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Abstract

BACKGROUND: Lung transplantation remains the sole curative option for patients with
idiopathic pulmonary fibrosis (IPF), but donor organs remain scarce, and many eligible patients
die before transplant. Tools to optimize the timing of transplant referrals are urgently needed.

METHODS: Least absolute shrinkage and selection operator was applied to clinical and
proteomic data generated as part of a prospective cohort study of interstitial lung disease (ILD) to
derive clinical, proteomic, and multidimensional logit models of near-term death or lung transplant
within 18 months of blood draw. Model-fitted values were dichotomized at the point of maximal
sensitivity and specificity, and decision curve analysis was used to select the best-performing
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classifier. We then applied this classifier to independent IPF and non-IPF ILD cohorts to determine
test performance characteristics. Cohorts were restricted to patients aged <72 years with body
mass index 18 to 32 to increase the likelihood of transplant eligibility.

RESULTS: IPF derivation, IPF validation, and non-IPF ILD validation cohorts consisted of 314,
105, and 295 patients, respectively. A multidimensional model comprising 2 clinical variables and
20 proteins outperformed stand-alone clinical and proteomic models. Following dichotomization,
the multidimensional classifier predicted near-term outcome with 70% sensitivity and 92%
specificity in the IPF validation cohort and 70% sensitivity and 80% specificity in the non-IPF
ILD validation cohort.

CONCLUSIONS: A multidimensional classifier of near-term outcomes accurately discriminated
this end-point with good test performance across independent IPF and non-1PF ILD cohorts. These
findings support refinement and prospective validation of this classifier in transplant-eligible
individuals.

Keywords
idiopathic pulmonary fibrosis; interstitial lung disease; proteomics; survival; biomarker

Progressive pulmonary fibrosis is a common manifestation of interstitial lung disease

(ILD) that results in irreversible parenchymal scarring, declining lung function, and poor
survival.1:2 Idiopathic pulmonary fibrosis (IPF) is considered the prototypical progressive
pulmonary fibrosis, but a subset of those with non-IPF forms of ILD also develop this
condition, leading to similarly poor outcomes.3 While antifibrotic therapy is now approved
for the treatment of IPF and progressive non-IPF ILD, currently available drugs slow,

rather than stop or reverse fibrosis.*:> Lung transplantation is an additional treatment option
for a subset of patients with IPF, but donor organs are scarce, and many patients die

before a transplant evaluation is completed or after being listed for transplant.6.” While
expert guidance has been published by the International Society for Heart and Lung
Transplantation (ISHLT), the optimal timing of transplant referral for those with progressive
pulmonary fibrosis remains unclear.8 Moreover, some patients develop and quickly succumb
to rapidly progressive disease,® missing the opportunity to undergo transplant evaluation. To
optimize the timing of lung transplant referral, tools to accurately identify those most likely
to benefit from lung transplant evaluation are urgently needed.

Clinical prediction models effectively discriminate mortality risk in patients with IPF10-

12 and non-IPF 1LDs.13 However, these models fail to predict near-term progression,4
suggesting that they are a better measure of disease severity than biological activity.
Moreover, clinical models rely heavily on age, leaving it unclear how well they would
perform in younger individuals, who are more likely to be considered for lung transplant. A
host of blood-based prognostic biomarkers have been proposed for patients with progressive
pulmonary fibrosis, including peripheral blood leukocyte telomere length, a composite

gene expression-based signature, many stand-alone proteins, and composite proteomic
signatures.1®-23 While these measures remain promising, none have been widely adopted for
clinical use. This reality stems in part from uncertainly around biomarker test performance
and the way biomarker classification would change clinical management.

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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In this investigation, we leveraged clinical and high-throughput proteomic data to develop
an actionable biomarker to support lung transplant referral in patients with IPF. Using
machine learning, we derived clinical, proteomic, and multidimensional prediction models
of a composite end-point of death or transplant within 18 months of blood draw. We then
dichotomized fitted values for the best-performing model and tested this binary classifier
in an independent IPF cohort to determine test performance characteristics. To assess
generalizability to other ILD subtypes, we then applied this classifier to an independent
non-IPF ILD cohort.

Consecutive patients with IPF and non-1PF ILD who underwent proteomic profiling as

part of the PRECISIONS study?* were eligible for inclusion. The PRECISIONS molecular
cohort consists of individuals with IPF and non-IPF ILD participating in prospective
registries and biorepositories administered by the Pulmonary Fibrosis Foundation (PFF)
Patient Registry (March 2016-June 2018), University of Virginia (September 2018-
November 2021), University of California-Davis (July 2016-April 2021), and University

of Chicago (March 2007-July 2017). To enrich the cohort with patients potentially eligible
for lung transplant, those aged > 72 or with body mass index (BMI) < 18 or > 32 were
excluded. Those with missing survival and BMI data were also excluded, as were those
without forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide
(DLCO) performed within 12 months of blood draw to ensure each model could be directly
compared in the same population.

Study-specific protocols were approved at UC-Davis (protocol #875917), UChicago
(protocol #13-1180), and UVA (protocol #20937). Patients with IPF from the PPF Patient
Registry2® comprised the IPF discovery cohort, while those with IPF from the Universities
of Virginia, California-Davis, and Chicago comprised the IPF validation cohort. A pooled
cohort of patients with non-IPF ILD from all 4 registries comprised the non-IPF ILD
validation cohort. PFF Patient Registry participants from the University of Chicago and
University of Virginia were excluded to ensure no overlap between cohorts. The University
of California-Davis did not contribute patients to the PFF Patient Registry.

Proteomic platform and data

Proteomic data were generated using the Olink (Uppsala, Sweden) Explore 3072 platform,
which provides semiquantitative measures for 2921 analytes. This and other Olink platforms
use proximity extension assays to quantify proteins, which provide excellent sensitivity and
specificity for low-abundance proteins.26:27 Intensity normalization is used to aggregate data
across plates. A value is returned for all proteins, with those falling below the lower limit of
detection imputed and flagged. Normalized protein data were log, transformed and modeled
continuously.

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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Statistical analysis

Results

Continuous measures are presented as means with standard deviations and compared using
a student’s £test. Categorical measures are presented as count and percentage and compared
using a chi-square test. Three separate logistic regression models were fit in the IPF
derivation cohort with clinical, proteomic, and multidimensional (clinical and proteomic)
data to identify variables predictive of a composite dichotomous end-point of death or
transplant within 18 months of blood draw. Variable selection was performed using the least
absolute shrinkage and selection operator with 10-fold cross validation used for parameter
tuning.28 Clinical variables available for selection included age, sex, race, BMI, smoking
history, percent predicted FVC, and percent predicted DLCO. Proteins included all 2921
generated using the Olink Explore platform. A multidimensional model was derived using
all available clinical and proteomic data.

Fitted values for each model were dichotomized at the point of maximal sensitivity

and specificity using Youden’s index2? and the best-performing classifier was identified
using receiver operator curve and decision curve analysis.30:31 We then applied the best-
performing classifier to the IPF validation cohort and pooled non-IPF ILD validation cohort
to determine test performance characteristics and generalizability.

Eighteen-month transplant-free survival was plotted for classification groups using the
Kaplan-Meier estimator. Univariate and multivariate Cox proportional hazards regression
models were used to estimate outcome risk for those with a high-risk classification. The
proportional hazards assumption was checked and satisfied for all models. All statistical
analyses were performed using Stata (StataCorp. 2022. Release 17. College Station, TX).
Statistical significance was set a p < 0.05.

Of 937, 368 and 623 eligible patients from the IPF derivation, IPF validation, and non-IPF
ILD validation cohorts, respectively, 314, 105, and 295 met inclusion and exclusion criteria
(Figure S1). Baseline characteristics at the time of blood draw for each cohort are shown
in Table 1. IPF cohorts were similar in age, sex, race, and smoking history. Those in

the derivation cohort had lower percent predicted FVC and DLCO and higher antifibrotic
use when compared to the IPF validation cohort. As expected, the non-IPF ILD cohort
was younger, with fewer males, whites, smokers, and outcomes than the IPF cohorts.
Baseline immunosuppressant use was higher in the non-1PF validation cohort. Near-term
outcome occurred in 25.5% (7= 80), 28.6% (1= 30), and 18.3% (7 = 54) of patients

in the IPF derivation, IPF validation, and non-1PF ILD validation cohorts, respectively.
Lung transplant accounted for 35% to 49% of these near-term outcomes depending on

the cohort, supporting transplant eligibility for a large minority of patients satisfying this
outcome. When comparing 18-month transplant-free survival between cohorts (Figure S2),
those with non-1PF ILD displayed slightly favorable survival when compared to the IPF
cohorts (pjogrank = 0.03), while there was no difference in transplant-free survival between
IPF cohorts (pjogrank = 0.59).

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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When applying least absolute shrinkage and selection operator to the IPF derivation
cohort, 5 clinical variables were selected for the clinical prediction model, 16 proteins

for the proteomic prediction model, and 2 clinical variables and 20 proteins for the
multidimensional prediction model (Table S1). After dichotomization of fitted values for
each model according to Youden’s index, 115 (36.6%), 112 (35.7%), and 91 (29.0%)
patients were classified as high-risk for near-term outcome. In comparative analysis, the
multidimensional model and binary classifier provided the highest net benefit over a wide
range of threshold probabilities when compared to the clinical and proteomic models

and classifiers (Figure 1). Individual measures of test performance corroborated these
findings (Table 2). The multidimensional classifier was advanced for further testing, as
this provided the highest specificity (88%) and positive predictive value (68%) without
sacrificing sensitivity or negative predictive value relative to the other 2 classifiers. Based
on likelihood ratios for this multidimensional classifier, a high-risk classification would
increase the pretest probability of a near-term outcome (based on observed prevalence) from
26% to approximately 70% (Figure 2). A low-risk classification would reduce the pretest
probability from 26% to approximately 7% (Figure 2).

When applied to the IPF validation cohort, the classifier had lower sensitivity (70%), but
higher specificity (92%), producing high positive (78%), and negative (88%) predictive
values (Table 3). Using the observed 18-month cumulative incidence of death or transplant
(29%) to establish pretest probability, likelihood ratios for this cohort suggested that a high-
risk classification would increase the pretest probability of 18-month death or transplant
from 29% to just over 70% (Figure 2). A low-risk classification would reduce the pretest
probability from 29% to just less than 10% (Figure 2). After combining IPF derivation and
validation cohorts, test performance was consistent across different thresholds of age (Table
S3), baseline lung function (Tables S4 and S5), antifibrotic use (Table S6), and for death and
transplant modeled as separate events (Table S7).

When applied in the non-IPF ILD validation cohort, sensitivity was 70% and specificity
80%. The negative predictive value remained high (92%), but the positive predictive value
dropped significantly (45%), owing to a lower outcome prevalence in this cohort (Table

3). Likelihood ratios for this cohort suggested that a high-risk classification would increase
the pretest probability of near-term outcome (based on observed prevalence) from 18%

to approximately 40% (Figure 2), again using observed 18-month incidence of death

or transplant to establish the pretest probability. A low-risk classification would reduce

the pretest probability from 18% to approximately 6% (Figure 2). When exploring test
performance measures in key non-1PF ILD subgroups, the negative predictive value was
high across cohorts, but the positive predictive value was low for those with connective
tissue disease associated ILD and fibrotic hypersensitivity pneumonitis (Table S2). Test
performance in those with non-1PF idiopathic interstitial pneumonia was similar to what was
observed in the IPF cohorts.

When plotting transplant-free survival by multidimensional classification, those with a
high-risk classification showed significantly worse survival than those with a low-risk
classification (Figure 3). High-risk classification status was associated with significantly
increased outcome risk in the IPF derivation (hazard ratio (HR) 13.39; 95% confidence

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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interval (CI) 6.05-29.65; p< 0.0001), IPF validation (HR 14.02; 95% CI 8.25-23.8; p<
0.0001), and non-IPF ILD validation cohorts (HR 7.56; 95% CI 4.21-13.58; p < 0.0001)

in unadjusted analysis. Adjustment for age, sex, race, smoking history, BMI, baseline
immunosuppressant exposure, and baseline antifibrotic exposure did not impact these
measures of association (Table S8). Lung function was not included to avoid collinearity, as
percent predicted FVC and DLCO were both included in the multidimensional classifier.

Discussion

In this investigation, we present a novel multidimensional classifier of near-term outcome

in patients with IPF. This classifier provided good test performance across independent IPF
and non-IPF ILD cohorts and produced a positive likelihood ratio of greater than 6 across
independent IPF cohorts, suggesting clinically actionable results. Test performance was less
compelling when this classifier was applied to those with non-IPF ILD. Beyond measures

of test performance, this multidimensional classifier strongly discriminated outcomes across
cohorts, producing higher hazard ratios than most categorical biomarkers reported to date.
Prospective validation of these findings in transplant-eligible individuals with IPF could help
optimize the timing of lung transplant referral and inform future ISHLT guidelines based on
classifier risk stratification.

These findings build upon a wealth of clinical and molecular biomarker data published

in ILD to date. Clinical features, including age, sex, lung function, and several composite
indices that include these measures, have been shown to strongly predict outcomes in
patients with IPF and other fibrotic 1LDs.19-13 Our findings corroborate the importance
of lung function, which was among the variables of highest importance selected by our
multidimensional model. Among molecular biomarkers, those most widely validated to date
include peripheral blood leukocyte telomere length, a composite 52-gene signature, stand-
alone proteins including KL6, matrix metalloproteinase 7, keratin 19 and its breakdown
product CYFRA 21-1, neoepitopes, and several recently described composite proteomic
signatures.1®-23 However, while the survival association observed for these biomarkers is
clearly reproducible, none have proven to be clinically useful. This reality stems from
several key features required of a biomarker.

First, a biomarker must provide actionable results.32 Because antifibrotic therapy is
recommended for most patients with IPF upon diagnosis,33 no biomarkers published to
date have been shown to alter this management strategy. While one could argue that
high-risk molecular classification could be used to enrich clinical trial cohorts, few trials
employ death as a primary end-point, leaving it unclear whether those with a high-risk
classification are any more likely to experience a change in FVC, the current gold standard
for establishing therapeutic efficacy.3* We attempted to overcome this limitation by selecting
an IPF population for whom management may differ based on classifier status. The

ISHLT consensus currently advises early referral for all patients diagnosed with IPF, citing
unpredictable disease trajectory as its rationale.8 Multidimensional classification would
allow for more nuanced timing based on prognosis. In finding that nearly 70% to 80% of
those with a high-risk classification will die or need a transplant within 18 months of blood
draw, our results suggest that this classifier could justify immediate lung transplant referral

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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and expedited work-up for high-risk patients, even with baseline lung function higher than
ISHLT recommended referral thresholds. Conversely, we found that < 10% of patients with
a low-risk classification died or required transplant over the next 18 months, which could
help inform the pace of work-up, decision to list, and timing of listing for those with a
low-risk classification.

Key to establishing actionable results for a biomarker is intuitive categorization and
transparent reporting of test performance characteristics.32 While continuous biomarker
measures often explain a larger proportion of outcome risk than categorical measures, the
latter is typically needed for interpretation and clinical adoption. Importantly, measures of
association (e.g., risk ratios, odds ratios, and hazard ratios) do not necessarily equate to
meaningful measures of test performance (e.g., sensitivity, specificity, predictive values,
and likelihood ratios). Underscoring this point is our observation that, while a high-risk
classification was associated with > 7-fold increase in outcome risk in those with non-1PF
ILD, our multidimensional classifier did not change post-test probability in a clinically
meaningful manner. Conversely in IPF cohorts, a high-risk classification corresponded with
a high positive likelihood ratio and meaningfully increased post-test probability of 18-month
death or transplant, highlighting its potential to prompt early referral.

Augmentation or outperforming easily acquired clinical data is another key biomarker
attribute. Clinical prediction models have been shown to discriminate IPF and non-1PF

ILD survival with high accuracy across diverse cohorts and settings.1011.13.14 Ag sych,
outperforming these easily estimated models is a challenge. For this reason, we fitted

a stand-alone clinical prediction model for comparison. While we found that the stand-
alone proteomic model did outperform the clinical model, a multidimensional model that
capitalized on both lung function and 20 proteins outperformed both. Decision curve
analysis, an efficient approach to comparing models and allows for a comparison of models
over a range of outcome probabilities,3031 corroborated these findings.

While our findings support refinement and prospective validation of this promising
biomarker in patients with IPF, point estimates generated using semiquantitative data have
limited external validity due to batch effects and normalization protocols.3%:36 Commercially
available, targeted quantitative multiplex assays are emerging and have the potential to
advance this and other composite biomarkers toward clinical implementation.3” Our findings
do not support the immediate advancement of this tool for prospective validation in those
with non-1PF ILD, as the modest positive and negative likelihood ratios were un-likely

to alter post-test probability in a clinically meaningful way. Subgroup analysis suggested
that the reduction in test performance was isolated to those with connective tissue disease
and fibrotic hypersensitivity pneumonitis. Inflammatory pathobiology may have contributed
to these findings and prior work by members of our group suggested that inflammatory
proteins may play a more prominent role in non-IPF ILD progression when compared to
IPF.22:23 These findings and others showing poor outcomes among those with non-IPF ILD
suggest dedicated investigation in this population is urgently needed.

Our study has several important limitations. First, while we attempted to restrict the
cohort to individuals that were potentially eligible for lung transplant, it remains unclear

J Heart Lung Transplant. Author manuscript; available in PMC 2024 October 04.
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what proportion were referred and how many were deemed ineligible due to unmeasured
comorbid conditions. Nearly 50% of patients in the derivation cohort who met the primary
end-point did so by undergoing lung transplants, suggesting that most were likely eligible.
Sensitivity analysis suggested that the multidimensional classifier performed similarly
irrespective of the end-point modeled, increasing confidence that those who died were
molecularly similar to those who successfully underwent transplant. Next, clinical prediction
models have been developed to predict death in patients listed for lung transplant.38:39

Our data did not allow for direct comparison to these validated models but suggests that

a molecular-based approach could further augment current models. Next, our use of a
dichotomous outcome fails to account for those who were censored before reaching the

end of the follow-up period; however, few patients were censored (/7= 26/714 patients)
before 18 months. Next, our cohort was pre-dominantly white, leaving it unclear whether
these findings would extend to a more racially diverse population. Finally, semiquantitative
proteomic data do not always highly correlate with quantitative measures of the same
protein,*0 as we recently found a strong correlation for nearly 70% of quantified proteins,
but a weak correlation for over 30%.22 For this reason, and those outlined above, prospective
validation using quantitative methodology is needed.

Conclusion

Recent advances in proteomic technology have allowed for the identification of novel
biomarkers of clinically relevant end-points in patients with IPF and non-IPF ILD. Beyond
the biological importance of these biomarkers, a number have a high potential to improve
prognostication and risk stratification. Here, we present a composite biomarker tool that
showed good test performance for discriminating near-term outcomes among patients

with IPF across independent cohorts. Prospective validation of these findings in transplant-
eligible patients with IPF would help guide clinical decision-making and optimize the timing
of lung transplant referral for this population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Decision curve analysis comparing clinical, proteomic, and multidimensional models (a) and

binary classifiers (b) of near-term outcome.
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Figure 2.

Nomograms for change in pre- and post-test probability based on likelihood ratio tests for
IPF derivation, IPF validation, and non-IPF ILD validation cohorts. Pretest probabilities

established using the observed incidence of 18-month death or transplant. ILD, interstitial
lung disease; IPF, idiopathic pulmonary fibrosis.
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