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Abstract

Fitting high-dimensional data involves a delicate tradeoff between faithful representation and
the use of sparse models. Too often, sparsity assumptions on the fitted model are too restrictive
to provide a faithful representation of the observed data. In this paper, we present a novel
framework incorporating sparsity in different domains. We decompose the observed covariance
matrix into a sparse Gaussian Markov model (with a sparse precision matrix) and a sparse
independence model (with a sparse covariance matrix). Our framework incorporates sparse
covariance and sparse precision estimation as special cases and thus introduces a richer class
of high-dimensional models. We characterize sufficient conditions for identifiability of the two
models, viz., Markov and independence models. We propose an efficient decomposition method
based on a modification of the popular ℓ1-penalized maximum-likelihood estimator (ℓ1-MLE).
We establish that our estimator is consistent in both the domains, i.e., it successfully recovers
the supports of both Markov and independence models, when the number of samples n scales
as n = Ω(d2 log p), where p is the number of variables and d is the maximum node degree in the
Markov model. Our experiments validate these results and also demonstrate that our models
have better inference accuracy under simple algorithms such as loopy belief propagation.

Keywords: High-dimensional covariance estimation, sparse graphical model selection, sparse co-
variance models, sparsistency, convex optimization.

1 Introduction

Covariance estimation is a classical problem in multi-variate statistics. The idea that second-order
statistics capture important and relevant relationships between a given set of variables is natural.
Finding the sample covariance matrix based on observed data is straightforward and widely used [1].
However, the sample covariance matrix is ill-behaved in high-dimensions, where the number of
dimensions p is typically much larger than the number of available samples n (p ≫ n). Here, the
problem of covariance estimation is ill-posed since the number of unknown parameters is larger
than the number of available samples, and the sample covariance matrix becomes singular in this
regime.

∗M. Janzamin and A. Anandkumar are with the Center for Pervasive Communications and Computing, Electrical
Engineering and Computer Science Dept., University of California, Irvine, USA 92697. Email: mjanzami@uci.edu,
a.anandkumar@uci.edu

1

http://arxiv.org/abs/1211.0919v2


Various solutions have been proposed for high-dimensional covariance estimation. Intuitively, by
restricting the class of covariance models to those with a limited number of free parameters, we
can successfully estimate the models in high dimensions. A natural mechanism to achieve this is to
impose a sparsity constraint on the covariance matrix. In other words, it is presumed that there are
only a few (off-diagonal) non-zero entries in the covariance matrix, which implies that the variables
under consideration approximately satisfymarginal independence, corresponding to the zero pattern
of the covariance matrix [2] (and we refer to such models as independence models). Many works
have studied this setting and have provided guarantees for high-dimensional estimation through
simple thresholding of the sample covariance matrix and other related schemes. See Section 1.1. In
many settings, however, marginal independence is too restrictive and does not hold. For instance,
consider the dependence between the monthly stock returns of various companies listed on the S&P
100 index. It is quite possible that a wide range of complex (and unobserved) factors such as the
economic climate, interest rates etc., affect the returns of all the companies. Thus, it is not realistic
to model the stock returns of various companies through a sparse covariance model.

A popular alternative sparse model, based on conditional independence relationships, has gained
widespread acceptance in recent years [3]. In this case, sparsity is imposed not on the covari-
ance matrix, but on the inverse covariance or the precision matrix. It can be shown that the
zero pattern of the precision matrix corresponds to a set of conditional-independence relationships
and such models are referred to as graphical or Markov models. Going back to the stock market
example, a first-order approximation is to model the companies in different divisions1 as condition-
ally independent given the S&P 100 index variable, which captures the overall trends of the stock
returns, and thus removes much of the dependence between the companies in different divisions.
High-dimensional estimation in models with sparse precision matrices has been widely studied, and
guarantees for estimation have been provided under a set of sufficient conditions. See Section 1.1
for related works. However, sparse Markov models may not be always sufficient to capture all the
statistical relationships among variables. Going back to the stock market example, the approxi-
mation of using the S&P index node to capture the dependence between companies of different
divisions may not be enough. For instance, there can still be a large residual dependence between
the companies in manufacturing and mining divisions, which cannot be accounted by the S&P
index node.

In this paper, we consider decomposition of the observed data into two domains, viz., Markov
and independence domains. We posit that the observed data results in a sparse graphical model
under structured perturbations in the form of an independence model, see Fig.1. This framework
encapsulates Markov and independence models, and incorporates a richer class of models which
can faithfully capture complex relationships, such as in the stock market example above, and yet
retain parsimonious representation. The idea that a combination of Markov and independence
models can provide good model-fitting is not by itself new and perhaps the work which is closest
to ours is [4], where multi-resolution models with a known hierarchy of variables is considered.
Their model consists of a combination of a sparse precision matrix, which captures the conditional
independence across scales, and a sparse covariance matrix, which captures the residual in-scale
correlations. Heuristics for learning and inference are provided in [4]. However, the approach in [4]
has several deficiencies, including lack of theoretical guarantees, assumption of a known sparsity
support for the Markov model, use of expectation maximization (EM) which has no guarantees of

1See http://www.osha.gov/pls/imis/sic_manual.html for classifications of the companies.
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Figure 1: Representation of the covariance decomposition problem, where perturbing the observed covari-
ance matrix with a structured noise model results in a sparse graphical model. The case where the noise
model has sparse marginal dependencies is considered.

reaching the global optimum, non-identifiability due to the presence of both latent variables and
residual correlations, and so on. In contrast, we develop efficient convex optimization methods for
decomposition, which are easily implementable and also provide theoretical guarantees for success-
ful recovery. In summary, in this paper, we provide an in-depth study of efficient methods and
guarantees for joint estimation of a combination of Markov and independence models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for certain choices
of tuning parameter. Therefore, we incorporate a range of models from sparse covariance to sparse
inverse covariance.

Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in a high
dimensional setting. Our contributions in this paper are three fold. First, we derive a set of
sufficient restrictions, under which there is a unique decomposition into the two domains, viz.,
the Markov and the independence domains, thereby leading to an identifiable model. Second, we
propose novel and efficient estimators for obtaining the decomposition, under both exact and sample
statistics. Third, we provide strong theoretical guarantees for high-dimensional learning, both in
terms of norm guarantees and sparsistency in each domain, viz., the Markov and the independence
domain.

Our learning method is based on convex optimization. We adapt the popular ℓ1-penalized maximum
likelihood estimator (MLE), proposed originally for sparse Markov model selection and has efficient
implementation in the form of graphical lasso [5]. This method involves an ℓ1 penalty on the
precision matrix, which is a convex relaxation of the ℓ0 penalty, in order to encourage sparsity in
the precision matrix. The Lagrangian dual of this program is a maximum entropy solution which
approximately fits the given sample covariance matrix. We modify this program to our setting
as follows: we incorporate an additional ℓ1 penalty term involving the residual covariance matrix
(corresponding to the independence model) in the max-entropy program. This term can be viewed
as encouraging sparsity in the independence domain, while fitting a maximum entropy Markov
model to the rest of the sample correlations. We characterize the optimal solution of the above
program, and also provide intuitions on the class of Markov and independence model combinations
which can be incorporated under this framework. As a byproduct of this analysis, we obtain a set
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of conditions for identifiability of the two model components.

We provide strong theoretical guarantees for our proposed method under a set of sufficient con-
ditions. We establish that it is possible to obtain sparsistency and norm guarantees in both the
Markov and the independence domains. We establish that the number of samples n is required
to scale as n = Ω(d2 log p) for consistency, where p is the number of variables, and d is the maxi-
mum degree in the Markov graph. The set of sufficient conditions for successful recovery are based
on the so-called notion of mutual incoherence, which controls the dependence between different
sets of variables [6]. In Section 7, the synthetic experiments are run on a model which does not
necessarily satisfy sufficient mutual incoherence conditions; But we observe that our method has
good numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

We establish that our estimation reduces to sparse covariance and sparse inverse covariance esti-
mation for certain choices of tuning parameter. On one end, it reduces to the ℓ1 penalized MLE
for sparse precision estimation [6]. On the other extreme, it reduces to (soft) threshold estimator
for sparse covariance estimator, on lines of [7]. Moreover, our conditions for successful recovery are
similar to those previously characterized for consistent estimation of sparse covariance/precision
matrix.

Our experiments validate our theoretical results on the sample complexity and demonstrate that
our method is able to learn a richer class of models, compared to sparse graphical model selection,
while requiring similar number of samples. In particular, our method is able to provide better
estimates for the overall precision matrix, which is dense in general, while the performance of
ℓ1-based optimization is worse since it attempts to approximate the dense matrix via a sparse
estimate. Additionally, we demonstrate that our estimated models have better accuracy under
simple distributed inference algorithms such as loopy belief propagation (LBP). This is because
the Markov components of the estimated models tend to be more walk summable [8], since some
of the correlations can be “transferred” to the residual matrix. Thus, in addition to learning a
richer model class, incorporating sparsity in both covariance and precision domains, we also learn
models amenable to efficient inference. We also apply our method to real data sets. We see the
resulting models are fairly interpretable for the real data sets. For instance, for stock returns
data set, we observe in both Markov and residual graphs that there exist edges among companies
in the same division or industry, e.g., in the residual graph, nodes “HD”, “WMT”, “TGT” and
“MCD”, all belonging to division Retail Trade form a partition. Also for foreign exchange rate
data set, we observe that the statistical dependencies of foreign exchange rates are correlated with
the geographical locations of countries, e.g., it is observed in the learned model that the exchange
rates of Asian countries are more correlated.

1.1 Related Works

There have been numerous works on high-dimensional covariance selection and estimation, and we
describe them below. In all the settings below based on sparsity of the covariance matrix in some
basis, the notion of consistent estimation of the sparse support is known as sparsistency.
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Sparse Graphical Models: Estimation of covariance matrices by exploiting the sparsity pattern
in the inverse covariance or the precision matrix has a long history. The sparsity pattern of the
precision matrix corresponds to a Markov graph of a graphical model which characterizes the set of
conditional independence relationships between the variables. Chow and Liu established that the
maximum likelihood estimate (MLE) for tree graphical models reduces to a maximum weighted
spanning tree algorithm where the edge weights correspond to empirical mutual information. The
seminal work by Dempster [9] on covariance selection over chordal graphs analyzed the convex
program corresponding to the Gaussian MLE and its dual, when the graph structure is known.

In the high-dimensional regime, penalized likelihood methods have been used in a number of works
to achieve parsimony in covariance selection. Penalized MLE based on ℓ1 penalty has been used
in [6, 10–14], among numerous other works, where sparsistency and norm guarantees for recovery
in high dimensions are provided. Graphical lasso [5] is an efficient and popular implementation for
the ℓ1-MLE. There have also been recent extensions to group sparsity structures [15,16], scenarios
with missing samples [17] , semi-parametric settings based on non-paranormals [18], and to the
non-parametric setting [19]. In addition to the convex methods, there have also been a number of
non-convex methods for Gaussian graphical model selection [20–24]. While we base much of our
consistency analysis on [6], we also need to develop novel techniques to handle the delicate issue of
errors in the two domains, viz., Markov and independence domains.

Sparse Covariance Matrices: In contrast to the above formulation, alternatively we can impose
sparsity on the covariance matrix. Note that the zero pattern in the covariance matrix corresponds
to marginal independence relationships [2,25,26]. High-dimensional estimation of sparse covariance
models has been extensively studied in [7, 27, 28], among others. Wagaman and Levina [29] con-
sider block-diagonal and banded covariance matrices and propose an Isomap method for discovering
meaningful orderings of variables. The work in [30] provides unified results for sparsistency under
different sparsity assumptions, viz., sparsity in precision matrices, covariance matrices and models
with sparse Cholesky decomposition.

The above works provide strong guarantees for covariance selection and estimation under various
sparsity assumptions. However, they cannot handle matrices which are combinations of different
sparse representations, but are otherwise dense when restricted to any single representation.

Decomposable Regularizers: Recent works have considered model decomposition based on
observed samples into desired parts through convex relaxation approaches. Typically, each part is
represented as an algebraic variety, which are based on semi-algebraic sets, and conditions for re-
covery of each component are characterized. For instance, decomposition of the inverse covariance
matrix into sparse and low-rank varieties is considered in [31–33] and is relevant for latent Gaussian
graphical model. The work in [34] considers finding a sparse-approximation using a small number
of positive semi-definite (PSD) matrices, where the “basis” or the set of PSD matrices is specified
a priori. In [35], a unified framework is provided for high-dimensional analysis of the so-called
M -estimators, which optimize the sum of a convex loss function with decomposable regularizers.
A general framework for decomposition into a specified set of algebraic varieties was studied in [36].
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The above formulations, however, cannot incorporate our scenario, which consists of a combi-
nation of sparse Markov and independence graphs. This is because, although the constraints on
the inverse covariance matrix (Markov graph) and the covariance matrix (independence graph) can
each be specified in a straightforward manner, their combined constraints on the resulting covari-
ance matrix is not easy to incorporate into a learning method. In particular, we do not have a
decomposable regularizer for this setting.

Multi-Resolution Models: Perhaps the work which is closest to ours is [4], where multi-
resolution models with a known hierarchy of variables is considered. The model consists of a combi-
nation of a sparse precision matrix, which captures the conditional independence across scales, and
a sparse covariance matrix, which captures the residual in-scale correlations. Heuristics for learning
and inference are provided. However, the work has three main deficiencies: the sparsity support is
assumed to be known, the proposed heuristics have no theoretical guarantees for success and the
models considered are in general not identifiable, due to the presence of both latent variables and
residual correlations.

2 Preliminaries and Problem Statement

Notation: For any vector v ∈ R
p and a real number a ∈ [1,∞), the notation ‖v‖a refers to the

ℓa norm of vector v given by ‖v‖a :=
(∑p

i=1 |vi|
a
) 1

a . For any matrix U ∈ R
p×p, the induced or the

operator norm is given by |||U |||a,b := max‖z‖a=1 ‖Uz‖b for parameters a, b ∈ [1,∞). Specifically,
we use the ℓ∞ operator norm which is equivalent to |||U |||∞ = maxi=1,...,p

∑p
j=1 |Uij |. We also have

|||U |||1 = |||UT |||∞. Another induced norm is the spectral norm |||U |||2 (or |||U |||) which is equivalent
to the maximum singular value of U . We also use the ℓ∞ element-wise norm notation ‖U‖∞
to refer to the maximum absolute value of the entries of U . Note that it is not a matrix norm
but a norm on the vectorized form of the matrix. The trace inner product of two matrices is
denoted by 〈U, V 〉 := Tr(UTV ) =

∑
i,j UijVij. Finally, we use the usual notation for asymptotics:

f(n) = Ω(g(n)) if f(n) ≥ cg(n) for some constant c > 0 and f(n) = O(g(n)) if f(n) ≤ c′g(n) for
some constant c′ < ∞.

2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in accordance
to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider a vector of Gaussian
random variables X = [X1,X2, . . . ,Xp], where each node i ∈ V is associated with a scalar Gaussian
random variable Xi. A Gaussian graphical model Markov on G has a probability density function
(pdf) that may be parameterized as

fX(x) ∝ exp

[
−
1

2
xTJx+ hTx

]
, (1)

where J is a positive-definite symmetric matrix whose sparsity pattern corresponds to that of the
graph G. More precisely,

J(i, j) = 0 ⇐⇒ (i, j) /∈ G. (2)
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The matrix J is known as the potential or concentration matrix, the non-zero entries J(i, j) as the
edge potentials, and the vector h as the potential vector. The form of parameterization in (1) is
known as the information form and is related to the standard mean-covariance parameterization of
the Gaussian distribution as

µ = J−1h, Σ = J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.

We say that a jointly Gaussian random vector X with joint pdf f(x) satisfies local Markov property
with respect to a graph G if

f(xi|xN (i)) = f(xi|xV \i) (3)

holds for all nodes i ∈ V , where N (i) denotes the set of neighbors of node i ∈ V and, V \ i denotes
the set of all nodes excluding i. More generally, we say that X satisfies the global Markov property,
if for all disjoint sets A,B ⊂ V , we have

f(xA,xB |xS) = f(xA|xS)f(xB |xS). (4)

where set S is a separator2 of A and B. The local and global Markov properties are equivalent for
non-degenerate Gaussian distributions [3].

On lines of the above description of graphical models, consider the class of Gaussian models3

N (µ,ΣGc), where the covariance matrix is supported on a graph Gc (henceforth referred to as the
conjugate graph), i.e.,

ΣGc(i, j) = 0 ≡ (i, j) /∈ Gc. (5)

Recall that uncorrelated Gaussian variables are independent, and thus,

Xi ⊥⊥ Xj ≡ (i, j) /∈ Gc. (6)

Equivalence between pairwise independence and global Markov properties were studied in [2, 25,
26].

In this paper, we posit that the observed model results in a sparse graphical model under structure
perturbations in the form of an independence model:

Σ∗ +Σ∗
R = J∗

M
−1, Supp(J∗

M ) = GM ,Supp(Σ∗
R) = GR, (7)

where Supp(·) denotes the set of non-zero (off-diagonal) entries, GM denotes the Markov graph and
GR, the independence graph.

2.2 Problem Statement

We now give a detailed description of our problem statement, which consists of the covariance
decomposition problem (given exact statistics) and covariance estimation problem (given a set of
samples).

2A set S ⊂ V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct
components.

3In the sequel, we denote the Markov graph, corresponding the support of the information matrix, as G and the
conjugate graph, corresponding to the support of the covariance matrix, as Gc.
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Covariance Decomposition Problem: A fundamental question to be addressed is the identifi-
ability of the model parameters.
Definition 1 (Identifiability). A parametric model {Pθ : θ ∈ Θ} is identifiable with respect to
a measure µ if there do not exist two distinct parameters θ1 6= θ2 such that Pθ1 = Pθ2 almost
everywhere with respect to µ.

Thus, if a model is not identifiable, there is no hope of estimating the model parameters from
observed data. A Gaussian graphical model (with no hidden variables) belongs to the family of
standard exponential distributions [37, Ch. 3]. Under non-degeneracy conditions, it is also in the
minimal form, and as such is identifiable [38]. In our setting in (7), however, identifiability is not
straightforward to address, and forms an important component of the covariance decomposition
problem, described below.

Decomposition Problem: Given the covariance matrix Σ∗ = J∗
M

−1 − Σ∗
R as in (7), where J∗

M

is an unknown concentration matrix and Σ∗
R is an unknown residual covariance matrix, how and

under what conditions can we uniquely recover J∗
M and Σ∗

R from Σ∗?

In other words, we want to address whether the matrices J∗
M and Σ∗

R are identifiable, given Σ∗,
and if so, how can we design efficient methods to recover them. If we do not impose any additional
restrictions, there exists an equivalence class of models which form solutions to the decomposition
problem. For instance, we can model Σ∗ entirely through an independence model (Σ∗ = Σ∗

R), or
through a Markov model (Σ∗ = J∗

M
−1). However, in most scenarios, these extreme cases are not

desirable, since they result in dense models, while we are interested in sparse representations with
a parsimonious use of edges in both the graphs, viz., the Markov and the independence graphs.
In Section 3.1, we provide a sufficient set of structural and parametric conditions to guarantee
identifiability of the Markov and the independence components, and in Section 3.2, we propose an
optimization program to obtain them.

Covariance Estimation Problem: In the above decomposition problem, we assume that the
exact covariance matrix Σ∗ is known. However, in practice, we only have access to samples, and
we describe this setting below.

Denote Σ̂n as the sample covariance matrix4

Σ̂n :=
1

n

n∑

k=1

x(k)x
T
(k), (8)

where x(k), k = 1, ..., n are n i.i.d. observations of a zero mean Gaussian random vector X ∼
N (0,Σ∗), where X := (X1, ...,Xp). Now the estimation problem is described below.

Estimation Problem: Assume that there exists a unique decomposition Σ∗ = J∗
M

−1 −Σ∗
R where

J∗
M is an unknown concentration matrix with bounded entries and Σ∗

R is an unknown sparse residual

covariance matrix given a set of constraints. Given the sample covariance matrix Σ̂n, our goal is
to find estimates of J∗

M and Σ∗
R with provable guarantees.

In the sequel, we relate the exact and the sample versions of the decomposition problem. In
Section 4, we propose a modified optimization program to obtain efficient estimates of the Markov

4Without loss of generality, we limit our analysis to zero-mean Gaussian models. The results can be easily generalized to
models with non-zero means.
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and independence components. Under a set of sufficient conditions, we provide guarantees in terms
of sparsistency, sign consistency, and norm guarantees, defined below.
Definition 2 (Estimation Guarantees). We say that an estimate (ĴM , Σ̂R) to the decomposition
problem in (7), given a sample covariance matrix Σ̂n, is sparsistent or model consistent, if the
supports of ĴM and Σ̂R coincide with the supports of J∗

M and Σ∗
R respectively. It is said to be sign

consistent, if additionally, the respective signs coincide. The norm guarantees on the estimates is
in terms of bounds on ‖ĴM − J∗

M‖ and ‖Σ̂R−Σ∗
R‖, under some norm ‖·‖.

3 Analysis under Exact Statistics

In this section, we provide the results under exact statistics.

3.1 Conditions for Unique Decomposition

We first provide a set of sufficient conditions under which we can guarantee that the decomposition
of Σ∗ in (7) into concentration matrix J∗

M and residual matrix Σ∗
R is unique5. We impose the

following set of constraints on the two matrices:

(A.0) Σ∗ and J∗
M are positive definite matrices, i.e., Σ∗ ≻ 0, J∗

M ≻ 0.

(A.1) Off-diagonal entries of J∗
M are bounded from above, i.e., ‖J∗

M‖∞,off ≤ λ∗, for some λ∗ > 0.

(A.2) Diagonal entries of Σ∗
R are zero:

(
Σ∗
R

)
ii
= 0, and the support of its off-diagonal entries satisfies

(
Σ∗
R

)
ij
6= 0 ⇐⇒ |

(
J∗
M

)
ij
| = λ∗, ∀ i 6= j. (9)

(A.3) For any i, j, we have sign
((
Σ∗
R

)
ij

)
. sign

((
J∗
M

)
ij

)
≥ 0, i.e, the signs are the same.

Indeed, the above constraints restrict the class of models for which we can provide guarantees.
However, in many scenarios, the above assumptions may be reasonable, and we now provide some
justifications. (A.0) is a natural assumption to impose since we are interested in valid Σ∗ and
J∗
M matrices. Condition (A.1) corresponds to bounded off-diagonal entries of J∗

M . Intuitively,
this limits the extent of “dependence” between the variables in the Markov model, and can lead
to models where inference can be performed with good accuracy using simple algorithms such as
belief propagation. Condition (A.2) limits the support of the residual matrix Σ∗

R: the residual
covariances are captured at those locations (edges) where the concentration entries (J∗

M )i,j are
“clipped” (i.e., the bound λ∗ is achieved). Intuitively, the Markov matrix J∗

M is unable to capture
all the correlations between the node pairs due to clipping, and the residual matrix Σ∗

R captures the
remaining correlations at the clipped locations. Condition (A.3) additionally characterizes the signs
of the entries of Σ∗

R. For the special case, when the Markov model is attractive, i.e. (J∗
M )i,j ≤ 0 for

i 6= j, the residual entries (Σ∗
R)i,j are also all negative. This implies that the model corresponding

to Σ∗ is also attractive, since it only consists of positive correlations. By default, we set the diagonal

5We drop the positive definite constraint on the residual matrix Σ∗

R thereby allowing for a richer class of covariance
decomposition. In section 5.3, we modify the conditions and the learning method to incorporate positive definite
residual matrices Σ∗

R.
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entries of the residual matrix to zero in (A.2) and thus, assume that the Markov matrix captures
all the variances in the model. In Section 4.2.1, we provide a simple example of a Markov chain
and a residual covariance model satisfying the above conditions.

It is also worth mentioning that the number of model parameters satisfying above conditions is
equivalent to the number of parameters in the special case of sparse inverse covariance estimation
when λ → ∞ [6]. It is assumed in assumption (A.2) that the residual matrix Σ∗

R takes nonzero
value when the corresponding entry in the Markov matrix J∗

M takes its maximum absolute value λ∗.
This assumption in conjunction with the sign assumption in (A.3), exactly determines the Markov
entry

(
JM
)
ij

when the corresponding residual entry
(
ΣR

)
ij
6= 0. So, for each (i, j) pair, only one

of the entries
(
JM
)
ij
and

(
ΣR

)
ij
are unknown which results that the proposed model in this paper

does not introduce additional parameters comparing to the sparse inverse covariance estimation,
which is interesting.

According to the above discussion, we observe that the overall covariance and inverse covariance
matrices Σ∗ and J∗ = Σ∗−1 are dense, but represented with small number of parameters. It is
interesting that we are able to represent models with dense patterns, but it is important to notice
that the sparse representation leads to some restrictions on the model.

In the sequel, we propose an efficient method to recover the respective matrices J∗
M and Σ∗

R under
conditions (A.0)-(A.3) and then establish the uniqueness of the decomposition. Finally, note that we
do not impose any sparsity constraints on the concentration matrix J∗

M , and in fact, our method
and guarantees allow for dense matrices J∗

M , when the exact covariance matrix Σ∗ is available.
However, when only samples are available, we limit ourselves to sparse J∗

M and provide learning
guarantees in the high-dimensional regime, where the number of samples can be much smaller than
the number of variables.

3.2 Formulation of the Optimization Program

We now propose a method based on convex optimization for obtaining (J∗
M ,Σ∗

R) given the covariance
matrix Σ∗ in (7). Consider the following program

(
Σ̂M , Σ̂R

)
:= argmax

ΣM≻0,ΣR

log detΣM − λ‖ΣR‖1,off (10)

s. t. ΣM − ΣR = Σ∗, (ΣR)d = 0,

where ‖·‖1,off denotes the ℓ1 norm of the off-diagonal entries, which is the sum of the absolute
values of the off-diagonal entries, and (·)d denotes the diagonal entries. Intuitively, the parameter
λ imposes a penalty on large residual covariances, and under favorable conditions, can encourage
sparsity in the residual matrix. The program in (10) can be recast

(
Σ̂M , Σ̂R

)
:= argmax

ΣM≻0,ΣR

log detΣM (11)

s. t. ΣM −ΣR = Σ∗, (ΣR)d = 0, ‖ΣR‖1,off ≤ C(λ),

for some constant C(λ) depending on λ. The objective function in the above program corresponds
to the entropy of the Markov model (modulo a scaling and a shift factor) [39], and thus, intuitively,

10



the above program looks for the optimal Markov model with maximum entropy subject to an ℓ1
constraint on the residual matrix.

We declare the optimal solution Σ̂R in (10) as the estimate of the residual matrix Σ∗
R, and ĴM := Σ̂

−1

M

as the estimate of the Markov concentration matrix J∗
M . The justification behind these estimates

is based on the fact that the Lagrangian dual of the program in (10) is (see Appendix A)

ĴM := argmin
JM≻0

〈Σ∗, JM 〉 − log det JM (12)

s. t. ‖JM‖∞,off ≤ λ,

where ‖·‖∞,off denotes the ℓ∞ element-wise norm of the off-diagonal entries, which is the maximum
absolute value of the off-diagonal entries. Further, we show in Appendix A that the following
relations exist between the optimal primal6 solution ĴM and the optimal dual solution

(
Σ̂M , Σ̂R

)
:

ĴM = Σ̂
−1

M , and thus, Ĵ−1
M − Σ̂R = Σ∗ is a valid decomposition of the covariance matrix Σ∗.

Remark: Notice that when the ℓ∞ constraint is removed in the primal program in (12), which
is equivalent to letting λ → ∞, the program corresponds to the maximum likelihood estimate,
and the optimal solution in this case is ĴM = Σ∗−1. Similarly, in the dual program in (10), when
λ → ∞, the optimal solution corresponds to Σ̂M = Σ∗ and Σ̂R = 0. At the other extreme, when
λ → 0, ĴM is a diagonal matrix, and the residual matrix Σ̂R is in general, a full matrix (except
for the diagonal entries). Thus, the parameter λ allows us to carefully tune the contributions of
the Markov and residual components, and we notice in our experiments in Section 7 that λ plays
a crucial role in obtaining efficient decomposition into Markov and residual components.

3.3 Guarantees and main results

We now establish that the optimal solutions of the proposed optimization programs in (10) and
(12) lead to a unique decomposition of the given covariance matrix Σ∗ under conditions (A.0)–(A.3)
given in Section 3.1.
Theorem 1 (Uniqueness of Decomposition). Under (A.0)–(A.3), given a covariance matrix Σ∗, if
we set the parameter λ = ‖J∗

M‖∞,off in the optimization program in (10), then the optimal solutions

of primal-dual optimization programs (12) and (10) are given by
(
ĴM , Σ̂R

)
=
(
J∗
M ,Σ∗

R

)
, and the

decomposition is unique.

Proof: See Appendix C. ✷

Thus, we establish that the proposed optimization programs in (10) and (12) uniquely recover the
Markov concentration matrix J∗

M and the residual covariance matrix Σ∗
R given Σ∗ under conditions

(A.0)–(A.3).

6Henceforth, we refer to the program in (12) as the primal program and the program in (10) as the dual program.
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4 Sample Analysis of the Algorithm

In this section, we provide the results under sample statistics where some i.i.d. samples of random
variables are only available.

4.1 Optimization Program

We have so far provided guarantees on unique decomposition given the exact covariance matrix Σ∗.
We now consider the case, when n i.i.d. samples are available from N (0,Σ∗), which allows us to
estimate the sample covariance matrix Σ̂n, as in (8).

We now modify the dual program in (10), considered in the previous section, to incorporate the
sample covariance matrix Σ̂n as follows

(
Σ̂M , Σ̂R

)
:= argmax

ΣM ,ΣR

log detΣM − λ‖ΣR‖1,off (13)

s. t. ‖Σ̂n − ΣM +ΣR‖∞,off ≤ γ,
(
ΣM

)
d
=
(
Σ̂n
)
d
,
(
ΣR

)
d
= 0,

ΣM ≻ 0,ΣM − ΣR ≻ 0.

Note that, in addition to substituting Σ∗ by Σ̂n, there are two more modifications in the above
program comparing to the exact case in (10). First, the positive-definiteness constraint on the
overall covariance matrix Σ = ΣM − ΣR is added to make sure that the overall covariance matrix
estimation is valid. This constraint is not required in the exact case since we have the constraint
Σ = Σ∗ in that case which ensures the positive-definiteness of overall covariance matrix according
to assumption (A.0) that Σ∗ ≻ 0. Second, the equality constraint ΣM − ΣR = Σ∗ is relaxed on
the off-diagonal entries by introducing the new parameter γ which allows some deviation. More
discussion including the Lagrangian primal form of the above optimization program and the effect
of new parameter γ is provided in section 6.

4.2 Assumptions under Sample Statistics

We now provide conditions under which we can provide guarantees for estimating the Markov
model J∗

M and the residual model Σ∗
R, given the sample covariance Σ̂n in high dimensions. These

are conditions in addition to conditions (A.0)–(A.3) in Section 3.1.

The additional assumptions for successful recovery in high dimensions are based on the Hessian
of the objective function in the optimization program in (39), with respect to the variable JM ,
evaluated at the true Markov model J∗

M . The Hessian of this function is given by [40]

Γ∗ = J∗
M

−1 ⊗ J∗
M

−1 = Σ∗
M ⊗ Σ∗

M , (14)

where ⊗ denotes the Kronecker matrix product [41]. Thus Γ∗ is a p2 × p2 matrix indexed by the
node pairs. Based on the results for exponential families [38], Γ∗

(i,j),(k,l) = Cov{XiXj ,XkXl}, and

12



hence it can be interpreted as an edge-based alternative to the usual covariance matrix Σ∗
M . Define

KM as the ℓ∞ operator norm of the covariance matrix of the Markov model

KM := |||Σ∗
M |||∞. (15)

We now denote the supports of the Markov and residual models. Denote EM := {(i, j) ∈ V ×V |i 6=
j,
(
J∗
M

)
ij
6= 0} as the edge set of Markov matrix J∗

M . Define

SM := EM ∪ {(i, i)|i = 1, ..., p}, (16)

SR := {(i, j) ∈ V × V |
(
Σ∗
R

)
ij
6= 0}. (17)

Thus, the set SM includes diagonal entries and also all edges of Markov graph corresponding to
J∗
M . Also, recall from (A.2) in Section 3.1 that the diagonal entries of Σ∗

R are set to zero, and
that the support set SR is contained in SM , i.e., SR ⊂ SM . Let Sc

M and Sc
R denote the respective

complement sets. Define
S := SM ∩ Sc

R, (18)

so that {SR, S, S
c
M} forms a partition of {(1, ..., p) × (1, ..., p)}. This partitioning plays a crucial

role in being able to provide learning guarantees. Define the maximum node degree for Markov
model J∗

M as
d := max

j=1,...,p
|{i : (i, j) ∈ SM}|. (19)

Finally, for any two subsets T and T ′ of V × V , Γ∗
TT ′ denotes the submatrix of Γ∗ indexed by T as

rows and T ′ as columns. We now impose various constraints on the submatrices of the Hessian in
(14), limited to each of the sets {SR, S, S

c
M}.

(A.4) Mutual Incoherence: These conditions impose mutual incoherence among three partitions
of Γ∗ indexed by SR, S

c
M and S.

max{|||Γ∗
Sc
M

S

(
Γ∗
SS

)−1
Γ∗
SSR

− Γ∗
Sc
M

SR
|||∞, |||Γ∗

Sc
M

S

(
Γ∗
SS

)−1
|||∞} ≤ (1 − α) for some α ∈ (0, 1],

(20)

KSSR
:= |||

(
Γ∗
SS

)−1
Γ∗
SSR

|||∞ <
1

4
. (21)

(A.5) Covariance Control: For the same α specified above, we have the bound:

KSS := |||
(
Γ∗
SS

)−1
|||∞ ≤

(m− 4)α

4(m− (m− 1)α)
for some m > 4. (22)

(A.6) Eigenvalue Control: The minimum eigenvalue of overall covariance matrix Σ∗ satisfies the
lower bound

λmin(Σ
∗) ≥ C6d

√
log(4pτ )

n
+ C7d

2 log(4p
τ )

n
for some C6, C7 > 0 and τ > 2. (23)

In (A.4), the condition in (20) bounds the effect of the non-edges of the Markov model, indexed by
Sc
M , to its edges, indexed by SR and S. Note that we distinguish between the common edges of
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1 2 3 4

Figure 2: Example of a Markov chain and a residual covariance matrix, where a residual edge is present
between nodes 1 and 2.

the Markov model with the residual model (SR) and the remaining edges of the Markov model (S).
The second condition in (21) controls the influence of the edge-based terms which are shared with
the residual matrix, indexed by SR, to other edges of the Markov model, indexed by S = SM ∩Sc

R.
Condition (A.5) imposes ℓ∞ bounds on the rows of (Γ∗

SS)
−1. Note that for sufficiently large m, the

bound in (22) tends to α
4(1−α) . Also note that the conditions (A.4) and (A.5) are only imposed on

the Markov model J∗
M and there are no additional constraints on the residual matrix Σ∗

R (other
than the conditions previously introduced in Section 3.1). In condition (A.6), it is assumed that
the minimum eigenvalue of overall covariance matrix Σ∗ is sufficiently far from zero to make sure
that its estimation Σ̂ is positive definite and therefore a valid covariance matrix.

4.2.1 Example of a Markov Chain + Residual Covariance Model

In this section, we propose a simple model satisfying assumptions (A.0)–(A.5). Consider a Markov
chain with concentration matrix J∗

M over 4 nodes, as shown in Fig.2. The diagonal entries in the
corresponding covariance matrix Σ∗

M = J∗
M

−1 are set to unity, and the correlations between the
neighbors in J∗

M are set uniformly to some value ρ ∈ (−1, 1), i.e.,
(
Σ∗
M

)
ij
= ρ for (i, j) ∈ EM . Due to

the Markov property, the correlations between other node pairs are given by
(
Σ∗
M

)
13

=
(
Σ∗
M

)
24

= ρ2

and
(
Σ∗
M

)
14

= ρ3. For the residual covariance matrix Σ∗
R, we consider one edge between nodes 1

and 2, i.e., SR = {(1, 2), (2, 1)}. It is easy to see that conditions (A.0)–(A.2) are satisfied. Recall
that Sc

M = {(i, j) : (i, j) /∈ EM} and the remaining node pairs belongs to set S := SM \SR. Through
some straightforward calculations, we can show that for any |ρ| < 0.07, the mutual incoherence
conditions in (A.4) and (A.5) are satisfied for α = 0.855 and m ≥ 83. Note that the value of
nonzero entries of Σ∗

R are not involved or restricted by these assumptions. However, they do need
to satisfy the sign condition in (A.3). Thus, we have non-trivial models satisfying the set of sufficient
conditions for successful high-dimensional estimation 7. In Section 7, the synthetic experiments are
run on a model which does not necessarily satisfy mutual incoherence conditions (A.4) and (A.5);
But we observe that our method has good numerical estimation performance even when the above
incoherence conditions are not fully satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

7Similarly, for the case when the correlations corresponding to Markov edges are distinct as
(

Σ∗

M

)

12
=

ρ1,
(

Σ∗

M

)

23
= ρ2, and

(

Σ∗

M

)

34
= ρ3, we can argue the same conditions. For compatibility with Figure 2, assume that

ρ1 is the maximum among these three parameters, and therefore, the residual edge is between nodes 1 and 2. This is
because the maximum of off-diagonal entries of J∗

M also happens in entry (1, 2). Then, the same condition |ρ1| < 0.07
is sufficient for satisfying conditions (A.0)–(A.5).
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Theorem 2. Consider a Gaussian distribution with covariance matrix Σ∗ = J∗
M

−1−Σ∗
R satisfying

conditions (A.0)-(A.6). Given a sample covariance matrix Σ̂n using n i.i.d. samples from the
Gaussian model, let

(
ĴM , Σ̂R

)
denote the optimal solutions of the primal-dual pair (39) and (13),

with parameters γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n for some constants C1, C2 > 0, where

λ∗ := ‖J∗
M‖∞,off . Suppose that

(
Σ∗
R

)
min

:= min(i,j)∈SR
|
(
Σ∗
R

)
ij
| scales as

(
Σ∗
R

)
min

= Ω
(√

log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2 log p

)
, (24)

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimates ĴM ≻ 0 and Σ̂R satisfy ℓ∞ bounds

‖ĴM − J∗
M‖∞ = O

(√
log p

n

)
, (25)

‖Σ̂R − Σ∗
R‖∞ = O

(√
log p

n

)
. (26)

b) The estimate Σ̂R is sparsistent and sign consistent with Σ∗
R.

c) If in addition,
(
J∗
M

)
min

:= min(i,j)∈SM
|
(
J∗
M

)
ij
| scales as

(
J∗
M

)
min

= Ω
(√

log p/n
)
, then the

estimate ĴM is sparsistent and sign consistent with J∗
M .

Proof: See Appendix D. ✷

Remarks:

1. Non-asymptotic sample complexity and error bounds: In the above theorem, we
establish that the number of samples is required to scale as n = Ω(d2 log p). In fact, our
results are non-asymptotic, and the exact constants are provided in inequality (60). The
non-asymptotic form of error bounds are also provided in (65) and (81).

2. Extension to sub-Gaussian and other distributions: In the above theorem, we con-
sidered Gaussian distribution. Similar to high dimensional covariance estimation in [6], the
result in the theorem can be easily extended to sub-Gaussian and other distributions with
known tail conditions.

3. Comparison between direct estimation of Σ∗ and the above decomposition: The
overall matrix Σ∗ (and J∗) is a full matrix in general. Thus, if we want to estimate it directly,
we need n = Ω

(
p2 log p

)
samples since the maximum node degree is Θ(p). Therefore, we can

not estimate it directly in high dimensional regime and it demonstrates the importance of
such sparse covariance + inverse covariance models for estimation.

We discussed in the remark in section 3.2 that the parameter λ allows us to carefully tune the
contributions of the Markov and residual components. When λ → ∞, the program corresponds to
ℓ1-penalized maximum likelihood estimator which is well-studied in [6, 14]. In this case, Σ̂R = 0
and all the dependencies among random variables are captured by the sparse graphical model
represented by ĴM . On the other extreme, when λ∗ = 0 and thus λ = C2

√
log p/n → 0, with

increasing the number of samples n, the off-diagonal entries in ĴM are bounded too tight by λ
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(refer to the primal program in (39)) and therefore the residual covariance matrix Σ̂R captures
most of the dependencies among random variables. In this case, we have the covariance estimation
Σ̂ = Σ̂M − Σ̂R, where the diagonal entries are included in Σ̂M and the off-diagonal entries are
mostly included in −Σ̂R. In order to explain the results for these cases in a more concrete way, we
explicitly mention the results for both sparse inverse covariance estimation (λ → ∞) and sparse
covariance estimation (λ ≈ 0) methods in the following subsections. Note that both of these are
special cases of the general result expressed in Theorem 2. Thus, in Theorem 2, we generalize
these extreme cases to models with a linear combination of sparse covariance and sparse inverse
covariance matrices.

5 Discussions and Extension

In this section, we first provide a detailed discussion of special cases sparse covariance and sparse
inverse covariance estimation. Then, the extension of results to the structured noise model is
mentioned.

5.1 Sparse Inverse Covariance Estimation

In this section, we mention the result for sparse inverse covariance estimation in high dimensional
regime. This result is provided by [6] and is a special case of Theorem 2 when the parameter λ goes
to infinity. Before proposing the explicit result in Corollary 1, we state how the required conditions
in Theorem 2 reduces to the conditions in [6].
Since the support of residual matrix Σ∗

R is a zero matrix in this special case, the mutual incoherence
conditions in (A.4) reduce exactly to the same mutual incoherence condition in [6] as

|||Γ∗
ScS

(
Γ∗
SS

)−1
|||∞ ≤ (1− α) for some α ∈ (0, 1], (27)

where S = SM is the support of Markov matrix J∗ = J∗
M as defined in (16). Also note that the

covariance control condition (A.5) is not required any more.
Furthermore, the sample complexity and convergence rate of J∗

M estimation in Theorem 2 exactly
reduce to the results in [6] as (for q = 8, l = 3)

n > nf

(
pτ ; 1/max

{
v∗,2ld

(
1 +

q

α

)
KSSKM max

{
1,

2

l − 1

(
1 +

q

α

)
KSSK

2
M

}})
, (28)

‖Ĵ − J∗‖∞ ≤ 2KSS

(
1 +

q

α

)
δf (p

τ ;n), (29)

where the result is valid for any q ≥ 8 and l > 1.

Corollary 1 (Sparse Inverse Covariance Estimation, [6]). Consider a Gaussian distribution with
covariance matrix Σ∗ = J∗−1 satisfying mutual incoherence condition (27). Given a sample covari-
ance matrix Σ̂n using n i.i.d. samples from the Gaussian model, let Ĵ denote the optimal solution
of the primal-dual pair (39) and (13), with parameters γ = C1

√
log p/n and λ → ∞ (removing ℓ∞

constraints in the primal program (39)) for some constant C1 > 0. Suppose that the sample size n
is lower bounded as

n = Ω
(
d2 log p

)
, (30)
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then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Ĵ ≻ 0 satisfies ℓ∞ bound

‖Ĵ − J∗‖∞ = O

(√
log p

n

)
. (31)

b) If in addition
(
J∗
)
min

:= min(i,j)∈SM
|
(
J∗
)
ij
| scales as

(
J∗
)
min

= Ω
(√

log p/n
)
, the estimate

Ĵ is sparsistent and sign consistent with J∗.

Remark [Comparison between the results of general case (Theorem 2) and sparse inverse covari-
ance estimation case (Corollary 1)]: Considering the results in Theorem 2, sample complexity and
convergence rate of estimated models are exactly the same as results in [6] with only some minor
differences in coefficients. Compare (60) with (28) for sample complexity and (65) with (29) for
convergence rate of estimated Markov matrix ĴM . But regarding the mutual incoherence condi-
tions, we observe that the conditions for the special case sparse inverse covariance estimation in
(27) are less restrictive than the conditions for the general case in (20)-(21). Since the sparse in-
verse covariance estimation [6] is a special case of the general model in this paper, this additional
limitation on models is inevitable, i.e., it is natural that we need some more incoherence conditions
in order to be able to recover both the Markov and residual models in the general case.

5.2 Sparse Covariance Estimation

High-dimensional estimation of sparse covariance models has been studied in [7]. They propose
an estimation of a class of sparse covariance matrices by “hard thresholding”. They also prove
spectral norm guarantees on the error between the estimated and exact covariance matrices. We
also recover similar results in the other extreme case of proposed program (13) when λ ≈ 0. The
program reduces to the sparse covariance estimator as discussed earlier. In order to see that again,
let us investigate the dual program restated as follows

(
Σ̂M , Σ̂R

)
:= argmax

ΣM ,ΣR

log detΣM − λ‖ΣR‖1,off

s. t. ‖Σ̂n − ΣM +ΣR‖∞,off ≤ γ,
(
ΣM

)
d
=
(
Σ̂n
)
d
,
(
ΣR

)
d
= 0,

ΣM ≻ 0,ΣM − ΣR ≻ 0.

When the parameter λ ≈ 0, the variable ΣR is very slightly penalized in the objective function.
Therefore, most of the statistical dependencies are captured by ΣR and thus, off-diagonal entries
of ΣM take very small values. Furthermore, according to the property of optimization program
that the support of ΣR is contained within the support of JM , sparsity on ΣR is encouraged by the
effect of parameter γ.
It is also observed that we are approximately performing “soft thresholding” in program (13) (when
λ ≈ 0) comparing to “hard thresholding” in [7]. Consider the case λ = 0, where the Markov part
ΣM is a diagonal matrix. Therefore, the ‖Σ̂n −ΣM +ΣR‖∞,off ≤ γ constraint in the dual program
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(13) reduces to ‖Σ̂n+ΣR‖∞,off ≤ γ where it is seen that the negative soft thresholding is performed

on matrix Σ̂n with threshold parameter γ, given by

Sγ(x) = sign(−x)(|x| − γ)+. (32)

Notice that we need to have λ ≈ 0 for recovering the sparse covariance matrix given empirical
covariances and in this case, we can view the estimator as approximately performing soft thresh-
olding.

Finally, we propose the corollary for this special case. Before that, we need some additional
definitions for a general covariance matrix Σ∗. Similar to definition (17), the support of a covariance
matrix Σ∗ is defined as

SΣ := {(i, j) ∈ V × V |Σ∗
ij 6= 0}. (33)

The maximum node degree for a covariance matrix Σ∗ is also defined as

dΣ := max
j=1,...,p

|{i : (i, j) ∈ SΣ}|. (34)

Corollary 2 (Sparse Covariance Estimation). Consider a Gaussian distribution with covariance
matrix Σ∗ satisfying eigenvalue control condition (A.6). Given a sample covariance matrix Σ̂n

using n i.i.d. samples from the Gaussian model, let
(
Σ̂M , Σ̂R

)
denote the optimal solutions of

the primal-dual pair (39) and (13), with parameters γ = C1

√
log p/n and λ = C2

√
log p/n for

some constants C1, C2 > 0. The estimated covariance matrix Σ̂ is defined as Σ̂off := −Σ̂R and
Σ̂d :=

(
Σ̂M

)
d
. Suppose that

(
Σ∗
off

)
min

:= min(i,j)∈SΣ,i 6=j |
(
Σ∗
)
ij
| scales as

(
Σ∗
off

)
min

= Ω
(√

log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2Σ log p

)
, (35)

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Σ̂ satisfies ℓ∞ bound

‖Σ̂− Σ∗‖∞,off = O

(√
log p

n

)
. (36)

b) The estimate Σ̂off is sparsistent and sign consistent with Σ∗
off .

Proof: See Appendix F. ✷

5.3 Structured Noise Model

In the discussion up to now, we considered general residual matrices Σ∗
R, not necessarily positive

definite, thereby allowing for a rich class of covariance decomposition models. In this section, we
modify the conditions and the learning method to incorporate positive-definite residual matrices
Σ∗
R.

We regularize the diagonal entries in an appropriate way to ensure that both J∗
M and Σ∗

R are
positive definite. Thus, the identifiability assumptions (A.0)-(A.3) are modified as follows:
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(A.0’) Σ∗, Σ∗
R and J∗

M are positive definite matrices, i.e., Σ∗ ≻ 0,Σ∗
R ≻ 0, J∗

M ≻ 0.

(A.1’) J∗
M is normalized such that

(
J∗
M

)
d
= λ∗

1 for some λ∗
1 > 0 and off-diagonal entries of J∗

M are
bounded from above, i.e., ‖J∗

M‖∞,off ≤ λ∗
2, for some λ∗

2 > 0.

(A.2’) The off-diagonal entries of Σ∗
R satisfy

(
Σ∗
R

)
ij
6= 0 ⇐⇒ |

(
J∗
M

)
ij
| = λ∗

2, ∀ i 6= j. (37)

(A.3’) For any i, j, we have sign
((
Σ∗
R

)
ij

)
. sign

((
J∗
M

)
ij

)
≥ 0, i.e, the signs are the same.

It is seen in (A.1’) that we put additional restrictions on diagonal entries of the Markov matrix J∗
M

in order to have nonzero diagonal entries for the residual matrix Σ∗
R.

Similar to the general form of dual program introduced in (44), we propose the following optimiza-
tion program to estimate the Markov and residual components in the structured noise model:

(
Σ̂M , Σ̂R

)
:= argmax

ΣM ,ΣR≻0
log detΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off

s. t. ‖Σ̂n +ΣR − ΣM‖∞,off ≤ γ, (38)
(
Σ̂n
)
d
+
(
ΣR

)
d
=
(
ΣM

)
d
.

The decomposition result under exact statistics can be similarly proven by setting parameter γ = 0
when the identifiability assumptions (A.0’)-(A.3’) are satisfied. Furthermore, under additional
estimation assumptions (A.4)-(A.6), the sample statistics guarantees in Theorem 2 can be also
extended to the solutions of above program.

6 Proof Outline

In this section, the Lagrangian primal form for the proposed dual program (13) is provided first
and then the proof outlne is presented. For now, we drop the positive-definiteness constraint
ΣM − ΣR ≻ 0 in the proposed dual program (13). We finally show that this constraint is satisfied
for the proposed estimation under specified conditions and thus this constraint can be dropped.
In the subsequent discussion, we drop this constraint. It is shown in Appendix A that the primal
form for this reduced dual program is

ĴM := argmin
JM≻0

〈Σ̂n, JM 〉 − log det JM + γ‖JM‖1,off (39)

s. t. ‖JM‖∞,off ≤ λ,

We further establish that Σ̂M = Ĵ−1
M is valid between the dual variable ΣM and primal variable JM

and thus,
‖Σ̂n − Ĵ−1

M + Σ̂R‖∞,off ≤ γ. (40)

Comparing the above with the exact decomposition Σ∗ = J∗
M

−1 − Σ∗
R in (7), we note that for the

sample version, we do not exactly fit the Markov and the residual models with the sample covariance
matrix Σ̂n, but allow for some divergence, depending on γ. Similarly, the primal program (39) has
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S SRSc
M

Figure 3: The sets SR, S and Sc
M form a partition of {(1, ..., p)× (1, ..., p)}, where p is the number of nodes,

SR is the support of the residual covariance matrix Σ∗

R and SM is the support of the precision matrix J∗

M of
the Markov model and Sc

M is its complement.

an additional ℓ1 penalty term on ĴM , which is absent in (12). Having a non-zero γ in the primal
program enables us to impose a sparsity constraint on ĴM , which in turn, enables us to estimate the
matrices in the high dimensional regime (p ≫ n), under a set of conditions of sufficient conditions
given in section 4.2.

We now provide a high-level description of the proof for Theorem 2. The detailed proof is given
in Appendix D. The proof is based on the primal-dual witness method, which has been previously
employed in [6] and other works. However, we require significant modifications of this approach in
order to handle the more complex setting of covariance decomposition.

In the primal-dual witness method, we define a modified version of the original optimization pro-
gram (39). Note that the key idea in constructing the modified version is to be able to analyze
it and prove guarantees for it in a less complicated way comparing to the original version. Let us
denote the solutions of the modified program by

(
J̃M , Σ̃R

)
pair. In general, the optimal solutions

of the two programs, original and modified one, are different. However, under conditions (A.0)–
(A.5), we establish that their optimal solutions coincide. See Appendix D for details. Through
this equivalence, we thus establish that the optimal solution

(
ĴM , Σ̂R

)
of the original program in

(39) inherits all the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program, i.e., the

solutions of the modified program act as witness for the original program. In the following, we de-
fine the modified optimization program and its properties. The primal-dual witness method steps
which guarantee the equivalence between solutions of the original and the modified program are
mentioned in Appendix D.

We modify the sample version of our optimization program in (39) as follows:

J̃M := argmin
JM≻0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (41)

s. t.
(
JM
)
Sc
M

= 0,
(
JM
)
SR

= λ sign
((

J∗
M

)
SR

)
.

Note that since we do not a priori know the supports of the original matrices J∗
M and Σ∗

R, the above
program cannot be implemented in practice, but is only a device useful for proving consistency
results. We observe that the objective function in the modified program above is the same as the
original program in (39), and only the constraints on the precision matrix are different in the two
programs. In the above program in (41), constraints on the entries of the precision matrix when
limited to sets SR and Sc

M are more restrictive, while those in set S := SM \ SR are more relaxed
(i.e., the ℓ∞ constraints present in (39) are removed above), compared to the original program
in (39). Recall that SM denotes the support of the Markov model, while SR ⊆ SM denotes the
support of the residual or the independence model. See Fig.3.
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We now discuss the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program in (41).

Since the precision matrix entries on Sc
M are set to zero in (41), we have that Supp(J̃M ) ⊆

Supp(J∗
M ). Denoting Σ̃R as the residual covariance matrix corresponding to the modified program

(41), we can similarly characterize it in the following form derived from duality:

(
Σ̃R

)
ij
=

{
0 for (i, j) ∈ S

β̃ij for (i, j) ∈ SR, S
c
M ,

(42)

where β̃ij are the Lagrangian multipliers corresponding to the equality constraints in the modified
program (41).

Define estimation errors ∆̃J := J̃M−J∗
M and ∆̃R := Σ̃R−Σ∗

R for the modified program in (41). It is

easy to see that
(
∆̃J

)
SR

= λδ,
(
∆̃J

)
Sc
M

= 0,
(
∆̃R

)
S
= 0, where λδ := λ−λ∗ > 0. This implies that

in any of the three sets S, SR or Sc
M , only one of the two estimation errors ∆̃J or ∆̃R can be non-zero

(or is at most λδ). This property is crucial to be able to decouple the perturbations in the Markov
and the independence domains, and thereby gives bounds on the individual perturbations. It is not
clear if there is an alternative partitioning of the variables (here the partition is S, SR and Sc

M )

which allows us to decouple the estimation errors for J̃M and Σ̃R. Through this decoupling, we are
able to provide bounds on estimation errors ∆̃J and ∆̃R and thus, Theorem 2 is established.

7 Experiments

In this section, we provide synthetic and real experimental results for the proposed algorithm. We
term our proposed optimization program as ℓ1 + ℓ∞ method and compare it with the well-known
ℓ1 method which is a special case of the proposed algorithm when λ = ∞. The primal optimization
program (39) is implemented via the ADMM 8 technique proposed in [42]. We also compare the
performance of belief propagation on the proposed model.

7.1 Synthetic Data

We build a Markov + residual synthetic model in the following way. We choose 0.2 fraction of
Markov edges randomly to introduce residual edges. The underlying graph for the Markov part
is a q × q 2-D grid structure (4-nearest neighbor grid). Therefore, the number of nodes is p = q2.
Because of assumption (A.2), we randomly set 0.2 fraction of nonzero Markov off-diagonal entries to
{−0.2, 0.2}, and the rest of nonzero off-diagonal entries in J∗

M (corresponding to the grid edges) are
randomly chosen from set ±[0.15, 0.2], i.e.,

(
J∗
M

)
ij
∈ [−0.2,−0.15] ∪ [0.15, 0.2], for all (i, j) ∈ EM .

Note that 0.2 fraction of edges take the maximum absolute value which is needed by assumption
(A.2). Then we ensure that J∗

M is positive definite by adding some uniform diagonal weighting.
The nonzero entries of Σ∗

R are chosen from ±[0.15, 0.2] such that the sign of residual entry is the
same as the sign of overlapping Markov entry (assumption (A.3)). We also generate a random
mean in the interval [0, 1] for each variable. Note that this generated synthetic model does not
necessarily satisfy mutual incoherence conditions (A.4) and (A.5); But we observe in the following

8Alternating Direction Method of Multipliers

21



that our method has good numerical estimation performance even when the incoherence conditions
are not fully satisfied.

Before we provide experiment results, it is worth mentioning that the realization of above model
is an example that both Markov and residual matrices J∗

M and Σ∗
R are sparse, while the overall

covariance matrix Σ∗ = J∗
M

−1 − Σ∗
R and concentration matrix J∗ = Σ∗−1 are both dense matri-

ces.

Effect of graph size p

We apply our method (ℓ1 + ℓ∞ method) to random realizations of the above described model

Σ∗ = J∗
M

−1 − Σ∗
R with different sizes p ∈ {25, 64, 100, 400, 900}. Normalized Dist

(
ĴM , J∗

M

)
, the

edit distance between the estimated and exact Markov components ĴM and J∗
M , and normalized

Dist
(
Σ̂R,Σ

∗
R

)
, the edit distance between the estimated and exact residual components Σ̂R and Σ∗

R

as a function of number of samples are plotted in Figure 4 for different sizes p.

In Figure 4.a, normalized Dist
(
ĴM , J∗

M

)
is plotted and in Figure 4.b, the same is plotted with

rescaled horizontal axis n/ log p. We observe that by increasing the number of samples, the edit
distance decreases, and by increasing the size of problem, it becomes harder to recover the com-
ponents which are intuitive. More importantly, we observe in the rescaled graph that the plots
for different sizes p make a lineup which is consistent with the theoretical results saying that 9

n = O(d2 log p) is sufficient for correct recovery.

Similarly, in Figure 4.c, normalized 10 Dist
(
Σ̂R,Σ

∗
R

)
is plotted and in Figure 4.d, the same is

plotted with rescaled horizontal axis n/ log p. We similarly have the initial observations that by
increasing the number of samples, the edit distance decreases, and by increasing the size of problem,
it becomes harder to recover the components. The theoretical sample complexity n = O(d2 log p)
is also validated in Figure 4.d.

The value of regularization parameters used for this simulation are provided in Table 1. Since in
the synthetic experiments, we know the value of λ∗ := ‖J∗

M‖∞,off , parameter λ is set to λ∗ = 0.2.
It is observed that the recovery of sparsity pattern of the Markov component J∗

M is fairly robust to
the choice of this parameter. For choosing parameter γ, the experiment is run for several values of
γ to see which one gives the best recovery result. The effect of parameter γ is discussed in detail
in the next subsection.

Effect of regularization parameter γ

We apply our method (ℓ1 + ℓ∞ method) to random realizations of the above described grid-
structured synthetic model Σ∗ = J∗

M
−1 − Σ∗

R with fixed size p = 64. Here, we fix the regu-
larization parameter 11 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n where

9Note that in the grid graph, d = 4 is fixed for different sizes p.
10The normalized distance for recovering residual component is greater than 1 for small n. Since we normalize the

distance with the number of edges in the exact model, this may happen.
11λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗

M .
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normalized edit

distance between the estimated Markov component ĴM and the exact Markov component J∗

M . In panel
(b), the horizontal axis is rescaled as n/ log p. (c-d) Normalized edit distance between the estimated residual

component Σ̂R and the exact residual component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p.
Each point in the figures is derived from averaging 10 trials.

cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov components

ĴM and J∗
M , and the edit distance between the estimated and exact residual components Σ̂R and

Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than some optimal value c∗γ ,

the Markov component is not recovered, and for values greater than the optimal value, the compo-
nents are recovered with different statistical efficiency, where by increasing cγ , the statistical rate
of Markov component recovery becomes worse. For the simulations of previous subsection provided
in Figure 4, we choose some regularization parameter close to c∗γ . For example, we choose cγ = 2.08
for p = 64 as suggested by Figure 5.

Table 1: Regularization parameters used for grid-structured Markov graph simulations in Figure
4. Note that γ = cγ

√
log p/n.

Size(p) cγ λ

25 2.23 0.2

64 2.08 0.2

100 2.01 0.2

400 1.85 0.2

900 1.83 0.2
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters λ = 0.2 and
varying cγ ∈ {1, 1.3, 2.08, 2.5, 3} where γ = cγ

√
log p/n. (a) Edit distance between the estimated Markov

component ĴM and the exact Markov component J∗

M . (b) Edit distance between the estimated residual

component Σ̂R and the exact residual component Σ∗

R. Each point in the figures is derived from averaging
10 trials.

Comparing ℓ1 + ℓ∞ and ℓ1 methods

We apply ℓ1 + ℓ∞ and ℓ1 methods to a random realization of the above described grid-structured
synthetic model 12 Σ∗ = J∗

M
−1 − Σ∗

R with size p = 64. The edit distance between the estimated

and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We observe that the behaviour

of ℓ1 + ℓ∞ method is very close to ℓ1 method which suggests that sparsity pattern of J∗
M can be

estimated efficiently under either methods. The edit distance between the estimated and exact
residual components Σ̂R and Σ∗

R is plotted in Figure 6.b. Since there is not any off-diagonal ℓ∞
constraints in ℓ1 method, it can not recover the residual matrix Σ∗

R. Finally the ℓ∞-elementwise

norm of error between the estimated precision matrix Ĵ and the exact precision matrix J∗ is
sketched for both methods in Figure 6.c. We observe the advantage of proposed ℓ1 + ℓ∞ method
in estimating the overall model precision matrix J∗ = Σ∗−1. Note that the same regularization
parameters provided in Table 1 are used for the simulations of this subsection, except for ℓ1 method
that we have λ = ∞.

Benefit of applying LBP 13 to the proposed model

We compare the result of applying LBP to J∗ and J∗
M components of a random realization of the

above described grid-structured synthetic model 14. The log of average mean and variance errors
over all nodes are sketched in Figure 7 throughout the iterations. We observe that LBP does not
converge for J∗ model. It is shown in [8] that if a model is walk-summable, then the mean estimates
under LBP converge and are correct. The spectral norms of the partial correlation matrices are
|||RM ||| = 0.8613 and |||R||| = 3.2446 for J∗

M and J∗ models respectively. Thus, the matrix J∗ is
not walk-summable and therefore its convergence under LBP is not guaranteed and this is seen in
Figure 7. On the other hand, LBP is accurate for J∗

M matrix. Thus, our method learns models
which are better suited for inference under loopy belief propagation.

12Here, we choose the nonzero off-diagonal entries of J∗

M randomly from {−0.2, 0.2}.
13Loopy Belief Propagation
14Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.

24



0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

 

 

ℓ1 + ℓ∞ method

ℓ1 method

n

D
is
t
(Ĵ
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Ĵ
‖
∞

(c)

Figure 6: Simulation results for grid graph with size p = 64. (a) Edit distance between the estimated Markov

component ĴM and the exact Markov component J∗

M . (b) Edit distance between the estimated residual

component Σ̂R and the exact residual component Σ∗

R. (c) Precision matrix estimation error ‖J∗ − Ĵ‖∞ ,

where Ĵ = ĴM for ℓ1 method and Ĵ =
(
Ĵ−1

M − Σ̂R

)
−1

for ℓ1 + ℓ∞ method.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns data
sets to learn a Markov plus residual model introduced in the paper. It is important to note that
the real data sets can be modeled by different models not necessarily satisfying the conditions
proposed in this paper. But, here we observe that the resulting Markov plus residual models are
fairly interpretable for the corresponding real data sets. The interpretations are discussed in detail
in the following sections.

Foreign Exchange Rate Data

In this section, we apply the proposed algorithm to the foreign exchange rate data set15. The
dataset includes monthly exchange rates of 19 countries currency with respect to US dollars from
October 1983 to January 2012. Thus, the dataset has 340 samples of 19 variables. We apply the
optimization program (13) with a slight modification. Since the underlying model for this data set
does not necessarily satisfy the proposed eigenvalue condition (A.6), we need to make sure that
the overall covariance matrix estimation Σ̂ is positive definite and thus a valid covariance matrix.
We add an additional constraint to the optimization program (13), imposing a lower bound on the
minimum eigenvalue of overall covariance matrix λmin(Σ), i.e., λmin(Σ) ≥ σmin. The parameter
σmin is set to 0.001 in this experiment.

15Dataset available at http://research.stlouisfed.org/fred2/categories/15/downloaddata
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Figure 7: Performance under loopy belief propagation for the overall model (J∗) and the Markov component
(J∗

M ).

The resulting edges of Markov and residual matrices for some moderate choice of regularization
parameters γ = 20 and λ = 0.004 are plotted in Figure 8. The choice of regularization parameters
are further discussed at the end of this subsection. We observe sparsity on both Markov and residual
structures. There are two main observations in the learned model in Figure 8. First, it is seen that
the statistical dependencies of foreign exchange rates are correlated with the geographical locations
of countries, e.g., it is observed in the learned model that the exchange rates of Asian countries are
more correlated. We can refer to Asian countries “South Korea”, “Japan”,“China”,“Sri Lanka”,
“Taiwan”, “Thailand” and “India” in the Markov model where several edges exist between them
while other nodes in the graph have much lower degrees. We observe similar patterns in the residual
matrix, e.g., there is an edge between “India” and “Sri Lanka” in the residual model. We also see
the interesting phenomena in the Markov graph that there exist some high degree nodes such as
“South Korea” and “Japan”. The presence of high degree nodes suggests that incorporating hidden
variables can further lead to sparser representations, and this has been observed before in other
works, e.g., [4], [32] and [43].

The regularization parameters are chosen such that the resulting Markov and residual graphs are
reasonably sparse, while still being informative. Increasing the parameter γ makes both Markov and
residual components sparser, and increasing parameter λ makes the residual component sparser.
In addition, it is worth discussing the fact that we chose parameter γ relatively large compared to
parameter λ in this simulation. In Theorem 4, we have γ = C1

√
log p/n and λ = λ∗+C2

√
log p/n.

Now, if C1 is large compared to C2 and furthermore λ∗ is small, γ can be larger than λ. Hence, we
have an agreement between theory and practice.

Monthly Stock Returns Data

In this section we apply the algorithm to monthly stock returns of a number of companies in
the S&P 100 stock index. We pick 17 companies in divisions “E.Trans, Comm, Elec&Gas” and
“G.Retail Trade” and apply the optimization program (39) to their stock returns data to learn
the model. The resulting edges for Markov and residual matrices are plotted in Figure 9 for
regularization parameters γ = 2.2e − 03 and λ = 1e − 04. There is sparsity on both Markov and
residual structure. The isolated nodes in the Markov graph are not presented in the figure. We
see in both Markov and residual graphs that there exist higher correlations among stock returns
of companies in the same division or industry. There are 5 connected partitions in the residual
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Figure 8: Markov and independence graph structures for the foreign exchange rate data set with regular-
ization parameters γ = 20 and λ = 0.004. Solid edges indicate Markov model and dotted edges indicate
independence model.

graph. e.g. nodes “HD”, “WMT”, “TGT” and “MCD”, all belonging to division Retail Trade
form a partition. This is also observed for the telecommunication industries (companies “T” and
“VZ”) and energy industries (companies “ETR” and “EXC”). We see a similar pattern in the
Markov graph but with more edges. Similar to exchange rate data set results, we also observe high
degree nodes in the Markov graph such as “HD” and “TGT” which suggest incorporating hidden
nodes.

8 Conclusion

In this paper, we provided an in-depth study of convex optimization methods and guarantees
for high-dimensional covariance matrix decomposition. Our methods unify the existing results
for sparse covariance/precision estimation and introduce a richer class of models with sparsity
in multiple domains. We provide consistency guarantees for estimation in both the Markov and
the residual domains, and establish efficient sample complexity results for our method. These
findings open up many future directions to explore. One important aspect is to relax the sparsity
constraints imposed in the two domains, and to develop new methods to enable decomposition
of such models. Other considerations include extension to discrete models and other models for
the residual covariance matrix (e.g. low rank matrices). Such findings will push the envelope of
efficient models for high-dimensional estimation. It is worth mentioning while in many scenarios it
is important to incorporate latent variables, in our framework it is challenging to incorporate both
latent variables as well as marginal independencies, and provide learning guarantees, and we defer
it to future work.
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ization parameters γ = 2.2e − 03 and λ = 1e − 04. Solid edges indicate Markov model and dotted edges
indicate independence model.
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Appendix

A Duality Between Programs

In this section we prove duality between programs (39) and (13) (when the positive-definiteness
constraint ΣM −ΣR ≻ 0 is dropped). By doing this, the duality between programs (12) and (10) is
also proved since they are special cases of (39) and (13) when γ is set to zero and Σ̂n is substituted
with Σ∗.

Before we prove duality, we introduce the concept of subdifferential or subgradient for a convex func-
tion not necessarily differentiable. Subgradient (subdifferential) generalizes the gradient (derivative)
concept to nondifferentiable functions. Supposing convex function f : Rn → R, the subgradient at
a point x0 which is usually denoted by ∂f(x0) consists of all vectors c such that

f(x) ≥ f(x0) + 〈c, x− x0〉, ∀x ∈ Dom f. (43)

In order to prove duality, we start from program (13) (when the positive-definiteness constraint
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ΣM − ΣR ≻ 0 is dropped) and derive the primal form (39). Program (13) can be written in the
following equivalent form where λ1 goes to infinity and λ2 is used instead of λ.

(
Σ̂M , Σ̂R

)
:= argmax

ΣM≻0,ΣR

log detΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off

s. t. ‖Σ̂n − ΣM +ΣR‖∞,off ≤ γ, (44)
(
ΣM

)
d
−
(
ΣR

)
d
=
(
Σ̂n
)
d
.

By introducing the dual variable JM for above program, we have:

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

−〈JM ,ΣR〉 = −λ1‖ΣR‖1,on − λ2‖ΣR‖1,off , (45)

where (ĴM )on ∈ λ1∂‖Σ̂R‖1,on, (ĴM )off ∈ λ2∂‖Σ̂R‖1,off minimizes the above program. Thus, we have
the following equivalent form for program (44):

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

max
ΣM≻0,ΣR

‖Σ̂n−ΣM+ΣR‖∞,off≤γ

(ΣM )d−(ΣR)d=(Σ̂n)
d

log det ΣM − 〈JM ,ΣR〉, (46)

where the order of programs is exchanged. If we define the new variable Σ = ΣM −ΣR, and use Σ
as the new variable in the program instead of ΣR, the inner max program becomes

max
ΣM≻0,Σ

‖Σ̂n−Σ‖∞,off≤γ,Σd=(Σ̂n)
d

log detΣM − 〈JM ,ΣM 〉+ 〈JM ,Σ〉. (47)

Since the objective function and constraints are disjoint functions of variables Σ and ΣM , we can
do optimization individually for two variables. The optimizers are Σ̂M = J−1

M and Σ̂ = Σ̂n + γZγ ,
where Zγ is a member of the subgradient of ‖ · ‖1,off evaluated at point JM , i.e.,

(Zγ)ij =





0 for i = j
∈ [−1, 1] for i 6= j,

(
JM
)
ij
= 0

sign
((
JM
)
ij

)
for i 6= j,

(
JM
)
ij
6= 0.

(48)

Also note that since ΣM should be positive definite, the variable JM should be also positive definite.
Therefore, it adds another constraint JM ≻ 0. If we substitute these optimizers, we get the dual
program

min
JM≻0

‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off , (49)

which is equivalent to (39) when λ1 goes to infinity and therefore the result is proved.

B Characterization of the Proposed Optimization Programs

We proposed programs (12) and (39) to do decomposition and estimation respectively. Former is
used to decompose exact statistics to its Markov and residual covariance components and the latter
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is used to estimate decomposition components given sample covariance matrix. In this appendix
we characterize optimal solutions of these optimization programs. Both programs are convex and
therefore the optimal solutions can be characterized using standard convex optimization theory.
Note that the proof of following lemmas is mentioned after the remarks.
Lemma 1. For any λ > 0, primal problem (12) has a unique solution ĴM ≻ 0 which is characterized
by the following equation:

Σ∗ − Ĵ−1
M + Ẑ = 0, (50)

where Ẑ has the following form

Ẑij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(51)

in which α̂ij can only take nonnegative values, i.e., we have α̂ij ≥ 0.

Remark: Comparing Lagrangian optimality condition in (50) with relation Σ∗ = Ĵ−1
M −Σ̂R between

solutions of primal-dual optimization programs (derived in Appendix A) implies the equality Σ̂R =
Ẑ. Thus, Σ̂R entries are determined by Lagrangian multipliers of primal program. More specifically,
we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(52)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (12).

Lemma 2. For any λ > 0, γ ≥ 0 and sample covariance matrix Σ̂n with strictly positive diagonal
entries, primal problem (39) has a unique solution ĴM ≻ 0 which is characterized by the equation

Σ̂n − Ĵ−1
M + Ẑ = 0, (53)

where Ẑ = Ẑα+γẐγ . Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is represented as in (51) for some Lagrangian
multipliers α̂ij ≥ 0.

Remark: Comparing Lagrangian optimality condition in (53) with relation Σ̂n = Ĵ−1
M − Σ̂R −

γẐγ between solutions of primal-dual optimization programs (derived in Appendix A) implies the

equality Σ̂R = Ẑα. Thus, Σ̂R entries are determined by the Lagrangian multipliers of primal
program. More specifically, we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(54)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (39).

Proof: We prove Lemma 2 here and Lemma 1 is a special case of that when γ is set to zero and
Σ̂n is substituted with Σ∗.
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For any λ > 0 and γ ≥ 0, the optimization problem (39) is a convex programming where the objec-
tive function is strictly convex. Therefore, if the minimum is achieved it is unique. Since off-diagonal
entries of JM are bounded according to constraints, the only issue for minimum achievement may
arises for unbounded diagonal entries. It is shown in [6] that if diagonal entries of Σ̂n are strictly
positive, the function is coercive with respect to diagonal entries and therefore here is no issue
regarding unbounded diagonal entries. Thus, the minimum is attained in JM � 0. But since when
JM approaches the boundary of positive definite cone, the objective function goes to infinity, the
solution is attained in the interior of the cone JM ≻ 0. After showing that the unique minimum is
achieved, let us characterize the minimum.

Considering αij as Lagrangian multipliers of inequality constraints of program (39), the Lagrangian
function is

L(JM , α) = 〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off +
∑

i 6=j

αij

[∣∣(JM
)
ij

∣∣− λ
]
. (55)

We skipped positive definiteness constraint in writing Lagrangian function since it is inactive. Based
on standard convex optimization theory, the matrix ĴM ≻ 0 is the optimal solution if and only
if it satisfies KKT conditions. It should minimize the Lagrangian which happens if and only if 0
belongs to the subdifferential of Lagrangian or equivalently there exists a matrix Ẑ such that

Σ̂n − Ĵ−1
M + Ẑ = 0, (56)

where Ẑ = Ẑα + γẐγ . Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is

(Ẑα)ij =





0 for i = j

∈ α̂ij.[−1, 1] for i 6= j,
(
ĴM
)
ij
= 0

α̂ij sign
((
ĴM )ij

))
for i 6= j,

(
ĴM
)
ij
6= 0,

(57)

for some Lagrangian multipliers α̂ij ≥ 0. The solution should also satisfy complementary slackness

conditions α̂ij .
[∣∣(ĴM

)
ij

∣∣ − λ
]
= 0 for i 6= j. Applying this condition to above Ẑα representation,

results to (51) form proposed in the lemma. ✷

C Proof of Theorem 1

First note that as mentioned in the remark in section 3.2, the pair
(
ĴM , Σ̂R

)
given by optimization

program gives a decomposition Σ∗ = Ĵ−1
M − Σ̂R which is desired.

Next, in order to prove the equivalence, we show that there is a one to one correspondence between
the specified conditions (A.0)-(A.3) for valid decomposition and the characterization of optimal
solution of optimization program given in lemma 1. We go through each of these conditions one by
one in the following lines.
Condition (A.0) is considered in optimization program as positive definiteness of Markov matrix
JM .
Condition (A.1) is exactly the primal constraint ‖J∗

M‖∞,off ≤ λ.
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Condition (A.2) is exactly the same as relation (52) where diagonal entries of residual covariance
matrix are zero and its off-diagonal entries can be nonzero only if the absolute value of corresponding
entry in Markov matrix takes the maximum value λ.
Condition (A.3) is exactly the same as inequality α̂ij ≥ 0.
In the above lines, we covered one by one correspondence for conditions (A.0)-(A.3). But note
that we also covered all the equalities and inequalities that characterize unique optimal solution of
optimization program. In other words by above correspondence we proved that both of the following
derivations are true where second one is the reverse of first one. On one hand, any optimal solution
of optimization program gives a valid decomposition under desired conditions. On the other hand,
any valid decomposition under desired conditions is a solution of proposed optimization program.
Thus, we can infer that these two are exactly equivalent and the result is proved. Since the solution
of optimization program is unique and according to the equivalence between this solution and
decomposition under those conditions, uniqueness is also established.

D Proof of Theorem 2

In this appendix, we first mention an outline of the primal-dual witness method and then provide
the detailed proof of the theorem.

D.1 Primal-Dual Witness Method

First, continuing the proof outline presented in section 6, we provide an outline of the primal-dual
witness method steps in order to establish equivalence between optimal solutions of the original
(39) and the modified (41) optimization programs.

1. The primal witness matrix J̃M is defined as in (41).

2. The dual witness matrix is set as Z̃ = −Σ̂n+ J̃−1
M . It is defined in this way to satisfy original

program optimal solution characterization mentioned in appendix B.

3. We need to check the following feasibility conditions under which the modified program
solution is equivalent to the solution of original one:

(a) ‖J̃M‖∞,off,S ≤ λ: Since we relaxed the ℓ∞ bounds on off-diagonal entries in set S,
we need to make sure that the modified solution satisfies this bound in order to have
equivalence between modified and original programs solutions.

(b) Set
(
Z̃α

)
SR

=
(
−Σ̂n+J̃−1

M −γ
(
Z̃γ

))
SR

where Z̃γ ∈ ∂‖J̃M‖1,off . Note that since |
(
J̃M
)
ij
| =

λ 6= 0 for any (i, j) ∈ SR, then Z̃γ and therefore above equation is well-defined. Now we

need to check:
(
Z̃α

)
ij

(
J̃M
)
ij
≥ 0 for all (i, j) ∈ SR. This means that they have the same

sign or one of them is zero. We need this condition for equivalence between solutions
because Lagrangian multipliers in original program (39) corresponding to inequality
constraints should be nonnegative.

(c) ‖Z̃‖∞,Sc
M

< γ: According to the
(
JM
)
Sc
M

= 0 constraint in the modified program, all

the inequality constraints become inactive in the original one when desired ĴM = J̃M
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equality is satisfied. Then, complementary slackness condition enforce all the Lagrangian
multipliers corresponding to set Sc

M to be zero. These can be satisfied by the above strict
dual feasibility. Also note that having zero Lagrangian multipliers results in zero residual
entries, i.e.,

(
Σ̃R

)
Sc
M

= 0 and therefore ‖∆̃R‖∞,Sc
M

= 0 when this feasibility condition is

satisfied.

Also note that we dropped the positive-definiteness constraint ΣM − ΣR ≻ 0 in the proof outline.
Thus, in addition to above conditions, we also need to show that Σ̃ = Σ̃M − Σ̃R ≻ 0 in the modified
program.

Before we state the detailed proof for the theorem, we introduce a pair of definitions which are
used in the analysis. Let us define matrix E as difference between sample covariance matrix and
the exact covariance matrix

E := Σ̂n − Σ∗. (58)

We also define R
(
∆̃J

)
as the difference between J̃−1

M and its first order Taylor expansion around

J∗
M . Recall that ∆̃J was defined as ∆̃J := J̃M − J∗

M . According to results for first order derivative
of inverse function J−1

M [40], the remainder is

R
(
∆̃J

)
= J̃−1

M − J∗
M

−1 + J∗
M

−1∆̃JJ
∗
M

−1. (59)

D.2 Proof of the Theorem

Exploiting lemmata mentioned in Appendix E, the Theorem 2 is proved as follows:
Proof: According to the sample error bound mentioned in Lemma 4, we have ‖E‖∞ ≤ δf (p

τ ;n)
for some τ > 2 with probability greater than or equal to 1− 1/pτ−2. In the discussion after this, it
is assumed that the above bound for ‖E‖∞ is satisfied and therefore the following results are valid
with probability greater than or equal to 1− 1/pτ−2.

By choosing γ = m
α δf (p

τ ;n), we have ‖E‖∞ ≤ α
mγ as desired for Lemma 5. Choosing λδ as in (73)

(compatible with what mentioned in the theorem), we only need to show that the other bound on
‖R‖∞ is also satisfied to be able to apply Lemma 5. As stated in the remark after Theorem 2, the
bound on sample complexity is not asymptotic and we assume the following lower bound on the
number of samples which is compatible with the asymptotic form mentioned in the theorem:

n > nf

(
pτ ; 1/max

{
v∗, 4ld

(
1 +

m

α

)
KSSKM max

{
1,

4

l − 1

(
1 +

m

α

)
KSSK

2
M

}})
, (60)

for some l > 1. Because of monotonic behaviour of the tail function, for any n satisfying above
bound, we have:

δf
(
pτ ;n) ≤ min

{
1

v∗
,

1

4ld(1 + m
α )KSSKM

,
l − 1

16ld(1 + m
α )

2K2
SSK

3
M

}
, (61)

According to the selection for regularization parameters λδ and γ and the bound on sample error
‖E‖∞, we have:

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤

[
4KSSR

KSS

1− 2KSSR

(
1 +

α

m

)m
α

+ 2KSS

(
1 +

m

α

)]
δf (p

τ ;n) (62)
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= 2KSS

(
1 +

m

α

)
δf (p

τ ;n)
1

1− 2KSSR

(= λδ)

< 4KSS

(
1 +

m

α

)
δf (p

τ ;n),

where in the last inequality, we used the second condition is assumption (A.4) that KSSR
< 1/4.

Note that second line is equal to λδ since we assigned the same value in (73). Applying the bound
(61) on above inequality, we have

2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
< min

{
1

ldKM
,

l − 1

4ld(1 + m
α )KSSK

3
M

}
(63)

≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
.

Thus, the conditions for Lemma 7 are satisfied and we have

‖∆̃J‖∞,S ≤ 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ λδ < 4KSS

(
1 +

m

α

)
δf (p

τ ;n). (64)

Above inequalities tell us multiple things. First, since the error ‖∆̃J‖∞,S is bounded by λδ, the

J̃M entries in set S can not deviate from exact one J∗
M more than λδ. We also assumed that the

off-diagonal entries in J∗
M are bounded by λ∗. Therefore according to the definition of λδ := λ−λ∗,

the entries in
(
J̃M
)
off ,S

are bounded by λ and therefore the condition (a) for feasibility of primal-

dual witness method is satisfied, i.e., we have ‖J̃M‖∞,off ,S ≤ λ. Second, since ‖∆̃J‖∞,SR
= λδ, we

have ‖∆̃J‖∞,S ≤ ‖∆̃J‖∞,SR
and therefore ‖∆̃J‖∞ = ‖∆̃J‖∞,SR

= λδ which results the following
error bound

‖∆̃J‖∞ := ‖J̃M − J∗
M‖∞ ≤ 4KSS

(
1 +

m

α

)
δf (p

τ ;n). (65)

Furthermore, ‖∆̃J‖∞ < 1
ldKM

bound can be concluded from above inequality by substituting

δf (p
τ ;n) from (61). Thus, the condition for Lemma 6 is satisfied and we have the following bound

on the remainder term

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖

2
∞K3

M (66)

≤
16l

l − 1
dK3

MK2
SS

(
1 +

m

α

)2[
δf (p

τ ;n)
]2

=

[
16l

l − 1
dK3

MK2
SS

(
1 +

m

α

)2
δf (p

τ ;n)

]
δf (p

τ ;n)

≤ δf (p
τ ;n) =

α

m
γ, (67)

where in the second inequality, we used error bound in (65) and the last inequality is concluded
from bound (61).

Now the conditions for Lemma 5 are satisfied and therefore we have the upper bound on ‖∆̃R‖∞,SR
<

C3γ and the strict dual feasibility on Sc
M . Second result satisfies condition (c) of the primal-dual

witness method feasibility conditions. The upper bound on ‖∆̃R‖∞,SR
in conjunction with the lower

bound on
(
Σ∗
R

)
min

> C3γ (mentioned in the theorem), ensures that the sign of Σ∗
R and Σ̃R are
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the same which results that the condition (b) of the feasibility conditions for primal-dual witness
method is satisfied. Since all three conditions (a)-(c) are satisfied, we have equivalence between the
modified program and the original one under conditions specified in the theorem. It gives us both
results (a) and (b) in the theorem. Then by assuming lower bound on minimum nonzero value of
J∗
M , the result in part (c) is also proved.

As mentioned before, we need to show that the dropped constraint Σ = ΣM − ΣR ≻ 0 is also
satisfied. Since the conditions for Corollary 3 in Appendix E.5 are satisfied, we have the spectral
norm error bound (90) on overall covariance matrix Σ. Applying the inverse tail function for
Gaussian distribution in (70) to assumption (A.6) results that the minimum eigenvalue of exact

covariance matrix Σ∗ satisfies lower bound λmin(Σ
∗) ≥

(
C4 +

m
αC3

)
dδf (p

τ ;n) + C5d
2
[
δf (p

τ ;n)
]2

where C6 :=
(
C4 +

m
αC3

)√
2q2 and C7 := 2q2C5. Then by exploiting Weyl’s theorem (Theorem

4.3.1 in [41]), the estimated covariance matrix Σ̂ is positive definite and thus valid. Therefore, the
result is proved. ✷

E Auxiliary Lemmas

First, the tail condition for a probability distribution is defined as follows.

Definition 3 (Tail Condition). The random vector X satisfies tail condition with parameters f
and v∗ if there exists a constant v∗ ∈ (0,∞) and function f : N × (0,∞) → (0,∞) such that for
any (i, j) ∈ V × V :

P[|Σ̂n −Σ∗
ij | ≥ δ] ≤

1

f(n, δ)
for all δ ∈ (0,

1

v∗
]. (68)

Note that since the function f(n, δ) is an increasing function of both variables n and δ, we define
the inverse functions nf (r; δ) and δf (r;n) with respect to variables n and δ respectively (when the
other argument is fixed), where f(n, δ) = r.

E.1 Concentration Bounds

From Lemma 1 in [6], we have the following concentration bound for the empirical covariance
matrix of Gaussian random variables.
Lemma 3 ( [6]). Consider a set of Gaussian random variables with covariance matrix Σ∗. Given
n i.i.d. samples, the sample covariance matrix Σ̂n satisfies

P[|Σ̂n
ij − Σ∗

ij| > δ] ≤ 4 exp

{
−
nδ2

2q2

}
for all δ ∈ (0, q), (69)

for some constant q > 0.

Thus the tail function for Gaussian random vector takes the exponential form with the following
corresponding inverse functions:

nf (r; δ) =
2q2 log(4r)

δ2
, δf (r;n) =

√
2q2 log(4r)

n
(70)
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Applying above Lemma, we get the following bound for sampling error.
Lemma 4 ( [6]). For any τ > 2 and sample size n such that δf (p

τ ;n) < 1/v∗, we have

P
[
‖E‖∞ ≥ δf (p

τ ;n)
]
≤

1

pτ−2
→ 0. (71)

E.2 Feasibility Conditions

In the following lemma, we propose some conditions to bound the residual error ‖∆̃R‖∞,SR
and

also satisfy the condition (c) of feasibility conditions required for equivalence between the witness
solution and the original one.
Lemma 5. Suppose that

max {‖R‖∞, ‖E‖∞} ≤
α

m
γ, (72)

λδ =
2KSS

1− 2KSSR

(
1 +

α

m

)
γ, (73)

then

a) ‖∆̃R‖∞,SR
≤ C3γ for some C3 > 0.

b) ‖Z̃‖∞,Sc
M

< γ.

Proof: Applying definitions (58) and (59) to optimality condition considered in second step of
primal-dual witness method construction, gives the following equivalent equation

J∗
M

−1∆̃JJ
∗
M

−1 − Σ∗
R −R

(
∆̃J

)
+ E + Z̃ = 0. (74)

Above equation is a p × p matrix equation. We can rewrite it as a linear equation with size p2 if
we use the vectorized form of matrices. Vectorized form of a matrix D ∈ R

p×p is a column vector
D ∈ R

p2 which is composed by concatenating the rows of matrix D in a single column vector. In
the vectorized form, we have

vec
(
J∗
M

−1∆̃JJ
∗
M

−1) =
(
J∗
M

−1 ⊗ J∗
M

−1)∆̃J = Γ∗∆̃J . (75)

Decomposing the vectorized form of (74) into three disjoint partitions S, SR and Sc
M gives the

following decomposed form




Γ∗
SS Γ∗

SSR
Γ∗
SSc

M

Γ∗
SRS Γ∗

SRSR
Γ∗
SRSc

M

Γ∗
Sc
M

S Γ∗
Sc
M

SR
Γ∗
Sc
M

Sc
M







(
∆̃J

)
S−→

λδ

0


−




0(
Σ
∗
R

)
SR

0


+




(
−R+E + Z̃

)
S(

−R+E + Z̃
)
SR(

−R+E + Z̃
)
Sc
M


 = 0, (76)

where we used the equalities
(
∆̃J

)
SR

=
−→
λδ and

(
∆̃J

)
Sc
M

= 0. Note that vector
−→
λδ only includes

±λδ entries according to the constraints in the modified program. Also note that Σ∗
R is zero in

sets S and Sc
M . We also dropped the argument ∆̃J from remainder function R

(
∆̃J

)
to simplify the

notation.
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Similar to the original program, the matrix Z̃ is composed of two parts, Z̃β and Z̃γ , i.e., Z̃ = Z̃β +

γZ̃γ . Matrix Z̃β = Σ̃R from equation (42), includes Lagrangian multipliers and Z̃γ ∈ ∂‖J̃M‖1,off .

For set S,
(
Z̃β

)
S
= 0, since we don’t have any constraint in the program and therefore the La-

grangian multipliers are zero. Applying this to the first row of equation (76) and since Γ∗
SS is

invertible, we have the following for error ∆̃J in set S

(
∆̃J

)
S
= Γ∗

SS
−1
[
−Γ∗

SSR

−→
λδ +RS − ES − γ

(
Z̃γ

)
S

]
, (77)

In set SR, Z̃SR
=
(
Σ̃R

)
SR

+γ
(
Z̃γ

)
SR

. Applying this to the second row of equation (76) results

Γ∗
SRS

(
∆̃J

)
S
+ Γ∗

SRSR

−→
λδ +

(
∆̃R

)
SR

+ γ
(
Z̃γ

)
SR

−RSR
+ ESR

= 0, (78)

Recall that we defined ∆̃R := Σ̃R − Σ∗
R. Substituting (77) in above equation results the following

for error ∆̃R in set SR

(
∆̃R

)
SR

=− Γ∗
SRSΓ

∗
SS

−1
[
−Γ∗

SSR

−→
λδ +RS − ES − γ

(
Z̃γ

)
S

]
(79)

− Γ∗
SRSR

−→
λδ − γ

(
Z̃γ

)
SR

+RSR
− ESR

.

Taking ℓ∞ element-wise norm from above equation and using inequality ‖Ax‖∞ ≤ |||A|||∞‖x‖∞ for
any matrix A ∈ R

r×s and vector x ∈ R
s, results the bound

‖∆̃R‖∞,SR
≤ |||−Γ∗

SRSΓ
∗
SS

−1Γ∗
SSR

+ Γ∗
SRSR

|||∞λδ + |||Γ∗
SRSΓ

∗
SS

−1|||∞
[
‖RS‖∞ + ‖ES‖∞ + γ

]
(80)

+
(
‖RSR

‖∞ + ‖ESR
‖∞ + γ

)
,

where we used the fact that ‖
−→
λδ‖∞ = λδ and ‖Z̃γ‖∞ = 1. Now if we apply the assumptions

mentioned in the lemma,

‖∆̃R‖∞,SR
≤

[
2KSS(m+ α)

m(1− 2KSSR
)
|||−Γ∗

SRSΓ
∗
SS

−1Γ∗
SSR

+ Γ∗
SRSR

|||∞

+
(
1 +

2α

m

)(
1 + |||Γ∗

SRSΓ
∗
SS

−1|||∞
)]

γ = C3γ, (81)

which proves part (a) of the Lemma.

Now if we substitute (77) in the equation from third row of (76), we have

Z̃Sc
M

= −Γ∗
Sc
M

SΓ
∗
SS

−1
[
−Γ∗

SSR

−→
λδ +RS − ES − γ

(
Z̃γ

)
S

]
− Γ∗

Sc
M

SR

−→
λδ +RSc

M
− ESc

M
. (82)

Taking ℓ∞ element-wise norm from above equation gives the following bound

‖Z̃‖∞,Sc
M

≤ |||Γ∗
Sc
M

SΓ
∗
SS

−1Γ∗
SSR

− Γ∗
Sc
M

SR
|||∞λδ + |||Γ∗

Sc
M

SΓ
∗
SS

−1|||∞
[
‖RS‖∞ + ‖ES‖∞ + γ

]
(83)

+ ‖RSc
M
‖∞ + ‖ESc

M
‖∞,

where we used the fact that ‖Z̃γ‖∞ = 1. Applying assumption (A.4) to above bound results

‖Z̃‖∞,Sc
M

≤ (1− α)λδ + (2− α) [‖R‖∞ + ‖E‖∞] + (1− α)γ. (84)
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Using assumptions stated in the Lemma, we have

‖Z̃‖∞,Sc
M

≤

[
2KSS

1− 2KSSR

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ (85)

<

[
4KSS

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ

<

[
4KSS

m− (m− 1)α

m
+

4α

m
+ (1− α)

]
γ ≤ γ,

where we used the bound on KSSR
in assumption (A.4) in the second inequality and the fact that

α > 0 in the third inequality. Final inequality is derived from assumption (A.5) which finishes the
proof of part (b). ✷

E.3 Control of Remainder

In the following Lemma which is stated and proved in lemma 5 in [6], the argument ∆̃J controls
the remainder function behavior.
Lemma 6. Suppose that the element-wise ℓ∞ bound ‖∆̃J‖∞ ≤ 1

lKMd for some l > 1 holds. Then

R
(
∆̃J

)
=
(
J∗
M

−1∆̃J

)2
QJ∗

M
−1, (86)

where Q :=
∑∞

k=0(−1)k
(
J∗
M

−1∆̃J

)k
with bound |||QT |||∞ ≤ l

l−1 . Also, in terms of element-wise ℓ∞
norm, we have

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖

2
∞K3

M . (87)

E.4 Control of ∆̃J

According to the primal-dual witness solutions construction, we have the error bounds on ∆̃J within
the sets SR and Sc

M such that ‖∆̃J‖∞,SR
= λδ and ‖∆̃J‖∞,Sc

M
= 0. In the following lemma, we

propose some conditions to control the error ‖∆̃J‖∞,S.
Lemma 7. Suppose that

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
, (88)

then we have the following element-wise ℓ∞ bound for
(
∆̃J

)
S
,

‖∆̃J‖∞,S ≤ r. (89)

The proof is within the same lines of Lemma 6 proof in [6] but with some modifications since the
error ‖∆̃J‖∞,SR

is not zero and therefore the nonzero value λδ arises in the final result. Since
the modified optimization program (41) is different with the modified program in [6], it is worth
discussing about existing a unique solution for the modified optimization program (41). This
uniqueness can be shown with similar discussion presented in Appendix B for uniqueness of the
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solution of original program (39). We only need to show that there is no problem in uniqueness by
removing the off-diagonal constaraints for set S in the modified program. By Lagrangian duality,
the ℓ1 penalty term γ‖JM‖1,off can be moved to constraints as ‖JM‖1,off ≤ C(γ) for some bounded
C(γ). Therefore, the off-diagonal entries in set S where the corresponding constraints were relaxed
in the modified program are still bounded because of this ℓ1 constraint. Hence, the modified
program (41) has a unique solution.

E.5 Spectral norm error bound on overall covariance matrix Σ = J
−1
M −ΣR

Corollary 3. Under the same assumptions (excluding (A.6)) as Theorem 2, with probability greater
than 1 − 1/pc, the overall covariance matrix estimate Σ̂ = Σ̂M − Σ̂R satisfies spectral norm error
bound

|||Σ̂− Σ∗||| ≤
(
C4 +

m

α
C3

)
dδf (p

τ ;n) + C5d
2
[
δf (p

τ ;n)
]2
. (90)

Proof: We first bound the spectral norm errors for the Markov and residual covariance matrices
Σ̂M and Σ̂R. Along the same lines as Corollary 4 proof in [6], the spectral norm error |||Σ̂M −Σ∗

M |||
can be bounded as

|||Σ̂M − Σ∗
M ||| ≤ C4dδf (p

τ ;n) + C5d
2
[
δf (p

τ ;n)
]2
, (91)

where C4 = 4
(
1 + m

α

)
KSSK

2
M and C5 =

16l
l−1

(
1 + m

α

)2
K2

SSK
3
M .

The spectral norm error |||Σ̂R − Σ∗
R||| can be also bounded as

|||Σ̂R − Σ∗
R||| ≤ |||Σ̂R − Σ∗

R|||∞ ≤ d‖Σ̂R − Σ∗
R‖∞ ≤

m

α
C3dδf (p

τ ;n), (92)

where the first inequality is the property of spectral norm which is bounded by ℓ∞-operator norm,
second inequality is a result of the fact that Σ̂R and Σ∗

R has at most d nonzero entries in each row
(since SR ⊂ SM) and the last inequality is concluded from the upper bound on ℓ∞ element-wise
norm error on residual matrix estimation stated in part (a) of Theorem 2.
Applying the above bounds to the overall covariance matrix estimation Σ̂ = Σ̂M − Σ̂R and using
the triangular inequality for norms, the bound in (90) is proven. ✷

F Proof of Corollary 2

Proof: The result in this corollary is a special case of general result in Theorem 2 when λ∗ = 0
and some minor modifications are considered in problem formulation. Note that, it is expressed in
assumption (A.1) that the off-diagonal entries of exact Markov matrix J∗

M are upper bounded by
some positive λ∗. In order to extend the proof to the case of λ∗ = 0 (The case in this corollary), we
need some minor modifications. First, the identifiability assumptions (A.0)-(A.3) can be ignored
and instead it is assumed that the Markov part J∗

M (or equivalently Σ∗
M ) is diagonal and the residual

part Σ∗
R has only nonzero off-diagonal entries. Since the diagonal Markov matrix and off-diagonal

residual matrix do not have any nonzero overlapping entries, it is natural that we do not require
any more identifiability assumptions. Then, with these new assumptions, the set SM is defined as
SM := SR ∪ {(i, i)|i = 1, ..., p} where SR is defined the same as (17) and also set S is defined the
same as (18) which results that set S includes only diagonal entries. Thus, the off-diagonal entries
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belongs to sets SR and Sc
M . Since Σ∗

M is a diagonal matrix, all submatrices of Γ∗ which are indexed
by sets SR or Sc

M are complete zero matrices. The result is that the terms which are bounded in
the mutual incoherence condition (A.4) are already zero and thus there is no need to consider those
additional assumptions in the corollary.
By making these changes in the problem formulation, the result in Corollary 2 can be proven within
the same lines of general result proof in Theorem 2. It is only required to change the constraint on

set SR in the modified optimization program to
(
JM
)
SR

= λ sign
((

Σ∗
R

)
SR

)
. ✷
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