Nine healthy subjects are recruited for the 

feasibility study. Both qualitative (i.e., overall image quality score) and quantitative (i.e., 

myocardial wall thickness of the 4 cardiac chambers and left ventricular ejection fraction) 

analyses are performed.  
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1.4.3 Aim 3: To develop a novel MR multitasking-based dynamic imaging for 

cerebrovascular evaluation (MT-DICE) technique for simultaneous permeability 

and leakage-insensitive perfusion quantification 

In Chapter 7, another microscopic vascular imaging application of MR multitasking 

framework named dynamic imaging of cerebrovascular evaluation (MT-DICE) technique 

is presented to achieve comprehensive evaluation of microvascular environments. 

Specifically, permeability and leakage-insensitive perfusion metrics are provided 

simultaneous based on dynamic T1/T2* mapping with a single-dose CA injection. The 

feasibility of MT-DICE is tested on both healthy subjects and brain cancer patients. 

Specifically, 8 healthy subjects and 4 patients with known brain cancers are recruited for 

the study in which a 7.6-min MT-DICE scan is acquired. T1/T2* measurements of MT-

DICE are compared against corresponding reference methods on all healthy subjects. 

Permeability and leakage-insensitive perfusion parameters are derived in 3 repeat 

healthy subjects for intersession repeatability analysis. 
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CHAPTER 2 

Background 

 

 

2.1 BASIC THEORY OF VESSEL WALL IMAGING SEQUENCES 

MR imaging owns the potential to achieve high-spatial-resolution imaging with versatile 

image contrasts. In many vascular applications, it is preferrable to suppress the blood 

signal in order to visualize the surrounding vessel wall structure with high conspicuity and 

characterize pathologic changes within the vessel wall. This is so-called vessel wall 

imaging (VWI). 3D variable-flip-angle turbo spin-echo (TSE) sequence is currently the 

method of choice for MR VWI. To provide a better overview of this type of sequence, in 

this section, basic spin-echo sequence is introduced first from a mathematical point of 

view. The benefits of turbo spin-echo sequences with a variable-flip-angle echo train over 

conventional turbo spin-echo sequences is then discussed. Lastly, mechanisms of how 

variable-flip-angle TSE sequences achieve dark-blood contrast are briefly gone through.  

2.1.1 Two-pulse spin-echo sequence 

For a spin-echo sequence, at least two pulses, including one excitation pulse and one 

refocusing pulse, are needed to form a spin echo. Specifically, an 𝛼) excitation pulse 

rotates the longitudinal magnetization for the voxel to the transverse plane, and an 𝛼* 

refocusing pulse refocuses a large number of dephased isochromats and generates an 

echo when the isochromats reach a new phase coherence. From a more mathematical 
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point of view, for generality, the two-pulse spin-echo sequence can be formulated as 

follows:  

 𝛼),, − 𝜏 − 𝛼*,, (2.1) 

where we assume both the excitation pulse and refocusing pulse are applied along the 𝑦 

direction in the rotating frame of reference. Defining the initial magnetization at equilibrium 

as (𝑀- , 𝑀, , 𝑀.)/ = (𝑀-
0, 𝑀,

0, 𝑀.
0)/ = (0,0,𝑀0)/, after applying the 𝛼),, pulse, we have:  

 
2
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𝑀,
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−𝑀0sin𝛼),,
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𝑀0cos𝛼),,
3 (2.2) 

According to the Bloch equation, after the 𝜏 interval between the excitation and refocusing 

pulses, the magnetization components take the following set of values:  

 
2
𝑀-
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?𝑀-cos𝜔𝜏 +𝑀,sin𝜔𝜏A𝑒32/5*
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𝑀0?1 − 𝑒32/5)A + 𝑀.𝑒32/5)
D = >

−𝑀0sin𝛼),,cos𝜔𝜏𝑒32/5*

𝑀0sin𝛼),,sin𝜔𝜏𝑒32/5*

𝑀0[1 − (1 − cos𝛼),,)𝑒32/5)]
D (2.3) 

where 𝜔 denotes the precession frequency of a representative isochromat. Similarly, the 

transverse magnetization immediately after the second 𝛼*,,  refocusing pulse can be 

written as:  

 𝑀-, = 𝑀0sin𝛼),, Gsin*
𝛼*,,
2 𝑒3678 − cos*

𝛼*,,
2 𝑒678I 𝑒32/5*

−𝑀0[1 − (1 − cos𝛼),,)𝑒32/5)]sin𝛼*,, 
(2.4) 

Hence, considering the free precession about the 𝑧 direction, the spin-echo signal can be 

expressed as:  

 𝑆(𝑡) = sin𝛼),,sin*
𝛼*,,
2 L𝜌(𝜔)𝑒32/5*(:)𝑒367(835$)𝑑𝜔 (2.5) 
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where T! = 2𝜏 represents the echo time. When 𝛼),, = 90° and 𝛼*,, = 180°, this signal 

equation reaches its maximum value, as illustrated in Figure 2.1.  

Figure 2.1 Illustration of the formation of spin-echo and stimulated-echo. Redrawn after Mugler 

(2014) 

2.1.2 Variable-flip-angle TSE sequence 

Conceptually, TSE sequence is a simple extension of the basic two-pulse spin-echo 

sequence to increase the acquisition efficiency. It is designed to generate multiple spin 

echoes, each of which is individually phase- or frequency-encoded to cover k-space, 

following each excitation pulse. The typical TSE sequence adopts relatively large flip 

angles for the refocusing pulses, generally equal to or at least near 180°. According to 

the pervious section, the echo signal reaches its maximum value when a 180° refocusing 

pulse is applied, which means all the transverse magnetization generated by the 

excitation pulse is refocused. Yet, in this scenario, the duration of echo train is typically 
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less than the T2 values of primary interest for short TEeff, such as in our vessel wall 

imaging application. Longer echo train durations tend to result in degraded image contrast 

and artifacts such as blurring50–52.  

 In recent years, variable-flip-angle TSE sequences have been introduced to 

achieve desirable signal behavior and lengthen the echo train length to further increase 

the acquisition efficiency53. The key idea is to include the stimulated-echo contribution 

(Figure 2.1) to the evolution of the echo train signal. During the storage period for the 

stimulated echo, the magnetization, which later forms the echo, decays according to the 

T1 relaxation time of the tissue, and T1 values are generally much longer than T2 values. 

Specifically, the initial portion of the variable-flip-angle adopts lower flip angle refocusing 

pulses and stores a large fraction of the magnetization along the 𝑧 direction. Then, as the 

echo train proceeds, the stored magnetization is gradually converted to transverse plane, 

permitting relatively high signal amplitudes to be maintained for the entire echo train 

duration and therefore allowing for extended useable duration of the acquisition.  

2.1.3 Dark-blood contrast of variable-flip-angle TSE sequence 

TSE sequences, especially variable-flip-angle TSE sequences, exhibit excellent dark-

blood contrast because of its high sensitivity to flow and motion. In general, there are two 

separate and additive flow-related mechanisms that contribute to the blood suppression, 

as illustrated in Figure 2.254. One relates to the through-plane flow (Figure 2.2A), which 

leads to the flowing blood not experiencing either the excitation pulse or refocusing pulse, 

and therefore not creating an echo. Figure 2.2B demonstrates another mechanism relates 

to the flow-related dephasing of transverse magnetization caused by the heterogeneous 

accumulation of phase for flowing spins within a single voxel. This is particularly the case 
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in variable-flip-angle TSE sequences, where additional flow-related signal loss is caused 

by the phase differences between different echo pathways, including spin-echo and 

stimulate-echo, which lead to an echo formation with lower magnitude.  

 
Figure 2.2 Two separate and additive flow-related mechanisms that contribute to blood 

suppression for the variable-flip-angle TSE sequence. Redrawn after Henningsson (2022) 

 

2.2 MR MULTITASKING FRAMEWORK 

2.2.1 Image model 

MR multitasking55 represents the multi-dimensional images as a multi-dimensional array 

(or tensor). To reconstruct MR images, the standard way is to fill in the tensor structure 

at the Nyquist sampling rate; however, this will suffer from the “curse of dimensionality”, 
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where the scan time grows exponentially with the number of dynamics. Instead, 

because of the strong correlation between images, MR multitasking framework models 

this tensor as a low-rank tensor (LRT) and can be decomposed to the product of several 

factor matrices. Therefore, by leveraging the spatial-temporal correlation, the task for 

recovering the tensor can now be switched to recover the factor matrices and thus 

achieve a vastly accelerated scan56–58. Specifically, images in Multitasking framework 

are represented as a multidimensional function 𝐼(𝐫, 𝑡), 𝑡*, ⋯ , 𝑡<) of spatial location 𝐫 =

[𝑥	𝑦	𝑧]/ and 𝑁 time dimensions 𝑡), 𝑡*, … , 𝑡<. Each time dimension corresponds to a 

specific “task” to be resolved. The image function can be formulated as a (𝑁 + 1)-way 

tensor ℐ consisting of elements ℐ=>?⋯A = 𝐼(𝐫= , 𝑡),> , 𝑡*,?, ⋯ , 𝑡<,A) with voxel location {𝐫=}=B)
C  

and each time dimension from {	𝑡),>}>B)D  to {	𝑡<,A}AB)
E . The high image correlation along 

different time dimensions and across the spatial and time dimensions renders ℐ to be an 

LRT and can be decomposed into the product of a core tensor 𝒞 and 𝑁 + 1 factor 

matrices:  

 ℐ = 𝒞 ×) 𝐔𝐫 ×* 𝐔8! ×G 𝐔8% ×H ⋯×(<I)) 𝐔8& (2.6) 

where the operator ×6 denotes the 𝑖th mode product, the factor matrix 𝐔𝐫 ∈ ℂC×K 

contains 𝐿 spatial basis functions, each of which comprises 𝐽 voxels, each factor matrix 

𝐔8' contains 𝐿6 basis function for 𝑖th time dimension, and the core tensor 𝒢 ∈ ℂK×K!×⋯×K& 

is the coefficient dominating the interaction between factor matrices. 

2.2.2 Sampling strategies and image reconstruction  

To recover the core tensor and multiple factor matrices, our approach is to collect two 

interleaved sets of data as illustrated in Figure 2.3. First of all, the imaging data 𝐝 is 
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collected by random sampling with extensive k-space coverage to determine the spatial 

factor matrix 𝐔𝐫 by iteratively solving the following optimized problem:  

 𝐔g𝐫 	= argmin
𝐔𝐫
‖𝐝 − Ω(𝐅𝐒𝐔𝐫𝚽)‖** + 𝑅(𝐔𝐫) (2.7) 

where 𝐝 denotes the collected imaging data, Ω is the sampling operator corresponding 

to the sampled k-space locations, 𝐅 applies Fourier transform, 𝐒 contains sensitivity 

information that applies multi-channel encoding, 𝚽 contains the temporal basis 

functions, the recovery of which will be discussed later, and 𝑅(∙) represents the spatial 

regularization function.  

 
Figure 2.3 Illustration of sampling strategies and image reconstruction steps of MR multitasking 

framework 

The temporal factor matrices, which are included in 𝚽, are recovered through 

another subset of data, called subspace auxiliary data 𝐝𝐚𝐮𝐱, which is collected frequently 

enough at the center of the k-space. This subset of data does not need to contain tons 

of spatial information, but a wealth of temporal information is enough to resolve 

temporal changes along each time dimension. Depending on the application, the 
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temporal basis functions for some time dimensions can optionally be pre-determined 

even before any data are collected. Consider the example that we are going to recover 

the factor matrix 𝐔8& along inversion-recovery relaxation time dimension. Because T1 

relaxation is physically governed by the well-known Bloch equations, a training 

dictionary of physically feasible signal curves can be readily generated ahead of time to 

reduce computation. Basically, the temporal basis functions along the inversion-

recovery dimension are predefined from a T1 recovery dictionary of signals with 

different T1, B1 and inversion efficiency values. The inversion-recovery basis functions 

are then estimated from the singular value decomposition (SVD) of this dictionary. The 

remaining factor matrices other temporal dimensions as well as the core tensor are 

recovered from the subspace auxiliary data. In practice, due to the limited scan time, the 

measured subspace auxiliary data 𝐝𝐚𝐮𝐱 covers some combinations of physiological and 

physical dynamics experienced during the scan, but typically not all combinations. 

Therefore, the acquired training data tensor is incomplete and can be recovered by the 

following equation:  

 𝒟g%PQ = argmin
𝒟)*+

‖𝐝𝐚𝐮𝐱 − Ω(𝒟ST-)‖** + 𝜆uv𝐃𝐚𝐮𝐱,(6)v∗
6

+ 𝑅(𝒟%PQ) (2.8) 

where Ω is the sampling operator corresponding to the sampled k-space locations, and 

𝑅(∙) is a temporal regularization functional.  
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CHAPTER 3 

Motion-compensated 3D MR Intracranial Vessel Wall 

Imaging: Development and Validation of a More Robust 3D 

Turbo Spin-echo Sequence 

 

 

3.1 INTRODUCTION 

Ischemic strokes arise from various intracranial vessel wall abnormalities, including 

atherosclerosis, vasculitis and Moyamoya syndrome59. Accurate identification of these 

pathologies may help elucidate stroke etiology and allow for a prompt delivery of 

appropriate treatment and thus favorable patient outcomes20. As introduced in Section 

1.2.3, the current evaluations of stroke patients rely exclusively on assessments of the 

degree of luminal stenosis using lumenography-based imaging methods, which are 

however inadequate for differentiating diverse intracranial pathologic processes of the 

vessel wall60,61.  

MR VWI is a non-invasive modality that can directly visualize the structure and 

characterize pathologic changes within the vessel wall11. 3D variable-flip-angle TSE is 

currently the method of choice for intracranial VWI62–64. However, the relatively long scan 

time along with sub-millimeter spatial resolution renders this technique inherently 

susceptible to motion. The 3D acquisition fashion of MR imaging further exacerbates this 

challenge65. Resultant blurring or ghosting artifacts may lead to image quality degradation 
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and inaccurate qualitative and quantitative wall lesion assessment, or even completely 

unusable exams66–68. 

Motion artifacts typically observed in intracranial VWI may be caused by either 

head bulk motion or localized movement of internal anatomic structures. Head bulk 

motion, such as nodding and head rotation, implies changes in the patient’s head position 

inside the MR scanner69. Internal localized movement includes sudden involuntary 

movements, such as coughing and yawning, and semi-regular movements, such as 

swallowing70. Although foam cushions are commonly used to minimize bulk motion, a 

subtle movement of the head position may still be critical given the fine vessel wall 

structure (0.5 ± 0.1 mm) as well as the demanding spatial resolution71–73. However, unlike 

the well-known image quality deterioration caused by head bulk motion, the effect of 

localized movement on intracranial VWI has been underexplored.  

A motion-compensated strategy that can well mitigate motion effects caused by 

both head bulk motion and internal localized motion is highly desirable for 3D intracranial 

VWI. MR navigators are the traditional means of tracking head positions during brain 

imaging74. Tisdall et al. developed an echo planar imaging (EPI) based vNav approach to 

periodically collect low resolution volumetric images of the head and prospectively realign 

the imaging coordinates75. The effectiveness of this motion tracking technique in 

improving the imaging performance of subjects with head bulk motion has been 

demonstrated in conventional brain imaging75. However, localized motion is not resolved 

by vNav. A SG motion compensation strategy, which uses a one-dimensional projection 

of the imaging volume to detect the object’s motion, was previously developed to reduce 
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swallowing-related motion artifacts in carotid VWI65. This could be a promising approach 

to mitigate localized movement effects on intracranial VWI.  

In this chapter, the aim is two-fold. First, we investigated the effect of internal 

localized movement on intracranial VWI quality and demonstrated the effectiveness of 

the SG motion gating scheme in mitigating resultant motion artifacts in healthy subjects. 

Second, we developed a motion-robust intracranial VWI technique by incorporating a 

combined vNav-SG strategy into 3D variable-flip-angle TSE (aka. sampling perfection 

with application-optimized contrasts using different flip angle evolution [SPACE]). 

Demonstrated in healthy subjects and stroke patients, the developed vNav-SG SPACE 

sequence proved to be more robust for intracranial VWI than the conventional SPACE 

sequence when motion occurred. 

 

3.2 METHODS 

3.2.1 Motion compensation strategy and sequence design 

The motion compensation strategy is built on the T1-weighted SPACE sequence in which 

each repetition time (TR) consists of a long train of variable-flip-angle nonselective 

refocusing radiofrequency (RF) pulses and a gap for magnetization restoration53. The 

schematic of the vNav-SG SPACE sequence is illustrated in Figure 3.1.  
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Figure 3.1 vNav-SG SPACE sequence diagram. For each TR, an SG line is first acquired from 

the first echo of the SPACE readout and is used to derive the projection profile of the entire 

imaging volume by Fourier transform (FT). The projection profiles acquired in later TRs are cross-

correlated (CC) to the reference projection collected at the beginning of the scan, which is 

automatically reestablished when head position changes or signal drift occurs. All CC values are 

prioritized, and the most motion-affected TRs are reacquired at the end of the scan. The vNavs 

are implemented as a 3D-EPI module, consisting of acquisition, registration and communication, 

and are inserted at the end of each TR. The subsequent vNavs acquired in later TRs are 

registered back to the first navigator to realign the imaging coordinates 

vNav is implemented as a 3D EPI module with 8-mm resolution and 256-mm field-

of-view (FOV) in all three directions75. We insert one such 3D navigator at the end of each 

TR to ensure that motion estimation is as close as possible to its following SPACE readout 

train. Each of subsequent vNav acquired in a later TR is registered back to the navigator 

acquired at the first TR to realign the imaging coordinates. Registration of the volumetric 

navigators is performed based on the optimized Prospective Acquisition Correction 

(PACE) algorithm69. Low flip angle (2⁰) excitation is adopted in EPI to minimize the effect 

of the vNav on the final image contrast. The entire vNav module consumes approximately 
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355 ms, including data acquisition, image registration and communication, thus easily 

fitting the gap within each TR.  

The SG method used to compensate for localized movement is a projection-based 

motion gating strategy76. A center k-space line along the superior-inferior direction, 

denoted as SG line, is acquired from the first echo of each SPACE echo train. The 

projection of the entire imaging volume is then derived by the Fourier transform of the SG 

line. The projection profiles acquired in subsequent TRs are cross-correlated (CC) to the 

reference projection originally collected at the beginning. Based on their CC values, which 

is an inverse surrogate for the severity of motion contamination, all acquired TRs are 

prioritized and the most motion-affected TRs are reacquired at the end of the scan. The 

number of allowed reacquisitions can be set through the user-interface. In addition, 

considering the potential signal drift, reference projection profiles will automatically update 

using a previous method65. 

3.2.2 In vivo study 

The in vivo study was approved by the local institutional review board, and all subjects 

provided written informed consent before participation. All scans were performed on a 3-

T MR system (MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany) equipped 

with a 20-channel head-neck coil. The coil element that is close to nasal and oral cavities 

was used to derive SG signals. A sagittally-oriented imaging volume was prescribed to 

cover the head and part of the neck63. Three spatial pre-saturation bands were applied to 

suppress the signals from the out-of-volume nose and ears. 

Study I: To investigate the degradation effect of localized movement on intracranial VWI 

and the effectiveness of SG in artifact reduction 
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Eight healthy volunteers (4 males and 4 females, age range 23-59 years) were 

recruited in this study. All subjects underwent two vessel wall scans using the developed 

vNav-SG SPACE technique with the following imaging conditions:  

1. Subject asked to remain still; imaging without vNav or SG (denoted as “No 

Motion”); and 

2. Subject asked to conduct pre-designed localized movement; imaging with SG 

only (“W/ MOCO”).  

Motion instructions were given over the intercom system at five preset stages. Specifically, 

subjects were asked to cough twice at the 50th, 150th, 250th, 350th, 450th TR of the scan. 

During the rest of the imaging period, subjects were asked to hold their head and neck 

still. In addition to the online-reconstructed images from the “W/ MOCO” scan, its raw 

data was also used to reconstruct motion-contaminated images (denoted as “W/O 

MOCO”) by retrospectively retrieving the data acquired in motion-corrupted TRs.  

A previously used 8-min-long sequence setup for intracranial VWI was used77, 

including FOV = 170 × 170 × 136 mm3; matrix size = 320 × 320 × 256 with 6.7% slice 

oversampling; spatial resolution = 0.53 mm isotropic without interpolation; TR/TE = 

900/16 ms; 6/8 partial Fourier in the partition-encoding direction; parallel imaging 

(GRAPPA) acceleration rate = 2 in the phase-encoding direction; echo-train-length = 52; 

number of reacquisitions = 30; 8.1-min acquisition time (a total of 542 TRs) without motion 

or vNav-SG. 

Study II: To demonstrate the robustness of vNav-SG SPACE for intracranial VWI in the 

presence of both head bulk motion and localized movement 
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Seven healthy volunteers (3 males and 4 females, age range 29-48 years) and 

three ischemic stroke patients (2 males and 1 female, age range 58-75 years) were 

recruited. A 0.3-sec test shot was first run to allow changes of the navigator protocol for 

each specific subject, including the FOV dimensions and location. The protocol was 

saved and used as the basis for the vNav modules in our proposed sequence. Following 

the test shot, all healthy subjects underwent the “directed-motion” study using vNav-SG 

SPACE. Specifically, the study involved five separate scans with the following different 

imaging conditions:  

1. Subject asked to remain still; imaging without vNav or SG (denoted as “W/O MO, 

W/O vNav-SG”); 

2. Subject asked to conduct motion; imaging without vNav or SG (“W/ MO, W/O 

vNav-SG”); 

3. Subject asked to conduct motion; imaging with vNav only (“W/ MO, W/ vNav”); 

4. Subject asked to conduct motion; imaging with SG only (“W/ MO, W/ SG”); and 

5. Subject asked to conduct motion; imaging with vNav and SG (“W/ MO, W/ vNav-

SG”).  

Motion instructions were given through the intercom system at eight preset stages. 

Subjects were asked to cough twice at four (100th, 170th, 230th and 300th TR) of the 

eight stages and change their head positions at the other four stages (130th, 200th, 270th 

and 330th TR). When changing head positions, subjects were asked to rotate their heads 

for less than 8⁰ towards one of 4 directions (left, right, up and down), keep the position for 

10 sec, and then return to the original position. During the rest of the imaging period, 

subjects were asked to hold their head and neck still.  
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An expedited SPACE imaging parameter setting was used to reduce the total study 

time, including FOV = 155 × 155 × 144 mm3; matrix size = 256 × 256 × 224 with 7.1% 

slice oversampling; spatial resolution = 0.6 mm isotropic without interpolation; TR/TE = 

900/16 ms; 6/8 partial Fourier in the partition-encoding direction; parallel imaging 

(GRAPPA) acceleration rate = 2 in the phase-encoding direction; echo-train-length = 52; 

number of reacquisitions = 30; 6-min acquisition time (a total of 400 TRs) without motion 

or vNav-SG.  

Three ischemic stroke patients underwent two consecutive SPACE scans, with and 

without vNav-SG, respectively, in a random order. The comparison was conducted after 

contrast injection and towards the end of the brain MRI/MRA examination when intra-

scan motion often occurs because of patient intolerance. The same sequence setup as 

in Study I was used. 

3.2.3 Image analysis 

All 3D image sets were loaded to a workstation (LEONARDO; Siemens Healthcare, 

Erlangen, Germany) for processing and viewing. For Study I, vessel wall sharpness was 

measured at the inner and outer boundaries of four major vessel segments including 

middle cerebral arteries (MCA), internal carotid arteries (ICA), basilar arteries (BA) and 

vertebral arteries (VA). For this purpose, three contiguous 2D cross-sectional slices of 

0.53-mm thickness were reconstructed with multiplanar reformation for each vessel 

segment. Sharpness was measured from three evenly distributed locations in each slice, 

with the first location selected at the most blurred position of the vessel wall boundary. 

The sharpness of each segment was then estimated by averaging across the nine 

selected locations. Measurement of vessel wall sharpness was based on a previously 
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developed method65,78, using an in-lab MATLAB (R2018a, MathWorks, Natick, MA) 

program.  

For Study II in healthy volunteers, all 35 image sets (5 imaging conditions × 7 

subjects) were randomized and shown to a blinded neuroradiologist with 6 years’ 

experience in intracranial VWI. The overall image quality for each image set was graded 

based on a five-point scale: 0-poor, 1-fair, 2-moderate, 3-good, 4-excellent. Vessel wall 

sharpness was measured, using the aforementioned methods, at the inner and outer 

boundaries of 2 major intracranial vessel segments (BA and MCA). For the patient study, 

the 3D SPACE images with and without vNav-SG underwent diagnostic evaluation by the 

same neuroradiologist, blinded to patient and sequence information.  

All image sets from Study II were selected to assess the inter-reader reliability. An 

MR physicist with 3 years’ experience in MR VWI re-graded the overall image quality 

scores and conducted sharpness measurement at the same vessel segments 

independently, following the same criteria and methods. 

3.2.4 Statistical analysis 

Statistical analyses were performed using SPSS (version 24; IBM, Armonk, NY). To 

compare vessel wall sharpness under different imaging conditions, a paired two-tailed 

Student’s t-test was used for Study I. For Study II, inter-reader reliabilities of image quality 

scores and vessel wall sharpness were assessed by weighted Cohen’s kappa (κ) and 

intraclass correlation coefficients (ICC), respectively. A paired two-tailed Wilcoxon 

signed-rank test was used for the comparison of image quality scores between the “With 

motion, with vNav-SG” scan and each of the other imaging conditions, and a paired two-
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tailed Student’s t-test was used for the comparison of vessel wall sharpness. A P value < 

0.05 was considered to indicate statistical significance.  

 

3.3 RESULTS 

The vNav-SG SPACE imaging was performed successfully on all 15 healthy subjects and 

3 ischemic stroke patients. For the scans with the SG functionality on, the number of 

motion-contaminated TRs detected by SG was greater than 30; thus, the number of 

actually reacquired TRs was 30. 

3.3.1 Study I 

In general, the internal localized movement caused by coughing resulted in noticeable 

blurring and noise at the vessels close to the nasal and oral cavities. These artifacts were 

well suppressed by reacquiring motion corrupted k-space lines detected by SG signals 

(Figure 3.2A – 3.2F). Representative time-courses of projection profiles and CC values 

were retrospectively derived and are shown in Figure 3.2G and 3.2H, respectively. The 

projection profile during coughing deviated substantially in magnitude, leading to drops in 

CC values.  



 
 

31 

 
Figure 3.2 A-F, Representative images demonstrating the effect of localized motion, caused by 

coughing, on intracranial vessel wall imaging, and the effectiveness of the SG motion-gating 

technique in mitigating motion artifacts in a representative healthy control. Coughing introduced 

noise (red dotted box) and substantially obscured vessel wall boundaries (yellow arrows), 

particularly at the internal carotid artery and basilar artery (A-C) and middle cerebral artery (D-F). 

The proposed SG technique dramatically mitigated artifacts and provided comparable vessel- wall 

delineation quality to the scan without motion (“No motion”). G,H, Retrospectively derived 

representative time courses of projection profiles (G) and CC values (H). In contrast to the 

projection profiles devoid of motion, motion- contaminated projection profiles deviated 

substantially in magnitude and were always detected by the SG signal 

Localized movements significantly reduced vessel wall sharpness at either the 

outer or inner vessel wall boundary compared with that obtained in “With SG” scans, as 

shown in Table 3.1 (BA outer: 0.68 ± 0.27 vs. 0.86 ± 0.17, P = 0.037; VA outer: 0.43 ± 
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0.29 vs. 0.93 ± 0.29, P = 0.003; VA inner: 0.37 ± 0.23 vs. 0.99 ± 0.32, P = 0.001; ICA 

outer: 1.35 ± 0.24 vs. 1.61 ± 0.19, P = 0.034; ICA inner: 0.86 ± 0.30 vs. 1.34 ± 0.20, P < 

0.001). The sharpness of wall boundaries was preserved by exploiting SG when imaging 

subjects with localized motion, comparable to that obtained in the “No motion” group 

except for the MCA outer (0.77 ± 0.30 vs. 0.97 ± 0.24, P = 0.047) and ICA inner (1.34 ± 

0.20 vs. 1.66 ± 0.15, P = 0.029) boundary.  

Table 3.1 Vessel wall sharpness measurement results at the outer and inner boundary of four 

major intracranial vessel segments, including middle cerebral arteries (MCA), basilar arteries (BA), 

vertebral arteries (VA) and internal carotid arteries (ICA), within the imaging conditions in Study I. 

Imaging 
Conditions 

Vessel 
Segments 

Sharpness of Wall Boundary (mm-1) 

Outer 

Boundary 
P value 

Inner 

Boundary 
P value 

No motion 

MCA 0.97 ± 0.24 0.047 0.78 ± 0.14 0.362 

BA 1.03 ± 0.28 0.160 0.68 ± 0.25 0.689 

VA 1.02 ± 0.34 0.147 1.20 ± 0.30 0.275 

ICA 1.89 ± 0.26 0.058 1.66 ± 0.15 0.029 

With SG 

MCA 0.77 ± 0.30 NA 0.70 ± 0.22 NA 

BA 0.86 ± 0.17 NA 0.66 ± 0.15 NA 

VA 0.93 ± 0.29 NA 0.99 ± 0.32 NA 

ICA 1.61 ± 0.19 NA 1.34 ± 0.20 NA 

Without SG 

MCA 0.65 ± 0.37 0.243 0.62 ± 0.31 0.435 

BA 0.68 ± 0.27 0.037 0.60 ± 0.31 0.385 

VA 0.43 ± 0.29 0.003 0.37 ± 0.23 0.001 

ICA 1.35 ± 0.24 0.034 0.86 ± 0.30 < 0.001 
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3.3.2 Study II 

Compared with regular SPACE imaging in the absence of motion (Figure 3.3A), motion 

artifacts led to severe blurring of vessel wall boundaries, impaired wall continuity and 

reduced wall-tissue contrast (Figure 3.3B), which were suppressed by either vNav (Figure 

3.3C) or SG (Figure 3.3D). Note that, compared to vNav-only, the addition of the SG 

approach to vNav further improves delineation of the small vessels close to nasal and 

oral cavities (arrowheads in Figure 3.3C and 3.3E). Overall image quality was restored 

by the combined vNav-SG strategy in the presence of motion (Figure 3.3E).  

 
Figure 3.3 Imaging results of the five imaging conditions in 1 representative healthy subject in 

Study II. Compared with conventional SPACE imaging without subject motion (A), combined bulk 

head motion and internal localized movement severely degraded image quality as well as vessel 

wall delineation (yellow arrows and arrowheads) (B). C,D, Motion artifacts were suppressed if 

either vNavs or the SG approach was used, respectively. Compared with vNav-only, the addition 

of the SG strategy further improves delineation of the small vessel close to nasal and oral cavities 
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(yellow arrowheads). E, Overall image quality was significantly improved by adopting a combined 

vNav- SG technique 

Inter-reader agreement was excellent for overall image quality analysis (Cohen’s 

κ = 0.883, 95% CI 0.802 – 0.963). Inter-reader agreements for both outer and inner 

boundary at BA and MCA were all moderate to high (BA outer: ICC 0.768, 95% CI 0.570 

– 0.921; BA inner: ICC 0.744, 95% CI 0.658 – 0.833; MCA outer: ICC 0.875, 95% CI 

0.607 – 0.961; MCA inner: ICC 0.805, 95% CI 0.547 – 0.903).  

Because of the moderate to high inter-reader agreement, the following analyses 

were based on the evaluation of the more experienced neuroradiologist. The motion 

compensation effects of vNav-SG were qualitatively validated by image quality scores 

(Table 3.2). Specifically, the average image quality score for “With motion, with vNav-SG” 

scans was significantly higher than that obtained in “With motion, without vNav-SG” scans 

(P = 0.026), and comparable to that obtained in “Without motion, without vNav-SG” scans 

(P = 0.317). Similar scores were acquired in “With motion, with vNav”, “With motion, with 

SG” and “With motion, with vNav-SG” scans (P = 0.317 and P = 0.059, respectively), 

among which “With motion, with vNav-SG” provided the highest score.  
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Table 3.2 Image quality scores (5-point scale: 0-poor, 1-fair, 2-moderate, 3-good, 4-excellent) of 

the imaging conditions in Study II given by the experienced neuroradiologist. 

 Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 

Subject 1 4 3 4 4 4 

Subject 2 4 1 3 3 4 

Subject 3 4 1 4 1 4 

Subject 4 4 2 3 3 3 

Subject 5 4 0 4 3 4 

Subject 6 4 4 4 4 4 

Subject 7 4 1 4 3 4 

Mean ± Std 4.00 ± 0.00 1.71 ± 1.38 3.71 ± 0.49 3.00 ± 1.00 3.86 ± 0.38 

P value 0.317 0.026 0.317 0.059 NA 

Condition 1 – without motion without vNav-SG; Condition 2 – with motion without vNav-SG; 

Condition 3 – with motion with vNav; Condition 4 – with motion with SG; Condition 5 – with motion 

with vNav-SG 

Vessel wall sharpness deteriorated significantly when imaging subjects with 

motion but without any motion compensation strategy, as compared with that obtained in 

“With motion, with vNav-SG” scans (BA outer: 0.73 ± 0.24 vs. 0.94 ± 0.24, P = 0.033; BA 

inner: 0.49 ± 0.08 vs. 0.59 ± 0.20, P = 0.026; MCA outer: 0.85 ± 0.17 vs. 1.19 ± 0.84, P = 

0.027; MCA inner: 0.48 ± 0.11 vs. 0.57 ± 0.14, P < 0.001) (Figure 3.4). The measurements 

in “With motion, with vNav-SG” scans were higher, although not significantly, than those 

in other motion correction scans with either vNav or SG, and were the closest to those 

obtained in “Without motion, without vNav-SG” scans (BA outer: 0.94 ± 0.24 vs. 0.96 ± 

0.31, P = 0.815; BA inner: 0.59 ± 0.20 vs. 0.62 ± 0.22, P = 0.481; MCA outer: 1.19 ± 0.84 

vs. 1.33 ± 0.56, P = 0.367; MCA inner: 0.57 ± 0.14 vs. 0.65 ± 0.27, P = 0.275).  



 
 

36 

 
Figure 3.4 Bar graphs showing the mean values and standard deviations of the outer and inner 

vessel wall boundary of the basilar artery (BA) (A,B) and middle cerebral artery (MCA) (C,D), 

respectively, with regard to the five imaging conditions. The sharpness measurement results 

obtained from the “With motion, with vNav-SG” scan were compared to those obtained from the 

other four imaging conditions. The P values were calculated based on a paired two-tailed 

Student’s t-test and are marked on the top of each bar graph. Comparable vessel wall sharpness 

results were obtained in the “Without motion, without vNav- SG” group and those scans with either 

the vNav or SG approach or both. Adoption of the proposed vNav-SG strategy (“With motion, with 

vNav-SG”) led to the best vessel wall sharpness compared to the other two scenarios (“With 

motion, with vNav” and “With motion, with SG”). The significant difference between “With motion, 

without vNav-SG” and “With motion, with vNav-SG” scans illustrate the effectiveness of vNav-SG 

approach in mitigating motion artifacts when imaging subjects with motion. Abbreviation: ns, not 

significant 

Figure 3.5 shows the imaging results from a representative patient with ischemic 

stroke (Figure 3.5A) caused by intra-aneurysmal thrombosis at the left MCA (arrow on 

Figure 3.5B). A mild stenosis caused by atherosclerotic plaque was found in the left VA 

(arrowhead on Figure 3.5B). During the intracranial VWI session, the patient could not 

hold his head and neck still for the entire 8 min. Therefore, the conventional SPACE 
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images suffered from severe motion artifacts, i.e. blurry aneurysm (Figure 3.5C) and 

nondiagnostic vessel wall boundary (Figure 3.5D). By contrast, the proposed vNav-SG 

technique dramatically improved image quality and the lesions were much better depicted. 

Notice that in Figure 3.5E, the aneurysm was better delineated, and wall thickening as 

well as contrast enhancement were detected in Figure 3.5F. 

 
Figure 3.5 A, In a 62-year-old male patient with ischemic stroke caused by intra-aneurysmal 

thrombosis, an infarct marked out by the dashed circle was detected on the DWI image during 

clinical evaluation. B, On time-of-flight MR angiography, an aneurysm (arrow) and atherosclerotic 

plaque (arrowhead) were detected on left MCA M1 segment and left vertebral artery (VA) V4 

segment, respectively. During the evaluation of intracranial vessel wall imaging, the patient had 

difficulty holding his head and neck still for the entire 8 minutes. C,D, Therefore, 3D multiplanar 

reconstructions of postcontrast vessel wall imaging and the cross-sectional view of the left MCA 

M1 segment and the left VA V4 segment showed that the images were corrupted by severe 
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intrascan motion. E, With the proposed vNav-SG strategy, the aneurysm was better delineated, 

and the wall thickening as well as contrast enhancement were detected 

 

3.4 DISCUSSION 

To our knowledge, this is the first report of technical development work addressing motion 

coinciding with MR intracranial VWI. Motion is a common reason for image corruption in 

neuroanatomical MR imaging. Intracranial 3D VWI is particularly susceptible due to the 

required high spatial resolutions and relatively long scan times. In a recent healthy 

volunteer study, motion artifacts were observed in 17.6% of imaging subjects67. A 

population-based study reported a failure rate of 9.9% due to motion-related poor image 

quality68. Therefore, although underexplored to date, motion susceptibility could critically 

undermine VWI’s clinical translation.  

In intracranial VWI, motion artifacts may arise from either bulk head motion or 

localized movement of internal anatomic structures74. Compensation for bulk motion in 

brain imaging has been investigated extensively through either hardware-based79,80 or 

software-based approaches81–83. Hardware-based techniques (i.e., camera systems) are 

compatible with a broad range of sequences and track rigid motions precisely. However, 

these approaches have been restricted to compensation for rigid bulk motion. Software-

based approaches are more cost-effective as they require only the standard MR system. 

The vNav approach fits easily in the SPACE readouts and has proved successful in brain 

imaging75. However, like hardware-based approaches, it has the drawback that the 

effects of internal localized movements on image quality in intracranial VWI are not 

considered. Given the fact that some intracranial vessel segments are located close to 
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the nasal sinuses and oral cavity, the localized motions, caused by swallowing and 

coughing, may affect the quality of intracranial VWI to some extent. Software approaches 

have previously been shown to be effective in compensating for these motion sources in 

extracranial VWI65,84. We therefore sought to perform a systematic investigation of motion 

effects and propose a technique capable of simultaneously addressing bulk head motion 

and localized motion.  

We first demonstrated that localized movement can significantly impair vessel wall 

delineation. The SG technique, when specifically targeted to the nasal sinus and oral 

cavity, demonstrated promise in detecting motion and significantly mitigating image 

degradation. By combining vNav and SG strategies, we then demonstrated that each 

component of this combined strategy contributes to restored image quality. Compared 

with regular SPACE imaging, the proposed vNav-SG SPACE technique provided 

acceptable overall image quality and vessel wall sharpness in the presence of subject 

motion.  

The developed vNav-SG technique integrated previously published vNav and SG 

approaches with several technical modifications. First, instead of utilizing the signal from 

the k-space center point84, the SG signal in our method came from the center k-space 

line that was in turn transformed to a projection of the whole 3D volume, which is intuitively 

more sensitive to translation or distortion. Second, the motion-contaminated TRs detected 

by SG were reacquired at the end of the scan instead of being reacquired immediately65. 

All TRs were ordered in a priority queue based on their CC values. Once all TRs had 

been executed, the sequence began reacquiring TRs according to their priority. The 

number of reacquisitions was pre-defined by the operator at the scanner console, 
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ensuring a fixed total scan time despite potentially compromised image quality in the case 

of excessive patient movement. Third, in this work, intra-TR motion was monitored by the 

SG lines, and this replaced the reacquisition by “motion score” used in the original vNav 

approach75. Moreover, previous methods compensate for either localized or bulk head 

motion only, whereas our method allows for simultaneous compensation of bulk and 

localized movements, which is the major innovation and contribution.  

There are some limitations in this work. First, the instructed motion at certain preset 

intervals is not guaranteed to be identical across all conditions and subjects. Such 

inconsistency could have biased the comparison of images between different imaging 

conditions. Second, the reacquisition scheme entails a time penalty, and consequently a 

trade-off between scan efficiency and overall image quality. A shorter reacquisition period 

may lead to more motion-contaminated data being retained and contributing to the online 

reconstruction, thus degrading the final image quality. 

 

3.5 CONCLUSION 

We have shown that localized movement can induce substantial artifacts in intracranial 

VWI, and mitigation with the SG approach is feasible. Moreover, the combined vNav-SG 

strategy has demonstrated the potential to effectively mitigate motion artifacts caused by 

both bulk head motion and localized movement in healthy subjects and patients. 

Therefore, the developed vNav-SG SPACE sequence may substantially improve the 

robustness of intracranial VWI in clinical settings and ensure accurate assessment of 

vessel wall pathologies. The work presented in this chapter was published in “Hu, Z., et 

al. (2021). Magnetic Resonance in Medicine, 86(2), 637-647.” 
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CHAPTER 4 

Accelerated 3D MR Intracranial Vessel Wall Imaging: 

Development and Validation of a Cascaded Multi-scale 

Wavelet with Iterative Refinement Reconstruction Network 

 

 

4.1 INTRODUCTION 

MR VWI is a non-invasive, “looking-beyond-the-lumen” imaging modality that can directly 

visualize and characterize arterial wall lesions involved in various intracranial 

vasculopathies11,85. 3D variable-flip-angle TSE has become the most popular acquisition 

method for intracranial MR VWI86. However, the requirements for large spatial coverage 

and high spatial resolution necessitate a prohibitively long acquisition time (i.e., 6-12 min) 

per scan. When both pre- and post-contrast scans are needed, for example in 

atherosclerotic plaque imaging, an MR VWI protocol can take at least 15 minutes87. This 

lengthy protocol may elicit some practical issues, such as low throughput, poor patient 

tolerance, motion-induced image quality degradation, and even complete scan failure.  

Strategies have been proposed to speed up MR VWI62,63,88,89. In general, 

acceleration is achieved by reconstructing images from sub-Nyquist k-space sampling 

leveraging either physical properties of multi-coil acquisition, sparsity of MR images, or a 

mixture of both. For example, parallel imaging (PI) takes advantage of multi-coil spatial 

sensitivities to reduce time-consuming phase-encoding steps for fast MR imaging90–92. 
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Unlike PI, compressed sensing (CS) exploits image sparsity as prior knowledge to 

reconstruct MR images93. With the recent advances in computational power, there have 

been great interests in applying deep learning methods, in particular convolutional neural 

networks (CNN), to reduce acquisition time in a wide variety of MR applications94–98. CNN-

based approaches can outperform PI or CS in terms of reconstruction quality and 

speed99,100. However, there are few studies applying CNN to intracranial MR VWI. Eun et 

al. recently proposed UNet-based neural networks to enhance the overall image quality 

of proton density-weighted intracranial vessel wall images reconstructed by CS 

algorithms101. Zhou et al. developed a CNN-based point spread function enhancement 

approach to retrospectively improve the quality of accelerated T1-weighted MR VWI102. 

Nonetheless, both methods were image domain-based, and thus ignored the prior 

information of the acquired data in k-space.  

In this chapter, we develope a deep learning-based reconstruction framework 

named CAscaded Multi-scale WAvelet with iterative REfinement network (CAMWARE) 

for accelerated intracranial MR VWI. CAMWARE is implemented in a cascading fashion, 

alternating between CNN modules that remove artifacts in the image domain and data 

consistency (DC) modules that enforce data fidelity in k-space. Furthermore, to achieve 

more accurate wall delineation with sharper boundaries, we incorporate discrete wavelet 

transform to preserve high-frequency details and iterative multi-scale refinement (iMR) 

blocks to exploit multi-scale features effectively. Validated on ischemic stroke patients 

with intracranial atherosclerosis, CAMWARE can achieve 0.55-mm-resolution whole-

brain 3D MR VWI, either pre- or post-contrast, within 4 minutes while providing image 
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quality and plaque delineation comparable to those available from a 2× PI scan (i.e., 12 

min in this work). 

 

4.2 METHODS 

4.2.1 CAMWARE architecture 

Overall cascading design 

Similar to the deep cascaded network developed by Schlemper et al.98, the proposed 

CAMWARE consists of two identical subnetworks implemented in a cascade fashion, 

where the first subnetwork translates a zero-filling image to an artifact-free image and the 

second further boosts up accuracy of the previous reconstruction103 (Figure 4.1A). Each 

subnetwork has two modules: a multi-scale wavelet CNN module with iterative refinement 

and a DC module. Both subnetworks’ forward and backward propagations are well-

defined, resulting in one large network that can be trained in an end-to-end manner98.  

Multi-scale wavelet CNN module with iterative refinement 

A 2D UNet structure is adopted as the backbone network architecture of the proposed 

CNN module (Figure 4.1B). Conventional UNet employs downsampling and upsampling 

operations by directly altering spatial resolution of feature maps to enlarge receptive 

field104. At present, the most commonly used downsampling and upsampling methods are 

pooling and deconvolution, respectively, yet at the cost of high-frequency information loss. 

This is especially detrimental when restoring submillimeter-dimension vessel wall 

structures. In contrast, CAMWARE replaces pooling and deconvolution with discrete 

wavelet transform and corresponding inverse wavelet transform for downsampling and 
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upsampling operations, respectively105. Specifically, at each spatial scale, the four 

subband images (i.e., LL, LH, HL, and HH) generated by discrete wavelet transform are 

concatenated and fed into a convolutional block, which consists of three convolutional 

layers (convolution with 3 × 3 kernels [Conv 3 × 3] + rectified linear unit [ReLU]). 

Correspondingly, each scale subband images are reconstructed by completely mirrored 

operations via inverse wavelet transform. In addition, iMR blocks are introduced to 

achieve more accurate wall delineation with sharper boundaries. The proposed iMR block 

comprises of three units as shown in Figure 4.1C106. First, the input adaptive convolution 

unit consists of two convolutional layers (Conv 3 × 3 + ReLU) for input adaptation to 

generate feature maps of the same feature dimension. Second, the multi-scale fusion unit 

fuses all path inputs into low-level feature maps by upsampling the smaller feature maps. 

Last, the output adaptive convolution unit is another two convolution layers that perform 

non-linear operations prior to final prediction. A 1 × 1 convolution is applied on the last 

scale to generate the fused outputs. 

Data consistency module 

CAMWARE inserts a DC module after each of the aforementioned CNN module to 

enforce data fidelity (Figure 4.1D). First, predictions of the previous CNN module are 

taken as inputs and Fourier transformed to yield k-space information. The data 

consistency operation updates the k-space with the original acquisition value if the 

specific location is sampled; otherwise, the predicted value will be used. The updated k-

space signals are back-transformed to the image domain, which are then fed into the next 

module or output as final predictions. 
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Figure 4.1 Illustration of the proposed neural network architecture. (A) Overall cascading design. 

Two identical subnetworks, each consists of a convolutional neural network (CNN) module and a 

data consistency (DC) module, are cascaded in a sequentially manner to form a large network. 

2D transverse undersampled k-space data and variable density Poisson-disk undersampling 

mask are taken as inputs. (B-C) Multi-scale wavelet CNN module with iterative refinement. A 2D 

U-Net architecture is taken as the backbone with pooling and deconvolution replaced by discrete 

wavelet transform and inverse wavelet transform for downsampling and upsampling, respectively. 

Iterative multi-scale refinement (iMR) blocks, which comprises of an input adaptive convolution 

unit, a multi-scale fusion unit and an output adaptive convolutional unit, are introduced at different 

scales before generating the final prediction. The number of channels for each convolutional layer 

is annotated on top. (D) DC module. The DC module updates the k-space with the originally 

acquired value if the specific location is sampled prospectively 

4.2.2 Study population and data acquisition 

Forty-three subjects, including 13 healthy volunteers (aged 23-58 years, 7 females) and 

30 patients (aged 34-76 years, 17 females) with ischemic strokes and clinical diagnosis 
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of intracranial atherosclerosis were recruited with approval of the local institutional review 

board. All subjects underwent a pre-contrast whole-brain MR VWI scan, and 26 of the 30 

patients underwent an additional post-contrast scan, using a 3-T clinical MR system 

(MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany) equipped with a 

standard 20-channel head-neck coil. A previously developed whole-brain MR VWI 

sequence parameter setting was used with the following adaptations63,77. The FOV was 

enlarged to 248 × 230 × 132 mm3 (matrix size: 448 × 414 × 224, resolution: 0.55-mm 

isotropic) to reduce wrap-around artifacts. PI in phase-encoding direction with a GRAPPA 

acceleration factor of 2 was used, resulting in a scan time of 12 minutes. Detailed imaging 

parameters are summarized in Table 4.1. 
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Table 4.1 List of sequence parameters 

Imaging parameters 

Field-of-view [mm3] 248 × 230 × 132 

Acquisition dimension 3D 

Matrix size 448 × 414 × 224 

Spatial resolution [mm3] 0.55 isotropic 

Bandwidth [Hz/pixel] 446 

TR [ms] 900 

TE [ms] 15 

Number of slices 224 

Slice oversampling 7.1 % 

Echo train length 52 

Parallel imaging GRAPPA 2× along phase encoding direction 

Scan duration 12:10 min 

 

4.2.3 Experiments 

All acquired MR datasets were reconstructed offline with matrix size zero-filled to 512 × 

512 × 256 to generate complex-valued images (referred to as “target 2× PI” hereafter). 

The image intensities were normalized, per subject, to have a maximum magnitude of 1. 

Extreme superior and inferior slices with low SNR were excluded for further processing, 

resulting in 350 transverse slices available for each dataset. In addition, data 

augmentation including random rotation of [-10°, 10°] and horizontal flip by 50% of chance 

was applied on a per-slice basis to counter overfitting. A vendor-implemented variable 

density Poisson-disc undersampling mask (autocalibration signal lines: 30) was applied 

to the k-space regenerated by Fourier transforming the target 2× PI images to simulate 
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undersampled k-space data. The acceleration factor of the undersampling mask was 

empirically selected to be 6.5 according to Figure 4.2, equivalent to those obtained by a 

4-minute prospective acquisition.  

 
Figure 4.2 Results demonstrating effects of different acceleration factors (AF) on CAMWARE 

outputs. (A) CAMWARE predictions of a representative slice and corresponding zero-filling 

images at multiple AFs (5.5, 6.5, and 7.5). The same slice acquired by 2× PI is also provided to 

serve as the reference. (B) Structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) 

metrics between the CAMWARE predictions and corresponding target 2× PI at different AFs. As 

demonstrated by SSIM and PSNR values, CAMWARE can achieve mean SSIM equals to 0.90 

and mean PSNR around 31 at AF = 6.5. When further increase to AF = 7.5, both SSIM and PSNR 

values drop drastically compared to AF = 5.5 and 6.5, and some fine structures are missing on 

the output image. Therefore, we decided to adopt AF = 6.5 for intracranial MR VWI, which is 

equivalent to a 4-minute prospective acquisition 

We randomly selected 6 patient datasets, including 4 pre-contrast and 2 post-

contrast datasets, from a total of 69 datasets for network performance evaluation (referred 

to as “testing set” hereafter, 2100 slices). The remaining 63 datasets were split into 57 

datasets for training (19950 slices) and 6 for validation (2100 slices). CAMWARE takes 

the 2D transverse undersampled k-space data and the undersampling mask as inputs, 
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and outputs the images with the image quality comparable to that obtained by a 12-min 

2× PI scan. The real and imaginary parts of the complex values were concatenated as 2 

separate channels within the proposed CNN modules.  

During the neural network training process, network weights were initialized using 

He initialization107. The loss function was a combination of structural similarity index 

(SSIM) loss and mean absolute error (MAE) loss:  

 𝐿8V8SW = 𝜆XXYZ𝐿XXYZ + 𝜆Z[!𝐿Z[! (4.1) 

where the weighting parameters 𝜆XXYZ  and 𝜆Z[!were empirically selected as 𝜆XXYZ  = 

𝜆Z[! = 0.5 to achieve a good balance between the perceptual quality and element-wise 

accuracy of the predicted images. ADAM optimizer was adopted to minimize the loss 

function displayed in Equation 4.1 with a fixed learning rate of 0.0001108. The network 

was trained for 100 epochs with a minibatch size of 4. The network was implemented 

using the Keras package running Tensorflow computing backend109 and was trained from 

scratch on a 64-bit Ubuntu Linux system equipped with Nvidia Geforce RTX 3090 graphic 

cards. 

4.2.4 Performance evaluation 

All following performance evaluations were conducted on the testing set. 

Comparison to other reconstruction methods 

The performance of CAMWARE was compared to several reconstruction methods for 

accelerated MR imaging: (a) zero-filling reconstruction; (b) CS reconstruction; (c) the 

state-of-the-art deep neural network-based reconstruction (i.e., variational network). The 

CS reconstruction was implemented using the projection onto convex sets algorithm, 

which reconstructed images iteratively by repeating soft-thresholding in the wavelet-
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transform domain and data consistency in k-space until stopping criteria were met110. The 

variational network was adapted based on a Tensorflow implementation shared by the 

original developers95. Reconstruction performance of each method was evaluated by 

SSIM and peak signal-to-noise ratio (PSNR). 

Quality of vessel wall delineation 

Quality of vessel wall delineation, which is specific to the MR VWI application, was 

evaluated with a commonly used quantitative metric – vessel wall sharpness. Comparison 

of vessel wall sharpness was performed between the CAMWARE predictions and the 

corresponding 2× PI. Specifically, sharpness was measured at the inner and outer 

boundaries of two major intracranial vessel segments, including middle cerebral artery 

and basilar artery. For each vessel segment, three contiguous 2D cross-sectional slices 

of 0.55-mm thickness were reformatted. Sharpness was measured at three evenly 

distributed locations in each slice, with the first chosen at the most blurred position of the 

vessel wall boundary. The sharpness of each segment was then estimated by averaging 

across the nine selected locations. All measurements were performed based on a 

previously developed method111 using an in-lab MATLAB (R2021a; MathWorks, Natick, 

MA) program.  

Quality of atherosclerotic plaque delineation 

As a preliminary assessment of clinical performance, the quality of atherosclerotic plaque 

delineation was evaluated and compared between the CAMWARE predictions and 2× PI. 

In addition, considering the proposed CNN module takes the zero-filling images 

transformed from the undersampled k-space as inputs, we also compared the 

CAMWARE predictions with zero-filling images to show the improvements on plaque 
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delineations attributed to CAMWARE. Specifically, plaques (characterized as vessel wall 

thickening) were first identified on the target images by a neuroradiologist with 7 years of 

experience in intracranial MR VWI. For qualitative evaluation, the three image sets were 

randomized and graded by the blinded neuroradiologist for the delineation quality of 

plaques based on a 4-point scale: 0-poor, 1-fair, 2-good, 3-excellent. For quantitative 

evaluation, plaque-wall contrast ratio (CR), defined as the signal intensity ratio between 

the brightest region within the plaque and the reference normal vessel wall, was 

calculated for each plaque. 

4.2.5 Statistical analysis 

Statistical analyses were performed using GraphPad Prism (version 8.0.2; GraphPad 

Software, San Diego, CA). Differences among reconstruction methods were evaluated 

using paired two-tailed Student’s t-tests. ICCs and Bland-Altman plots were used to 

assess the sharpness measurement agreement between CAMWARE predictions and the 

target 2× PI. Paired two-tailed Wilcoxon signed-rank tests were used for the comparisons 

of plaque delineation scores and plaque-wall CRs between CAMWARE predictions and 

counterparts. A P-value < 0.05 was considered to indicate statistical significance. 

 

4.3 RESULTS 

The total time for CAMWARE training was about 28 hours. The average time for 

reconstructing a 3D intracranial MR VWI set with the trained network was ~5.25 seconds.  
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4.3.1 Ablation studies 

To demonstrate every incorporated element of CAMWARE contributes to improving 

image quality and reconstruction accuracy in MR VWI, ablation studies were first 

performed. Specifically, in addition to CAMWARE, several neural networks were trained 

from scratch using the same setup described in Section 4.2.3, including: (a) UNet, (b) 

UNet with iMR blocks (iMR-UNet), (c) multi-scale wavelet UNet with iMR blocks (iMR-

MWUNet); (d) multi-scale wavelet UNet with iMR blocks and a DC module (iMR-MWUNet 

+ DC). The UNet architecture was adapted from a Keras-based implementation 

(https://github.com/sohiniroych/Unet-using-TF2), and MWCNN was implemented based 

on the source codes provided by the original developers (https://github.com/lpj-github-

io/MWCNNv2). Quantitative metrics, including SSIM and PSNR, were calculated for each 

slice between the prediction of each neural network and the corresponding target 2× PI 

image for performance evaluation. 

Figure 4.3 shows representative transverse vessel wall images reconstructed by different 

neural networks in the ablation studies. Corresponding error maps at the same scale are 

also provided to help compare reconstruction performances qualitatively. Starting from 

vanilla UNet, in order from left to right, one element was added to the model (in this case 

the order of addition is iMR blocks, multi-scale wavelet transform, the DC module and the 

cascading structure), resulting in gradually improved image quality and reconstruction 

accuracy. CAMWARE, taking advantage of all these elements, achieved the best 

reconstruction results comparable to the target 2× PI. 
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Figure 4.3 Comparison of representative intracranial MR VWI images in the transverse orientation 

reconstructed by different neural networks (< 4 min) in the ablation studies as well as the target 

2× PI (12 min) (top row). Starting from vanilla UNet, step-by-step additions to the model are shown 

on top. Corresponding error maps at the same scale are also provided (bottom row). Cross-

sectional views of the basilar artery and internal carotid arteries are zoomed-in (pointed out by 

the yellow arrows) for detailed demonstration. Overall, CAMWARE, taking advantage of all added 

elements, yields a more accurate reconstruction comparable to the target 2x PI 

4.3.2 Comparison to other reconstruction methods 

Figure 4.4 shows representative MR VWI images generated by different reconstruction 

methods. Corresponding error maps against the target 2× PI are also provided to help 

compare reconstruction performances qualitatively. Deep neural network-based methods 

yielded more natural images and sharper structure delineation than zero-filling and CS 

reconstructions, with CAMWARE outperforming variational network as indicated by the 

error maps.  
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Figure 4.4 Comparison of representative intracranial MR VWI images in the sagittal orientation 

generated by different reconstruction methods, including zero-filling reconstruction, compressed 

sensing reconstruction and variational network (< 4 min), and the target 2× PI (12 min) (top row), 

as well as corresponding error maps (bottom row). Cross-sectional views of the middle cerebral 

artery are zoomed-in (pointed out by the yellow arrows) for detailed demonstration. Although 

implemented based on a 2D network backbone, the capability of CAMWARE in reconstructing 

high-quality MR VWI images are preserved when reformatting the image sets into sagittal slices 

Furthermore, even though the training and evaluation processes were performed 

on individual transverse slices, the capability of CAMWARE in producing high-quality 

images was preserved when reformatting the reconstructed image sets into sagittal slices. 

Figure 4.5 illustrates the SSIM and PSNR between images reconstructed by different 

methods and the corresponding target 2× PI. CAMWARE achieved SSIM and PSNR of 

0.91 ± 0.02 and 31.89 ± 2.53, respectively, which were significantly higher than other 

reconstruction methods (P < 0.001). 
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Figure 4.5 Box plots showing the comparisons of quantitative metrics, including structural 

similarity index (SSIM) and peak signal-to-noise ratio (PSNR), among the proposed CAMWARE 

and other reconstruction methods from 6 randomly selected ischemic stroke patients for network 

evaluation. The SSIM and PSNR values achieved by CAMWARE are significantly higher than 

other reconstruction methods 

4.3.3 Quality of vessel wall delineation 

Excellent agreement in sharpness measurements was observed between the 

CAMWARE predictions and the corresponding target 2× PI. The ICCs of vessel wall 

sharpness were 0.94 and 0.80 at inner and outer boundaries of middle cerebral artery, 

respectively, and 0.98 and 0.94 at inner and outer boundaries of basilar artery, 

respectively. Figure 4.6 shows the Bland-Altman plots for sharpness measurements at 

inner and outer boundaries of middle cerebral and basilar arteries, respectively. The 

mean differences were less than ±5.5% with limits of agreement all within ±20% after 

taking the mean differences into account.  
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Figure 4.6 The Bland-Altman analyses for agreements of sharpness measurements at the inner 

and outer boundaries of middle cerebral artery (MCA) and basilar artery (BA) using the 

CAMWARE predictions and the corresponding ground-truth 

4.3.4 Quality of atherosclerotic plaque delineation 

Figure 4.7 displays zero-filling images, CAMWARE predictions and the target 2× PI in 2 

representative patients. In comparison to zero-filling reconstruction, CAMWARE provided 

sharper delineation with higher SNR of atherosclerotic plaques. Signal intensity-based 

plaque features, such as pre-contrast hyper-intensity (Figure 4.7A) and post-contrast wall 
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enhancement (Figure 4.7B) were depicted comparably by CAMWARE with respect to the 

2× PI images.  

 
Figure 4.7 Comparison of zero-filling reconstructed images (< 4 min), CAMWARE predictions (< 

4 min) and the corresponding target 2× PI (12 min) on two representative ischemic stroke patients. 

The proposed CAMWARE reconstructed images with better-preserved sharpness and textures 

compared to the zero-filling images. In addition, (A) the pre-contrast hyper-intense plaque on the 

middle cerebral artery and (B) the post-contrast wall enhancement on the vertebral artery are 

comparably well-depicted on the CAMWARE predictions with respect to the target 2× PI 

From the testing set, 10 plaques were identified and underwent numerical 

assessments. The quality scores of plaque delineation on the CAMWARE predictions 

were significantly higher than those on the zero-filling images (2.70 ± 0.46 vs 0.60 ± 0.49, 

P < 0.001), and were comparable to those on the target 2× PI images (2.70 ± 0.46 vs 

2.90 ± 0.30, P = 0.17) (Figure 4.8A). CRs measured on the CAMWARE predictions 

exhibited similar performance when compared to those measured on the 2× PI images 
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(1.89 ± 0.45 vs 1.88 ± 0.45, P = 0.42), but were significantly different from those measured 

on the zero-filling images (1.89 ± 0.45 vs 1.73 ± 0.30, P = 0.03) (Figure 4.8B). 

 
Figure 4.8 Assessments of (A) plaque delineation quality score and (B) plaque-wall contrast ratios 

(CR) based on the 10 atherosclerotic plaques identified by a neuroradiologist. The quality of 

plaque delineation on the CAMWARE predictions is significantly improved over that on the zero-

filling images and is comparable to that on the corresponding target 2× PI. In terms of wall-plaque 

CRs, no significant difference was found between the CAMWARE predictions and the 2× PI 

images 

 

4.4 DISCUSSION 

3D MR VWI is emerging as a highly useful diagnostic imaging modality for neurovascular 

diseases85. However, its long acquisition time is a major hurdle to widespread clinical 

adoption. In this study, we developed a deep neural network-based reconstruction 

framework, CAMWARE, and validated its clinical performance against 2× PI, which is the 

current gold-standard approach for MR VWI, on ischemic stroke patients. With the 

proposed CAMWARE, we achieved 0.55-mm-resolution whole-brain 3D MR VWI scan 

within 4 min while providing image quality equivalent to that obtained by a 12-min 2× PI 

scan. This will allow for complete intracranial MR VWI investigation, including both pre- 
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and post-contrast scans, within 10 min. To the best of our knowledge, this is the first 

report of using deep learning for reconstructing intracranial MR VWI images from 

substantially undersampled k-space data. 

CAMWARE cascades two identical subnetworks sequentially to build one large 

network which is end-to-end trainable, with the latter subnetwork acting as an extra step 

to reduce reconstruction errors of the former one. Each subnetwork consists of a CNN 

module followed by a DC module, similar to the previously proposed deep cascaded 

network98. The CNN module is implemented based on a 2D UNet backbone. To ensure 

a decent network performance on restoring fine vessel wall structures, we modified UNet 

in two aspects: (a) discrete wavelet transform was adopted as the downsampling and 

upsampling operations, respectively, to enlarge receptive field and alter resolution of 

feature maps without losing high-frequency details105; (b) iMR blocks were inserted before 

generating the final predictions to combine the representative information at multiple 

scales for reducing the loss of information along the image decoder. Both discrete wavelet 

transform and iMR have proved effective in other applications105,106 and were introduced 

for the first time in this work to improve the performance of deep learning-driven MR VWI 

acceleration.  

The proposed CAMWARE framework was evaluated on in vivo intracranial MR 

VWI datasets acquired from 6 ischemic stroke patients with clinical diagnosis of 

intracranial atherosclerosis. CAMWARE predictions were compared with conventional 

reconstruction approaches, such as zero-filling and CS, and state-of-the-art deep neural 

network reconstructions, such as variational network95. It was observed that CAMWARE 

outperformed all the aforementioned methods both qualitatively (overall image quality and 
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error maps) and quantitatively (SSIM and PSNR). Furthermore, sharpness 

measurements on intracranial vessel segments, as well as plaque assessment including 

delineation quality scores and plaque-wall CR quantifications, show that CAMWARE 

performed vessel wall and plaque delineation comparable to the target 2× PI acquired 

with a 12-min protocol.  

It is important to note that in the experiments presented the feasibility of 

CAMWARE was demonstrated on datasets produced by retrospective undersampling of 

back transformed complex-valued images, which is equivalent to single-coil data. 

Although it would be more practical to apply CAMWARE on multi-coil data, the current 

results validated that CAMWARE owns the capability to reduce scan time of MR VWI and 

generate images comparable to 2× PI. In future, more experiments are necessary to 

figure out ways to efficiently leverage the correlation of phased arrays to further improve 

the performance of CAMWARE.  

There are several limitations to this study. First, variable density Poisson-disc 

undersampling mask was applied to the k-space data Fourier transformed from images 

acquired with 2× PI to create voxel-wise aligned image pairs. It would be ideal to perform 

retrospective undersampling from the fully-sampled k-space data; however, considering 

the long acquisition time for high-resolution MR VWI, it’s impractical for the patients to 

hold still for a fully-sampled scan (about 24 min). Second, the CS images were 

reconstructed by projection onto convex sets algorithm, which is not a commonly adopted 

CS reconstruction algorithm. However, since the undersampled k-space data were 

generated by Fourier transformation of coil-combined complex-valued images, the coil 

sensitivity information of multiple phased arrays was not available. Thus, the well-
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established CS algorithms (i.e., ESPIRiT112) were inappropriate in this scenario. Last, the 

assessment was only performed in the testing set containing 6 ischemic stroke patient 

datasets. A systematic clinical study is warranted to further assess the feasibility of the 

proposed approach. 

 

4.5 CONCLUSION 

In this work, we developed a deep neural network-based reconstruction framework 

named CAMWARE that holds the potential to enable whole-brain intracranial MR VWI 

with 0.55-mm isotropic resolution within 4 min. Our study on ischemic stroke patients 

demonstrates that CAMWARE can preserve vessel wall structures and sharpness and 

ensure accurate assessment of vessel wall plaques in agreement with 2× PI. 
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CHAPTER 5 

MR Multitasking-based Multidimensional Assessment of 

Cardiovascular System – Part I: Development and Feasibility 

Study on the Thoracic Aorta 

 

 

5.1 INTRODUCTION 

Thoracic aortic diseases are one of the most common causes of cardiovascular morbidity 

and mortality, and could end in potentially calamitous consequences113,114. For example, 

vulnerable atherosclerotic plaques at the aortic arch are considered a major embolic 

source for ischemic stroke115, and aortic aneurysms increase the risk of aortic wall rupture 

and internal bleeding. Unfortunately, patients with aortic diseases usually have no signs 

or symptoms and are unaware of the pathological changes in their aortas before adverse 

events occur116. Thus, diagnosis and follow-up of aortic abnormalities depend exclusively 

on diagnostic imaging117. 

Several imaging modalities are traditionally used for thoracic aortic disease 

assessment in clinical practice. TEE provides high-quality imaging of the thoracic aorta 

because of the use of high-frequency transducers and the close proximity of the 

esophagus to the aorta114. However, this modality is invasive and introduces considerable 

discomfort to patients, and not all parts of the thoracic aorta can be visualized due to a 

limited FOV118. CT angiography is currently the most widely used diagnostic modality due 



 
 

63 

to its near universal availability and rapid acquisition119,120. However, CT angiography 

focuses on the detection of luminal abnormalities, while providing limited information on 

pathological changes within the aortic vessel wall121. In addition, CT angiography may be 

contraindicated in certain populations due to the concerns about exposure to ionizing 

radiation or allergic reaction to iodinated contrast material122. MR has emerged as a 

radiation-free, noninvasive imaging modality for diagnosing thoracic aortic diseases120. 

The most common MR approach is MR angiography, which can be achieved by exploiting 

either contrast-enhanced5,6 or non-contrast (i.e., time-of-flight and steady-state free 

precession)7–9 technologies. However, as another type of lumenography-based imaging 

modality, MR angiography shares with CT angiography the same limitation in lumen-only 

imaging.  

The clinical potential of MR for the assessment of thoracic aortic diseases is being 

advanced with continued technical developments over the last decade. MR VWI, primarily 

based on the dark-blood contrast weighting, has been proposed as a useful tool for 

directly evaluating vessel wall characteristics (i.e., thickened, remodeled, or inflammatory 

status)123,124. More recently, MR VWI evolved from single, dark-blood contrast to 

multicontrast approaches to facilitate the characterization of vulnerable atherosclerotic 

plaque components or to provide a more comprehensive disease assessment. Several 

recently developed 3D techniques tailored to thoracic aorta acquire different image 

contrasts through separate scans121,125. MR cine imaging is another technique proposed 

for evaluating aortic wall functions such as vessel compliance. Abnormal compliance (or 

strain index) has been shown to be implicated in pathogenesis of aortic aneurysm and 

dissection126,127. Despite the prominent features and clinical necessities, adoption of a 
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comprehensive protocol is hindered by three typical limitations: (a) long acquisition time 

associated with the need for large spatial coverage and high spatial resolution, (b) image 

misregistration due to subject motion among multiple scans, and (c) nontrivial imaging 

setup and sacrifice of efficiency for addressing motion during data acquisition, such as 

ECG triggering and respiratory navigator gating or breath-holding, which is a particular 

problem for patients with cardiac arrhythmias or difficulty in holding their breath.  

MR multitasking is a recently proposed imaging framework that can address 

several longstanding problems in cardiovascular MRI55. Instead of applying conventional 

motion-compensation strategies, which constrain data acquisition periodically in a 

predefined time window to minimize physiological motion and ensure a specific contrast 

weighting, MR multitasking allows continuous data acquisition and retrospectively 

resolves different dynamics (i.e., physiological motion and physical relaxation), making it 

possible to acquire multiple co-registered images in one single scan with no reliance on 

triggering signals. Furthermore, by adopting a low-rank tensor image model, which 

exploits the high correlation between images at different time points, MR multitasking 

bypasses the “curse of dimensionality” and thereby allows expedited acquisitions55,128.  

Because of the crucial role that imaging plays in the diagnosis of thoracic aortic 

diseases and longstanding challenges of conventional imaging modalities, in this chapter 

we develop an MR multitasking-based 3D multidimensional assessment of 

cardiovascular system (MT-MACS) technique for comprehensive thoracic aortic vessel 

imaging. Without the use of ECG and respiratory navigators, this technique allows for 

motion-resolved, isotropic high spatial resolution, multidimensional (multiple contrast 

weightings and cine images) imaging of the thoracic aorta within 6 min. Technical 
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feasibility was demonstrated in healthy volunteers and patients with thoracic aortic 

diseases.  

 

5.2 METHODS 

5.2.1 Multidimensional imaging based on MR multitasking 

The proposed MT-MACS method uses a low-rank tensor image model with a cardiac time 

dimension for phase-resolved cine imaging, and a T2-prepared inversion recovery 

dimension for multicontrast (i.e., bright-blood [BB], dark-blood [DB], and gray-blood [GB]) 

assessment. Specifically, MT-MACS models a 6-dimensional aortic image as a 4-way 

multidimensional array (or “tensor”) ℐ, with one dimension indexing 3D spatial location 𝐱 

and three time dimensions: cardiac motion 𝑡\, respiration 𝑡$, and inversion recovery 𝑡5). 

The strong correlation between aortic images along and across time dimensions makes 

ℐ a low-rank tensor, and therefore partially separable in the following sense56:  

 
ℐ(𝐱, 𝑡\, 𝑡$, 𝑡5)) =u𝑢ℓ(𝐱)𝜙ℓ(𝑡\, 𝑡$, 𝑡5))

K

ℓB)

 (5.1) 

where 𝑢ℓ(𝐱)  is the ℓ th of 𝐿  basis images, and 𝜙ℓ(𝑡\, 𝑡$, 𝑡5))  is the ℓ th of 𝐿  temporal 

functions. Furthermore, in the low-rank tensor image model, each 𝜙ℓ(𝑡\, 𝑡$, 𝑡5)) is itself 

low-rank and can be factorized using individual bases for each time dimension:  

 
𝜙ℓ(𝑡\, 𝑡$, 𝑡5)) = u uu𝑐ℓ?^_𝑣?(𝑡\)𝑤^(𝑡$)𝑧_(𝑡5))
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where 𝑣 , 𝑤 , and 𝑧  denote basis functions along the cardiac motion, respiration, and 

inversion-recovery dimensions, respectively; and 𝑐ℓ?^_  denotes elements of the core 

tensor 𝒞. Thus, our image tensor ℐ can be expressed in matrix form as:  

 𝐈()) = 𝐔𝐱𝐂())(𝐙8,!⨂𝐖8-⨂𝐕8.) (5.3) 

where 𝐈()) denotes mode-1 unfolding of the tensor ℐ into a matrix; the factor matrix 𝐔𝐱 

contains basis images; 𝐂()) denotes the unfolded core tensor; 𝐕8., 𝐖8-, and 𝐙8,! contain 

temporal basis functions for each time dimension; and the ⨂  operator denotes the 

Kronecker product129. Currently, there are various low-rank strategies available for 

reconstruction of the multidimensional arrays, either implicitly or explicitly55,130–134. MR 

multitasking, based on the description of previous works55,128,135,136, uses a mixed strategy 

that reconstructs the image tensor by directly recovering each of its factor matrices. 

Basically, in this work, image reconstruction can be divided into five steps:  

1. Generate ungated images, which are reconstructed using explicit low-rank matrix 

imaging with only one time dimension representing elapsed time55,128, for image-

based cardiac phase and respiratory position identification by means of a modified 

T1 recovery–aware k-means clustering approach55, placing the corresponding 

images into 14 cardiac bins and 6 respiratory bins.  

2. Predetermine the temporal basis functions in 𝐙8,!  (along the inversion-recovery 

dimension) from a training dictionary of inversion-recovery signals with different T1, 

T2, and B1 inhomogeneity values, which is generated according to the Bloch 

equations ahead of time55,136. 

3. Apply small-scale low-rank tensor completion to recover missing elements from a 

frequently sampled subset of k-space (“auxiliary data”), which will be 
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undersampled because it is impossible to acquire every combination of cardiac 

phase, respiratory phase, and inversion-recovery time point:  

 
𝐷g%PQ = arg min

b)*+∈$%&d((𝐙/,!)
‖𝐝%PQ − Ω(𝐷%PQ)‖** + 𝜆uv𝐃%PQ,(^)v∗

H

^B)

 (5.4) 

where 𝐝%PQ  is the collected auxiliary data; Ω(⋅)  represents the undersampling 

pattern of the auxiliary dataset; 𝐃%PQ,(^)  denotes the mode-n flattening of the 

completed auxiliary tensor; and ‖⋅‖∗  is the nuclear norm that promotes low-

rankness of each unfolded matrix. 

4. Truncate the high-order singular value decomposition of 𝐃g %PQ,()) to recover 𝒞 and 

the temporal basis functions along the cardiac and respiratory phase directions, 

namely, 𝐕8. and 𝐖8-, respectively.  

5. Solve the following optimization problem to reconstruct the spatial coefficients 𝐔𝐱:  

 𝐔g𝐱 = argmin
𝐔𝐱
v𝐝 − Ω[𝐅𝐒𝐔𝐱 ⋅ 𝐂())(𝐙8,!⨂𝐖8-⨂𝐕8.)

/]v
*

* + 𝜆𝑅(𝐔𝐱) (5.5) 

where 𝐝 is the acquired imaging data; 𝐅 denotes the Fourier transform; and 𝐒 

denotes the coil sensitivity maps. The regularization functional 𝑅(⋅) here is chosen 

as a spatial wavelet sparsity penalty, and 𝜆 is the parameter used to balance 

between wavelet sparsity and noise artifacts.  

5.2.2 Pulse sequence design 

The MT-MACS technique is implemented based on a prototype free-running fast low-

angle shot (FLASH) Cartesian acquisition immediately following intermittent T2-inversion 

recovery (T2-IR) magnetization preparation (Figure 5.1). The T2-IR preparative module 

is used to leverage T1 and T2 variances to (a) maximize the contrast between the vessel 
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wall and blood, and (b) create multiple image contrasts137,138. After the FLASH readouts, 

a short gap of fixed duration allows T1 recovery toward thermal equilibrium. Both phase 

and partition encodings for the imaging data 𝐝 are collected with randomized ordering 

according to a variable-density Gaussian distribution, to achieve incoherent 

undersampling of the k-space. The auxiliary data 𝐝%PQ collected at the center k-space (𝑘, 

= 𝑘. = 0) is interleaved with the imaging data every 9 readouts. This ensures an auxiliary 

data sampling interval of 40 ms, which is adequate for capturing our targeted dynamic 

processes without sacrificing total imaging data. Too infrequent collection of auxiliary data 

cannot capture the overlapping dynamic processes, whereas too frequent collection 

comes at the cost of fewer imaging data, which would lead to degradation of the final 

image quality.  

 
Figure 5.1 Pulse sequence diagram for the multitasking-based multidimensional assessment of 

cardiovascular system (MT-MACS) technique and corresponding k-space sampling pattern. A, 

Nonselective T2-preparation inversion-recovery (T2-IR) pulses are applied every TR, followed by 

continuous FLASH readout alpha pulses. One k-space line is collected every alpha pulse. After 

each blue arrow, an auxiliary line is acquired every 9 lines as the low-rank tensor subspace 
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training data. The data acquisition module containes 300 readout segments, followed by a short 

gap of fixed duration until the next T2-IR preparation pulse. B, Simplified illustration of k-space 

sampling strategy. The auxiliary data are collected at the k-space center. Cartesian sampling with 

randomized reordering with a variable-density Gaussian distribution in 𝑘)  and 𝑘*  directions is 

adopted in this sequence 

5.2.3 Numerical simulations 

To maximize the lumen-wall contrast, a simulation study was performed to optimize two 

parameters: (a) TR, which is the time interval between two consecutive T2-IR preparation 

pulses, and (b) the number of readout segments within each TR. The simulation study 

was conducted in two steps. We first assumed readouts were continuous, acquired every 

4.5 ms (a practically achievable echo spacing) throughout the entirety of each TR. The 

curve of lumen-wall contrast against various TRs (Figure 5.2A) illustrates that short TRs 

would not provide adequate signal contrast between the vessel wall and blood. Moreover, 

long TRs may not be SNR-efficient, as the magnetization will spend too much time in the 

steady state rather than near the desired image contrasts. Therefore, a 2000-ms TR was 

empirically chosen here (Figure 5.2B) as a compromise. With the TR fixed, Figure 5.2C 

illustrates the lumen-wall contrast against the number of segments in each TR. Too many 

segments leads to less contrast; however, too few segments leads to a longer gap, 

reducing data acquisition efficiency and potentially degrading final image quality for a 

fixed total scan time. Based on simulations and several pilot in vivo experiments, we used 

300 readout segments (approximately 1400 ms) followed by a 600-ms gap within each 

TR (Figure 5.2D). For the simulation purpose, the segment for which the vessel wall signal 

reached the nulling point was selected for the BB contrast, and the time point when the 

signal of lumen blood reached the nulling point was chosen for the DB contrast. The 
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relevant imaging parameters used in simulations were T1 = 1412 ms and T2 = 50 ms for 

vessel wall, T1 = 1932 ms and T2 = 275 ms for lumen blood, flip angle = 8º, echo spacing 

= 4.5 ms, and duration of T2-IR preparation module = 60 ms.  

 
Figure 5.2 Simulation results. A, Curve of lumen-wall contrast with respect to bright-blood (BB) 

and dark-blood (DB) contrast weightings against various TRs with no gap until the next T2-IR-

prepared pulse. B, Signal evolution curves of the aortic vessel wall and lumen blood with a 2000-

ms TR. C, Curve of lumen-wall signal difference against numbers of segments during a single 

readout block with TR = 2000 ms. D, Signal evolution curves of the aortic vessel wall and lumen 

blood with 300 readout segments followed by a 600-ms gap until the next preparation pulse, under 
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the circumstance of TR = 2000 ms. Two representative time points were selected for BB and DB 

contrast weightings during the simulation study  

5.2.4 In vivo study 

The in vivo study was approved by the local institutional review board, and all subjects 

provided written informed consent before participation. Twelve healthy volunteers (aged 

18-63 years, 7 females) and two patients (aged 38-71 years, 2 females) with aortic 

atherosclerosis and aortic aneurysm were recruited for the study. All imaging 

examinations were performed on a 3-T clinical MR scanner (MAGNETOM Skyra; 

Siemens Healthcare, Erlangen, Germany) with a standard 18-channel body coil and an 

integrated spine matrix coil.  

 In all healthy volunteers, MT-MACS imaging was performed with no ECG and 

respiratory navigator in an oblique sagittal orientation as determined using the three-point 

tool on localizer images. Major imaging parameters included FOV = 275 × 220 × 72 mm3, 

matrix size = 200 × 160, number of slices = 52, spatial resolution = 1.38 mm isotropic, flip 

angle = 8º, TR/TE = 2000.0/2.1 ms, echo spacing = 4.5 ms, bandwidth = 1008 Hz/pixel, 

and 1-2-1 binomial-pulse spectrally selective water excitation for fat suppression. Imaging 

time was set for 10 minutes, and the acquired data later underwent offline reconstruction 

with different k-space raw data truncations corresponding to 4, 6, 8, and 10-minute scan 

durations for the goal of scan-time optimization. The MT-MACS imaging with 6-minute 

scan time (as optimized in the healthy volunteers) was performed on the 2 patients.  

 In addition, conventional sequences were also acquired in 9 of the 12 healthy 

subjects to serve as the references for morphological (i.e., lumen and wall area) and 

functional (i.e., strain index) quantification of the thoracic aorta. Briefly, 2D T1-weighted 
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DB vessel wall imaging based on double inversion recovery–prepared TSE sequence and 

2D cine imaging based on the balanced SSFP sequence were performed at both the 

ascending and descending thoracic aorta, with ECG triggering and end-expiration breath 

holding. Major imaging parameters for 2D-TSE sequence included FOV = 350 × 285 mm2, 

matrix size = 256 × 208, slice thickness = 5 mm, flip angle = 180º, TR = 1 cardiac cycle, 

TE = 27 ms, turbo factor = 12, echo spacing = 5.49 ms, bandwidth = 849 Hz/pixel, and 

ECG-triggered to the middiastole. Three contiguous slices were acquired with the 

purpose of reducing the measurement errors of vessel morphology induced by position-

mismatch between the MT-MACS and 2D-TSE sequences. For 2D cine imaging, protocol 

parameters included FOV = 350 × 285 mm2, matrix size = 256 × 208, slice thickness = 6 

mm, flip angle = 50º, TR/TE = 45.9/2.5 ms, echo spacing = 3.3 ms, bandwidth = 962 

Hz/pixel, and 25 phases based on retrospective gating.  

5.2.5 Image analysis 

Images acquired using the MT-MACS technique were reconstructed offline and 

generated in a DICOM format using MATLAB. These DICOM images were loaded to a 

workstation (LEONARDO, Siemens Healthcare) for the following analysis.  

Qualitative analysis 

For each healthy subject, four groups of multicontrast middiastolic end-expiratory images 

were reconstructed using different amounts of MT-MACS k-space raw data 

corresponding to 10, 8, 6, and 4-min long acquisitions, respectively. Three inversion-

recovery time points were chosen to provide BB, DB, and GB image contrasts. All of the 

MT-MACS image sets were randomized and evaluated by 2 independent radiologists with 

at least 5 years of experience in cardiovascular imaging. Overall image quality was 
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graded using a 4-point scale: 0, poor: unidentifiable and completely blurred lumen and 

wall; 1, fair: identifiable but heavily blurred lumen and wall; 2, good: well-defined lumen 

and wall with slight artifacts; 3, excellent: excellent visualization and sharp vessel wall 

and lumen margins with no artifacts. The final image quality score was determined as an 

average between the 2 readers. Optimal scan time was determined as the shortest one 

that generated average scores of 2 or greater over all subjects for each image contrast.  

Quantitative analysis 

Quantitative analysis was performed on the MT-MACS images reconstructed using the 

data acquired within the scan time optimized previously. Contrast-to-noise ratio (CNR) of 

the vessel wall versus lumen blood was determined from all three image contrasts at the 

middiastolic end-expiratory phase using the following equation: 

 
𝐶𝑁𝑅 =

|𝑆𝐼Kf − 𝑆𝐼gh|
𝜎fi

 (5.6) 

where 𝑆𝐼Kf  and 𝑆𝐼gh  represent the mean signal intensity of the lumen blood and the 

vessel wall, respectively, within three regions of interest located at the ascending aorta, 

aortic arch, and descending aorta; and 𝜎fi is the standard deviation of signal intensities 

in a neighboring artifact-free air region.  

 For the accuracy analysis of lumen area (LA) and wall area (WA) measurements, 

the DB images of MT-MACS at the middiastolic end-expiratory phase were reformatted 

to match the 2D DB TSE images in both location and slice thickness. Inner and outer 

boundaries of the vessel wall on all cross-sectional slices acquired by each of the two 

sequences were manually traced by a radiologist. Based on these contours, the LA and 

WA of both the ascending aorta and descending aorta were measured. The mean LA and 
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WA values of each healthy subject were obtained by averaging the measurement results 

of the three contiguous slices.  

 For the accuracy analysis of the strain index measurement, cardiac phase-

resolved BB images of MT-MACS were reconstructed and reformatted to match cine 

balanced SSFP images in both location and slice thickness. The strain index was 

measured for each of the two sequences using the following equation34:  

 
𝑆𝑡𝑟𝑎𝑖𝑛 =

(𝑆𝐴 − 𝐷𝐴)
𝐷𝐴  (5.7) 

where 𝑆𝐴 is the maximal systolic LA and 𝐷𝐴 is the minimal diastolic LA of the aorta. The 

LA was determined after manually contouring the lumen by a radiologist.  

5.2.6 Statistical analysis 

Linear regression and ICCs were used to test measurement agreement in morphological 

and functional parameters between MT-MACS and corresponding 2D reference 

sequences. The extent of agreement was also determined using Bland-Altman analysis. 

A P value < 0.05 was considered to indicate statistical significance. All statistical analyses 

were performed using OriginPro (version 9.1; OriginLab, Northampton, MA).  

 

5.3 RESULTS 

The MT-MACS imaging was performed successfully on all 12 healthy subjects and 2 

patients with thoracic aortic diseases. Figure 5.3 is the illustration of multiple time 

dimensions for the MT-MACS technique and some example images resulting from the 

multidimensional image reconstruction. Six respiratory phases lie along the respiratory 
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time axis (vertical); 14 cardiac phases lie along the cardiac time axis (depth); and 300 

inversion-recovery segments lie along the T1 recovery time axis (horizontal). Three 

representative time points were picked out among the 300 segments for BB, DB and GB 

imaging, respectively.  

 
Figure 5.3 Illustration of different time dimensions for MT-MACS, namely, cardiac pulsation, 

respiration, and T2-IR dimensions. For phase-resolved imaging, MT-MACS divides cardiac 

motion and respiratory movement into 14 and 6 bins, respectively. Within each inversion-recovery 

period, MT-MACS contains 300 readout segments that can generate 300 various contrast 

weightings. Three typical contrast weightings (i.e., bright blood, dark blood, and gray blood) are 

selected for multicontrast assessment 

5.3.1 Qualitative analysis 

A total of 144 (3 image contrasts × 4 data amounts × 12 subjects) 3D image sets were 

scored for image quality. Figure 5.4 shows the average image-quality scores and 

corresponding standard deviations over all subjects for each image contrast within each 

scan-time category (Figure 5.4A) and representative images (Figure 5.4B).  
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Figure 5.4 Qualitative analysis results. A, Average values of the overall image-quality scores given 

by two readers and the standard deviationss over all 12 subjects for each image contrast within 

each scan-time category. The optimal scan time was determined as the shortest one that 

generated average scores of 2 or greater (above the red dotted line) over all subjects for each 

image contrast above this level. For BB and GB images reconstructed using a 4-min data set, the 

average image-quality scores were less than 2, which were not enough for clinicians and 

radiologists to obtain clinically related information. B, One of the empirical studies illustrated the 

tradeoff between the overall image quality and scan time. Further reduction of the scan time to 4 

min will lead to severe deterioration of the overall image quality. BB, bright-blood; DB, dark-blood; 

GB, gray-blood 

For BB MT-MACS images, the image-quality scores for 10-min, 8-min, 6-min, and 

4-min data sets were 3.00 ± 0.00, 2.83 ± 0.33, 2.58 ± 0.46, and 1.58 ± 0.46, respectively; 

for DB MT-MACS images, the image quality scores were 2.96 ± 0.14, 2.92 ± 0.19, 2.58 ± 

0.50, and 2.08 ± 0.63, respectively; for MT-MACS GB images, the image-quality scores 

were 2.71 ± 0.45, 2.5 ± 0.71, 2.17 ± 0.53, and 1.58 ± 0.70, respectively. Scans in as short 

as 6 min provided good or excellent image quality with moderate to high interreader 

agreement quantified by weighted Cohen’s kappa (κ) values 0.667 (P = .014), 1.000 (P 

< .001), and 0.739 (P < .001) for BB, DB and GB imaging, respectively (image-quality 
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scores given by both readers are shown in Figure 5.5). Thus, the 6-min image sets were 

chosen for the following quantitative analysis.  

 
Figure 5.5 Distribution of the overall image quality scores for each image contrast within 4 scan 

time categories given by 2 raters (N = 12) 

5.3.2 Quantitative analysis 

The CNR measurements for BB, DB, and GB contrast weightings are 49.2 ± 12.8, 20.0 ± 

5.8, and 2.8 ± 1.8, respectively, which are in line with the values published in the 

literature123,139,140. 

 A comparison of measurements for several morphological parameters, including 

the LA and WA for both the ascending aorta and descending aorta, is shown in Figure 

5.6A. In Figure 5.6B and 5.6D, linear regression analyses demonstrated excellent 

intraclass correlation between two imaging techniques (ICC = 0.993, P < .001 for LA; ICC 

= 0.969, P < .001 for WA), with slopes and ordinate intercepts of approximately one (range: 

0.97 to 1.00) and zero (range: −0.08 to 0.00 cm2), respectively. According to Bland-

Altman plots (Figure 5.6C and 5.6E), excellent agreements of both LA and WA 

measurement results were observed between MT-MACS and 2D DB TSE image sets. 
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For LA measurements, there was an absolute mean difference of 0.067 with 95% limits 

of agreement from −0.234 to 0.368 (N = 18 slices); for WA measurements, the absolute 

mean difference was 0.058 with 95% limits of agreement from −0.119 to 0.235 (N = 18 

slices).  

 
Figure 5.6 Quantification of morphological parameters of aortic vessels. A, Graphic illustration of 

measuring the lumen area (LA) and wall area (WA) in healthy subjects. The inner and outer 

contours were manually traced on both 2D turbo spin-echo (TSE) images and DB images of MT-

MACS. Both the slice position and slice thickness were matched during the measurements. B,D, 

Comparison of LA and WA measurement, respectively, using the proposed MT-MACS and a 

convention 2D-TSE reference. Black dotted lines represent the identity line (Y = X), whereas solid 

red lines represent regression of the results from these two methods. The intraclass correlation 

coefficients for LA and WA measurements were 0.993 (P < .001) and 0.969 (P < .001), 

respectively. C,E, Bland-Altman plots comparing measurement results acquired by these two 

imaging techniques. Solid red lines and dashed red lines indicate the means and SDs of LA and 

WA values between the different methods  

 Comparison of aortic vessel strain index measurements between MT-MACS and 

2D cine balanced SSFP is displayed in Figure 5.7. Good agreement was observed 
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between these two techniques (mean: 3.1%; 95% limits of agreement: −5.0% to 11.1%; 

N = 18 slices). The regression analysis illustrated a good linear relation (R2 = 0.890, P 

< .001) and correlation (ICC = 0.947, P < .001) between measurements.  

 
Figure 5.7 Quantification of the functional parameter of aortic vessels. A,B, Graphic illustration of 

measuring the diastolic and systolic LA of both the ascending and descending aortas in healthy 

subjects. The lumen boundaries were traced manually on 2D cine SSFP images and BB images 

of MT-MACS. Both the slice position and slice thickness were matched during the measurements. 

C, Comparison of aortic vessel strain measurement, using the proposed MT-MACS and a 

convention 2D cine reference. The black dotted line represents the identity line (Y = X), whereas 

the solid red line represents regression of the results from these two methods. The intraclass 

correlation coefficient was 0.947 (P < .001). D, Bland-Altman plots comparing the measurement 

results acquired by these two imaging techniques. Solid red line and dashed red lines indicate 

the mean and standard deviation of the strain values between the different methods 

5.3.3 Detection of aortic abnormalities 

Figure 5.8A – 5.8C shows the BB, DB, and GB contrasts, respectively, acquired by MT-

MACS sequence from a 38-year-old female patient with aortic aneurysm. Aneurysm 

affecting the patient’s descending aorta was clearly depicted in all three image contrasts 
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(red boxes). Moreover, through GB imaging, calcified spots, which were pointed out by 

yellow arrowheads, were identified. The circumferential extent of the abnormalities could 

be better understood through reformatted short-axis views (yellow arrowheads).  

 Figure 5.8D – 5.8F shows the imaging results of a 71-year-old female patient with 

aortic atherosclerosis. Wall thickness at the descending aorta was 4.491 mm (marked in 

red on the oblique sagittal DB image), which is much higher than that of healthy subjects 

(approximately 2 mm). The increase of aortic-vessel wall thickness could be confidently 

identified through the short-axis views of DB and GB image contrasts (pointed out by the 

yellow arrows), which suggested the existence of aortic atherosclerosis.  

 
Figure 5.8 Images from 2 patients with aortic aneurysm and aortic atherosclerosis, respectively. 

The BB (A), DB (B), and GB (C) contrast weightings from a 38-year-old female patient with aortic 

aneurysm. Aneurysm in the patient’s descending aorta was depicted (red boxes). Calcifications 

were also identified by GB imaging, and the circumferential extent of the abnormalities could be 

seen through short-axis views (yellow arrowheads). The BB (D), DB (E), and GB (F) images 



 
 

81 

acquired from a 71-year-old female patient with aortic atherosclerosis. Increased aortic wall 

thickness (4.491 mm) was marked out in red on the oblique sagittal DB image. The severe 

thickening of the vessel wall could be clearly identified through the short-axis views of the DB and 

GB imaging, which were indicated by the yellow arrows. BB, bright-blood; DB, dark-blood; GB, 

gray-blood  

 

5.4 DISCUSSION 

In this study, we present a novel ECG-free and navigator-free 3D MT-MACS technique 

and demonstrate its feasibility on the thoracic aorta in healthy subjects and patients with 

thoracic aortic diseases. The proposed MT-MACS achieved high spatial resolution with 

complete thoracic aorta coverage, and more importantly, provided a comprehensive 

assessment (multiple image contrasts and cine imaging) of the thoracic aorta within a 

single 6-minute scan.  

 Thoracic aortic disease is a stealth condition, which develops silently and typically 

without any symptoms, but the catastrophic results could affect people at any age113. 

Therefore, imaging plays a crucial role in the monitoring and treatment planning of 

different types of aortic diseases120. Given the abundant strengths of MR over other 

imaging modalities, in this study, MT-MACS was developed to provide a comprehensive 

assessment of the thoracic aorta. Compared with previous MR techniques tailored for the 

thoracic aorta, the proposed method has several advantages. First, MT-MACS provides 

multiple co-registered images with different image-contrast weightings in a single 6-min 

scan. To date, MR angiography, including both contrast-enhanced and unenhanced 

(SSFP, time-of-flight) techniques, has been increasingly favored by clinicians and 

radiologists in the assessment of thoracic aortic diseases5,8. However, characterizing 
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aortic diseases by simply visualizing the aortic lumen may underestimate the vulnerability 

and severity of diseases under certain pathological circumstances (i.e., positive 

remodeling effects in the development of aortic atherosclerosis)121,141. Therefore, many 

MR multicontrast aortic imaging studies were performed with the purpose of directly 

visualizing the aortic vessel wall and major plaque components, such as intraplaque 

hemorrhage and calcification121,142. Yet, the long acquisition time (about 30-40 min) and 

misregistration due to interscan subject motion rendered multicontrast imaging logistically 

impractical and complicated to interpret125. In this study, we adopted a T2-IR module to 

maximize the contrast between the aortic vessel wall and lumen blood and acquired 

different image contrasts by retrospectively selecting images at different time points along 

the T1 recovery time dimension. More specifically, there were 300 readout segments 

within each inversion-recovery period; thus, 300 different image contrasts were available 

through this sequence. Three typical image contrasts out of 300 were selected, namely 

BB, DB, and GB image contrasts. The BB images had significantly high signal in the aortic 

lumen and can be used to detect lumen abnormalities, such as luminal stenosis. The 

second image contrast, DB images, with suppressed blood signal and higher signal in the 

aortic vessel wall, can be used to directly visualize the wall morphology. The third image 

contrast, GB images, which had similar signal levels in the lumen and wall, is designed 

specifically for the detection of calcification, especially the superficial calcified 

nodules140,143. However, DB image contrast may not ideally identify the vessel wall 

boundary due to the insufficient contrast between vessel wall and surrounding tissues. 

As a technical advantage, MT-MACS can provide sliding contrasts to help better delineate 

aortic wall boundaries. With all these co-registered image contrasts acquired within the 
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same scan, we can greatly simplify the acquisition workflow and improve the 

interpretation efficiency and accuracy.  

 Second, by adopting the MR multitasking framework, the acquisition eliminates the 

need for ECG triggering, respiratory navigators, or breath-holds. For aortocardiac imaging, 

one of the major challenges is to perform imaging in the presence of physiological 

movement (i.e., cardiac pulsation and respiration). Conventional cardiovascular MR 

techniques adopt ECG for triggering data acquisition to a quiescent cardiac phase 

(usually middiastole) and breath-holding or navigator gating with a low-rate acceptance 

window to resolve respiratory motion, thus leading to dramatically inefficient imaging. 

Furthermore, these unreliable (i.e., ECG triggering at 3-T) or uncomfortable (i.e., breath-

holding) motion-resolving strategies may result in severe motion artifacts for specific 

subjects, such as patients with cardiac arrhythmias55. The presented work could 

potentially overcome these problems by developing an ECG-free and navigator-free 

imaging technique adapted from the MR multitasking framework. By a single, simple, 

setup scan, the proposed technique can simplify the imaging workflows and avoid the 

impact of external motion compensation signal corruption. Moreover, this motion-resolved 

aortic imaging technique had another advantage over conventional methods: slicing the 

4-way imaging tensor along both diastole and systole phases allowed the aortic vessel 

strain index and distensibility to be determined, which serves as an important illustration 

for certain types of aortic diseases144.  

 In this work, there was a tradeoff between the scan time and the overall image 

quality. This is because insufficient imaging data would result in a more undersampled 

optimization problem to recover the spatial coefficients 𝐔𝐱, as shown in Equation 5.5, 
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which then led to degeneration of the overall image quality. Hence, an optimized protocol 

needs to balance between the image quality and scan time. Expressly, an optimized scan 

time means that within this specific scan time, enough clinically relevant diagnostic 

information could be gained; further reduction of the scan time would lead to deterioration 

of the overall image quality and unconfident diagnoses. Images reconstructed from at 

least 6 minutes of data produced average scores of 2 or higher for each contrast weighting 

and no nondiagnostic images (all ≥ 1). One GB image set was scored “1” by reader 1 and 

two GB image sets were scored “1” by reader 2. The reason for the fair image-quality 

scores was inhomogeneous signal intensities between the ascending and descending 

aortas, which did not affect the diagnosis of calcifications (black spots). Thereby, the scan 

time for this proposed technique was finalized as 6 minutes, and all quantitative analyses 

were based on the 6-minute data sets. Measurement results of certain morphological 

parameters (i.e., lumen and wall area) and functional parameters (i.e., vessel strain index) 

were in line with those measured through conventional 2D reference techniques, with the 

lowest ICC equal to 0.947 (P < .001). The quantitative analysis further illustrates the 

feasibility of our proposed MT-MACS technique on thoracic aorta.  

 Our study has some limitations. First, online reconstruction for MT-MACS 

technique is not available at this stage. Offline reconstruction was performed on a 

workstation equipped with two 2.70-GHz 12-core Intel Xeon central processing units and 

256 GB of random-access memory, with a 110-minute median reconstruction time. 

However, with computing power upgrade and advanced reconstruction methodologies, 

this challenge may be overcome. Second, a further increase in spatial resolution is 

necessary. Currently, our spatial resolution is 1.38 × 1.38 × 1.38 mm3 isotropic; however, 
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for thoracic aortic imaging, especially aortic vessel wall imaging, a higher resolution is 

highly desirable to better delineate the aortic vessel and reduce partial-volume effects. 

However, additional scan time is needed to achieve a higher spatial resolution. In the 

future, additional sources of acceleration, such as deep learning-based super-

resolution145, may be integrated into this technique. Third, feasibility of the proposed 

technique requires further validation on a larger patient cohort. With multidimensional 

information, our developed method could be used to assess a variety of thoracic aortic 

diseases, including aortic atherosclerosis, aortic dissection, aortic aneurysm and 

vasculitis, either before contrast or after contrast. Thus, more patients need to be 

recruited to further test the sensitivity and specificity of this technique with respect to 

different types of thoracic aortic diseases.  

 

5.5 CONCLUSION 

We have demonstrated that the proposed MT-MACS technique provides high-quality, 

multidimensional images for a comprehensive assessment of the thoracic aorta. 

Technical feasibility of MT-MACS was shown in healthy subjects and patients with 

thoracic aortic diseases. Further studies in the setting of various thoracic aortic diseases 

are warranted to validate the clinical utility of this technique. The work presented in this 

chapter was published in “Hu, Z., et al. (2020). Magnetic Resonance in Medicine, 84(5), 

2376-2388.” 
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CHAPTER 6 

MR Multitasking-based Multidimensional Assessment of 

Cardiovascular System – Part II: An Extension to the Entire 

Heart 

 

 

6.1 INTRODUCTION 

Cardiovascular diseases, such as congenital heart diseases, cardiac masses (i.e., 

cardiac thrombi or tumors), and vascular diseases, are leading causes of death 

internationally146,147. Diagnosis, risk stratification, and planning of interventional 

procedures of cardiovascular diseases require accurate evaluation of cardiac anatomy 

and function148. As a versatile imaging modality, cardiovascular MR has the potential to 

provide a comprehensive assessment of both morphology and function of the entire heart 

through multi-contrast, motion-resolved and water-fat imaging. For example, bright-blood 

and dark-blood imaging enables complementary visualization of cardiac chambers and 

great thoracic vessels149, and phase-resolved cine imaging is considered the gold 

standard for assessment of cardiac function150. In addition, water-fat imaging based on 

Dixon methods allows additional fat quantification, which could provide additional 

diagnostic information of relevance151,152.  

However, despite the aforementioned prominent features, cardiovascular MR is 

still not widely adopted in current clinical practice153. This is mainly owing to three typical 
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challenges: (a) long imaging time associated with the need for large spatial coverage and 

high spatial resolution, (b) cumbersome imaging paradigm in which cardiac images are 

acquired in separate scans with several non-standard planes due to the complexity of 

cardiovascular anatomy, and (c) nontrivial imaging setup and sacrifice of efficiency for 

addressing cardiac and respiratory motion during data acquisition, such as ECG 

triggering and respiratory navigator gating or breath-holding. Hence, current 

cardiovascular MR acquisition is performed in a time-consuming sequential manner, and 

must be individually tailored and adjusted, which is highly dependent on operator 

experience and patient cooperation154.  

In Chapter 6, we presented an MR MultiTasking-based 3D Multi-dimensional 

Assessment of Cardiovascular System (MT-MACS) technique for comprehensive 

thoracic aortic imaigng, including multi-contrast imaging and cardiac phase-resolved 

imaging, with a single 6-min scan155. Based on the MR Multitasking framework55, instead 

of applying traditional motion removal or correction strategies, MT-MACS allows 

continuous data acquisition and retrospectively resolves multiple dynamics (i.e., 

physiological motion and physical relaxation), thereby getting rid of the reliance on ECG-

triggering signals or respiratory navigators or breath-holds. In this chapter, we further 

extend the application of MT-MACS to the comprehensive assessment of the whole 

cardiac structures and great thoracic vessels with a simple imaging setup. Specifically, 

the 3D whole-heart MT-MACS technique allows for ECG- and respiratory navigator-free, 

multi-dimensional (multiple contrast weightings, cine series and water-fat images) 

imaging with a single 10.3-min scan. The proposed technique was compared with breath-
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held, ECG-gated 2D conventional cardiac imaging sequences for validation of 

morphological and functional measurements of the heart.  

 

6.2 METHODS 

6.2.1 Pulse sequence design 

In this work, the MT-MACS technique was implemented based on a free-running dual-

echo stack-of-stars FLASH readouts with tiny-golden-angle (Ψ  = 32.039⁰) in-plane k-

space sampling. T2-prepared inversion recovery (T2-IR) magnetization preparations 

were applied at constant intervals to maximize the contrast between myocardium/vessel 

wall and blood and create flexible contrast weightings during T1 recovery. Following each 

T2-IR preparation module, RF pulse flip angles were 3⁰ for the first 300 segments, and 1⁰ 

for the next 200 segments. The 1⁰ low-flip-angle readouts were adopted to allow for 

greater magnetization recovery while collecting continuous motion information. Auxiliary 

data were interleaved with imaging data every 6 segments and were collected at the 0⁰ 

radial spoke of the center partition (Figure 6.1). Partition-encoding ordering for the 

imaging data was randomized with a variable-density Gaussian distribution with the 

highest density at the center partition.  



 
 

89 

 
Figure 6.1 Pulse sequence diagram for the MT-MACS technique and corresponding k-space 

sampling pattern. A, T2-prepared inversion recovery (T2-IR) magnetization preparations are 

applied at constant intervals followed by dual-echo stack-of-stars FLASH readouts. Following 

each T2-IR preparation module, RF pulse flip angles were 3⁰ for the first 300 segments, and 1⁰ 

for the next 200 segments. Auxiliary data were interleaved with imaging data every 6 segments. 

B, Simplified illustration of k-space sampling strategy. The auxiliary data were collected at the 0⁰ 

radial spoke of the center partition. For the imaging data, randomized reordering with a variable-

density Gaussian distribution with the highest density at the center partition was adopted in this 

sequence 

6.2.2 Image reconstruction framework 

Similar to that in the previous chapter, in this work, MT-MACS method adopts a low-rank 

tensor image model for 7D aortocardiac imaging with three spatial dimensions for whole-

heart imaging, a cardiac phase dimension for phase-resolved cine imaging, a respiratory 

motion dimension for free-breathing imaging, a T2-prepared inversion recovery time 

dimension for multi-contrast assessment and a T2* decay time dimension for dual-echo 

imaging. Specifically, a 7D aortocardiac image 𝐼(𝐫, 𝑡\, 𝑡$, 𝑡5), 𝑡!) is modeled as a 5-way 

multidimensional array (or “tensor”) ℐ  with one voxel location dimension 𝐫 = [𝑥, 𝑦, 𝑧]/ 

indexing 3D spatial locations and four time dimensions indexing cardiac motion 𝑡\ , 
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respiratory motion 𝑡$, inversion recovery 𝑡5) and echo time 𝑡!, respectively. High image 

correlation along and across different time dimensions induces ℐ to be a low-rank tensor, 

such that it can be separated in the following sense:  

 ℐ = 𝒞 ×) 𝐔𝐫 ×* 𝐕8. ×G𝐖8- ×H 𝐘8,! ×j 𝐙8$ (6.1) 

where ×^  denotes n-mode multiplication; the columns of factor matrix 𝐔𝐫  contain the 

spatial basis images and the columns of 𝐕8., 𝐖8-, 𝐘8,!, and 𝐙8$ contain the temporal basis 

functions for each time dimension129.  

 Based on the MR Multitasking framework, MT-MACS uses a mixed strategy that 

reconstructs the image tensor ℐ by directly recovering the core tensor and different factor 

matrices, which can be divided into 5 steps128,155:  

1. Generate ungated images, which are reconstructed using explicit low-rank matrix 

imaging with only one time dimension representing elapsed time, for image-based 

cardiac phase and respiratory position identification55 by means of a modified T1 

recovery-aware k-means clustering approach, placing the corresponding images 

into 20 cardiac bins and 6 respiratory bins. 

2. Determine the inversion recovery basis functions in 𝐘8,!  from a pre-generated 

dictionary of inversion-recovery signals built from the Bloch equations with a range 

of T1, T2 and B1 inhomogeneity values.  

3. Estimate core tensor 𝒞  and the basis functions along the cardiac motion, 

respiratory phase, and echo time dimensions, namely 𝐕8. , 𝐖8- , and 𝐙8$ , 

respectively, from the high-temporal-resolution auxiliary data. Reconstruct the 

spatial coefficients 𝐔𝐫 by fitting the derived tensor factors to the acquired imaging 

data. 
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6.2.3 In vivo study 

The in vivo study was approved by the local institutional review board, and all subjects 

provided written informed consent before participation. Nine healthy volunteers (aged 28-

79 years, 5 females) were recruited for the study. All imaging examinations were 

performed on a 3-T clinical MR scanner (MAGNETOM Vida; Siemens Healthcare, 

Erlangen, Germany) with a standard 18-channel body coil and a 32-channel spinal coil.  

MT-MACS imaging was prescribed based on an axial scout scan to cover the whole heart 

with no ECG triggering or respiratory navigator. Major imaging parameters were set as 

follow: coronal orientation, FOV = 224 × 224 × 162.4 mm3, spatial resolution = 1.4 × 1.4 

× 2.8 mm3 and then interpolated to 1.4-mm isotropic during the process of image 

reconstruction, duration of T2-IR preparation module = 60 ms, TR/TE1/TE2 = 

3.94/1.23/2.46 ms, bandwidth = 1250 Hz/pixel, total acquisition time = 10.3 min. In 

addition, conventional ECG-triggered and end-expiration breath-held sequences were 

also acquired in all healthy subjects to serve as the references for morphological (i.e., 

myocardial wall thickness for each cardiac chamber) and functional (i.e., left ventricular 

ejection fraction [LVEF]) quantification of the heart. Specifically, 2D T2-weighted dark-

blood TSE sequence was performed in a 4-chamber orientation with major imaging 

parameters including: FOV = 360 × 360 mm2, matrix size = 256 × 256, slice thickness = 

5 mm, flip angle = 180⁰, TR = 1 cardiac cycle, TE = 71 ms, turbo factor = 17, echo spacing 

= 5.49 ms, bandwidth = 849 Hz/px, and ECG-triggered to the mid-diastole. Multislice 2D 

cine imaging based on the balanced SSFP sequence was performed in a short axis 

orientation with major imaging parameters including: FOV = 300 × 300 mm2, matrix size 

= 224 × 224, slice thickness = 8 mm, flip angle = 36⁰, TR/TE = 27.1/1.31 ms, echo spacing 
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= 3.01 ms, bandwidth = 1313 Hz/px, 25 phases based on retrospective gating, and a total 

of 12 contiguous slices were acquired for each healthy subject for full left ventricular 

coverage.  

6.2.4 Image analysis 

Images acquired using MT-MACS were reconstructed offline to generate water-only 

images with multiple contrast weightings (i.e., BB, DB, GB) and corresponding cine series 

as well as fat-only images. The DICOM-format MT-MACS images were loaded to a 

workstation (LEONARDO, Siemens Healthcare) and reformatted to match the 2D 

reference images in both location and slice thickness. All quantitative analyses were 

performed using cvi42 version 5.12.1 (Circle Cardiovascular Imaging, Calgary, Canada).  

Qualitative analysis 

Subjective image quality assessments of both water-only and fat-only image sets at mid-

diastolic end-expiratory phase were performed by 2 independent radiologists with at least 

5 years of experience in cardiovascular imaging. For water-only images, image quality 

scores were recorded for two anatomic structures (cardiac chambers and thoracic aorta) 

with three representative image contrasts (BB, DB, and GB). For fat-only images, overall 

image quality for the entire 3D volume was graded for each image set. The criteria used 

for image quality scoring were listed in Table 6.1.  
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Table 6.1 Image quality scoring criteria 

Cardiac 

Chambers 

1: Chambers not visualized or diagnostically not assessable. 

2: Chambers distinguishable but myocardial walls poorly defined, only 

gross features evaluable. 

3: Chambers clearly distinguishable with well-defined myocardial walls 

confidently evaluable but with poor definition of the papillary muscles. 

4: Chambers clearly distinguishable with excellent myocardial wall 

definition and with clear definition of the papillary muscles. 

Thoracic Aortas 

1: Aortas not visualized or diagnostically not assessable.  

2: Aortas distinguishable but with poor vessel wall definition.  

3: Aortas clearly distinguishable with good vessel wall definition but with 

poor sharpness due to motion artifacts. 

4: Aortas clearly distinguishable with excellent vessel wall definition and 

good sharpness.  

Fat 

1: Severe blurring of cardiac chambers and thoracic aortas.  

2: Significant blurring of cardiac chambers and thoracic aortas.  

3: Mild blurring of cardiac chambers and thoracic aortas.  

4: No blurring of cardiac chambers and thoracic aortas.  

 

Quantitative analysis 

To validate the accuracy of MT-MACS in quantifying morphological parameters of the 

cardiac chambers, myocardial wall thicknesses of the left atria (LA)/left ventricle (LV)/right 

atria (RA)/right ventricle (RV) were measured and compared with the conventional 

reference images. Specifically, myocardial wall thickness of each cardiac chamber was 

measured at the same location on the DB images of MT-MACS at the mid-diastolic end-

expiratory phase and corresponding matched 2D T2-TSE images, respectively.  

For the accuracy analysis of LVEF measurement, the blood-myocardium boundary 

was manually contoured in each slice of the MT-MACS BB images and corresponding 
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matched 2D cine images for both the end-diastolic and end-systolic phases, respectively. 

LVEF was then calculated for each sequence using the following equation (14):  

 LVEF =
LVEDV − LVESV

LVEDV × 100% (6.2) 

where LVEDV and LVESV represents the end-diastolic and end-systolic left ventricular 

volume, respectively.  

6.2.5 Statistical analysis 

For qualitative analysis, weighted Cohen’s kappa (𝜅 ) values were used to evaluate 

interreader agreement for image quality scoring. For myocardial wall thickness 

measurements of the LA/LV/RA/RV, ICCs and Bland-Altman analysis were used to 

measure agreement between MT-MACS and corresponding matched 2D references. For 

LVEF measurement, linear regression and Bland-Altman analyses were adopted to 

assess quantification agreement. All statistical analyses were performed in SPSS version 

24 (IBM Corp., Armonk, NY). A P value < 0.05 was considered to indicate statistical 

significance.  

 

6.3 RESULTS 

The MT-MACS imaging was performed successfully on all subjects. Figure 6.2 shows 

slices of the ventricular chambers (coronal view and short axis view) and thoracic aorta 

(candy-cane view) at the mid-diastolic end-expiration phase in two representative healthy 

subjects. Both water-only and fat-only images generated by MT-MACS are displayed. For 

water-only images, BB, DB and GB image contrasts are shown for each slice orientation.  
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Figure 6.2 Example MT-MACS images of the ventricular chambers (coronal view and short axis 

view) and thoracic aorta at the mid-diastolic end-expiration phase generated from a 28-year-old 

female subject (Subject 1) and a 65-year-old male subject (Subject 2). Water-only images with 

multiple contrast weightings, including bright-blood (BB), dark-blood (DB) and gray-blood (GB), 

and fat-only images are displayed for each slice orientation 

6.3.1 Qualitative analysis 

For qualitative analysis, a total of 36 3D image sets (3 water-only contrasts and 1 fat-only) 

were scored for image quality. Image quality scores given by both readers are shown in 

Table 6.2. For cardiac chambers, the interreader agreements quantified by weighted 

Cohen’s kappa values 0.727, 0.609, and 1.000 for BB, DB, and GB MT-MACS images, 

respectively; for thoracic aorta, the interreader agreements for BB, DB, and GB MT-

MACS images were 0.727, 0.727, and 1.000, respectively; and 1.000 for fat-only images.  
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Table 6.2 Image quality scores given by 2 independent radiologists over all 9 healthy subjects 

 

Cardiac Chambers Thoracic Aorta 
Fat 

BB DB GB BB DB GB 

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

S1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

S2 4 4 4 4 4 4 4 4 3 3 4 4 4 4 

S3 3 3 4 3 4 4 3 3 3 3 4 4 4 4 

S4 3 3 3 3 4 4 4 4 3 4 3 3 4 4 

S5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 

S6 4 4 4 4 4 4 3 4 4 4 4 4 4 4 

S7 4 4 4 4 4 4 3 3 4 4 4 4 3 3 

S8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

S9 4 4 4 4 3 3 4 4 4 4 3 3 4 4 

Mean 3.8 3.7 3.9 3.8 3.9 3.9 3.7 3.8 3.7 3.8 3.8 3.8 3.9 3.9 

SD 0.4 0.5 0.3 0.4 0.3 0.3 0.5 0.4 0.5 0.4 0.4 0.4 0.3 0.3 

Abbreviations: BB – bright-blood; DB – dark-blood; GB – gray-blood; R1 – reader 1; R2 – reader 

2; S1-7 – subject 1-7; SD – standard deviation 

6.3.2 Quantitative analysis 

An illustration of myocardial wall thickness measurements of the LA/LV/RA/RV is shown 

in Figure 6.3A. The thicknesses were measured to be 2.52 ± 0.19 mm, 8.99 ± 0.53 mm, 

2.50 ± 0.21 mm, and 4.32 ± 0.78 mm for LA, LV, RA, and RV by MT-MACS, respectively, 

which are all within the normal anatomical range156–158. The cardiac structures on 2D T2-

TSE images from 2 subjects were substantially blurred due to respiratory motion and were 

therefore excluded from analysis. Good to excellent agreement in myocardial wall 

thickness measurements was demonstrated with Bland-Altman plots between MT-MACS 
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and 2D T2-TSE in the remaining 7 subjects. The ICCs were 0.781/0.929/0.680/0.878 for 

LA/LV/RA/RV, respectively (Figure 6.3B).  

 
Figure 6.3 Quantification of myocardial wall thickness of the left atria (LA)/left ventricle (LV)/right 

atria (RA)/right ventricle (RV). A, Graphic illustration of measuring the myocardial wall thickness 

of the LA/LV/RA/RV in a 40-year-old male subject. Myocardial wall thickness of each cardiac 

chamber was measured at the same location on the dark-blood images of MT-MACS at the mid-

diastolic end-expiratory phase and corresponding 2D T2-weighted turbo spin-echo images with 

matched location and slice thickness. B, Bland-Altman plots and intraclass correlation coefficients 

comparing measurement agreements between these two imaging techniques 

Comparison of LVEF measurement between MT-MACS and 2D cine balanced 

SSFP is displayed in Figure 6.4. Overall, MT-MACS provided slightly lower LVEF 

measurements compared with the 2D cine sequence (regression line: Y = 1.060X – 0.075; 

R2 = 0.855, P < 0.001), which may result from the contrast difference between gradient-

echo-based and SSFP-based sequences, but the overall values were still within the 

physiological range159.  
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Figure 6.4 Quantification of left ventricular ejection fraction (LVEF). A, Graphic illustration of 

measuring LVEF in a 39-year-old male subject. The blood-myocardium boundary was manually 

contoured in each slice of the MT-MACS bright-blood images and corresponding 2D cine 

balanced SSFP images with matched location and slice thickness for both the end-diastolic and 

end-systolic phases. B, Linear regression and Bland-Altman analyses comparing the 

measurement results acquired by these two imaging techniques 

 

6.4 DISCUSSION 

Accurate assessment of morphology as well as function of the heart is crucial for 

diagnosis and treatment planning in patients with cardiovascular diseases. 

Cardiovascular MR is considered the only single imaging modality that can achieve a 

comprehensive assessment of the entire cardiovascular system160. However, 

cardiovascular MR is still not a first-line study in today’s clinical practice, largely due to 

the slow imaging speed and complex clinical workflow150,153. To optimize clinical scan 

time and simplify imaging workflow, in the past few years, various novel comprehensive 

cardiovascular MR approaches have been developed149,154,161–163. Feng et al. proposed 
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a 5D cardiac and respiratory motion-resolved whole-heart imaging technique based on 

extra-dimensional golden-angle radial sparse parallel (XD-GRASP) framework, which 

can provide whole-heart anatomical information at different cardiac phases154. However, 

only a single bright-blood image contrast is available through this technique, and this 

lumenography-based imaging alone may not be optimal in myocardium or vessel wall 

visualization155. To generate complementary image contrasts, a 3D simultaneous bright-

blood and black-blood phase sensitive (BOOST) whole-heart MR sequence was 

developed by Ginami et al.164. However, the dark-blood volume was retrospectively 

generated using 2 differently weighted bright-blood volumes after non-rigid motion 

correction; thereby any residual motion artifacts would propagate into the black-blood 

volume leading to image blurring149. In addition, the acquisition was ECG-triggered to 

mid-diastolic resting period and thus cardiac functional parameters cannot be evaluated 

with this technique.  

A novel ECG- and respiratory navigator-free 3D MT-MACS technique was recently 

published, and its technical feasibility was demonstrated on thoracic aortas155. To meet 

the clinical needs and address the drawbacks of other comprehensive techniques, in this 

work, we extended the spatial coverage of the previous MT-MACS technique to assess 

the whole cardiac structures and great thoracic vessels. Compared with previous 

comprehensive MR techniques tailored for whole-heart assessment, the proposed 

method has several advantages. First, MT-MACS provides multiple co-registered images 

with different image contrast weightings in a single 10.3-min acquisition. A T2-IR 

preparation module was adopted to maximize the contrast between the 

myocardium/vessel wall and blood while acquiring multiple image contrasts by 
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retrospectively picking out images at different time points along the inversion recovery 

time dimension. Specifically, 3 typical image contrast weightings out of 300 FLASH 

readout segments were selected, namely BB, DB and GB image contrasts. Second, by 

adopting a continuous 3D stack-of-stars sampling scheme, MT-MACS eliminates the 

need for ECG triggering, respiratory navigators, or breath-holds. This greatly improves 

the acquisition efficiency and reduces the complexity of imaging workflow, and, in the 

meantime, avoids unreliability or discomfort induced by those external motion 

compensation methods. Moreover, by unfolding the 5-way imaging tensor along the 

cardiac motion dimension, MT-MACS can provide cardiac phase-resolved cine images 

for functional imaging (i.e., LVEF quantification), which serves as an important illustration 

for certain types of cardiovascular diseases165. Third, the dual-echo acquisition scheme 

allows MT-MACS to achieve water-fat imaging based on Dixon methods166,167. 

Specifically, by adopting a two-point Dixon method, MT-MACS has the capability to depict 

and quantify the relative composition of water and fat in tissues, which could potentially 

help form a more comprehensive basis for assessment of the cardiovascular system 

since fat volume has been linked to increased risk of certain cardiovascular diseases168.  

Our study has some limitations. First, the proposed MT-MACS achieves water-fat 

imaging based on the original two-point Dixon method, which is under the assumption of 

perfect B0 field and negligible susceptibility. However, with a shift in B0 field, water and 

fat will accumulate an additional phase shift, resulting in the mixtures of both water and 

fat on the final water-only and fat-only images. A possible solution would be to use the 

extended two-point Dixon169 or three-point Dixon methods170. Second, feasibility of the 

proposed technique requires further validation on patients. The MT-MACS technique 
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could be used to assess various of cardiovascular diseases, such as congenital heart 

diseases and intracardiac thrombus. Therefore, such patients need to be recruited to 

investigate the sensitivity and specificity of this technique regarding to different types of 

diseases.  

 

6.5 CONCLUSION 

In this work, we extended the previously developed MT-MACS technique to 

comprehensive assessment of the combined cardiac and thoracic aortic system. With a 

simple imaging setup, MT-MACS allows for multi-dimensional imaging of the entire heart 

without the need for ECG-triggering, respiratory navigator gating or breath holding. 

Further studies in the setting of various cardiovascular diseases are warranted to validate 

the clinical utility of this technique.  
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CHAPTER 7 

MR Multitasking for Cerebrovascular Evaluation: 

Simultaneous Quantification of Permeability and Leakage-

insensitive Perfusion by Dynamic T1/T2* Mapping 

 

 

7.1 INTRODUCTION 

Dynamic MR imaging with the administration of a paramagnetic CA is widely used for 

assessing brain tissue abnormalities12,171. Two common methods are dynamic contrast-

enhanced MR (DCE-MR)12 and dynamic susceptibility contrast-enhanced MR (DSC-

MR)13, which track the tissue-level contrast kinetics based on CA-induced T1- and T2/T2*-

shortening effects, respectively172. Using pharmacokinetic and/or biophysical modeling, 

DCE-MR can quantify vascular permeability-related properties, such as fractional plasma 

volume (v'), transfer constant (K!"#$%), and fractional extravascular-extracellular volume 

(v& ), and DSC-MR can quantify perfusion-related properties, such as cerebral blood 

volume (CBV) and cerebral blood flow (CBF). While both permeability and perfusion 

parameters are often cited for assessing various cerebrovascular disorders, especially 

brain cancer, previous studies have demonstrated that they may provide different but 

complementary information34. Therefore, the comprehensive analysis of permeability and 

perfusion metrics may form a more complete basis for disease evaluation than with either 

one alone and thus improve diagnostic and prognostic performance43.  
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 A comprehensive assessment of vascular permeability and perfusion can be 

achieved by separately acquiring both DCE-MR and DSC-MR sequences in one imaging 

session44. However, this approach requires additional scan time and, more importantly, 

multiple doses of CA that may raise risk of health in patients46,48,49. Integrating vascular 

permeability and perfusion quantification into a single acquisition along with single-dose 

contrast administration is a more compelling solution. However, when combined together, 

both DCE-MR and DSC-MR signals can be adversely impacted by the opposing 

relaxation effects (i.e., T1 vs. T2/T2*). This is non-negligible when BBB breaks down and 

CA extravasates, which is common in brain tumor areas. Several early methods based 

on single-echo acquisitions have been published to correct the contrast leakage effect for 

perfusion imaging. The most widely-established is the Boxerman-Schmainda-Weisskoff 

algorithm that estimates the leakage effects by comparing tumor relaxation curves with 

those in a reference non-enhancing tissue173. However, this method suffers from the 

restrictive assumption of identical hemodynamic properties between the tumor and 

reference tissue, leading to unreliable estimations of perfusion parameters174.  

 In the past two decades, multi-echo-based methods have been shown to be more 

reliable for simultaneously estimating DCE-MR and DSC-MR parameters175–177. With 

multi-echo data, the T1-leakage effects caused by BBB disruption can be quantified and 

applied to estimate permeability parameters. After eliminating the T1-leakage effects, the 

remaining T2/T2*-leakage effects, which typically lead to overestimations of perfusion 

parameters, can further be mitigated by adopting either gamma-variate fitting or model-

based postprocessing approaches178–181.  
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 Despite these promising results, multi-echo-based methods continue to face 

several technical challenges. First, temporal resolution and/or spatial coverage are often 

sacrificed because of the longer readout time of multiple echoes180. However, high 

temporal resolution is crucial for accurate quantification of DCE-MR and DSC-MR 

parameters182. Second, most existing techniques linearly transform the dynamic changes 

in signal intensity to CA concentration for kinetic modeling. However, the linearity 

approximation may result in considerable quantification errors in tissues with high-

contrast uptake183,184. Third, as the most commonly used acquisition strategy for current 

multi-echo-based approaches, the gradient-echo EPI pulse sequences suffer from 

susceptibility-induced signal dropout and imaging distortion. These artifacts appear 

particular around air-tissue interfaces, and in the case of brain tumors, around resection 

cavities, which precludes the quantification of permeability and perfusion in these 

regions172.  

 MR multitasking is a recently proposed imaging framework that models multiple 

dynamics in a multidimensional array and exploits the strong spatiotemporal correlation 

along and across different dimensions to achieve accelerated imaging55. To address the 

aforementioned limitations of existing multi-echo-based methods, in this work, we 

developed an MR MultiTasking-based Dynamic Imaging for Cerebrovascular Evaluation 

(MT-DICE) technique for combined DCE-MR and DSC-MR. With a single 7.6-min scan 

and a single-dose contrast injection, MT-DICE allows for simultaneous quantification of 

vascular permeability and leakage-insensitive perfusion based on dynamic T1/T2* 

mapping at a 1.2-s temporal resolution.  
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7.2 METHODS 

7.2.1 Pulse sequence design 

The MT-DICE technique employs a 3D Cartesian acquisition with periodic non-selective 

saturation recovery (SR) preparations (SR interval = 1.2 s) followed by 60 continuous 

multi-echo FLASH readout segments (Figure 7.1). During each segment of the data 

acquisition (segment duration = 19.30 ms), 6 echoes are consecutively collected (TEs = 

2.46/4.92/7.38/9.84/12.30/17.22 ms). Two interleaved subsets of k-space data are 

collected, as demonstrated in Figure 7.1B: the high-temporal-resolution training data (𝐝#$) 

are acquired every 4 segments at the center encoding line (𝑘,  = 𝑘.  = 0)55, and the 

imaging data (𝐝) are randomly collected with a 3D variable-density Gaussian sampling 

pattern along both phase- and partition-encoding directions to achieve incoherent k-space 

undersampling.  
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Figure 7.1 Pulse sequence diagram for the MT-DICE technique and corresponding k-space 

sampling pattern. A, Non-selective saturation recovery (SR) pulses were applied every 60 FLASH 

readout segments. Within each segment, 6 lines with different echo times were collected at the 

same k-space location after every alpha pulse. The high-temporal-resolution training data are 

acquired every 4 multi-echo readout segments as the low-rank tensor subspace training data. B, 

Simplified illustration of k-space sampling strategy. The training data were collected at the center 

encoding line, and the imaging data were collected by Cartesian sampling with randomized 

reordering with a variable-density Gaussian distribution in 𝑘) and 𝑘* directions 

7.2.2 Multidimensional imaging based on MR multitasking 

Image model 

The MT-DICE method adopts a low-rank tensor (LRT) image model for 6D brain imaging 

with three spatial dimensions for 3D whole-brain coverage, an SR time dimension and an 
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echo time dimension for dynamic T1 and T2* quantification, respectively, and a contrast 

dynamics dimension for capturing contrast kinetics. Specifically, a 6D brain image 

𝐼(𝐫, 𝜏, 𝑡!, 𝑡) is modeled as a 4-way multidimensional array (or “tensor”) ℐ with elements 

ℐSklm = 𝐼?𝐫S , 𝜏k , 𝑡!,\, 𝑡mA , where the first tensor dimension indexes the set of 𝐴  voxel 

locations {𝐫S = [𝑥S , 𝑦S , 𝑧S]/}SB)n  and other tensor dimension indexes time dimensions 

including SR time 𝜏, echo time 𝑡! and contrast dynamic 𝑡. For example, {𝜏k}kB)f  indexes 

𝐵 segments within each SR period, �𝑡!,\�lB)
o  indexes 𝐶 echo times, and {𝑡m}mB)b  indexes 

𝐷 contrast dynamic phases. The high correlation between images along and across time 

dimensions makes ℐ an LRT, and is therefore partially separable in the following sense:  

 𝐼(𝐫, 𝜏, 𝑡!, 𝑡) =u𝑢ℓ(𝐫)𝜙ℓ(𝜏, 𝑡!, 𝑡)
K

ℓB)

 (7.1) 

where 𝑢ℓ(𝐫)  is the ℓ th of 𝐿  spatial basis images, and {𝜙ℓ(𝜏, 𝑡!, 𝑡)}ℓB)K  spans the 

multidimensional temporal subspace representing a mixture of SR times, multiple echo 

times, and dynamic contrast changes. Furthermore, in the LRT image model, each 

𝜙ℓ(𝜏, 𝑡!, 𝑡) is itself low-rank and can be factorized into basis functions for each time 

dimension:  

 𝜙ℓ(𝜏, 𝑡!, 𝑡) = u uu𝑐ℓ?^_𝑣?(𝜏)𝑤^(𝑡!)𝑧_(𝑡)
`

_B)

<

^B)

a

?B)

 (7.2) 

where 𝑣?(𝜏), 𝑤^(𝑡!) and 𝑧_(𝑡) denote the 𝑚th, 𝑛th and 𝑝th basis functions along the SR 

time, echo time and contrast dynamics dimensions, respectively; and 𝑐ℓ?^_ denotes the 

elements of the core tensor 𝒞. Thus, the image tensor ℐ can be expressed as:  

 ℐ = 𝒞 ×) 𝐔 ×* 𝐕 ×G𝐖×H 𝐙 (7.3) 



 
 

108 

where ×^  denotes n-mode multiplication; the columns of factor matrix 𝐔  contain the 

spatial basis images and the columns of 𝐕, 𝐖, and 𝐙 contain the temporal basis functions 

for each time dimension129.  

Image reconstruction 

There are various low-rank strategies available for reconstruction of the undersampled 

multidimensional array, either implicitly or explicitly55,130,131,133,134. MT-DICE, similar to the 

original MR multitasking work55, adopts a mixed strategy that reconstructs the image 

tensor by sequentially recovering each of its factor matrices. Specifically, in this work, 

image reconstruction can be divided into 4 steps: 

1. Predetermine the temporal basis functions in 𝐕 (along the SR time dimension). 

According to the Bloch equations, a predefined training dictionary of physically 

feasible SR-FLASH signal curves is generated ahead of time with different T1 and 

B1 inhomogeneity values. Basis functions in 𝐕 are extracted from the singular 

value decomposition (SVD) of this training dictionary. Temporal basis functions for 

the echo time dimension are not determined in this step due to the complexity of 

modeling B0 inhomogeneities and will instead be generated in the following 

steps185.  

2. Apply small-scale LRT completion to recover missing elements from the training 

tensor 𝒟#$, which is reshaped from the collected high-temporal-resolution training 

data 𝐝#$. The training tensor 𝒟#$ covers multiple dynamic contrast combinations 

throughout the scan; however, it is still highly undersampled since it is impossible 

to acquire all the image contrast combinations.  
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 𝒟g#$ = 𝑎𝑟𝑔 min
𝐃1-,(%)∈$%&d((𝐕)

‖𝐝#$ −𝑀(𝒟#$)‖** + 𝜆 u v𝐃#$,(^)v∗
^B),G,H

 (7.4) 

where 𝑀(⋅) represents the undersampling pattern of the training dataset; 𝐃#$,(^) 

denotes the mode-𝑛 (𝑛 =1,2,3,4) unfolding of the training tensor 𝒟#$; ‖⋅‖∗ is the 

nuclear norm that promotes low-rankness of each unfolded matrix and 𝜆 weights 

the nuclear norm penalties.  

3. Extract temporal basis functions along the echo time and contrast dynamics 

dimensions, namely, columns in 𝐖 and 𝐙 respectively, as well as the core tensor 

𝒞 from the high-order SVD of the completed training tensor 𝒟g#$.  

4. Estimate the spatial coefficients 𝐔 by solving the following optimization problem:  

 𝐔g = 𝑎𝑟𝑔min
𝐔
‖𝐝 − Ω[𝛷 ×) 𝐅𝐒𝐔]‖** + 𝑅(𝐔) (7.5) 

where 𝛷 = 𝒞 ×* 𝐕 ×G𝐖×H 𝐙  is the combined temporal factor; Ω(⋅)  is the 

undersampling operator; 𝐅 denotes spatial Fourier transform; and 𝐒 denotes the 

coil sensitivity maps. 𝑅(⋅) applies the regularization functional, which is chosen as 

an anisotropic spatial total variation penalty to incorporate compressed sensing 

into the presented image reconstruction framework.  

A diagram of the LRT image model adopted in the proposed MT-DICE and overall 

reconstruction workflow are shown in Figure 7.2.  
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Figure 7.2 Illustration of multiple dimensions of the 4-way low-rank tensor image model adopted 

by MT-DICE and corresponding reconstruction workflow 

7.2.3 Dynamic T1/T2* quantification 

Voxel-wise dynamic T1/T2* quantification is performed following image reconstruction. At 

a given pixel, the multi-echo SR-FLASH signal intensity can be expressed as:  

 

𝑆?A, α, B, n, TE, T)(𝑡), T*∗(𝑡)A 

= A
1 − 𝑒35r/5!(#)

1 − 𝑒35r/5!(#)cosα
[1 + (B − 1)(𝑒35r/5!(#)cosα)&]𝑒35!/5%∗ (#)sinα 

(7.6) 

where amplitude A absorbs proton density; α denotes the FLASH flip angle; B represents 

saturation factor (ideally zero); n denotes SR segment index; TE represents echo times; 

T)(𝑡) and T*∗(𝑡) are the dynamic T1/T2* values over all contrast phases, respectively. For 
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each pixel, we fit for A, α, B, T)(𝑡) and T*∗(𝑡) using the lsqnonlin (nonlinear least-square) 

solver in MATLAB (R2018a, MathWorks, Natick, MA).  

7.2.4 Estimations of permeability and leakage-insensitive perfusion parameters 

The T1-based CA concentration for tissues of interest was directly derived from the 

dynamic longitudinal relaxation rates R)(𝑡)  (R1 = 1/T1) according to the following 

equation:  

 𝐶#
5!(𝑡) =

∆R)(𝑡)
𝑟)

=
R)(𝑡) − R)(0)

𝑟)
 (7) 

where the longitudinal relaxivity 𝑟) was set to be 3.6 L⋅mmol-1⋅s-1 in this work186. The 

resultant 𝐶#
5!(𝑡) was used to assess DCE-MR related permeability parameters with the 

two-compartment extended Tofts model187. The T1-based arterial input function (AIF) was 

generated by averaging CA concentration time courses from 10 voxels manually selected 

in regions of the middle cerebral arteries (5 voxels from each side). The derived 

permeability metrics were further adopted to perform leakage correction for the 

estimations of DSC-MR metrics based on a combined biophysical and pharmacokinetic 

approach, in which the change of transverse relaxation rates ∆R*∗ (𝑡) (R*∗ = 1/T*∗) can be 

expressed as the sum of contributions from both the intravascular and the extravascular-

extracellular spaces181:  

 ∆R*∗ (𝑡) = 𝐶s
5%∗ (𝑡)⨂(𝑟*,_∗ 𝑅(𝑡) + 𝑟*,t∗ K#$%&' ⋅ 𝑒

3u
1-)56

v7
8) (7.8) 

where 𝐶s
5%∗ (𝑡) represents T*∗-based AIF, which was estimated from the same 10 voxels as 

generating the T) -based AIF with a quadratic model188, 𝑅(𝑡)  represents the residue 

function, and ⨂  denotes convolution operation189. 𝑟*,_∗  and 𝑟*,t∗  refer to the transverse 
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relaxivities within the intravascular and extravascular-extracellular spaces, respectively. 

For technical demonstration, 𝑟*,_∗  = 87 L⋅mmol-1⋅s-1 and 𝑟*,t∗  = 30 L⋅mmol-1⋅s-1 were used 

in this work according to Schmiedeskamp et al.179. Leakage-insensitive perfusion metrics 

were then determined from the intravascular component190.  

7.2.5 Validation experiments 

All imaging experiments were performed on a 3-T clinical MR scanner (MAGNETOM Vida; 

Siemens Healthcare, Erlangen, Germany) with a 20-channel head-neck coil. The in vivo 

study was approved by the local institutional review board, and all subjects provided 

written informed consent before participation.  

Validation of T1/T2* quantification: phantom study 

The phantom study was performed on a standard 6-vial Calimetrix phantom (Calimetrix, 

Madison, WI). Each vial has a unique combination of T1/T2* values that can be used to 

validate the T1/T2* mapping accuracy of the developed MT-DICE technique. Reference 

T1/T2* maps were obtained with the conventional single-slice inversion-recovery spin-

echo (IR-SE) and 3D multi-echo gradient-echo (ME-GRE) sequences, respectively. The 

detailed imaging protocols of both the reference sequences and MT-DICE are listed in 

Table 7.1. T1/T2* maps of the Calimetrix phantom were generated by fitting the 

reconstructed images voxel-by-voxel with Equation 7.6. The mean values of each vial 

were determined from a central slice of the MT-DICE and reference T1/T2* maps.  



 
 

113 

Table 7.1 The detailed imaging protocols of the reference methods and MT-DICE used in the 

phantom study are listed below 

Imaging protocol Scan parameters 

Inversion-recovery spin-echo 

(IR-SE) 

140 minutes 

• FOV = 220×220 mm2 

• Spatial resolution = 1.5×1.5 mm2 

• Slice thickness = 4 mm 

• TR = 8000 ms 

• TE = 8 ms 

• TIs = [21, 100, 200, 400, 800, 1600] ms 

• Flip angle 1 = 90° 

• Flip angle 2 = 180° 

Multi-echo gradient-echo 

(ME-GRE) 

4 minutes 

• FOV = 220×220×88 mm3 

• Spatial resolution = 1.5×1.5×4.0 mm3 

• TR = 19.30 ms 

• TEs = 2.46/4.92/7.38/9.84/12.30/17.22 ms 

• Flip angle = 10° 

MT-DICE 

4 minutes 

• FOV = 220×220×88 mm3 

• Spatial resolution = 1.5×1.5×4.0 mm3 

• TR = 19.30 ms 

• TEs = 2.46/4.92/7.38/9.84/12.30/17.22 ms 

• SR period = temporal resolution = 1.2s 

• Flip angle = 10° 

 

Validation of T1/T2* quantification: healthy control study 

Eight subjects (aged 24-67 years, 3 females) without known brain abnormalities were 

recruited. MT-DICE imaging was performed in an oblique transverse orientation with the 

following imaging parameters: FOV = 216×216×128 mm3, spatial resolution = 

1.5×1.5×4.0 mm3, TR = 19.30 ms, TEs = 2.46/4.92/7.38/9.84/12.30/17.22 ms, SR period 

(the temporal resolution of dynamic T1/T2* mapping) = 1.2 s, flip angle = 10°, total time 
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= 7.6 min. Single dose (0.1 mmol/kg of body weight) of CA (Gadavist; Bayer Schering 

Pharma, Berlin, Germany) was administered through antecubital intravenous access 1.5 

min into the scan at the rate of 3.0 mL/s, followed by a 20 mL saline flush at the same 

rate. In addition, 2D inversion-recovery TSE (IR-TSE) and 3D ME-GRE sequences were 

acquired before MT-DICE to serve as the pre-contrast references for T1/T2* quantification, 

respectively. Detailed imaging protocols for reference sequences are shown in Table 7.2. 

Followed by image reconstruction and dynamic T1/T2* fitting, two tissue compartments 

(i.e., GM and WM) were selected as regions of interests (ROIs) for T1/T2* validation on 

all healthy subjects.  

Table 7.2 The detailed imaging protocols of the reference methods used in the healthy control 

study are listed below 

Imaging protocol Scan parameters 

Inversion-recovery turbo 

spin-echo 

(IR-TSE) 

12 minutes 

• FOV = 216×216×128 mm3 

• Spatial resolution = 1.5×1.5 mm2 

• Slice thickness = 4 mm 

• TIs = [50, 200, 350, 500, 1000, 1500, 2400] ms 

• GRAPPA factor = 2 

Multi-echo gradient-echo 

(ME-GRE) 

4 minutes 

• FOV = 220×220×128 mm3 

• Spatial resolution = 1.5×1.5×4.0 mm3 

• TR = 19.30 ms 

• TEs = 2.46/4.92/7.38/9.84/12.30/17.22 ms 

• Flip angle = 10° 

 

Validation of kinetic parameter estimations: numerical simulations 

Numerical simulations were performed to validate the accuracy of MT-DICE in the 

estimation of permeability and leakage-insensitive perfusion metrics. To better simulate 



 
 

115 

the highly heterogeneous environment within brain tumors, a 3D anthropomorphic digital 

reference brain phantom incorporating a tumor model from a deidentified glioblastoma 

patient was created191–193. The T1-/T2*-based AIFs were generated according to Jaspers 

et al.194 and Simpson et al.195, respectively, with realistic parameters at a 0.1-s temporal 

resolution. The dynamic T1/T2* curves were generated for gray matter (GM), white matter 

(WM) and tumor with the detailed parameters listed in Table 7.3. Subsequently, the 

simulated dynamic signal intensities were calculated based on Equation 7.6 using the 

downsampled dynamic T1/T2* curves at a temporal resolution of 1.2 s (as used in the 

healthy control study protocol). The generated k-space data were first undersampled and 

then reconstructed using the MT-DICE technique. Dynamic T1/T2* fitting and kinetic 

modeling were performed on all slices involving the tumor. In addition to the leakage-

insensitive perfusion parameters, the perfusion metrics without leakage correction were 

derived in the conventional way190.  

Table 7.3 Parameters adopted in the numerical simulation study. For the numerical simulation 

study, the dynamic T1/T2* curves were generated for gray matter (GM), white matter (WM) and 

tumor with the following parameters196–199 and the residual function was modeled as 𝑅(𝑡) =

exp	(−CBF ⋅ 𝑡/CBV) 

 𝐯𝐩 𝐊𝐭𝐫𝐚𝐧𝐬 𝐯𝐞 CBV CBF T10 T2*0 

GM 0.06 0 0 3.75 40 1380 60 

WM 0.03 0 0 1.60 20 832 50 

Tumor 0-0.1 0.03-0.6 0-0.6 0.02-12 12-240 1000 52 

 

Validation of kinetic parameter estimations: intersession repeatability analysis 

Among the 8 recruited healthy subjects, 3 of them returned within 2 weeks for a second 

scan with the same sequence setup as the first scan to assess intersession repeatability. 
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Specifically, permeability and perfusion metrics were generated on the repeated data 

from these 3 healthy volunteers. Twelve ROIs were manually drawn on the frontal, 

parietal and occipital regions of the GM and WM of both left and right hemispheres from 

a slice located at the level of the mid brain. ROIs of the 2 separate scans were drawn at 

the same locations.  

7.2.6 Patient pilot study 

Four patients (aged 14-60 years, 1 female) with known brain tumors were recruited, 

including 2 patients with glioblastoma (World Health Organization [WHO] grade IV), 1 

patient with ependymoblastoma (WHO grade IV), and 1 patient with meningioma (WHO 

grade II). The MT-DICE sequence was incorporated in a clinical MR study and was 

acquired during a single dose contrast injection without any preload bolus, using the same 

protocol as mentioned above. The clinical protocol included pre- and post-contrast T1 

(MPRAGE), pre-contrast T2-FLAIR, pre-contrast T2 (TSE) and DWI (RESOLVE).  

 In each brain cancer patient, the tumor region was identified on the post-contrast 

T1 images. Dynamic T1/T2* fitting and kinetic modeling were performed on three 

continuous slices covering the tumor region. Both leakage-insensitive perfusion metrics 

and those without leakage correction were derived190.  

7.2.7 Statistical analysis 

All statistical analyses were performed in SPSS version 24 (IBM Corp., Armonk, NY). A 

P value < 0.05 was considered to indicate statistical significance. 

Validation of T1/T2* quantification 
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For the phantom study, linear regression analysis, ICCs, Bland-Altman analysis and 

paired t-tests were used to assess the T1/T2* measurement agreement and difference 

for each vial between MT-DICE and corresponding reference methods. For the healthy 

control study, the agreements and differences between MT-DICE and corresponding 

references in pre-contrast T1/T2* measurement of the GM and WM were evaluated by 

ICCs and paired t-tests, respectively.  

Validation of kinetic parameter estimations 

For the numerical simulation study, the mean, standard deviation and range of each 

permeability and leakage-insensitive perfusion parameters for GM, WM and the tumor 

region were derived, respectively. In addition, mean percentage differences between the 

derived values and the corresponding ground-truth were also calculated. The intersession 

repeatability of MT-DICE-based v", K#$%&', CBV and CBF quantification was evaluated for 

GM and WM ROIs separately with the Bland-Altman analysis and ICCs.  

 

7.3 RESULTS 

The MT-DICE imaging was performed successfully on all subjects. All image 

reconstructions were performed off-line on a Linux workstation with a 2.70 GHz dual 12-

core Intel Xeon processor equipped with 256 GB RAM and running MATLAB. The 

reconstruction took about 1.0 h while the post-processing (including dynamic T1/T2* 

fitting and parameter estimation) took about 40 min for each slice. 

7.3.1 Validation of T1/T2* quantification 

Phantom study 
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Figure 7.3A displays the T1/T2* maps of the Calimetrix phantom generated by MT-DICE 

and reference sequences, respectively. There were no significant differences in the 

T1/T2* values between the two methods (P = 0.247/0.202). Excellent agreements in the 

T1/T2* values were observed with R2 = 0.999/0.998, and ICC = 0.997/0.998 (Figure 7.3B). 

Figure 7.3C shows the Bland-Altman plots for T1/T2* quantification between MT-DICE 

and corresponding references. The mean differences were less than 2.5% with limits of 

agreement all within ±12%.  

 
Figure 7.3 Phantom study results. A, T1/T2* maps of the quantitative 6-vial Calimetrix phantom 

generated by MT-DICE and reference sequences (2D inversion-recovery spin-echo for T1 and 

3D multi-echo gradient-echo for T2* measurements). B, Linear regression analyses and intraclass 

correlation coefficients (ICC) of the T1/T2* measurements between MT-DICE and references. 

The black dashed lines represent identity lines (Y=X), whereas the red solid lines represent 

regression lines. The T1/T2* measurements from MT-DICE are in substantial quantitative 

agreement with reference measurements, as demonstrated by the high R2 and ICC (R2 = 

0.999/0.998, and ICC = 0.999/0.998 for T1/T2*) 

Healthy control study 
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With the proposed MT-DICE protocol, there were 380 contrast phases within the entire 

7.6-min scan, each of which contains 60 SR times and 6 echo times. Reconstructed brain 

images at 3 representative contrast phases (pre-contrast phase 𝑡 = 20 s, first-pass phase 

at 𝑡 = 110 s, and post-contrast phase at 𝑡 = 420 s) corresponding to 2 SR times (𝜏 = 600 

ms and 𝜏 = 1200 ms) and 2 echo times (𝑡! = 2.46 ms and 𝑡! = 17.22 ms) are displayed 

in Figure 7.4.  

 
Figure 7.4 Illustration of multiple time dimensions for MT-DICE and representative images from a 

healthy control study. Multidimensional images are reconstructed from the low-rank tensor 

framework in the saturation recovery time dimension 𝜏, echo time dimension 𝑡(, and contrast 

phase dimension 𝑡 . Example brain images at 3 representative contrast phases (pre-contrast 

phase with 𝑡  = 0 s, first-pass phase with 𝑡  = 20 s, and post-contrast phase with 𝑡  = 360 s) 

corresponding to 2 SR times (𝜏 = 600 ms and 𝜏 = 1200 ms) and 2 echo times (𝑡( = 2.46 ms and 

𝑡( = 17.22 ms) are displayed 

Figure 7.5 demonstrates the process of conversion from signal intensity curves to 

T1- and T2*-based contrast concentration curves using MT-DICE. Figure 7.5A displays 

the representative signal intensity curves over all time dimensions (SR time, echo time 

and contrast dynamics dimensions) generated by averaging the curves of all voxels within 

a 3-by-3 ROI for blood, GM and WM, respectively. Figure 7.5B and 7.5C show the 
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corresponding dynamic T1/T2* curves, and Figure 7.5D and 7.5E display the T1- and 

T2*-based CA concentration curves for each of these three tissues.  

 
Figure 7.5 Conversion from signal intensity curves to T1-/T2*-based contrast concentration curves 

in MT-DICE. A, Representative dynamic signal intensity curves for blood, gray matter and white 

matter. The yellow zoomed-in areas show the saturation recovery curves and the green zoomed-

in areas show the multi-echo decay curves. B, C, Dynamic T1/T2*curves. D, E, T1-/T2*-based 

CA concentration curves derived directly from the dynamic T1/T2* values 

 Pre-contrast T1/T2* maps of 2 representative slices generated by MT-DICE and 

corresponding reference sequences are displayed for a healthy subject in Figure 7.6. The 

parametric maps acquired by MT-DICE were of high image quality and comparable with 

reference maps, with well-preserved brain tissue structures and contrasts. In quantitative 

comparisons between MT-DICE and the reference methods (Table 7.4), all the ICCs of 

T1/T2* measurements in GM/WM were within the “excellent” definition range (ICC = 

0.860/0.925 and 0.962/0.975 for GM and WM respectively). The P values of paired t-tests 
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were 0.219/0.769 and 0.221/0.315 for GM and WM respectively, indicating insignificant 

differences between the T1/T2* values quantified by MT-DICE and the references.  

Table 7.4 Comparison of pre-contrast T1/T2* measurements of the gray/white matter between 

MT-DICE and corresponding references  

  MT-DICE [ms] Reference [ms] ICC, 95% CI 
Paired t-test  

(P value) 

Pre-con T1 
GM 1301.4 ± 21.7 1291.2 ± 19.9 0.860, [0.681,0.971] 0.219 

WM 781.6 ± 31.6 788.0 ± 36.6 0.962, [0.823,0.992] 0.221 

Pre-con  T2* 
GM 56.1 ± 1.5 56.0 ± 1.4 0.925, [0.620,0.985] 0.769 

WM 39.3 ± 2.4 40.5 ± 2.2 0.975, [0.941,0.997] 0.315 

Note: T1/T2* are presented as mean ± standard deviation 

Abbreviations: ICC, intraclass correlation coefficients; CI, confidence interval; Pre-con, pre-

contrast; GM, gray matter; WM, white matter 

 
Figure 7.6 Example pre-contrast T1/T2* generated by MT-DICE and corresponding references 

on a healthy subject 

7.3.2 Validation of kinetic parameter estimations 

Numerical simulations 
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The simulated dynamic image series at 𝜏  = 1200 ms and 𝑡!  = 2.46 ms of one 

representative slice from the digital brain phantom, and the ground-truth and MT-DICE 

derived maps of DCE- and DSC-MR parameters as well as their error maps are shown in 

Figure 7.7. MT-DICE was capable to mitigate contrast leakage effects, which is more 

evident in CBV quantification, thus leading to smaller mean percentage errors compared 

to the without leakage correction counterpart (14.39% vs. 18.87%).  

 
Figure 7.7 A, Simulated dynamic image series at 𝜏  = 1200 ms and 𝑡(  = 2.46 ms of one 

representative slice from the constructed digital reference brain phantom. Different phases of 

dynamic contrast enhancement are clearly visualized from the image series. B, The ground-truth 

maps and derived maps of vascular permeability (i.e., v', K!"#$%, and v&) and perfusion (i.e., CBV 

and CBF) parameters together with their absolute difference maps. The derived leakage-corrected 

perfusion metrics were displayed and compared with their non-leakage-corrected counterparts to 

validate the capability of MT-DICE to estimate leakage-insensitive perfusion parameters 

Table 7.5 summarizes the quantitative results measured from GM, WM and the 

entire tumor model except the necrotic core with the proposed leakage correction 
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algorithm. Different from GM and WM, which were assigned identical kinetic parameters 

for all voxels during simulation, respectively, the mean, standard deviation and range of 

each kinetic parameter are reported for the heterogenous tumor region. The simulation 

results validated the accuracy of the proposed MT-DICE in kinetic parameter estimations.  

Table 7.5 Ground-truth values, MT-DICE derived values, and corresponding percentage 

differences of the DCE-MR permeability and leakage-corrected DSC-MR perfusion parameters 

Gray matter/White matter 

  GT Derived Mean Diff 

DCE-MR 

v' 0.0600/0.0300 0.0560/0.0276 6.67%/8.00% 

K!"#$% [min-1] 0.0000/0.0000 0.0001/0.0001 -/- 

v& 0.0000/0.0000 0.0001/0.0000 -/- 

DSC-MR 
CBV [mL/100g] 3.7500/1.6000 3.8470/1.6560 2.59%/3.50% 

CBF [mL/100g/min] 40.0000/20.0000 38.4300/18.6800 3.92%/6.60% 

Tumor region 

  GT Derived Mean Diff 

DCE-MR 

v' 0.0280 ± 0.0040 0.0281 ± 0.0038 0.36% 

K!"#$% [min-1] 0.0780 ± 0.0460 0.0872 ± 0.0478 11.58% 

v& 0.1685 ± 0.0726 0.1624 ± 0.0694 3.97% 

DSC-MR 
CBV [mL/100g] 3.3703 ± 1.9802 3.8477± 2.3769 14.39% 

CBF [mL/100g/min] 53.1957 ± 22.8970 58.6976 ± 27.7613 10.54% 

Abbreviations: GT, ground-truth; Mean Diff, mean percentage difference 

Intersession repeatability analysis 

Good to excellent intersession repeatability of the selected permeability (i.e. v" and K#$%&') 

and perfusion metrics (i.e. CBV and CBF) in GM and WM were demonstrated with Bland-

Altman plots (Figure 7.8). The ICCs of v", K#$%&', CBV and CBF were 0.822, 0.694, 0.853 

and 0.846 respectively in GM, and 0.884, 0.875, 0.727 and 0.750 respectively in WM.  
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Figure 7.8 Bland-Altman analysis for intersession repeatability assessment on 3 healthy subjects 

who were scanned twice on separate days. Four kinetic parameters (i.e. v', K!"#$%, CBV, and 

CBF) were measured from 12 regions of interests (frontal, parietal and occipital regions of the 

gray matter and white matter of both left and right hemispheres from a slice located in the mid 

brain). Intraclass correlation coefficient (ICC) of each parameter is shown on top of the 

corresponding Bland-Altman plot 

7.3.3 Patient pilot study 

Figure 7.9 shows the images acquired by MT-DICE and clinical protocols from two 

representative patients. The patient displayed in Figure 7.9A is a 14-year-old male patient 

diagnosed with ependymoblastoma (WHO grade IV). Intracerebral hemorrhage is 

presented within the tumor region and is confirmed by the clinical susceptibility-weighted 

images. The patient shown in Figure 7.9B is a 51-year-old male patient diagnosed with 

recurrent glioblastoma (WHO grade IV), who underwent radiation therapy prior to this 

imaging session. In both patients, the tumor regions were visualized on both the clinical 

images and quantitative MT-DICE maps. In addition to distinguishing the abnormalities 

from normal tissues, with the proposed MT-DICE technique, the heterogeneity within the 

tumor area was observed from the vascular permeability and leakage-insensitive 
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perfusion parameters. The perfusion metrics without leakage correction showed that CBV 

is slightly overestimated, likely due to the T2* leakage effect.  

 
Figure 7.9 Representative images of A, a 60-year-old female patient with ependymoblastoma 

(World Health Organization grade IV) and B, a 51-year-old male patient with recurrent 

glioblastoma (World Health Organization grade IV). With MT-DICE, in addition to distinguishing 

the tumor abnormalities from normal tissues, the heterogeneity within the tumor region could be 

observed from the vascular permeability maps (v' , K!"#$% , and v& ) and leakage-corrected 

perfusion metrics (CBV and CBF). The non-leakage-corrected perfusion parameters are also 

displayed as comparison 

 

7.4 DISCUSSION 

In this work, we developed an MT-DICE technique for simultaneous DCE- and DSC-MR 

quantification with a single-dose injection. With a single 7.6-min scan, the technique 

provides 3D whole-brain coverage, high temporal resolution of 1.2 s without 
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compromising spatial resolution, dynamic T1/T2* mapping, and permeability and 

leakage-insensitive perfusion maps with reduced EPI-associated image distortions. 

Hence, a more comprehensive evaluation of cerebrovascular conditions can be achieved 

with this technique.  

Compared with existing multi-echo-based combined DCE-MR and DSC-MR 

techniques, the proposed method has several advantages. First, MT-DICE can achieve 

as high as 1.2 s temporal resolution without the compromise in the spatial resolution or 

coverage. For both DCE-MR and DSC-MR methods, a sufficient temporal resolution is 

critical for accurate quantification of kinetic parameters. The general consensus is that a 

temporal resolution equals to or less than 1.5 s is required for DSC-MR because of the 

need for adequately capturing the fast passage of CA through tissues200. For DCE-MR, 

the requirement for the temporal resolution is typically less stringent than DSC-MR and is 

recommended to be less than 5.3 s for brain tumor assessment201. However, Li et al. 

reported that a temporal resolution on the order of 1 s is required to accurately measure 

AIF, which tends to change more rapidly compared with normal brain tissues202. To 

achieve a sufficiently high temporal resolution, the spatial resolution or coverage may be 

sacrificed due to the trade-off between spatial and temporal resolutions. An insufficient 

spatial resolution will lead to partial volume effects, particularly in the AIF, and can affect 

the reliability of the estimated parameters203. In this work, MT-DICE can achieve a high 

temporal resolution and a high spatial resolution simultaneously, thanks to the MR 

multitasking framework which adopts an LRT image model for expedited acquisitions55.  

Second, MT-DICE quantifies the CA concentration from dynamic T1/T2* values 

rather than from T1-/T2*-weighted signal intensities. In most of the existing DCE-MR and 
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DSC-MR techniques, contrast concentration is derived directly by linear transformation of 

the dynamic signal intensities. The linearity assumption is valid only when CA 

concentration is low within the tissue of interests and may introduce quantification errors 

in tissues with high CA uptake135,183. It has been demonstrated that the mapping-based 

approach provides more accurate estimations compared to the conventional linear 

approach184. The pre-contrast T1/T2* fitting accuracy was validated in both phantom and 

healthy control studies. For healthy control study, MT-DICE yielded consistent GM and 

WM T1/T2* measurements with excellent agreement with the corresponding references. 

Post-contrast mapping results were not assessed in this work since the contrast washout 

may lead to different T1/T2* values at different time points. Furthermore, the dynamic T1 

mapping of MT-DICE not only provides excellent T1 sensitivity, but also eliminates the 

necessity of acquiring a separate pre-contrast T1 map, which is required in conventional 

DCE-MR methods to convert signal intensities into concentration curves204. This may 

potentially improve the accuracy of parameter estimations since it gets rid of the interscan 

subject motion and eliminates the impact of spatial variations in B1 when utilizing variable 

flip angles for pre-contrast T1 mapping205,206.  

Third, MT-DICE employs a 3D Cartesian acquisition with segmented multi-echo 

FLASH readouts, which provides vascular permeability and hemodynamic perfusion 

maps with reduced image distortions. For existing simultaneous DCE-MR and DSC-MR 

techniques, single-shot EPI is the most widely used acquisition strategy. However, the 

major drawback to EPI-based sequences is the geometric distortions due to considerable 

off-resonance effects during the long readouts required to fully sample the k-space. In 

addition to adopting advanced EPI acquisitions to reduce the readout length and thereby 



 
 

128 

mitigate distortions, other alternative non-Cartesian readout methods may provide 

advantages over EPI-based readouts172,178. While these non-Cartesian techniques 

reduce the distortion artifacts induced by EPI, they may lead to other types of image 

artifacts that could affect the kinetic parameter estimations178.  

The developed technique is able to simultaneously measure vascular permeability 

metrics, such as v", K#$%&' and v(, together with leakage-insensitive perfusion metrics, 

such as CBV and CBF. The quantification results from both control and patient groups 

are generally within the literature range196,197. In various cerebrovascular diseases, such 

as brain cancer and stroke, a disrupted BBB results in CA extravasation and may affect 

the estimated perfusion parameters. Although it has been demonstrated that multi-echo-

based acquisitions can elegantly address the T1-shortening effects induced by CA 

extravasation178–181,197,207,208, this type of acquisition strategy alone is insufficient for 

correcting the remaining T2/T2*-leakage effects. In this study, we adopted a combined 

biophysical and pharmacokinetic approach which utilized the derived permeability 

parameters to address the residual T2*-leakage effect on perfusion estimations181. Unlike 

the method presented by Schmiedeskamp et al.179, this model avoids sophisticated and 

multistep parameter fitting, which could potentially improve the robustness of kinetic 

modeling.  

Our study has several limitations. First, only gradient-echo DSC-MR parameters 

were available in this work. Given the fact that gradient-echo and spin-echo DSC-MR 

have different sensitivities on macro-and microvascular perfusion respectively, 

measurements of both may increase the diagnostic value, which has already been 

verified in practice179,209. In the future, another T2 time dimension could be added to the 
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LRT image model for dynamic T2 mapping and used to generate spin-echo DSC-MR 

parameters136,185. Second, there is no comparison between the permeability and 

perfusion parameters generated by MT-DICE and those acquired using conventional 

DCE-MR and DSC-MR, respectively. However, it is not easy to validate both DCE-MR 

and DSC-MR metrics simultaneously since this requires multiple contrast injections on a 

single subject. As an alternative, a numerical simulation study was performed in this work 

to validate the accuracy of MT-DICE in deriving kinetic parameters. Yet, although a tumor 

model was incorporated to mimic more realistic scenarios, one major limitation of the 

numerical simulation study is that the susceptibility effects cannot be appropriately 

modeled without considering field perturbations within heterogenous tumor structures, 

which may result in some biases for DSC-MR quantification. In the future, studies with 

careful designs are warranted to directly compare MT-DICE with conventional DCE-MR 

and DSC-MR. Last, feasibility of the proposed technique requires further validation on a 

large patient cohort. More patient cases are required to further validate the capability of 

MT-DICE in simultaneous permeability and perfusion assessment, and in the meantime, 

to evaluate whether this technique has better clinical performance in diagnosis, tumor 

grading, surgical guidance and treatment monitoring compared to conventional methods. 

 

7.5 CONCLUSION 

The developed MT-DICE technique facilitates simultaneous permeability and leakage-

insensitive perfusion quantifications with a single-dose contrast injection. With a single 

7.6-min scan, it enables 3D whole-brain coverage, high temporal resolution of 1.2 s 

without compromising spatial resolution, dynamic T1/T2* mapping, and provides kinetic 
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maps with mitigated image distortion. Our study demonstrates the technical feasibility in 

healthy subjects and brain tumor patients. Further studies in brain tumors are warranted 

to validate the clinical utility of this technique. 
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CHAPTER 8 

Conclusions and Future Directions 

 

 

Vascular imaging plays a critical role in the diagnosis, staging, and treatment monitoring 

of various vascular diseases. MR, due to its unique advantages, has the capability to 

provide not only the macroscopic morphological delineation (i.e., lumen area, vessel wall 

sharpness, etc.), but also the microscopic functional information (i.e., vascular 

permeability, hemodynamic perfusion, etc.). In recent years, with advancements in 

imaging and reconstruction technologies, MR vascular imaging has been included in 

clinical workflows for numerous diseases, such as stroke and brain cancer. For instance, 

MR angiography, the most widely adopted MR macroscopic vascular imaging technique, 

is nearly always adopted as an adjunct in stroke etiology evaluation workup to tell the 

lumen stenosis degree. DCE-MR and DSC-MR, on the other hand, enables non-invasive 

evaluation of the microscopic environment of brain cancers and have the potential to 

provide insights into tumor grading, surgical planning, and treatment response. However, 

as discussed in Chapter 1, some major technical limitations of current MR vascular 

imaging techniques hinder the further exploiting of it in specific applications. To tackle 

these technical challenges, the ultimate goal of the presented dissertation is to develop 

advanced MR vascular imaging techniques, including both macrovascular and 

microvascular imaging techniques, to better leverage the advantages of MR in diagnosis, 

prognosis, and treatment response assessment of various vascular diseases and improve 

patient outcomes. Specifically, advanced MR macrovascular imaging techniques were 
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developed to assist stroke etiology evaluation, while a novel MR microscopic vascular 

imaging technique was developed and validated on brain cancer patients to probe into 

the heterogenous environment within the tumor region.  

 

8.1 SUMMARY OF THE WORK 

8.1.1 MR Macroscopic Vascular Imaging for Stroke Etiology Evaluation 

In this work, we developed a novel 2-station MR macroscopic vascular imaging strategy 

that could serve as a complement for current standard evaluation for stroke etiology. Our 

proposed strategy covered both the head-neck vessels as well as the heart and the great 

thoracic vessels to provide a more comprehensive etiology evaluation. First, a motion-

compensated, data-driven accelerated MR VWI technique targeting on the head-neck 

vessels was proposed. In Chapter 3, we incorporated 2 modules in the conventional TSE 

sequence for compensation of both bulk head motion and localized movement of internal 

anatomies. Specifically, vNav was introduced to resolve bulk head motion and SG was 

introduced for localized movement. In Chapter 4, to further reduce the total acquisition 

time of current MR VWI, we present a deep learning-based reconstruction framework 

named CAMWARE that holds the potential to enable whole-brain MR VWI with 0.55-mm 

isotropic resolution within 4 min. Second, we proposed a comprehensive aortocardiac 

imaging technique that can provide multi-contrast imaging as well as cardiac phase-

resolved cine imaging all within a single acquisition to examine the cardiac structures and 

the thoracic aorta. We started the technical development on the thoracic aorta in Chapter 

5 and further extended its spatial coverage to the entire heart in Chapter 6. Some 
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technical modifications were made including switching the sampling trajectory from 

Cartesian to tiny-golden-angle radial sampling to better resolve cardiac and respiratory 

motion.  

8.1.2 MR Microscopic Vascular Imaging for Brain Cancer Evaluation 

MR microscopic vascular imaging plays a crucial role in brain cancer evaluation workflow. 

To obtain complementary permeability and perfusion information and reduce the overall 

CA dosage, in Chapter 7, a MR multitasking-based dynamic imaging for cerebrovascular 

evaluation (MT-DICE) technique was presented. Validated on brain tumor patients, the 

developed MT-DICE technique facilitates simultaneous permeability and leakage-

insensitive perfusion quantifications with a single-dose contrast injection. With a single 

7.6-min scan, it enables 3D whole-brain coverage, high temporal resolution of 1.2 s 

without compromising spatial resolution, dynamic T1/T2* mapping, and provides kinetic 

maps with mitigated image distortion. 

 

8.2 FUTURE DIRECTIONS 

Currently, all the techniques presented within different chapters in this dissertation are 

still at the early technical development stage. Although validated on certain patients, i.e., 

ischemic stroke patients with atherosclerosis and brain cancer patients, validation studies 

on a large patient cohort are warranted. For example, for the novel 2-station MR 

macrovascular imaging-based stroke etiology evaluation strategy, stroke patients with 

different subtypes will be enrolled in our study to assess the clinical values of our 

proposed strategy. For the MR microvascular imaging technique, which is the MT-DICE 
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for simultaneous permeability and leakage-insensitive evaluation, we are currently 

collaborating with clinicians to recruit patients with glioblastoma multiforme. The goal is 

to compare our developed MR-DICE technique with conventional DCE-MR and DSC-MR 

sequences in kinetic parameter estimations and to figure out what additional values our 

technique can provide to benefit brain tumor patients.  

 In the meantime, we are also working on further improving the clinical feasibility of 

the developed techniques so that they can be easily incorporated into the routine clinical 

workflow. For example, for those techniques based on MR multitasking framework, the 

relatively long reconstruction time is a major limitation for the wide clinical application. 

The bottleneck is to iteratively resolve spatial factor. One possible solution is to 

incorporate deep learning network into the reconstruction procedure so as to highly speed 

up the total reconstruction procedure.  
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