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Abstract 

In recent work, force-based canonical approaches have given a unified but different viewpoint on 

the nature of bonding in pairwise interatomic interactions. The concept of a pairwise canonical 

potential in these cases was defined for a class of molecules referred to a dimensionless function 

obtained from each molecule by a readily invertible algebraic transformation. Differing 

molecular categories (covalent, ionic, van der Waals, hydrogen and halogen bonding) of 

representative interatomic interactions in which binding energies ranging from 1.01 to 1072.03 

kJ/mol have been modeled canonically giving a rigorous semi-empirical verification to high 

accuracy. However, the fundamental physical basis that is expected to provide the inherent 

characteristics of these canonical transformations have not yet been elucidated. We now show 

that canonical force distributions can be formulated from the perspective of the Hellmann-

Feynman Theorem and discuss how such canonical approaches can be used to further explain the 

nature of chemical bonding in pairwise interatomic interactions. 
																																																								
∗ To whom correspondence should be addressed. Phone: (979) 845-2372; E-mail: 
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I. Introduction 

It has been conjectured that the query, How do molecules form?, should still be regarded as 

one of the most profound scientific questions remaining in Chemistry [1]. Models of the nature 

of chemical bonding are still the subject of considerable investigation even after the fundamental 

principles of quantum mechanics were first established in the period 1924-1927. Much of these 

initial developments attributed to Heitler and London [2], Pauling [3], Mulliken and Hund [4] 

have now lead to increasingly wider range of quantum chemistry approaches to molecular 

structure, molecular dynamics, and chemical reactions [5-8]. Although, the molecular-orbital 

approach has now become the most widely accepted, there is still no a general agreement among 

chemists [9] that this is the best approach to chemical bonding. Ball has stated [1], that this 

model of molecules and all others are based on simplifying assumptions and are thus 

approximate, partial descriptions. As a result, the choice of quantal description of the chemical 

bond remains the subject of active discussion [9]. Though modern molecular computational 

methods can capture most situations associated with effects such as correlation energy, none can 

give an exact solution [10].  

Approaches to quantum mechanics that have the potential to improve the situation described 

in the previous paragraph, are thus of particular interest. In this context, is the method initially 

advocated by Slater to pairwise interatomic interactions study molecular bonding through 

application of the Virial Theorem [11,12] and its subsequent relationship to the Hellmann-

Feynman Theorem [13,14] strictly within the Born-Oppenheimer approximation [15,16].  

Recently, we introduced the concept of a pairwise canonical potential [17] defined for a class 

of molecules referred to a dimensionless function obtained from each molecule by a readily 

invertible algebraic transformation. Differing categories (covalent, ionic etc.) of representative 
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interatomic interactions with binding energies ranging from 1.01 to 1072.03 kJ/mol were 

accurately modeled canonically to give a more unifying perspective that included diatomics CO, 

N2, H2
+, H2, HF, LiH, Mg2, Ca2, O2, Ar2, and in one-dimensional (1-D) dissociative coordinates 

morphed potentials of OC-HX [X = F, Cl, Br, I], OC-HCCH, OC-HCN, OC-BrCl, and OC-Cl2, 

selected to illustrate intermolecular hydrogen and halogen bonding. A 1-D potential energy 

approach based on the renowned Rydberg-Klein-Rees method was later found to surprisingly 

require no adjustable parameters [17]. Explicit generalizations to all pairwise interactions 

studied, even at the asymptotic limit and extremely accurate strictly Born-Oppenheimer 

calculations have now been referenced to H2
+ [18,19]. Mapping to a canonical 1-D potential 

resulted in a unifying approach encompassing a prior statement of Slater [20] while giving a 

rigorous semi-empirical verification. Functions associated with the diatomic Virial Theorem 

(E(R), F(R), V(R), T(R), W(R) = RF(R)) were also shown recently to be individually canonical 

giving further perspectives into the nature of chemical bonding [21]. 

However, the question arises, is there a basis for this defined canonical approach in 

fundamental quantum molecular physics? In this work, we shall now demonstrate that 

applications of canonical transformations to diatomic molecules within the Born-Oppenheimer 

approximation can indeed be understood from this perspective. This force-based canonical 

approach will be demonstrated in the context of the Hellmann-Feynman Theorem (1937, 1939)) 

[13,14], one of the most fundamental equations of molecular quantum mechanics that is quantum 

mechanically exact. The latter will be shown to be a significant issue for explaining development 

of the canonical methodology and establishing directions for its future applications. Our 

formulations will further be shown to have distinct advantages for modeling molecular bonding 

in general. We shall, in addition, discuss these developments in the light of Dirac’s quotation 
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regarding mathematics of transformations in quantum mechanics [cf. Preface, Principles of 

Quantum Mechanics, 1930] [22]. 

 

II. Methods 

A. Relevant Aspects of the Hellmann-Feynman Theorem 

The objective behind this contribution is to identify physical principles underlying recently 

developed canonical forms and transformations relating potentials and their associated 

generalized forces in diatomic molecules and certain molecular complexes within the 1-D 

dissociative coordinate [18,19,21,23,24,25]. These various canonical forms and transformations 

can all be considered as bearing a fundamental relationship to the well-known Feynman force. 

The Feynman force is the virtual (steady-state) force acting on a nucleus within a molecule under 

the idealized Born-Oppenheimer approximation that all nuclei occupy fixed positions. As 

discussed by Feynman (1939) [14], the virtual force of interest acting upon a fixed nucleus is 

minus the derivative of the ground-state energy with respect to a (scalar) parameter λ  associated 

with the position of the nucleus. The seminal result in this landmark paper is the celebrated 

Hellmann-Feynman Theorem [13,14]: 

  
fλ = − ψ ∂H

∂λ
ψ = − ψ *∫

∂H
∂λ

ψ dv        (1) 

where 
 
fλ = − ∂U

∂λ
 with H and ψ  denoting the Hamiltonian and wave function, respectively, and 

U is the eigenvalue (energy) defined by  Hψ =Uψ  from which it follows that: 
  
U = ψ H ψ .  

Feynman observes further that   ∂H / ∂λ = ∂V / ∂λ  where V is the potential energy portion of the 

Hamiltonian that involves only classical Coulombic interactions among the chosen fixed nucleus, 
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the other (fixed) nuclei and each of the electrons. In particular,   ∂H / ∂λ = ∂V / ∂λ 	does not 

involve electron-electron interactions. Feynman then goes on to show how the integral in Eq. (1) 

can be replaced by integration against the net charge density distribution over 3-space rather than 

integration over 3N-space, where N is the number of electrons, as straight-forward application of 

Eq. (1) seems to require. 

B. Details of Charge Density Calculations  

The charge density calculations were performed using MOLPRO, version 2012.1 [26,27]. 

For H2
+ the charge density was calculate using spin-unrestricted Hartree-Fock (UHF) and the cc-

pV8Z basis set [28] without the k orbital. For H2 the charge density was calculate using full 

configuration interaction (FCI) [29,30] and the cc-pV6Z basis set. Table 1 lists the interatomic 

separations at which the H2
+ and H2 charge densities were calculated. For both molecules and for 

each interatomic separation, the charge density was calculate on a 2-D grid of 8,001 points on the 

x-z plane (y = 0) from -8.0 to 8.0 Bohr on x and z directions and step size of 0.002 Bohr. This 

fine 2-D grid for the charge density is necessary to numerically accurately solve the integral in 

Eq. (2) below. 

C. Evaluation of the Feynman Force for H2 and H2
+ 

For reasons previously discussed, particularly those associated with accuracy, we shall first 

consider applications to the two simplest diatomic molecules H2 and H2
+. More specifically, we 

will use the Hellmann-Feynman theorem to calculate the Feynman force acting at one of the two 

nuclei for each of these molecules. In our previous works [18,19,23,24] on canonical forms and 

transformations for these molecules, we showed the pivotal role the Feynman force plays in their 

construction, and to that end, the Feynman force was calculated by differentiation of accurate 

ground-state potentials taken from the literature. For the parameter λ , we take the interatomic 
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separation distance R and we adopt a Cartesian coordinate system centered equidistant between 

the two nuclei located at   (0,0,±R / 2)  in the (x,y,z) Cartesian frame. Relative to this Cartesian 

frame, the Feynman force for H2 acting upon the right nucleus takes the form (in atomic units): 

   

F(R) = 1.0
R2 − ρ

3∫ (x, y, z; R) (z − R / 2)

x2 + y2 + (z − R / 2)2( )3/2 dv      (2) 

where   ρ(x, y, z; R)  denotes the net charge density distribution (corresponding to both electrons)  

for the interatomic separation distance R. The first term in Eq. (2) is the (repulsive) force on the 

nucleus at the point (0,0,R/2) due to the nucleus at (0,0,-R/2) where as the integral term is the 

(attractive) force on the (right) nucleus due to a single electron.  

Relevant Remarks: 

i. A key observation is that Eq. (2) can be generalized to any pairwise interatomic 

interaction in their bound ground electronic state [31]. As an example in this work, 

we are applying Eq. (2) to the simplest molecules, H2 and H2
+, because their very 

accurate charge density distributions can be calculated.  

ii. Eq. (2) is also the Feynman force for H2
+ with the charge density distribution 

  ρ(x, y, z; R)  for the two electron system H2 replaced by the charge density 

distribution for the single electron system H2
+. 

iii. It is also helpful to appeal to the axial symmetry in H2 and H2
+ to reduce the 3-D 

integration in Eq. (2) to a 2-D integration in cylindrical coordinates. 

D. Applications of Canonical Forms and Transformations for Potentials 

In a sequence of recent papers [18,19,23,24], a notion of piecewise affine transformation to 

dimensionless canonical form was developed and applied to potentials corresponding to a wide 

class of diatomic molecules and pairwise intermolecular complexes. The basic affine 



	 7	

transformation of a dimensional section of a potential curve E(R) for   R1 ≤ R ≤ R2  to a canonical 

dimensionless curve has the form: 

   
E(x; R1, R2 ) :=

E(R1 + x(R2 − R1))− E(R1)
E(R2 )− E(R1)

for 0 ≤ x ≤1.      (3) 

The inverse transformation corresponding to Eq. (3) allows the original dimensional potential 

E(R) to be written in terms of its dimensionless canonical counterpart    
E(x)  by the formula: 

   
E(R) = E(R1)+ (E(R2 )− E(R1)) E

R − R1

R2 − R1

⎛

⎝⎜
⎞

⎠⎟
.        (4) 

Two potential functions E1(R) and E2(R) are said to be canonical if there exist sequences of 

points   
{R1,1 < R1,2 <…< R1,N }  and   

{R2,1 < R2,2 <…< R2,N } for E1(R) and E2(R), respectively, so 

that the canonical forms 
   
E1(x; R1, j , R1, j+1)  and 

   
E2(x; R2, j , R2, j+1)  agree to a specified accuracy for 

  j = 1,2,…, N −1 . The key for selecting these sequences of points was shown in [18,19,23,24] to 

rest fundamentally upon the associated Feynman forces:   F1(R) := − ′E1(R)  and   F2(R) := − ′E2(R) . 

Applying Eq. (4) to   E1(R)  for   
R1, j < R < R1, j+1  together with the approximation    

E1(x) ≈ E2(x)  

for   0 ≤ x ≤1, one obtains: 

   

E1(R) = E1(R1, j )+ E1(R1, j+1)− E1(R1, j )( ) E1

R − R1, j

R1, j+1 − R1, j

⎛

⎝
⎜

⎞

⎠
⎟

≈ E1(R1, j )+ E1(R1, j+1)− E1(R1, j )( ) E2

R − R1, j

R1, j+1 − R1, j

⎛

⎝
⎜

⎞

⎠
⎟ .

     (5) 

Relevant Remarks: 

iv. Formula in Eq. (5) gives an affine scaling of the section 

  
S2, j :={(R, E2(R))|R2, j ≤ R ≤ R2, j+1}  for the potential curve E2(R) onto the 
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corresponding section   
S1, j :={(R, E1(R))|R1, j ≤ R ≤ R1, j+1}  for the potential curve 

E1(R). This affine scaling maps the endpoints of the section   
S2, j  to the endpoints of 

the section   
S1, j  and otherwise maps the interval   

R2, j ≤ R ≤ R2, j+1  linearly onto the 

interval   
R1, j ≤ R ≤ R1, j+1 . In this way, if the error in the approximation in Eq. (5) is 

below a specified tolerance, the two sections   
S1, j  and   

S2, j  are declared to have the 

same shape.  

v. Performing the construction in Eq. (5) for each   j = 1,…, N −1  gives a piecewise 

affine transformation of the potential curve E2(R) for   
R2,1 ≤ R ≤ R2,N  onto the 

potential curve E1(R) for   
R1,1 ≤ R ≤ R1,N . The two potential curves E1(R) and E2(R) are 

then declared to have the same canonical shape. 

E. Applications of Canonical Forms and Transformations for Force 

In [25], it was demonstrated that the Feynman forces associated with two canonical potentials 

are also canonical. Indeed, it was argued in [25] that the notion of canonical Feynman force was 

more fundamental than the previously described canonical potential. In [25], the Feynman force 

for a given molecule was calculated by direct differentiation of a piecewise spline curve 

interpolated to discrete points on the associated potential curve obtained from highly accurate 

first principle numerical calculation. However, as is well known, numerical differentiation of this 

sort can give very large errors in the computed derivative even if the potential data points used 

give a highly accurate approximation to the accurate potential curve. In this contribution, we 

demonstrate that appealing to the Hellmann-Feynman theorem avoids this difficulty, and perhaps 

even more importantly, it gives valuable insight into the nature of the canonical shapes of 
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potential curves and their associated Feynman force distributions that have been shown in 

[18,19,23,24,25]. 

 

III. Results 

Figure 1 shows the Feynman force curves for H2 (solid black curve) and H2
+ (dashed blue 

curve) (in SI units) derived from Eq. (2) (in atomic units) computed by application of the 

Hellmann-Feynman theorem. Each Feynman force curve is divided into three sections denoted I, 

II, III that have the same canonical shape in the sense defined previously. The solid red and blue 

dots on the abscissa give the R-values, labeled in ascending order   {R1 < R2 < R3 < R4} , 

corresponding to the endpoints of the three curve sections for H2 and H2
+, respectively. The 

algorithm for determining these endpoints for each Feynman force curve is as follows. 

First R2 is chosen to be the bottom of the well for each Feynman force curve, that is, the 

nuclear separation distance corresponding to the maximum (in magnitude) of the attractive 

Feynman force, denoted Fm. For H2, R1 is chosen to be the nuclear separation at which the 

repulsive force equals Fm, that is, F(R1)= Fm. Then R3 and R4 are the nuclear separation distances 

at which the attractive Feynman force has magnitude one-half and one-quarter of the maximum 

value, that is, |F(R3)|= Fm/2.0 and |F(R4)|= Fm/4.0. In Figure 1, these points are labeled with solid 

red dots as: R1=Rrm, R2=Ram, R3=Ra1, and R4=Ra2. To determine the corresponding points for 

H2
+, it is convenient now to declare F1(R) and F2(R) to be the Feynman force curves for H2 and 

H2
+, respectively. 

For each section I, II and III, one defines the associated dimensionless canonical form for H2: 

   

F1, j (x) =
F1(R1, j + x(R1, j+1 − R1, j ))− F1(R1, j )

F1(R1, j+1)− F1(R1, j )
for 0 ≤ x ≤1.      (6) 
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For H2
+, Eq. (6) takes the somewhat more general form: 

   

F2, j (x;γ j ) =
F2(R2, j (γ j )+ x(R2, j+1(γ j+1)− R2, j (γ j )))− F2(R2, j (γ j ))

F2(R2, j+1(γ j+1))− F2(R2, j (γ j ))
for 0 ≤ x ≤1  (7) 

in which the   
R2, j (γ j )  are defined by as follows.  γ 2 = 1  and   

R2,2 (γ 2 ) = Ram , that is, the nuclear 

separation distance for H2
+ for which the (attractive) Feynman force has its maximum magnitude 

(well bottom). The other   
R2, j (γ j )  values are defined by: 

  
R2,1(γ 1) = γ 1Rrm + (1−γ 1)Ram          (8)  

  
R2,3(γ 3) = γ 3Ra1+ (1−γ 3)Ram          (9)  

  
R2,4 (γ 3) = γ 4Ra2+ (1−γ 4 )R2,3(γ 3). 	        (10) 

The  
γ j  values for j = 1, 3, 4 are chosen to satisfy: 

   
F2, j (0.5;γ j ) = F1, j (0.5).          (11) 

Hence, the two dimensionless canonical forms 
   
F1, j (x)  and 

   
F2, j (x;γ j )  agree at the three points x 

= 0, 0.5, 1.0. This effects a small shift in the Rj values for F2 and serves merely to decrease the 

agreement error a small amount between 
   
F1, j (x)  and 

   
F2, j (x) . Table 2 gives the resulting Rj 

values. The number in parentheses for H2
+ correspond to setting   

γ j = 1.0 .  

The blue circles on the solid black curve in Figure 1 correspond to the piecewise affine 

approximation of the Feynman force for H2 constructed constructed from the Feynman force 

curve for H2
+ according to the formula: 



	 11	

   

F1(R) = F1(R1, j )+ F1(R1, j+1)− F1(R1, j )( ) F1

R − R1, j

R1, j+1 − R1, j

⎛

⎝
⎜

⎞

⎠
⎟

≈ F1(R1, j )+ F1(R1, j+1)− F1(R1, j )( ) F2

R − R1, j

R1, j+1 − R1, j

;γ j

⎛

⎝
⎜

⎞

⎠
⎟

      (12) 

for   
R1,1 ≤ R ≤ R1,4  and with j = 1, 2, and 3. Table 3 gives the relative errors between F1(R) and the 

approximation given in Eq. (12) where the relative error between two functions f1(r) and f2(r) 

over an interval  a ≤ r ≤ b  is defined by: 

  

Rel. Err.=
|

a

b

∫ f1(r)− f2(r) | dr

|
a

b

∫ f1(r) | dr
. 	 	 	 	 	 	 	 	 (13) 

It is worth noting that section I for the Feynman force curves for both H2 and H2
+ is half on the 

repulsive side of equilibrium and half on the attractive side, yet the affine scaling of the Feynman 

force curve for H2
+ (with two electrons) onto the Feynman force curve for H2 (with a single 

electron) agrees within a very small relative error of 0.000857 which corresponds approximately 

to an average standard deviation of 4 parts in 10,000. Hence, their Feynman force curves have 

essentially the same canonical shape. 

 

IV. Discussion 

The block diagram in Figure 2 articulates the contributions that the different approaches 

make to understanding of force-based canonical transformations. It illustrates that the choice of 

H2
+ as the reference molecular system is the most expedient. Although there is inadequate 

experimental information available to determine its accurate Born-Oppenheimer potential semi-

empirically, it is a one-electron system where there is the possibility of determining ultra 

accurate ground state wave functions in the Hartre-Fock limit. In this case, using the cc-pV8Z 
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basis set (without the k orbital) we can also determine the corresponding Born-Oppenheimer 

potential function although in these particular calculations it is not needed. The determined wave 

function of H2
+ is then available to accurately calculate its charge density distribution in the 

ground state potential. This charge density distribution is then used to calculate the accurate 

Feynman force (Section II.C) that can be also be directly calculated using the method of taking 

the negative of the derivative of the potential (Section II.E). The latter could be determined from 

accurate Born-Oppenheimer potentials either from exceptionally accurate theory or from 

extensive experimental data for the pairwise interatomic interactions.  

The relative errors between the accurate sections I, II, III of the Feynman force curve for H2 

in Figure 1 and the approximations constructed using the corresponding sections from the 

Feynman force curve for H2
+ in Figure 1 are given in Table 3. It is noteworthy that the relative 

errors correspond to twice the average standard deviation and that they are to parts in 10,000, an 

exceptional accuracy. This result also confirms that the fundamental role which the Feynman 

force plays in molecular quantum mechanics and its canonical characteristics. Furthermore, this 

work confirms the exceptional accuracy using the currently used Hellmann-Feynman approach 

for determination of force distributions and the corresponding canonical transformations.  

Taken in its more general sense, Dirac has previously proposed that quantum mechanics is 

primarily a theory of transformations [22]. The proposed canonical approaches and 

corresponding transformations very much reflect the sentiment of this statement. The intense 

effort to find algebraic forms for reduced [32] and universal functions [33-35] can in certain 

respects be regarded as transformation approaches but of a distinctly different kind to that of the 

canonical approach described as the former invariably involve adjustable parameters that can not 

be directly related to physical measurable quantities. The application of transformations relating 
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potentials that are exact solutions to the Schrödinger equation is a well developed approach in 

supersymmetric quantum mechanics following the discovery of Gedenshtein’s theorem [5]. In 

this respect, the development of PCT approaches [36,37] is interesting but distinctly different as 

they are related only to potentials that are exact solutions of the Schrödinger equation. Figure 2, 

gives an overview of the current approach and in particular, its direct relation to the Helmann-

Feynman theorem. The development of the current canonical approaches are fundamentally 

based in molecular quantum mechanics and are, moreover, measurement based. Also, once the 

transformation for the simplest molecule H2
+ is determined accurately, it is then available to 

generate the remainder of pairwise interatomic interactions with great accuracy provided that 

they are considered within the Born-Oppenheimer approximation as shown in Figure 2. 

However, what is startling in the current approach is that it is force-based at its most fundamental 

level. Once the transformations for H2
+ are determined there is no need for additional adjustable 

parameters.  

The schematic in Figure 2 also gives the rational for explaining the previous canonical 

transformation approaches that were verified semi-empirically to high accuracy for a wide range 

of pairwise interatomic interactions that included different categories of chemical bonding. These 

included binding energies ranging from 1.01 to 1072.03 kJ/mol that were accurately modeled 

canonically to give a more unifying perspective that included diatomics CO, N2, H2
+, H2, HF, 

LiH, Mg2, Ca2, O2, Ar2, and in 1-D dissociative coordinates morphed potentials of OC-HX [X = 

F, Cl, Br, I], OC-HCCH, OC-HCN, OC-BrCl, and OC-Cl2, selected to illustrate intermolecular 

hydrogen and halogen bonding. The current investigation provides the fundamental physical and 

quantum mechanical basis to the unifying canonical approach that was used previously to 

describe such observations. It also correlates with the 1972 statement of J. C. Slater [20]: there is 
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no very fundamental distinction between the van der Waals binding and covalent binding, which 

we have now extended to consideration of other categories of chemical bonding and to hydrogen 

and halogen bonding. However, most importantly, this canonical approach reflects in a stark 

manner the beautiful simplicity of Feynman’s 1939 paper [14] and his statement that the force on 

a nucleus in an atomic system is shown to be just the classical electrostatic force that would be 

exerted on this nucleus by other nuclei and by the electrons' charge distribution. 

Our formulations now open up entirely new ways to model aspects of chemical bonding from 

charge density distributions. Inherently observation-based and highly accurate, when applicable, 

they avoid limitations linked so often to simplifying assumptions and related uncertainties in the 

corresponding standard molecular quantum calculations as they do not require the determination 

of wave functions in multi-electron molecules and do not require consideration of electron 

correlation effects as they are inherent to the canonical transformation approach. One area of 

application that appears to have significant potential is in the development of functional 

associated with DFT development though there are many others.  

 

V. Conclusions 

Canonical applications for diatomic molecules have been formulated from the perspective of 

the Hellmann-Feynman Theorem which is exact within the Born-Oppenheimer assumption. The 

role of charge density distribution in H2
+ and H2 have also been investigated in depth to give 

greater insight on these results. The corresponding canonical transformations are shown not only 

to have a basis in fundamental molecular quantum mechanics but their explicitly determined 

forms are also consistent with results of previously investigated semi-empirical studies. Most 

importantly, the derived canonical formulations and their correlation with charge density 
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distributions confirm why such applications give a unifying perspective on the origin of the 

nature of bonding in a wide variety of different categories of pairwise interatomic interactions 

and why such transformations are explicit. Moreover, the accurately calculated charge density 

distributions in H2
+ and H2 further support the conclusion that electron correlation is intrinsic to 

canonical transformations exclusively through the effective charge density distribution and not 

explicitly through the potential V(R), a distinct advantage in applications of canonical approaches 

in chemical bonding.  The currently determined results now provide the fundamental basis for 

generalization of corresponding formulations through application of the Hellmann-Feynman 

Theorem and application of the corresponding Virial Theorem to multi-dimensional polyatomic 

molecular systems. 
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Figure 1. The Feynman force for H2 and H2
+. The units of the ordinate are in cm-1/Å. 
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Figure 2. A block diagram illustrating the nature of the canonical transformation to the 
Hellmann-Feynman Theorem. 
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Table 1. Interatomic separations (in Å) at which the H2
+ and H2 charge densities were calculated. 

H2
+ H2 

0.8507 0.5898 
0.8737 0.6066 
0.8967 0.6235 
0.9197 0.6450 
0.9427 0.6600 
0.9657 0.6740 
0.9887 0.6909 
1.0117 0.7077 
1.0347 0.7246 
1.0569 0.7414 
1.1369 0.8104 
1.2169 0.8793 
1.2969 0.9483 
1.3769 1.0172 
1.4569 1.0862 
1.5369 1.1551 
1.5967 1.2241 
1.6967 1.2930 
1.7967 1.3620 
1.8967 1.4310 
1.9967 1.4999 
2.0967 1.5689 
2.1967 1.6378 
2.2967 1.7068 
2.3967 1.7757 
2.4967 1.8447 
2.6161 1.9136 
2.7261 1.9826 
2.8361 2.0515 
2.9461 2.1205 
3.0561  
3.2039  
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Table 2. Interatomic separations (in Å) for sections I, II, III in Figure 1. The numbers in 

parentheses are the accurate values of Rrm, Ra1 and Ra2 for H2
+. 

 R1 R2 R3 R4 

H2 0.649 1.133 1.786 2.116 

H2
+ 0.956 (0.931) 1.599 2.43 (2.614) 3.057 (3.194) 

 

 

 

Table 3. The relative errors between the accurate sections I, II, III of the Feynman force curve for 

H2 in Figure 1 and the approximations constructed using the corresponding sections from the 

Feynman force curve for H2
+ in Figure 1. 

I II III 

0.000857 0.00256 0.000941 

 




