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SUMMARY

To understand the impact of genome sequence vari-
ation (the genotype) responsible for biological diver-
sity and human health (the phenotype) including
cystic fibrosis and Alzheimer’s disease, we devel-
oped a Gaussian-process-based machine learning
(ML) approach, variation spatial profiling (VSP). VSP
uses a sparse collection of known variants found in
the population that perturb the protein fold to define
unknown variant function based on the emergent
general principle of spatial covariance (SCV). SCV
quantitatively captures the role of proximity in geno-
type-to-phenotype spatial-temporal relationships.
Phenotype landscapes generated through SCV
provide a platform that can be used to describe the
functional properties that drive sequence-to-func-
tion-to-structure design of the polypeptide fold at
atomic resolution. We provide proof of principle that
SCVcanenable the useof population-basedgenomic
platforms to define the origins and mechanism of
action of genotype-to-phenotype transformations
contributing to thehealthanddiseaseof an individual.

INTRODUCTION

Interpreting the impact of familial and somatic variation in the

genome on the protein fold and function in diverse physiological

contexts (Anfinsen, 1973) is critical for implementation of high-

definition medicine (Torkamani et al., 2017). Associated with

this concern is the need to link the genotype to the pheno-

type—a universal challenge in the era of human genome

sequencing (Manolio et al., 2017). To assess the impact of

genetic diversity on protein function and structure, ancestral

approaches can be used to compare residue conservation

across evolutionary time to assign evolved chemical and/or

physical constraints defining the function of the polypeptide

fold (Hopf et al., 2017), whereas deep mutational scanning

(DMS) attempts to facilitate interpretation through induced

random genetic variation (Starita et al., 2017). These approaches

fail to guide an understanding of the impact of genetic diversity

on protein function found in the many cell- and tissue-specific

environments that are unique to each one of us.
Cell Re
This is an open access article under the CC BY-N
To understand the genotype-to-phenotype transformation

contributing to function, we hypothesized that sequence varia-

tion in the human population can be used as a collective

to generate a platform that quantitatively tracks hidden

sequence-to-function-to-structure relationships that contribute

to diversity and function in the individual. For this purpose, we

developed variation spatial profiling (VSP). VSP uses the fidu-

ciary (trusted) sequence positions (i.e., genotypes) of a sparse

collection of inherited disease-associated variants found in the

population with known biological functions (i.e., phenotypes) to

map their collective spatial relationships, which we define as

spatial covariance (SCV). Herein, we first develop and validate

the interpretive power of VSP using the recessive, loss-of-func-

tion variants of the cystic fibrosis (CF) transmembrane conduc-

tance regulator (CFTR) to reveal the sequence-to-function-to-

structure relationships contributing to CF disease, a platform

useful for application of therapeutics to the individual CF patient.

To generalize our SCV-based platform, we use allele frequency

to assess the evolutionary impact of variation on CF. To expand

the application of the SCV principle, we use function and allele

frequency to predict the pathogenicity of dominant gain-of-func-

tion amyloid precursor protein (APP) variants responsible for

Alzheimer’s disease (AD), and to capture the value of the

Ab-42/Ab-40 ratio to predict age of onset (AO) of dementia. We

suggest VSP provides an unanticipated approach to read the

genome by interpreting central dogma in the context of genetic

diversity of the population through the principle of SCV.
RESULTS

Defining SCV through a Gaussian Process
To address the role of genetic variation in biological diversity and

human healthspan, we reasoned that variants found in the pop-

ulation report on conserved (but largely unknown) evolutionary

rules that dictate the biophysical, biochemical, and/or biological

properties of folding intermediates informing normal protein

function. To bridge sequence variation with phenotypic diversity,

we developed VSP. VSP is inspired by well-established

Gaussian-process (GP)-based regression approaches used in

geostatistics (Chilès and Delfiner, 2012) that analyze relation-

ships between datasets based on x axis (latitude) and y axis

(longitude) position coordinates (Figure 1A; see STAR Methods).

These coordinates are used to build an image of the landscape

that predicts the probability of the distribution of, for example,
ports 24, 2013–2028, August 21, 2018 ª 2018 The Author(s). 2013
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Building Phenotype Landscape Through VSP

(A) A schematic illustrating application of Gaussian-process (GP)-based geostatistics for oil exploration in a geophysical landscape.

(B) CFTR linear, secondary, and 3D structure with CF variants indicated.

(C) Steps for generating the phenotype landscape through VSP (see Video S1).

2014 Cell Reports 24, 2013–2028, August 21, 2018



a geologic feature such as a commodity (e.g., oil) (Figure 1A,

z axis). This matrix-based map is derived using the spatial rela-

tionships between a sparse collection measured positions in

the landscape (e.g., ‘‘boreholes’’ used for oil) and the covariance

calculated between the values found in these positions (Fig-

ure 1A). These known spatial relationships are then used to

capture the values for all unmeasured (unknown) positions in

the landscape based on the rationale that measured positions

closely separated in geophysical space (their proximity) are

more correlated to each other than those at more distant spatial

locations. Only a sparse collection of positional relationships in

the landscape, that is, their proximity-linked measurements,

are necessary to define unknown values across the entire land-

scape with high confidence. In geostatistics, high-confidence

(low uncertainty) predictions typically require �50 or greater

sampling positions (Kerry and Oliver, 2007).

We recognized that variants in the population can experimen-

tally serve as fiduciary (trusted) ‘‘molecular markers,’’ like

geological boreholes, to yield fundamental insights into the value

of relationships that link each variant position (its genotype) to its

value in the polypeptide chain, that is, its phenotype defined by

protein function. For this purpose, we apply a proximity-based

biological principle we term SCV. SCV captures the impact of

GP-based covariance to map value in sequence-to-function

relationships as a continuous landscape image that can be

transformed to structure. By linking the linear sequence informa-

tion found in the genotype of the population to functional states

of the polypeptide fold, SCV relationships can be used to predict

unknown functional and structural values for every amino acid

position in the polypeptide sequence.

Applying SCV to Profile Disease Variants
To test the SCV principle, we first turned our attention to the

broad field of human Mendelian disease, where inherited

variants have a transformative impact on protein folding, stabil-

ity, and function. Familial disease provides a robust genotype-

to-phenotype differential relative to the normal wild-type (WT)

protein to address the role of sequence variation in human

physiology. Of the over 10,000 rare diseases cataloged to

date (Landrum et al., 2016), CF is a well-studied and prevalent

(�100,000 patients worldwide) early-onset, autosomal reces-

sive (loss-of-function) disorder involving variants in the CFTR

(Cutting, 2015).

CFTR is a multi-membrane-spanning polypeptide (Figure 1B)

belonging to a large and diverse ABC transporter family contain-

ing transmembrane domains (TMDs) and regulatory nucleotide-

binding domains (NBDs) (Figures 1B and S1A) (Liu et al., 2017;

Zhang et al., 2017). At the apical surface, CFTR functions as a

key chloride channel that maintains ion balance and hydration

in sweat, intestinal, pancreatic, and pulmonary tissues, each

providing a unique physiological environment likely differentially

contributing to CFTR function (Amaral and Balch, 2015).

Assigning CFTR Landscape Coordinates: Step 1
Of the CFTR variants found in the population with a confirmedCF

clinical phenotype (Sosnay et al., 2013), 159 have an allele

frequency above 0.01% and encompass �96% of the patient

population. 67 genotypes are missense or deletion variants
that result in the expression of a full-length but dysfunctional

protein (Figures 1B and S1A). The Phe508 deletion (F508del)

variant contributes to �85% of clinical disease in homozygous

(�45%) or heterozygous state with other rare variants. Recent

cryoelectron microscopy (cryo-EM) structures of CFTR in the

presence or absence of phosphorylation and ATP binding reveal

that large conformational changes accompany channel gating

and function (Liu et al., 2017; Zhang et al., 2017). The impact

of variation (Cutting, 2015) (https://www.cftr2.org/) on these

structural states and their contribution to the natural history of

disease, risk management, and/or clinical intervention through

therapeutics for each individual in the CF patient population

remain to be defined.

To generate the input data for our VSP approach, we used 63

experimentally characterized CFTR missense variants (Sosnay

et al., 2013) (Figures 1B and S1A). In the first step of VSP (Fig-

ure 1C, step 1), we positioned these variants as distance rela-

tionships based on the position of their genotype encoded

variant amino acid along a linear (1-dimensional [1D]) polypep-

tide sequence normalized to the full-length WT chain set as a

value of 1. Here, we refer to this value as the variant sequence

position (VarSeqP) (Figure 1C, step 1, 1D). For the y and z axis

coordinates that will contribute to sequence-to-function relation-

ships, we used biologic features associated with each variant.

CFTR requires trafficking in the exocytic pathway from the endo-

plasmic reticulum (ER) through the Golgi to its final destination at

the apical cell surface of epithelial cells to achieve biological

function. Therefore, as a second dimension (2D) y axis coordi-

nate, we assigned the value of each variant’s experimentally

determined trafficking to the Golgi, referred to as the trafficking

index (TrIdx) (Figure 1C, step 1, 2D). The Trldx is the fraction of

a CFTR variant exported from the ER relative to the total amount

of variant found in the cell, normalized toWT CFTR. The resulting

plot (Figure 1C, step 1, 2D) links the genotype (x axis) to a pheno-

type (y axis).

To correlate sequence position (VarSeqP) (x axis) and traf-

ficking (y axis) to a feature to be predicted by VSP, the third

dimension (the z coordinate) was defined by the experimentally

measured chloride conductance (ClCon) value for each variant

normalized to the ClCon value of WT (Figure 1C, step 1, three-

dimensional [3D]). The z axis functional feature is equivalent to

the measured values recovered from a sparse distribution of

geological features (e.g., such as oil found in boreholes; Fig-

ure 1A). The ClCon value is spatially defined in the context of

its unique x axis (sequence position) and y axis (trafficking)

coordinates. The spatial relationships defined by the x axis and

functional y and z axes coordinates provide a quantitative frame-

work to assign value and map function across the entire

polypeptide sequence through GP regression.

Building the Phenotype Landscape: Step 2
To transform the sparse genotype sequence information en-

coded by our collection of 63 variants into the phenotype of

the entire polypeptide chain, in the second step of VSP (Fig-

ure 1C, step 2), we assessed the spatial relationships of each

known variant (x axis) and its unique biological features (y and

z axes) using a variogram (STAR Methods). The variogram is a

GP descriptor that captures biological spatial correlations that
Cell Reports 24, 2013–2028, August 21, 2018 2015
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are used for ML based on the input sparse collection of variants

and their features (Figure 1C, step 1).

Generation of the variogram involves pairwise analysis of the

63 sparse variants to yield all possible 1,953 combinations of

spatial relationships as output (Figure 1C, step 2, top). The 2D

distance values linking VarSeqP to TrIdx (Figure 1C, step 2,

bottom, x axis) were first calculated to report how CFTR traf-

ficking is changed in response to each variant sequence posi-

tion. The associated 3D spatial relationships with ClCon were

then calculated to assess variance of the proximity values of

ClCon for all combinations of the VarSeqP coupled TrIdx posi-

tions (Figure 1C, step 2, bottom, y axis) to generate the vario-

gram (Figures S1B–S1D). The variogram reports on the SCV

relationships of known sequence positions to trafficking to

ClCon function to define the unknown SCV relationships as

output matrix, just as x and y axis linear coordinates in geostatis-

tics links the positions of boreholes to predict the spatial distribu-

tion pattern of commodity values as output (z axis) (Figure 1A).

Our ‘‘molecular’’ variogram quantitates the sequence range

where the variants co-vary with each other for a given set of func-

tional relationships, in this case the TrIdx and ClCon values. We

find that the spatial variance of ClCon for CFTR increases

according to the linked changes in both VarSeqP and TrIdx until

it reaches a plateau (Figure 1C, step 2, bottom). The plateau oc-

curs at distance of �0.14 (Figure 1C, step 2, bottom), a

computed feature of the fold we refer to as the molecular range.

A molecular range of �0.14 reveals that the TrIdx and ClCon

function of variants are generally dependent on each other only

over a short sequence range, a module of function, in this case

�150–200 amino acids. Variants with spatial relationships ex-

tending beyond the module range are generally not correlated

and therefore likely to have more extended (direct or indirect) re-

lationships to modulate function, perhaps reflecting flexible

intra- or inter-domain interactions found in the full-length protein

and/or in their interactions with other proteins in the complex

environment of the cell (Pankow et al., 2015). Thus, SCV reports

on spatial relationships that coordinate sequence position with

function that now enable us to calculate an output matrix, the

‘‘phenotype landscape’’ that captures the unknown.

Using the Phenotype Landscape to Define Function in
the Individual: Step 3
Based on the SCV relationships generated in step 2 as input,

we apply GP regression to relate our characterized sparse

collection of variants (the known) to the uncharacterized amino

acids comprising the remainder of the polypeptide chain (the

unknown). The resultant matrix-based output phenotype land-

scape allows us to quantitatively assess all unmeasured ClCon
Figure 2. Phenotype Landscape Informs Functional Structure

(A) The VSP-predicted values of ClCon (z axis) relating to TrIdx (y axis) across

landscape overlaid with the confidence contour intervals.

(B) Phenotype landscape is mapped to CFTR structure snapshots (PDB: 5UAK,

(C) The residues in the functional structure (B) with predicted variants that defin

asterisk in A) are shown as balls in the structural snapshots (bottom). The di-acidic

ATP at the consensus site is shown as black sticks.

(D) The residues in the functional structure (B) with predicted variants that locate o

deficient ClCon function (ClCon < 0.15) are shown as balls on the structure snap
values in the context of the TrIdx for amino acids spanning the

entire polypeptide sequence, along with an uncertainty associ-

ated with each value (Figure 1C, step 3, �2,100,000 predictions

shown as a color gradient; Video S1). We refer to this 3D land-

scape (Figure 1C, step 3) as the ClCon-phenotype landscape

reflecting its z axis coordinate.

The SCV-based landscape generated from genetic diversity in

the population can be used to assess function in the individual

harboring a specific variation. For this purpose, the ClCon-

phenotype landscape (Figure 1C, step 3) is back-projected to

a 2D map with the color scale (a heatmap) representing the

z axis ClCon function (Figure 2A). The molecular variogram (Fig-

ure 1C, step 2, bottom) used to generate the ClCon-phenotype

landscape also defines the confidence or uncertainty for each

mapped value. These values can be plotted as a gradient of con-

tour lines (a molecular fingerprint) representing the uncertainty in

applying SCV relationships for each uncharacterized amino acid

in the CFTR full-length sequence (Figure 2A, gray contours; Fig-

ure S1E). For example, a location within the top 25% confidence

quartile (Figure 2A, opaque color regions) have input variant

values within the top one-third of the molecular range (Figure 1C,

step 2, bottom). These SCV relationships are of high confidence

and more dependent on one another than locations outside the

top 25% confidence quartile (Figure 2A, transparent color

regions). The residues in the top 25% contours with similar pre-

dicted ClCon values we refer to as clusters. Clusters reveal the

contribution of both known and unknown (predicted) amino

acids to the overall functional spatial design of the fold.

To validate the output of the ClCon-phenotype landscape (Fig-

ure 2A), we used a different dataset of diverse CF variants (Van

Goor et al., 2014; Yu et al., 2012) (Figure S1F, inset) not included

in the training dataset (Sosnay et al., 2013) (Figure 2A, plus

symbols). Validation reveals a strong correlation (Figure S1F;

Pearson’s r = 0.81, p value = 2 3 10�4) between all the experi-

mentally measured values and the newly mapped values that

define the output phenotype landscape. These results demon-

strate that VSP can incorporate complex sequence and

feature-based functional relationships using >50 fiduciary

variant markers (Figure S1G), which comprise only 5% of the

total CFTR sequence, to generate a continuous landscape

view of physiological features spanning the entire CFTR poly-

peptide. For example, the ClCon-phenotype landscape reveals

that for all residues that have a TrIdx value of approximately

<0.4–0.5 (Figure 2A, y axis), VSP predicts a nearly complete

loss of ClCon, reflecting the impact of SCV states that prioritize

cellular location (i.e., ER) relative to ClCon function found at the

cell surface (Figure 2A, z axis, red). In contrast, for CFTR variants

that have a TrIdx value of approximately >0.4–0.5 (Figure 2A,
the entire VarSeqP (x axis) in this Wang-Balch plot is shown as a phenotype

5W81) to generate functional structures.

e low trafficking (TrIdx < 0.2) values in the landscape (top; highlighted by one

ER exit code of CFTR (YKDAD) in NBD1 domain is highlighted by black arrows.

n the cell membrane (TrIdx > 0.8) (top; highlighted by two asterisks in A) but with

shots (bottom). The position of G551D is denoted by a number sign.
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y axis), VSP predicts substantial sequence-based variability in

ClCon (from none to greater than WT), illustrating the sensitivity

of the CFTR fold to highly variable endocytic trafficking and

channel regulation pathways at the cell surface that have no

impact on export from the ER.

Translating the Phenotype Landscape to a Functional
Structure
To examine whether phenotype landscapes derived from linear

sequence information and associated biological features can

provide functional insight into the conformation(s) captured by

structural methods, we mapped phenotype landscape values

to cryo-EM snapshots of CFTR (Liu et al., 2017; Zhang et al.,

2017) in open and closed channel conformations reflecting the

response of the channel to ATP-binding (Figure 2B). We

assigned the prediction value with highest confidence to unchar-

acterized residues (Figure 2B, left panels) to link function to

conformation where TrIdx (Figure 2B, right panels, ball size), pre-

dicted values of ClCon (Figure 2B, right panels, color gradient),

as well as their confidence in prediction (Figure 2B, right panels,

transparency gradient) provide a complete map of sequence-to-

function-to-structure relationships in CFTR (STARMethods). We

refer to this overlay of phenotypic landscape values onto the

CFTR structure snapshot as a functional structure.

To illustrate the biological design of CFTR (Figure 2B) revealed

by our VSP perspective (Figure 2A), the predicted sequence

regions within the high-confidence 25% contour that have low

trafficking values (TrIdx < 0.2) allow us to quantitatively assign

the role of the ER in the folding and trafficking of CFTR (Fig-

ure 2C). For example, NBD1 can be defined by the SCV relation-

ships that form the high-confidence cluster 1 (<25% confidence

contour) (Figure 2C, top, SCV cluster 1) that includes the com-

mon CF variant F508del and the critical S492 residue central to

the molecular dynamics of the NBD1 module controlling traf-

ficking (Proctor et al., 2015). This cluster also contains the

diacidic exit code required for ER export (Figure 2C, bottom,

circle 1, black arrows; Figure S1H) (Wang et al., 2004). The

high-confidence SCV relationships defined by cluster 1 in this

subdomain of NBD1 (Figure S1H) illustrate the spatial design of

intra-domain functional interactions that coordinate the interac-

tion of NBD1 with COPII for ER export. Moreover, VSP predicts

that NBD1 does not operate in isolation from the other modular

features of the CFTR fold. Cluster 2 (Figure 2C, top, cluster 2;

bottom, bar 2 on functional structure) in TMD2 defines longer-

range, inter-domain interactions that tune ER stability and/or

export, a conclusion supported by experimental observations

(Mendoza et al., 2012; Rabeh et al., 2012). These twomajor clus-

ters together with several other regions contributing to trafficking

in the functional structure provide a mechanism in which two

legs of the transmembrane fold (Figure 2C, bottom, TM11-

ICH4-NBD1 [leg 1] and TM4-ICH2-NBD2 [leg 2] connected by
Figure 3. Ivacaftor-Responsive Phenotype Landscapes

(A) The predicted ClCon values (z axis) in the absence (left) or presence of Ivacafto

quartile confidence interval of prediction is highlighted by bold contour line. FDA

boxes. Variants recently approved based on in vitro cell-based data (Ratner, 201

asterisk.

(B) Mapping the predicted ClCon on human CFTR structure snapshots to genera
TM1 and TM3; Figure S1I) that defines the functionality of

NBD1 for export. Most of the predicted residues restricting traf-

ficking are neither facing the interior of the gated channel nor

involved in ATP binding (Figure 2C, bottom, top view), indicating

that ER export is largely uncoupled from features guiding CFTR

channel and gating function at the surface. Consistent with this

view,�30% of CF missense variants show >80% of the WT traf-

ficking value but have deficient ClCon function (<15% of WT

ClCon) (Figure 2A). In contrast to residues modulating ER export,

when we mapped the sequence clusters in the phenotype land-

scape with WT-like TrIdx but deficient ClCon function onto the

CFTR functional structure (Figure 2D), all of them can be aligned

along the channel faces or in ATP-binding regions that do not

impact ER export. For example, SCV clusters 3 and 4 found at

the interface of the NBD1 and NBD2 are predicted to couple

inter-domain interactions to mediate the channel gating (Fig-

ure 2D, bottom; Figure S1J). Thus, VSP transforms SCV relation-

ships (i.e., high-confidence clusters) into structural units and

links them by their contributions to function that highlights unan-

ticipated modularity of the fold for trafficking and function.

Using Phenotype Landscapes to Assess Value in
Therapeutics
To demonstrate that VSP can reveal how the local chemical envi-

ronment influences the genotype-to-phenotype transformation,

we applied VSP to the variant dataset (Van Goor et al., 2014;

Yu et al., 2012) that we used for validation of the CFTR ClCon-

phenotype landscape (Sosnay et al., 2013). Variants were either

untreated or treated with the US Food and Drug Administration

(FDA)-approved therapeutic ivacaftor, a channel gating potenti-

ator that increases the open probability of cell-surface-localized

CFTR (Van Goor et al., 2014; Yu et al., 2012). While ivacaftor has

no effect on export of F508del, it was shown to have a substantial

impact on improving ClCon of the G551D variant found in SCV

cluster 3 at the NBD1-NBD2 interface (Figure 2D, bottom, #)

which traffics normally to the cell surface, but lacks conductance

(Figure 3A, left, #).

The variogram (Figure S2B) reveals that ivacaftor has only

a minor impact on the molecular range but increases the spatial

variance of the plateau value from 0.05 in the absence of ivacaf-

tor to 0.29 in its presence. This unexpected large change

suggests that ivacaftor mechanistically increases the overall

spatial variance of the fold leading to decreased stringency

in gating and/or channel activity to restore function. Consistent

with this interpretation, VSP reveals a striking change in the

ClCon-phenotype landscape output for a substantial fraction

of the polypeptide chain (Figures 3A and S2C). The ivacaftor

responsive phenotype landscape demonstrates that variants

with a measured or predicted minimum TrIdx value of

�0.3–0.4 (Figures 3A and S2D–S2F; Pearson’s r = 0.6,

p value = 4 3 10�7) and a level of post-ER mature glycoform of
r (right) are shown as phenotype landscapes (see Videos S2 and S3). Top 25%

-approved variants for treatment with ivacaftor are highlighted by the square

7) are highlighted by black triangles. Among them, A455E is highlighted by one

te therapeutic responsive view of the fold.

Cell Reports 24, 2013–2028, August 21, 2018 2019



approximately >0.4–0.5 of that observed for WT CFTR (Figures

S2G–S2I; Pearson’s r = 0.73, p value = 83 10�12), will be respon-

sive to management by the drug. For example, in addition to

G551D (Figure 3A, #), most of the variants that were recently

approved by the FDA based on in vitro data (Ratner, 2017) (Fig-

ure 3A, right, black triangles) are mapped by VSP to be respon-

sive to ivacaftor with the exception of A455E (Figure 3A, right, *)

that has a TrIdx of 0.3 and is predicted by VSP to be an ivacaftor

nonresponder (Figures S2F and S2I, *), suggesting that this

variant is not a good candidate for ivacaftor intervention, as

observed in the clinic (McGarry et al., 2017).

To visualize the therapeutic response of ClCon-phenotype

landscapes from our functional structure view, the highest-con-

fidence predicted values following ivacaftor treatment for each

residue were mapped onto the closed and open CFTR structure

snapshots (Figures 3B and S2E). As expected, a before and after

comparison of the ER-restricted residues such as SCV cluster 1

in NBD1 domain and cluster 2 in TMD2 failed to show a response

to ivacaftor (Figure 3B). In contrast, 63% of CFTR residues within

the 25% confidence quartile (Figure 3A, right) are shown to have

at least a 20% increase in function relative to that of WT ClCon in

response to ivacaftor (Figure 3B, right, 813 residues, yellow to

blue balls; Figure S2E; Table S1). These variants already have

a significant TrIdx and are mostly located in the ATP-binding

site contributed by SCV clusters 3 and 4 found at the NBD1-

NBD2 interface and along the channel region (Figures 3B and

S2E; Videos S2 and S3). The integrated results captured by

VSP lead us to suggest that ivacaftor unexpectedly serves as a

dynamic ‘‘SCV agonist’’ that triggers a ripple effect that either

directly or indirectly spans most of polypeptide chain to improve

its spatial flexibility to improve its channel function (Figures 3B

and S2J). These SCV relationships now provide a platform

explain the basis for correction of sequence-to-function-to-

structure responses of numerous CFTR variants to ivacaftor.

Furthermore, the impact on the variable response to ivacaftor

by different cell-based and/or clinical modifier environments,

or the response of different variants at the same physical location

in the sequence, can be assessed by deep analysis of 3D projec-

tions of phenotype landscapes (Figure S3).

Tissue-Specific Phenotype Landscapes
To demonstrate that our VSP strategy can capture SCV relation-

ships defining genotype to phenotype transformations impacting

the onset and progression of disease in the clinic, we used TrIdx

as the input y axis value with known clinical measures of CF

disease as input z axis values (Figure 4A) (Sosnay et al., 2013).

Patient measures include sweat chloride (SC), forced expiratory

volume in 1 breath (FEV1), Pseudomonas burden (PB), and

pancreatic insufficiency (PI) (Sosnay et al., 2013). To make all

z axis input measures comparable, we normalized their values

by setting the F508del value to 0 and that of WT to 1. Here,

phenotype landscapes (Figure 4A) and their functional structures

(Figure 4B) demonstrate, as expected, that a poor TrIdx predicts

not only poor ClCon across all human tissue environments (Fig-

ure 4A; ClCon layer, y axis < 0.4 [red to orange]) but also poor

FEV1, SC, PB, and PI clinical outcomes (Figure 4A; SC, FEV1,

PB, PI layers, y axis < 0.4 [red to orange]). For example, NBD1-

based SCV relationships that limit ER export (e.g., Figure 4B,
2020 Cell Reports 24, 2013–2028, August 21, 2018
cluster 1 and bar 2) are defective for all phenotypes. Moreover,

residues localized to the ATP-binding site managing ClCon (Fig-

ure 4B, cluster 3 and 4) are also defective in all tissue environ-

ments. These results suggest a conserved role for these residues

in managing the CFTR fold for all tissue function.

In contrast to the conserved roles of trafficking and channel

gating variants, VSP captures a number of SCV relationships

that either under- (Figure 4B, cluster 5) or overestimate (Fig-

ure 4B, cluster 6) the potential impact of a variant on a given clin-

ical phenotype relative to the cell-based derivedmeasurement of

ClCon. Tissue-specific SCV relationships are best seen by the

divergent FEV1 and PI phenotype landscapes (Figure 4A;

compare FEV1 to PI layers, arrow) and their functional structures

(Figure 4B, compare FEV1 to PI, arrow; Video S4). For example,

cluster 7 presents as a severe phenotype for FEV1 and PB but is

mild for PI and SC (Figure 4B). In contrast, cluster 8 is mild for

FEV1 but severe for PI (and other clinical responses) (Figure 4B).

Moreover, cluster 9 is severe for all clinical indications but has

only a mild impact on PI (Figure 4B). The differences found in

tissue specificity of function may reflect the fact that CFTR

manages ClCon and hydration in a non-homeostatic environ-

ment in the lung, while CFTR manages bicarbonate secretion

that is critical for pancreas function in response to homeostatic

environment (Figure S4) (LaRusch et al., 2014).

Linking Bench to Bedside through VSP
Given that VSP is a highly flexible platform that can integrate a

common set of sparse variant datasets, we generated pheno-

type landscapes and the predicted functional structures for all

30 pairwise combinations of y and z axis coordinates reflecting

both bench and bedside measurements (Figure 5A). These

phenotype landscapes were used to cross-correlate the pre-

dicted output of a basic and/or a clinical feature with one

another. Using a leave-one-out cross-validation analysis to

evaluate the prediction accuracy of each phenotype landscape

(Figure 5B), we found significant Pearson r values of 0.52

(p = 2 3 10�5) and 0.77 (p = 3 3 10�13) using the bench-based

model to predict either ClCon or TrIdx-phenotype landscapes

as the z axis value, respectively (Figure 5B, bottom left quad-

rants). Moreover, statistically significant SCV correlations were

found using FEV1, SC, PB, or PI as a y axis value to predict a

different clinical feature as the output z axis value (Figure 5B,

top right quadrant). For example, we observed a significant

quantitative relationship using FEV1 as the y axis to predict

PB as the z axis (Figure 5B; panel 9; Pearson’s r = 0.67,

p = 33 10�9) or, conversely, using PB to predict FEV1 (Figure 5B;

panel 14; Pearson’s r = 0.64, p = 2 3 10�8). These results are

consistent with the fact that these features are physiologically

linked in airway-associated CF disease. In contrast, when using

PI as the y axis coordinate to predict FEV1 as the z axis value, we

found a substantially lower Pearson’s r value (Figure 5B; panel

15; Pearson’s r = 0.32, p = 0.01), consistent with their very

different physiologic role(s) in CF clinical progression (LaRusch

et al., 2014).

To link bench to bedside, we tested the value of cell-based

(bench)measurements as the y axis value to predict clinical mea-

sures (bedside) as the z axis value across the entire predicted CF

variant population (Figures 5A and 5B, top left quadrant). Such



Figure 4. Applying VSP to Clinical Phenotypes

(A) Phenotype landscapes relating the sequence position of variant (x axis) and its cell-based TrIdx (y axis) to the indicated features (z axis): cell-based chloride

conductance (ClCon), clinical sweat chloride (SC), clinical forced expiratory volume 1 (FEV1), clinical Pseudomonas burden (PB), and clinical pancreatic

insufficiency (PI).

(B) Mapping clinical phenotype landscapes on CFTR structure snapshots.
relationships present a fundamental challenge in high definition

medicine where most cell-based and animal models fail to pre-

dict clinical outcome, leading to substantial loss of time and

financial resources. Consistent with this concern, nearly all

VSP bench-to-bedside predictions show weak but statistically

significant correlations (Figure 5B, top left quadrant). The stron-

gest correlation was seen when we use ClCon as the y axis to

predict SC (Figure 5B, panel 17; Pearson’s r = 0.63, p = 3 3

10�8). Thus, cell-based ClCon measurements largely capture

SC responses recovered from the patient population, a predic-
tion validated by clinical observations (Collaco et al., 2016).

These results validate the utility of the VSP to serve as a guide

to link the value of SCV relationships generated by cell-based

models to assess the impact of a therapeutic for a physiologi-

cally relevant clinical feature (Figures S5A and S5B).

Generalizing VSP Using Allele Frequency
To generalize the SCV principle, we considered the possibility

that allele frequency from the GnomAD database (http://

gnomad.broadinstitute.org/; 138,632 individuals) could serve
Cell Reports 24, 2013–2028, August 21, 2018 2021
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as a universal genome-based y axis coordinate, like the x axis

position coordinate, to assess biologically relevant functional

SCV relationships (z axis) for all variant genotypes found in

the population. Using CFTR variants to first calibrate whether

allele frequency as the y axis coordinate can inform on SCV

relationships contributing to disease in the CF population, we

generated TrIdx- (Figures 5C and S5C; Pearson’s r = 0.6,

p = 3 3 10�7) and ClCon-phenotype landscapes (Figures 5D

and S5D; Pearson’s r = 0.67, p = 5 3 10�9) as predicted

z axis features. Intriguingly, they are strikingly different. As

shown in Figure 5C in the Trldx-landscape molecular fingerprint,

variants are found distributed as small clusters throughout the

primary sequence, reflected in the very short molecular range

found in the variogram (Figure S5E; range = 0.17, �150 amino

acids). These results suggest that allele frequency reports on

trafficking through local SCV relationships (Figure S5G). In

contrast to the TrIdx phenotype landscape, the ClCon-pheno-

type landscape molecular fingerprint shows that allele fre-

quency largely correlates with ClCon function across the entire

polypeptide (Figure 5D). Here, variants with allele frequency

below �0.02% of the population (Figure 5D) all have deficient

ClCon function, while most of variants with allele frequency

above �0.02% have strong ClCon values. The ClCon variogram

has an extended molecular range (Figure S5F; range = 2.65, i.e.,

the full-length protein), indicating that the entire polypeptide

operates as a functional unit to determine the evolutionary

trajectory of the fold in the health of the individual (Figures 5D

and S5H). Exceptions are F508del (NBD1) and L997F (Figure 5D,

highlighted by *), possibly due to their beneficial role in partial

protection of the population to pathogens such as V. cholerae

(Thiagarajah et al., 2015). Thus, allele frequency provides an

unanticipated y axis feature that can be used to assess SCV

relationships in recessive loss-of-function genotype to pheno-

type transformations.

Using VSP to Assess Onset of AD
To address the ability of allele frequency as general metric to

move beyond loss-of-function recessive rare diseases such as

CF and provide insight into the pathogenicity of more common

age-related gain-of-toxic function such as neurodegenerative

diseases, we applied VSP to AD. Whereas combined inherited

and somatic forms of AD impact nearly 50 million people world-

wide, �25% of the population has familial AD (FAD), of which

�95% is defined by late-onset AD (LOAD) (age >60–65 years)

and 5% is defined by early-onset AD (EOAD) (age <60–65 years),

largely in response to variants in APP and presenilin 1 (PS1). APP

contributes to 10%–15%and PS1 contributes to�50%of EOAD

(Giri et al., 2016). APP is a single-membrane-spanning protein

whose cleavage through the sequential activity of b- and g-sec-

retases (Hunter and Brayne, 2018) is altered in response to
Figure 5. Phenotype Landscapes Linking Bench, Bedside, and Popula

(A) Predicted phenotype landscapes and functional structures that use any two c

values.

(B) Leave-one-out cross-validation of phenotype landscapes shown in (A). Pearso

asterisks (0.01 < *p < 0.05; 0.001 < **p < 0.01; ***p < 0.001; 0.01 <*1p<0.05, wh

landscapes; Figure S4).

(C and D) Phenotype landscapes relating CFTR variants (x axis) and the allele fre
inherited and/or sporadic disease, leading to the generation of

amyloidogenic peptides referred to as Ab.

For VSP, we used as input the available 45 missense variants

of APP reported in ClinVar (Landrum et al., 2016) and

ALZFORUM (https://www.alzforum.org/) databases as x axis

values, allele frequency reported in the GnomAD database as

y axis values, and pathogenicity as reported in the ClinVar and

ALZFORUM databases as z axis values to generate as output

the APP pathogenicity (APPpath)-phenotype landscape (Figures

6A and S6A; Pearson’s r = 0.9, p = 2 3 10�13; STAR Methods).

VSP achieves 0.98 area under the curve (AUC) in receiver-oper-

ating characteristic (ROC) analysis, which is significantly higher

than other variant function prediction algorithms, which are all

below 0.75 (Figure S6B), indicating that VSP can consistently

capture the biological principle(s) underlying AD from population

genomics. As shown in the APPpath-phenotype landscape,

‘‘benign’’ or ‘‘likely benign’’ variants of higher frequency in the

population are predicted by VSP to be distributed throughout

the sequence (Figure 6A, green-yellow). In contrast, nearly all

pathogenic variants generate a high-confidence SCV cluster in

the C-terminal region of the APPpath-phenotype landscape that

is absent from GnomAD (STAR Methods), emphasizing their

rarity in the population (Figure 6A, *) with an exception of

A713T (Figure 6A, **). These residues can be mapped to a partial

APP functional structure (Barrett et al., 2012) (Figure 6B, red res-

idues�667–728). This SCV hotspot contains the nonpathogenic

a-secretase cleavage site as well as the b- and g-secretases

cleavage sites that are responsible for the generation of Ab-40

and the highly pathogenic Ab-42 peptides found in amyloid pla-

ques (Figure 6B) (Hunter and Brayne, 2018). In addition, VSP

based on sparse variants in population predicts a high allele

frequency region around the g-secretase cleavage site (Fig-

ure 6A, ** and ***; Figure 6B, large balls), which is validated by

plotting all the variants found in GnomAD (Figure S6C), suggest-

ing that the sequence at this region is being continually optimized

to (re)balance the composition of different Ab peptides in human

population possibly in response to aging.

To link the SCV hotspot (Figure 6A, *) in APP found in the pop-

ulation to the impact of Ab fragments in familial disease in the

individual, we applied VSP to variants found in presenilin 1

(PS1), the catalytic subunit of the g-secretase that generates

Ab-42 and Ab-40 fragments. Each variant has been shown to

contribute differentially to levels of Ab-42 or Ab-40 (Sun et al.,

2017), although no statistically significant correlation was found

between either the total absolute amount of Ab-42 plus Ab-40

and the mean AO or between the Ab-42/Ab-40 ratio and the

mean AO using conventional statistical parameters (Sun et al.,

2017). Here, the Ab-42/Ab-40 ratio relative to that observed for

WT PS1 (set as value of 1) was used as the y axis coordinate

to predict the mean AO as the z axis coordinate in an
tion Genomics

ombinations of the indicated cell-based or clinical features as y axis and z axis

n’s r value is indicated by the pink to dark red color scale; p value is indicated by

ere V754M is set as an outlier for validation given its variability in phenotype

quency in GnomAD (y axis) to TrIdx (C) or ClCon (D).
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AO-phenotype landscape (Figure 6C, left; Figure S6D, Pearson’s

r = 0.37, p = 4 3 10�4). Using input data from 89 PS1 variants to

generate the AO-phenotype landscape (Sun et al., 2017), we

found variants that generate �10-fold-change higher Ab-42/

Ab-40 ratio than that of WT (Figure 6C, left, y axis > 10) show

an early AO (Figure 6C, left, orange to red, AO < �40). Variants

that generate a 1- to 10-fold change Ab-42/Ab-40 ratio relative

to that of WT (Figure 6C, left, 1 < y axis < 10) show a broad range

of AO (Figure 6C, left panel, light blue to orange). In general,

the overall impact of variants in this region (Figure 6C, left,

1 < y axis < 10) leads to a later AO compared to variants with y

axis value above this range (Figure 6C, y axis > 10) (Figure S6E,

p = 0.02). Consistent with these results, when the Ab-42/Ab-40

ratio is lower than WT (Figure 6C, y axis < 1), SCV reveals a sig-

nificant delay in AO compared to all other variants (Figure 6C,

left, blue; Figure S6E). Using the absolute level of Ab-42 as the

y axis coordinate in the AO-landscape, we found that the delay

of onset does not simply reflect Ab-42 levels (Figures S6F–

S6H). Furthermore, neither absolute Ab-40 nor absolute Ab-40

plus absolute Ab-42 as y axis values yield significance in predict-

ing AO (Figures S6I and S6J).

The corresponding functional structure projection (Figure 6C,

right) of the Ab-42/Ab-40-ratio-based AO-phenotype landscape

(Figure 6C, left) onto the structure of PS1 (Bai et al., 2015a,

2015b) reveals the sequence-to-function-to-structure relation-

ships contributing to AO. Here, an SCV cluster leading to early

onset comprises a region of PS1 that comprises TM2,

TM3, and the loop between TM1 and TM2 (Figure 6C, left, high-

lighted by *). This cluster forms a putative APP-binding pocket

(Bai et al., 2015a) in the PS1 functional structure (Figure 6C, right,

dashed oval *). In contrast, the variant values between 1-fold

change and 10-fold change relative to WT (Figure 6C, left,

1 < y axis < 10) show diverse AO relationships that highlight

different SCV clusters contributing to AO based on the Ab-42/

Ab-40 ratio. For example, the cluster comprising TM8 (Figure 6C,

left, **) has an earlier age of onset compared to other residues

with a similar Ab-42/Ab-40 ratio. The Pro-Ala-Leu (PAL) motif

adjacent to this cluster has been shown to contribute to the

catalytic core of PS1 (Figure 6C, right, arrows) (Bai et al.,

2015b). In contrast, y axis Ab-42/Ab-40 ratio values < WT (Fig-

ure 6C, left, ***) contribute to a cluster found at the C terminus

that begins at the hydrophilic loop (HL) region (Figure 6C, right,

dashed oval, ***) affecting EOAD progression (Nelson et al.,

2011). These results reinforce the ability of SCV to capture the

importance of the residues impacting the Ab-42/Ab-40 ratio as
Figure 6. Applying VSP to APP and PS1

(A) Phenotype landscape relating APP variants (x axis) and the GnomAD allele fr

(B) The highest confidence prediction of the phenotype generated by VSP is as

resolution in the region of (683–728) (PDB: 2LP1). For position of G713, only the c

values of both G713T and G713V can be captured in the landscape (A).

(C) Phenotype landscape relating PS1 variants (x axis) and the Ab-42/Ab-40 ratio

landscape is divided into 3 sections (brackets) based on y axis thresholds: below

snapshot of g-secretase complex (PDB: 5FN2) separately by assigning predicte

confidence level) in each section of the landscape with close sequence-to-functio

three asterisks, respectively, and the corresponding functional structure project

structure and the two catalytic aspartate residues in TM 6 and 7 are shown as b

(D) Cartoon illustrating VSP. GP-based SCV relationships suggest a matrix-base

transformation (lower panel, SCV[DNA<->RNA->Protein]) where the genome tell
a broadly predictive sensor of onset and progression of disease,

a prediction consistent with its biomarker value in cerebrospinal

fluid (Baldeiras et al., 2018) and in plasma of the AD population

(Nakamura et al., 2018).

DISCUSSION

We have developed a platform that assigns SCV relationships to

track asmatrices the flow of information from the genotype to the

phenotype (Figure 6D). VSP requires only a sparse collection of

variants recorded in the genome of the population (Figure 6D,

top, Input Training) to serve as fiduciary input reporters of evolu-

tion-based rules responsible for the phenotype. Variation can be

used to build phenotype landscapes that predict the unknown

from the knownbasedonGP (Chilès andDelfiner, 2012;Rasmus-

sen and Williams, 2006) (Figure 6D, middle, Hidden Layers).

Using the linear sequence information stored in the genome,

VSP captures same spatial relationships used by transcriptional

and translational machineries to build flexible design into the pro-

tein fold for function in diverse physiological states (Anfinsen,

1973) defined by the y and z axis coordinates. From this perspec-

tive, the phenotype landscape creates an image-based view of

features that can be used to quantitate and predict at atomic res-

olution how the physiological state of the fold utilizes SCV to

generate function in the individual (Figure 6D, bottom, Output).

Our ability to use SCV-based phenotype landscapes to map

the unknown from the known in the context of extant biology

and physiology cannot be captured by structure snapshots

that are generated out of context of their biological function(s)

or by ancestral approaches that rely on evolutionary divergent

physiological states. Moreover, SCV-based insight informs

new relationships that cannot be defined using PolyPhen-2,

SIFT and related predictive algorithms (Glusman et al., 2017)

and is able to achieve predictive insights with higher fidelity

(Figures S5G, S5H, and S6B). While we used available snapshot

structures of CFTR, APP, and PS1 to validate SCV relationships,

a structure is not necessary for the generation of the phenotype

landscape. On the contrary, it is VSP that provides insight into

structure snapshots that lack value without function. Our

SCV platform suggests that polypeptides can have numerous

diverse and unanticipated spatial relationships reflecting their

physiological state based on the y and z function coordinates

(Anfinsen, 1973).

Because VSP gains its interpretative power based on only a

sparse collection of fiduciary markers found in the extant
equency (y axis) to the clinical presentation of Alzheimer’s disease (z axis).

signed to each residue and mapped on APP schematic structure with atom

linical value of G713T is assigned for structural presentation, while the clinical

relative to WT (y axis) to mean age of onset (AO) from FAD patients (z axis). The

1, 1 < y < 10, and y > 10. Each landscape section is mapped on the structural

d AO with highest confidence to each residue of PS1. The SCV clusters (25%

n-to-structure relationships are highlighted by one asterisk, two asterisks, and

ions are highlighted by dashed ovals. The TMs are numerically labeled in the

lack sticks and highlighted by arrows.

d flow of information in central dogma facilitates the genotype to phenotype

s the proteome how to shape; the proteome tells the genome how to evolve.
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population, it differs substantially fromDMSapproaches that rely

on large-scale mutagenesis to model disease (Starita et al.,

2017). We have found that interpretation of the results generated

using DMS can substantially benefit by application of VSP prin-

ciples (Figures S7A–S7C). Furthermore, by embracing the high

dimensionality of the protein physiological state (Anfinsen,

1973), VSP assigns value to structure based on evolved diversity

that is highly relevant to the human population. VSP substantially

differs from the current focus on prediction of protein structure to

function relationships based on the chemical-physical proper-

ties of amino acid residues. Combining SCV principles with

chemical-physical and/or ancestral alignment measurements

as y and z coordinates may enable their use from our functional

structure perspective (Figure 6D, middle). Moreover, SCV rela-

tionships captured by VSP could be used to prioritize functional

diversity of native structural conformations using cryo-EM (Shen,

2018). Consistent with our VSP strategy (Figure 6D, middle), GP-

based approaches can be used to evolve protein sequences to

improve function (Romero et al., 2013).

VSP currently allows us to read sequence-to-function-to-

structure relationships from coding sequence defining <2% of

the genome (Figure 6D, middle). By focusing on functional rela-

tionships, SCV captures biological features reflecting the spatial

organization of the genome impacting gene expression,

post-translational modifications that impact both genome and

proteome function, the buffering capacity of the proteostasis

machinery that manages the protein fold (Balch et al., 2008),

and interactions within the variation sensitive proteome that are

unique to specific cell and tissue environments. Moreover, SCV

suggests that endomembrane compartments play specific roles

in the tunablemanagement of sequence-to-function-to-structure

relationships. For example, ClCon phenotype landscapes sug-

gests that the ER only utilizes a subset of SCV relationships

that can be independent of channel function to promote traf-

ficking, suggesting that it does not operate as a quality control

compartment to limit the delivery of functionally defective vari-

ants to downstream destinations (Ellgaard and Helenius, 2003).

Rather, VSP suggest that the ER utilizes SCV relationships to

manage the tolerance of the fold in biology (Wiseman et al., 2007).

As VSP generally requires a minimum of �50 variants for gen-

eration of high-confidence landscapes (Kerry andOliver, 2007), it

can currently be applied to most genes found in public data-

bases such as GnomAD (Lek et al., 2016), ClinVar (Landrum

et al., 2016), or specialized databases that annotate the natural

history of variant disease that link genotype to phenotype.

Proteins for which genotype-linked phenotype information

is currently not available is necessarily a limitation for application

of VSP. Genetic relationships beyond missense mutations,

including somatic variation, heterozygous alleles, epistatic

alleles, and variants in the non-coding region of genome, can

be captured by SCV when annotated by their functional features

in the context of human genome sequencing efforts. VSP can

serve as a versatile platform for high-throughput screening

(HTS) to capture human phenotypic plasticity early in the thera-

peutic development pipeline (Figure 6D, bottom).

We now posit by quantifying genetic diversity in the extant

population, SCV principles provide a universal basis to use the

population to define molecular level spatial relationships and
2026 Cell Reports 24, 2013–2028, August 21, 2018
mechanisms contributing to fitness of the individual. In this

relative way of thinking of spatial-temporal dependencies found

in the population (Figure 6D, top, ‘‘the many’’), phenotype land-

scapes help us to appreciate the complex integration of the parts

(Figure 6D, middle) to understand the individual (Figure 6D, bot-

tom, ‘‘the one’’). VSP, being an unprecedented interpolation plat-

form that can embrace multiple dimensions (Figure 6D, middle),

suggests that SCV may enable the use of predictive data-rich

phenotype landscape images to model human variation in the

population (Goodfellow et al., 2016; Rasmussen and Williams,

2006) (Figure 6D, middle) and for management of the patient in

the clinic (Figure 6D, bottom; Figure S7D). Defining central

dogma as matrices of SCV relationships across the genome

and proteome (Figure 6D, bottom, SCV[DNA4RNA/Protein])

suggests a potential role of spatial states for understanding the

origins of genetic and phenotypic diversity contributing to natural

selection (Darwin, 1859).
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Fowler, C., Li, Q.X., Martins, R., Rowe, C., et al. (2018). High performance

plasma amyloid-b biomarkers for Alzheimer’s disease. Nature 554, 249–254.

Nelson, O., Supnet, C., Tolia, A., Horré, K., De Strooper, B., and Bezproz-
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STAR+METHODS
KEY RESOURCES TABLE
RESOURCE SOURCE IDENTIFIER

Deposited Data

TrIdx and ClCon measurements of CF variants

(Input data for Figures 1 and 2)

Sosnay et al., 2013 https://data.mendeley.com/datasets/8d7w8963rb/3

Ivacaftor response of CF variants (Input data

for Figure 3)

Van Goor et al., 2014;

Yu et al., 2012

https://data.mendeley.com/datasets/8d7w8963rb/3

Tissue specific measurements of CF variants

(Input data for Figures 4, 5A, and 5B)

Sosnay et al., 2013 https://data.mendeley.com/datasets/8d7w8963rb/3

Allele frequency and TrIdx/ClCon measurements

of CF variants (Input data for Figures 5C and 5D)

GnomAD;

Sosnay et al., 2013

https://data.mendeley.com/datasets/8d7w8963rb/3

Allele frequency and pathogenicity of APP variants

(Input data for Figures 6A and 6B)

GnomAD; ClinVar;

ALZFORUM

https://data.mendeley.com/datasets/8d7w8963rb/3

Measurements of PS1 variants (Input data

for Figure 6C)

Sun et al., 2017 https://data.mendeley.com/datasets/8d7w8963rb/3

Software and Algorithms

GS+ (Version 10) Gammadesign software https://geostatistics.com/index.aspx

Gstat (1.1-6) R-package https://CRAN.R-project.org/package=gstat

Originpro 2016 Originlab https://www.originlab.com; RRID: SCR_015636

Pymol 1.8.6.0 Schrodinger, LLC https://pymol.org/2/; RRID: SCR_000305
CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, William E. Balch

(webalch@scripps.edu).

METHOD DETAILS

Brief introduction of GP in geostatistics
VSP is based onGaussian Process (GP), which is widely used in geostatistics to analyze and predict spatially continuous phenomena

in complex geophysical landscapes encompassing a wide range of geological, epidemiological, anthropological and environmental

features (Chilès and Delfiner, 2012). GP is also widely used for regression problems in supervised machine learning and artificial

intelligence (AI) applications (Rasmussen and Williams, 2006). GP used in geostatistics generates unbiased distance-based covari-

ance relationships using measurable features in the context of sparse sampling techniques as a limited ‘known’ knowledge-base to

predict the ‘unknown’ value in the geophysical landscape. In GP, a higher weight for prediction is placed on measured positions in

closer proximity to the unmeasured locations compared to those found in more distant locations. GP not only provides interpolated

values, but also measures of uncertainty for those values (confidence contours), generating a metric for assessing the probability of

the prediction. The measurement of uncertainty is critical to informed decision making and risk management, as it provides informa-

tion on the possible values for each location rather than just one interpolated value. In simple terms, GP in geostatistics embraces the

general concept that sparse covariance relationships can be used to predict unknown values and their uncertainty across an entire

feature-based landscape (Chilès and Delfiner, 2012).

The specific method of GP in geostatistics we used in this paper is Ordinary Kriging, which has the least assumptions and is the

most commonly used GPmethod in geostatistics to provide optimal unbiased prediction(Chilès and Delfiner, 2012). Ordinary Kriging

predict the unknown value by local weighted averaging the surrounding known values, where the weight associated with the known

value is determined according to their positions both in relation to the unknown point and to one another (Chilès and Delfiner, 2012).

There are other geostatistical interpolation techniques, for example, Universal Kriging, Probability Kriging, Co-kriging and Empirical

Bayesian Kriging that have additional assumptions that are specialized for particular sets of data and may ultimately prove valuable

for our VSP approach.
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Rationale for applying GP to biological data
In VSP, we consider each variant as a fiduciary (trusted) reporter of proteostasis-sensitive folding intermediates that can be used to

define the hidden evolutionary defined SCV relationships directing the genotype to phenotype transformation. VSP uses a sparse

collection of variants spanning the full polypeptide sequence to predict function in a similar way that geostatistics uses sparse

sampling measurements (boreholes) to predict unknown values across an entire geophysical landscape. Variants (i.e., variation

distributed across the population) are the exceptions to the rules that make the rules. In so doing, they help us to understand the

rules as they report on the evolved mechanisms that drive the normal function of the protein fold and multiple challenges by the

environment to facilitate survival and fitness required for natural selection. From a practical perspective, SCV relationships captured

by VSP can teach us, for example: (1) evolutionary design of protein fold for function, (2) relationship(s) that categorize value of

population traits and, as shown herein, the onset and progression of disease in the clinic; (3) cell and tissue specific variables impact-

ing variant polypeptide function or, among others, (4) generate a quantifiable common platform to assess the value of bench, animal

and bedside derived features for developing interventional management/therapeutic strategies for any gene where clinically relevant

variation in the population is available (e.g., (Landrum et al., 2016; Lek et al., 2016; Manolio et al., 2017)). A flowchart illustrating the

application of VSP to human variation is shown in Figure S7D.

Spatial organization of the biological data
To integrate the sparse collection of sequence variation information found in the genome (the genotype) with biological features

contributed by spatial relationships with function, we positioned the variants, our ‘molecular borehole/locations’, by their sequence

positions in the polypeptide chain on the ‘x’ coordinate and measurements of a biological function on the ‘y’ coordinate to describe

and predict another biological function along the ‘z’ coordinate. These relationships are similar to the positioning of boreholes defined

by their longitude (x axis) and latitude (y axis) coordinates to predict oil reserves (z axis) in geostatistical analysis.

Variogram analysis
A geostatistics prediction is based on the SCV relationships of the input experimental data. A ‘molecular variogram’ (Figure 1C,

Step 2, lower panel; Figure S1D) is used to describe how the ‘spatial variance’ (i.e., the degree of dissimilarity) of ‘z’ changes accord-

ing to the separation distance (proximity) defined by the ‘x’ and ‘y’ coordinates. The molecular variogram defines a sequence-based

‘molecular range’ where the function of the variants depend on one another. The molecular variogram enables the calculation of SCV

relationships in the dataset, forming the basis for prediction. The analysis of SCV relationships are described below:

Suppose the ith (or jth) observation in a dataset consists of a value ‘zi’ (or ‘zj’) at coordinates ‘xi’ (or ‘xj’) and ‘yi’ (or ‘yj’). The distance

‘h’ between the ith and jth observation is expressed by

hði; jÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 +

�
yi � yj

�2q
(1)

and the gðhÞ-variance for a given distance ðhÞ is defined by

gðhÞ= 1

2
ðzi � zjÞ2 (2)

gðhÞ-variance is the semivariance of ‘z’ value between the two observations (in this case, 2 different variants), which is also the whole

variance of ‘z’ value for one observation at the given separation distance ‘h’. In VSP, we refer to the gðhÞ-variance as ‘spatial variance’
as indicated in the y axis of molecular variogram (Figure 1C, Step 2, lower panel; Figure S1D). Using Equations 1 and 2, the distance

ðhÞ and gðhÞ-variance for all the data pairs are generated. Then, the average values of gðhÞ-variance for different distance intervals are
calculated to plot gðhÞ versus h used in themolecular variogram. Linear, spherical, exponential or Gaussian models can be used to fit

the data in the molecular variogram, and the choice of model is usually determined by the residual maximum likelihood (REML)

and the leave-one-out cross-validation result of the final phenotype landscape model. The distance where the model plateaus

is referred to as the molecular range. Sample locations separated by distances within the molecular range are spatially

dependent on one another, whereas those outside the molecular range are not. The SCV value at the distance ðhÞ is expressed

by CðhÞ = Cð0Þ� gðhÞ, where Cð0Þ is the covariance at zero distance representing the global variance of the data points under

consideration (i.e., the plateau of the variogram).

Confidence contour maps of SCV relationships
According to the variogram, observations that are close in distance (close proximity) are usually highly correlated and have more

weight for prediction. To solve the optimum and unbiased weights of SCV relationships, Ordinary Kriging aims to minimize the vari-

ance associated with the prediction of the unknown value at location ‘u’, which is generated according to the expression-

s2
u =E

h�
z�u � zu

�2i
=
Xn
i = 1

Xn
j =1

uiujCi; j � 2
Xn
i =1

uiCi;u +Cu;u (3)
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where ‘z�u’ is the prediction value while ‘zu’ is the true but unknown value, ‘Ci;j’ and ‘Ci;u’ are SCV between data points ‘i’ and ‘j’, and

data points ‘i’ and ‘u’ respectively, and ‘Cu;u’ is the SCV within location ‘u’. ui is the weight for data point ‘i’. The SCV is obtained from

the above molecular variogram analysis.

To ensure an unbiased result, the sum of weight is set as one.

Xn
i = 1

ui = 1 (4)

Equations 3 and 4 not only solve the set of weights associated with input observations, but also provide the minimized Kriging

variance at location ‘u’ which can be expressed as

s2
u =Cu;u =

 Xn
i = 1

uiCi;u +m

!
(5)

where ‘Cu;u’ is the SCV within location ‘u’, ui is the weight for data point ‘i’, ‘Ci;u’ are the SCV between data points ‘i’ and ‘u. ‘m’ is the

Lagrange Parameter that is used to convert the constrained minimization problem in Equation 3 into an unconstrained one.

The standard deviation of prediction is generated as the square root of the resulting minimized Kriging variance in Equation 5. It

provides the uncertainty of predictions that represents the confidence for using the SCV relationships both within the input data

points and in relation to the unknown locations to make predictions. The confidence level is tightly linked with the distance range

in the molecular variogram and the spatial distribution patterns of measured input points surrounding the unknown location. The

shorter the distance between an unknown point to the input data points, the higher confidence for using the SCV relationships for

the prediction.

The VSP matrix notation
Theminimization of Kriging variance (Equation 3) with the constraint that the sum of the weights is 1 (Equation 4) can now bewritten in

matrix form as

C,W=D
2
664
C1;1 / C1;n 1
« 1 « «

Cn;1 / Cn;n 1
1 / 1 0

3
775$
2
664
u1

«
un

m

3
775=

2
664
C1;u

«
Cn;u

1

3
775 (6)

where ‘C’ is the covariancematrix of the known data points. ‘W’ is the set of weights assigned to the known data points for generating

the predicted phenotype landscape. ‘m’ is the Lagrange multiplier to convert a constrained minimization problem into an uncon-

strained one. ‘D’ is the covariance matrix between known data points to the unknown data points. Since ‘W’ is the value we want

to solve to generate the phenotype transformation (the phenotype landscape), this equation can be also written as

W = C�1|ffl{zffl}
Clustering

$ D|{z}
Distance

(7)

where ‘C�1’ is the inverse form of the ‘C’ matrix.

As amore intuitive explanation of the Krigingmatrix notation, herein we simply refer to the VSPmatrix that generates the phenotype

landscape (‘W’) to be based on the two important computational features used for predicting the unknown function values from the

known- (1) the clustering (i.e., clustered sequence values with similar functional properties ðC�1Þ) and (2) the distance constraints (D).

Here, ‘C�1’ represents the clustering information of the known data points while ‘D’ represents predicted statistical distance between

known data points to unknown data points.

Generating the VSP prediction
With the solved weights ‘W’, we can calculate the prediction of all unknown values to generate the complete phenotype landscape by

the equation

z�u =
Xn
i = 1

uizi (8)

where z�uis the prediction value for the unknown data point ‘u’, ‘ui’ is the weight for the known data point and ‘zi’ is themeasured value

for data point ‘i’ (Chilès and Delfiner, 2012).
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Mapping phenotype landscapes onto structure
Phenotype landscapes built based on a sparse collection of input variants contain experimental or clinical information that predict the

full range of values describing function (based on the y- and z axis metrics) for the entire polypeptide sequence (x axis). To map the

function predictions onto structure, we assign the prediction value with lowest standard deviation (i.e., highest confidence) to each

residue to generate a functional structure that illustrates all values interpolated from the sparse collection variants used to generate

the phenotype landscape at atomic resolution. This collection of all possible functional structure states is referred to as CFTR

functional structure. The y axis feature is always depicted as ball size; the z axis feature is depicted as ball color and the prediction

confidence (i.e., the contour intervals reflecting standard deviation) is shown as ball transparency. All the atomic resolution structure

presentations were produced with the software of PyMOL.

Data requirements for VSP
Sampling data input required for reliable Kriging or GP prediction not only depends on the sample size (number of boreholes/loca-

tions) but also depends on the spatial distribution of the samples. Thus, there are a number of considerations in deciding the number

of variants and their associated function features required to generate a high confidence value molecular range in the variogram to

carry out the phenotype landscape prediction using VSP. The number of datapoints in conventional Kriging have ranged from as little

as 20-30 in some geophysical applications to analyses predicting a requirement for 150 datapoints. A rule of thumb in Kriging to allow

statistical testing is to have a sample size above > 50 (Kerry and Oliver, 2007), although this number can be impacted based on the

method of variogram generation (method of moment (MoM) or residual maximum likelihood (REML). In the case of Ordinary Kriging

REML is used, requiring fewer datapoints (Kerry and Oliver, 2007).

Validation of VSP based on the 63 variant dataset used in the current study suggests that that number is sufficient to predict with

high confidence (top 25%) values within the molecular range that span the entire polypeptide sequence for a large protein such as

CFTR. By using K-fold validation (Figure S1G), we found the prediction accuracy keeps stable until the number of training data points

drops below�50, consistent with the empirical rule of�50 data points and above recommended in geostatistical studies (Kerry and

Oliver, 2007).

Furthermore, when we applied the VSP approach to variation in the BRCA1 RING domain to functional readouts using either

1747 deep scanning generated variants or 62 human variants observed in the general population and patient tumor samples (Starita

et al., 2015), we found that the VSPmodel based on the 62 human variants (Figure S7B, Pearson’s r = 0.57) more effectively captures

the predictive power in a leave-one-out cross validation when compared to input of data from thousands (1747) arbitrary variants

(Figure S7A, Pearson’s r = 0.46). When predicting the E3 ligase activity of human BRCA1 variants, the output of VSP, using either

1747 DMS variants (Pearson’s r = 0.61) or 62 human variants (Pearson’s r = 0.57) as input data in a leave-one-out cross-validation,

are significantly better than other prediction tools, such as PolyPhen-2 (Adzhubei et al., 2010) (Pearson’s r = 0.15), SIFT (Kumar et al.,

2009) (Pearson’s r = 0.28) and CADD (Kircher et al., 2014) (Pearson’s r = 0.26), as well as Envision (Gray et al., 2018) (Pearson’s

r = 0.38) that is trained with the DMS datasets together with sequence and/or structural properties (Figure S7C).

Given that most disease genes annotated to date have > 50 missense variants (Landrum et al., 2016), many of which are captured

in the GenomAD database (Lek et al., 2016), the VSP method should be valid across many disease states- the limitation being the

availability of function datasets for the y- and z axis coordinates. The latter issue has been discussed recently (Manolio et al., 2017;

Starita et al., 2017) highlighting the need for a change in bench and clinical experimental design from a unidimensional protocols

focusing on a single sequence variant to multidimensional (multiplexed) protocols driven by assays using > 50 variants combined

with open access to clinical data such as ClinVar (Landrum et al., 2016) using standardized formats (Manolio et al., 2017; Starita

et al., 2017) to invoke lessons learned from the population.

QUANTIFICATION AND STATISTICAL ANALYSIS

VSP prediction validation
The statistical validation methods to assess the performance of the VSP strategy used in this study include a leave-one-out cross-

validation, k-fold validation and validation by an external dataset. The default validation method is leave-one-out cross-validation

because of small sample size modeling. In the leave-one-out cross validation (Figures 5B, S2F, S2I, S5C, S5D, S5G, S5H, S6A,

S6D, S6G, S6I, and S6J), all data are initially used to build the molecular variogram and geostatistical models. We remove each

data point, one at a time and use the rest of the data points to predict the missing value. We repeat the prediction for all data points

and compare the prediction results to the measured value to generate the Pearson’s r-value and its associated p value (ANOVA test).

For the k-fold cross-validation (Figure S1G), samples are randomly partitioned into k = 63, 20, 10, 5, 3, or 2 sets. Of the k sets, a

single set is used as validation data and the remaining k-1 sets are used as training data. The size of training and validation

subsamples are indicated for each k-fold in Figure S1G. The cross-validation process is repeated k times and every set is used

as validation once. The prediction of each sample is collected. For k < 63, the partition process is repeated 5 times and the averaged

Pearson’s r and p value of the correlation between predicted value and actual value is reported.
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For the external dataset validation of ClCon prediction (Figure S1F), we considered the results of 16 CF variants from a separate

study (VanGoor et al., 2014; Yu et al., 2012) that were not used for training (Sosnay et al., 2013). Predicted z values were generated by

feeding the model with x- and y- values, and subsequently compared to the observed values by Pearson’s correlation analysis and

p value calculation (ANOVA test).

For the external dataset validation of FEV1 and SC response to Ivacaftor (Figures S5A and S5B), we fed ClCon measurements

determined by cell-based assays in the absence or presence of Ivacaftor (Van Goor et al., 2014; Yu et al., 2012) into the FEV1 or

SC (z axis) phenotype landscapes (Figure 5A, upper left quadrant, panels 12 and 17). Although these phenotype landscapes were

built on the input variant’s phenotypes in basal state, the diverse phenotype relationships for thewhole collection of fiduciary variants,

when interpreted by VSP, can report the dynamic response range of the phenotype value for each variant as an output. Using as input

ClCon values measured in absence or presence of Ivacaftor, the projected output clinical values predicted in response to Ivacaftor

are subsequently compared to the observed response for the patients from clinical trial datasets (De Boeck et al., 2014; McGarry

et al., 2017; Moss et al., 2015; Ramsey et al., 2011) (Figures S5A and S5B). The error bars associated with each prediction is the

prediction confidence. In the correlation analyses, we took the confidence level into account as weight. A prediction with small

uncertainty will have a larger weight because it is more precise than prediction with larger uncertainty. The weight is calculated

as: ui = ð1=s2i Þ where si is the error for i. All quantitative correlation analyses and p value calculations were performed using the soft-

ware Originpro 2016. A p value < 0.05 was considered to indicate statistical significance

DATA AND SOFTWARE AVAILABILITY

Key input datasets can be downloaded from Mendeley Data at: https://data.mendeley.com/datasets/8d7w8963rb/3.

CFTR
The datasets comprising trafficking and chloride conductance measurements of 63 CF variants used to build the phenotype

landscape in Figure 2 is from the reference (Sosnay et al., 2013). The dataset used in Figure 3 is from different references (Van

Goor et al., 2014; Yu et al., 2012) given the need for the Ivacaftor input data. The clinical data presented in Figure 4 and Figures

5A and 5B are from reference (Sosnay et al., 2013). Sweat Chloride (SC) and Forced Expiratory Volume in 1 s (FEV1) values are

the average value for all the patients carrying the variant in trans with a known CF-causing variant previously shown to have minimal

residual function as indicated in reference (Sosnay et al., 2013). Pseudomonas burden (PB) and pancreatic insufficiency (PI) are

percentage of patients that are pancreatic insufficient (insulin deficient) or Pseudomonas infected, respectively (Sosnay et al.,

2013). All the function or clinical values in Figure 4 and Figures 5A and 5B are normalized to F508del (set as 0) or WT (set as 1) to

make them comparable. For the clinical trial results used in Figures S3D, S3E, S5A, and S5B, the FEV1 and SC measurements of

patients with G178R, S549N, S549R, G970R, G1244E, G1349D, S1251N and S1255P after Ivacaftor treatment are from reference

(De Boeck et al., 2014). The clinical trial results for G551D are from reference (Ramsey et al., 2011). The clinical trial results for

R117H are from reference (Moss et al., 2015). The values for R334W, G85E and A455E are from reference (McGarry et al., 2017).

This study did not report the exact measurements of FEV1 but stated that none of the subjects showed significant change in

FEV1 measurement (McGarry et al., 2017), so we set the FEV1 change of the three variants as ‘0’. The exact SC values for these

patients were reported in this study and are used in Figures S3D and S5B.

APP
The clinical classification of APP variants is obtained from ClinVar and ALZFORUM (https://www.alzforum.org/). ClinVar and

ALZFORUM classify the variants as ‘Not pathogenic or benign’, ‘likely benign’, ‘likely pathogenic’, ‘pathogenic’ and ‘Variants of un-

certain significance (VUS)’. Here, 45 APP variants with clear clinical classification were used as input data. We set ‘Not pathogenic or

benign’ as 1, likely benign’ as 0.66, ‘likely pathogenic’ as 0.33, and ‘pathogenic’ as 0 to generate the output ‘APP pathogenicity’

(APPpath)-phenotype landscape.

PS1
The level of Ab-40 and Ab-42 generated by PS1 variants and the AOs of FADpatients associatedwith each PS1 variant were obtained

from (Sun et al., 2017). Among 138 characterized PS1 variants, 42 variants could not be used to generate the Ab-42/Ab-40 ratio due to

undetectable levels of Ab-42 and/or Ab-40; six variants do not have reported AO; one variant (DE9) lacks exon 9. The remaining 89

missense PS1 variants were used as input data in the VSP analysis. For Ab-42/Ab-40 ratio value, we used log10 transformation as

input data format.

Allele frequency
The allele frequency for CFTR and APP is obtained fromGnomAD database (http://gnomad.broadinstitute.org/). If a patient variant is

not found in GnomAD, to include the variant in VSP analysis, we assigned the allele count for that variant as 0.5 in the context of total

277,264 allele counts to date found in the 138,632 individuals in GnomAD. The corresponding allele frequency value for these variants

is 0.00018%. The log10 value of allele frequency is used as input data format.
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BRCA1
When applying VSP to the BRCA1 RING domain the deep mutational scanning data (DMS) was from reference (Starita et al., 2015).

We used 1747missense variants that have both BARD binding score and E3 ligase activity measurements. Among them, the data for

62 variants observed in patients, general population and tumor samples listed in reference (Starita et al., 2015) was extracted for

separate VSP modeling and evaluation.

Geostatistical software used in this study

Given the practical value of geostatistics in geological, epidemiological, and anthropological efforts, there are many open-source

R packages and GUI (Graphical User Interface)-based software for performing analyses. We used R package such as gstat

(https://cran.r-project.org/web/packages/gstat/index.html) and GUI-based software packages such as Gamma Design Software

(https://geostatistics.com/), yielding identical results when using the Ordinary Kriging module.
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Figure S1. Using VarSeqP and TrIdx to predict the ClCon-phenotype landscape. Related to Figure 1 and 2.  
(A) The cryo-EM structure of human CFTR (PDB:5UAK) (Liu et al., 2017) is shown. Locations of CF missense or deletion 
variants with allele frequency above 0.01% are indicated by gray balls. N-terminal domain (NTD); transmembrane-spanning 
domain 1 (TMD1); nucleotide-binding domain 1 (NBD1); regulatory insert (R); transmembrane-spanning domain 2 
(TMD2), nucleotide-binding domain 2 (NBD2); C-terminal domain (CTD); Transmembrane region (TM).  
(B-D) The spatial relationships of all possible 1953 variant pairwise combinations (B, black lines) defining the quantitative 
correlations between the spatial variance of ClCon (z-axis) and the distance values defined by VarSeqP (x-axis) and TrIdx 
(y-axis) are shown. The spatial variance and distance values for each comparison (see Methods) are plotted in (C). The 
spatial relationships are binned using a distance interval bin of 0.2 spanning the entire sequence (D, upper panel) or 0.012 
(D, lower panel; to highlight the molecular range values at higher resolution) to determine the averaged spatial variance 
with the SEM shown for each bin. The range (spatially correlated features) where the spatial variance reaches a plateau 
(spatially uncorrelated variance) is indicated in the lower panel of (D). 
(E) The confidence in SCV relationships for VSP prediction for all unknown locations (see Methods) in the context of input 
known values (colored circles) are plotted as a gray gradient delineated numerically by contour lines. 25%, 50% and 75% 
confidence contours are labeled with 25% contour line shown in bold.  
(F) Pearson’s correlation coefficient (r-value) between measured and predicted values, and the p-value (ANOVA test) with 
null hypothesis with the coefficient equal to zero are indicated. (Inset) Variants from two separate studies ((Sosnay et al., 
2013) and (Van Goor et al., 2014; Yu et al., 2012)), shown as a Venn diagram, are used for training (Figure 2A, small black 
circles) and for validation (Figure 2A, plus symbols, variant label underlined). These validation variants have diverse 
relationships between TrIdx and ClCon. They include variants with a deficient TrIdx and no ClCon, as well as a wide range 
of TrIdx values associated with partial to more normal ClCon function (Figure 2A, plus symbols). The variants in the 
validation dataset are distributed across the entire CFTR sequence. The variants with high TrIdx are not expected to have 
low ClCon value, but the GP-based proximity relationships used to define the phenotype landscape efficiently predicts the 
low ClCon variants and separates them from the high ClCon variants based on their underlying spatial relationships.  
(G) k-fold cross-validation (see Methods) result shows that prediction accuracy keeps stable until the number of training 
datapoints fall below ~50, consistent with the minimal sample size (~50) suggested in geostatistical studies.  
(H) The phenotype landscape for the NBD1 domain region (Figure 2A) is shown in the left panel. The sparse input variants 
(middle panel) and the VSP predicted output function values (right panel) are mapped onto the NBD1 structure 
(PDB:2BBO). Ball size, color and transparency represent TrIdx, ClCon and prediction confidence respectively. The di-
acidic ER exit code is shown as black balls in the middle panel or highlighted by the black arrow in the right panel. SCV 
clusters 1 and 3 are highlighted on the functional structure by circles. Separation of SCV cluster 1 that defines trafficking 
and SCV cluster 3 that defines ATP hydrolysis in both the landscape (left panel) and the structure (right panel) indicates 
that VSP captures different roles of residues within subdomains that manage different CFTR features.  
(I) Superposition of the critical regions defining trafficking (TrIdx<0.2) on the two CFTR structure snapshots with different 
phosphorylation and ATP-binding states (Liu et al., 2017; Zhang et al., 2017). The input CF variants are highlighted by 
balls. The superposition reveals 'two legs' that define CFTR trafficking. One leg is formed by TM11-ICH4-NBD1 and the 
other is formed by TM4-ICH2-NBD2, which are connected by TM1 and TM3. The two legs provide integration of the 
cytosolic and transmembrane domains of full-length protein for ER export (TM11-ICH4-NBD1) and provide the critical 
backbone for conformational changes that enable the channel open and close conformations (TM4-ICH2-NBD2).  
(J) Superposition of the critical regions on CFTR structures defining ClCon (ClCon<0.15) on the cell membrane (TrIdx>0.8). 
The input CF variants are highlighted by balls. The superposition reveals a series variant sensitive conformational changes 
along the channel region triggered by ATP hydrolysis and the phosphorylation of the R domain, which are crucial for CFTR 
channel function as predicted by VSP. For example, large conformational changes can be observed for the interface between 
NBD1 and NBD2 domains, as well as the interface between ICH1-TM3 and ICH3-TM9, mediating the channel gating. The 
channel pore (TM6) accessibility is impacted by variants modulating the conformational changes in ECL1 and TM8. 
Therefore, VSP not only captures subdomain features for function (H), but also reveals inter-domain features of the CFTR 
fold found in distinct SCV modules distributed along the polypeptide chain (I, J) that tune CFTR biology. 
 
 
 
 
 
 
 





Figure S2. Ivacaftor globally changes the SCV relationships in the phenotype landscape. Related to Figure 3.  
(A) The spatial relationships of all possible variant pairwise combinations (64 variants; 2,016 comparisons) (Van Goor et 
al., 2014; Yu et al., 2012) representing the spatial variance of ClCon and the distance value defined by VarSeqP and TrIdx 
in the absence (black circles) or presence of Ivacaftor (red circles) are plotted. A comparison of all spatial variance of ClCon 
in the absence or presence of Ivacaftor is shown in the right inset as a box display. Student’s two-tailed t-test p-value is 
indicated.  
(B) The averaged spatial variance (mean ± SEM) for each distance bin of 0.01 used to define the distance molecular range 
(spatially correlated features) and plateau value (spatially uncorrelated variance) is shown in the absence (black, range = 
~0.14, plateau = 0.05) or presence of Ivacaftor (red, range = ~0.15, plateau = 0.29). The increase observed in the plateau 
value in response to Ivacaftor, while maintaining a similar molecular range, reflects that the average diversity of ClCon 
function is increased by Ivacaftor while the TrIdx values of variants are not changed.  
(C) 3D representation of the 2D phenotype landscape (Figure 3A) in the absence (variants shown as black balls) or presence 
(variants shown as red balls) of Ivacaftor. Blue arrows indicate the change of ClCon for each variant in response to Ivacaftor.  
(D) The delta predicted changes of ClCon in response to Ivacaftor over the DMSO control are shown as a ‘delta’ ClCon-
phenotype landscape. The color scale represents the delta value with red as no correction and green to blue as the delta value 
approaching the level of WT ClCon. The measured delta values of WT, G551D and F508del in the absence or presence of 
Ivacaftor are indicated. FDA approved variants for treatment with Ivacaftor are highlighted by the square boxes. Variants 
recently approved based on in vitro data (Ratner, 2017), but originally rejected by FDA for treatment with Ivacaftor, are 
highlighted by black triangles.  
(E) Mapping the predicted delta value of ClCon in response to Ivacaftor on the CFTR dephosphorylated, ATP-free 
conformation (left panel) or phosphorylated, ATP-bound conformation (right panel). Ball size, color and transparency 
represent TrIdx, delta value of ClCon in response to Ivacaftor, and prediction confidence, respectively.  
(F) Validation of Ivacaftor prediction. A leave-one-out cross-validation of the Ivacaftor sensitive ∆ phenotype landscape 
(D) reveals a strong quantitative correlation with measured values (Pearson’s r = 0.6, p-value = 4x10-7 (ANOVA test)).  
Prediction of A455E is highlighted by red * while predictions of S549N and S549R are highlighted by red arrows. 
(G) ClCon value (z-axis) predicted by VarSeqP (x-axis) and absolute level of mature glycoform (y-axis) in the absence (left 
panel) or presence of Ivacaftor (right panel) are shown as an output z-axis phenotype landscape. The highest confidence 
prediction for each residue is mapped on the CFTR functional structure. The color scale shows defective ClCon in red with 
green as the WT ClCon measured in the absence of Ivacaftor. The ClCon levels of WT, F508del and G551D are indicated. 
Ball size in the CFTR functional structure represents the level of mature glycoform of CFTR.  
(H) The predicted ∆ value of ClCon in response to Ivacaftor is shown as an output z-axis phenotype landscape or mapped 
as CFTR functional structure. The color scale represents the change of ClCon (delta) with red as no correction and green to 
blue as the delta value approaching the level of WT ClCon. The ∆ values of WT, G551D and F508del are indicated.  
(I) Leave-one-out cross-validation of (H). The Pearson’s r and the p-value (ANOVA test) with null hypothesis as the 
coefficient equal to zero is indicated. Prediction of A455E is highlighted by red * while predictions of S549N and S549R 
are highlighted by red arrows.  
(J) The sequence regions that are predicted to be ClCon deficient (ClCon<0.15) at the cell surface (TrIdx>0.8) at basal state 
and their VSP-based SCV response to Ivacaftor are mapped onto dephosphorylated, ATP-free (left panel) or phosphorylated, 
ATP-bound (right panel) conformation. The highly Ivacaftor responsive regions (blue region) are located around the ATP 
binding site indicating Ivacaftor mainly mediates channel gating properties. There are also variants with high trafficking 
values that are resistant to Ivacaftor. For example, R334W, T338I and S341P in TM6 near the outer pore region do not 
respond to Ivacaftor, consistent with a more direct role in biochemical interaction with Cl- (Liu et al., 2017). VSP predicts 
that TM8 near the outer pore region also does not respond to Ivacaftor indicating the conformational change of TM8 upon 
phosphorylation and ATP-binding (Zhang et al., 2017) is critical for the biochemical interaction with Cl-. The response of 
S977F in ICH3-TM9 to Ivacaftor in the channel gating region is also minor (yellow in Ivacaftor condition), reflecting the 
fact that it is a critical residue mediating association and disassociation with the regulatory R domain conferring gating 
properties to the channel. Although G970R has been shown to be responsive to Ivacaftor in cell-based assays, its proximity 
to a Ivacaftor resistant SCV cluster contributed by S977F (Figure 3A, right panel) indicates that the functional SCV 
relationships of G970R may lead to resistance to Ivacaftor, which is indeed found to be the case in clinical trials (De Boeck 
et al., 2014). These results emphasize that VSP phenotype landscapes, generated on the basis of variation across the diverse 
CF population, can inform on risk management and clinical interventional strategies that are pertinent to the individual.   
 
 





Figure S3. VSP prediction for Ivacaftor intervention in the clinic. Related to Figure 3.  
(A-C) TrIdx and ClCon predictions and their corresponding prediction confidence (transparent pink or gray) at residue 
positions 508 (A), 551 (B) and 549 (C) in the absence (black) and presence (red) of Ivacaftor are extracted from the 
landscapes in Figure 3A. For example, F508 (A) represents a 2D slice (Inset, gray plane) from the 3D view (Figure S2C) 
showing both the basal- and Ivacaftor responsive ClCon (Figure 3A). The indicated value of the x-axis (A-C) is the measured 
or predicted Trldx value shown on the y-axis in Figure 3A. The indicated y-axis in the 2D plot (A-C) shows the measured 
or predicted ClCon value shown on the z-axis value in Figure 3A. The cell-based measurement of TrIdx and ClCon value 
for F508del (A), G551S/G551D (B) or S549R/S549N (C) are indicated by the vertical lines. Such a plot reveals all possible 
measured and predicted TrIdx and ClCon generated by the VSP analysis for each sequence position. The 2D slice illustrates 
that the range of SCV relationships could be impacted by modifiers, the chemical properties of a variant amino acid residue 
at the same position, and/or a therapeutic. For example, homozygous F508del/F508del can be differentially responsive to 
Ivacaftor if an individual has unknown genetic modifier or has encountered a more favorable environment that supports an 
altered level of trafficking (A, increased y-axis value of red line). This prediction is validated by a drug therapy that 
combines Lumacaftor/Tezacaftor (ER export correctors) together with Ivacaftor (Orkambi) that modestly improves F508del 
variant response in the clinic (Taylor-Cousar et al., 2017; Wainwright et al., 2015) (A, region indicated by *). Any further 
improvement of trafficking (A, region indicated by **) is predicted to have a high impact on channel function leading to 
increased ClCon and clinical impact (https://cysticfibrosisnewstoday.com/2018/02/22/vertex-begins-cf-phase-3-trial-triple-
combo-vx-659-tezacaftor-kalydeco/). In contrast, G551D, normally very responsive to Ivacaftor given that it is found on 
the cell surface (B, region indicated by **) would become less responsive to Ivacaftor if a modifier decreases its normal 
efficient trafficking to the cell surface and/or its steady-state value at the surface reflecting internalization through the 
endosomal/lysosomal pathways (B, region indicated by *). Furthermore, different variants can be found in the same position, 
such as S549R and S549N (C). They have different trafficking values and thus have different responses to Ivacaftor, which 
is recorded in the 2D slice and predicted by VSP (see leave-one-out prediction highlighted by red arrows in Figure S2F, 
Figure S2I).  
(D, E) The delta of ClCon function in response to Ivacaftor measured in the cell-based model (y-axis) and the changes of 
SC and FEV1 in response to Ivacaftor in clinical trial studies (as z-axis) of 14 CF variants (see Methods) were used as input 
values (shown as balls) to build phenotype landscapes to evaluate the clinical response of SC and FEV1 for 21 CF missense 
variants (shown as plus symbols) that have been recently approved by the FDA for Ivacaftor treatment based only on cell-
based ClCon data (Ratner, 2017). The color scale shows the predicted change of SC (mmol/L) and FEV1 (%) in response 
to Ivacaftor with red representing no change and blue representing high response. A455E that fails to respond is highlighted 
by (*).  
(F, G) The predicted SC (F) and FEV1 (G) response for the recently approved 21 CF missense variants from the phenotype 
landscapes shown in D and E. Most variants are predicted to have a significant corrective response in SC (F) and FEV1 (G) 
to Ivacaftor. However, these responses for different variants are different in extent (y-axis position) and confidence (gray 
bar associated to each dot). Several variants currently approved by the FDA are predicted by SCV relationships using clinical 
data to have no or minor correction of SC and FEV1 (F, G; red box) due to their limited correction on ClCon response (D, 
E; y-axis). For example, E56K, L206W and A455E that have ~30%-40% trafficking (Figure 2A) are predicted to have 
limited clinical benefit for either SC (F) or FEV1 (G) in response Ivacaftor treatment, consistent with their relationships 
seen in VSP phenotype landscapes (Figure 3A). In support of the predictions, the clinical trial response to Ivacaftor of 
patients with the A455E variant have a higher SC value (lower function) following Ivacaftor treatment indicating an adverse 
effect of the drug on these patients (McGarry et al., 2017). The ability to convert single metric responses of cell-based assays 
(e.g., ClCon) to a therapeutic to multi-dimensional SCV relationships using variation measured or predicted for the entire 
CF population highlights the power of VSP to enable a genomics-based predictive risk management assessment for 
treatment of each individual in the CF community as high definition medicine approach (Torkamani et al., 2017). 
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Figure S4. Delta phenotype landscapes showing variants that report on a specific clinical phenotype. Related to 
Figure 4. 
 The delta contrast maps between bench and bedside phenotype landscapes (Figure 4A) for all features are plotted. Dark red 
and blue regions show significant differences between phenotype landscapes for a ∆ value > 0.25 when setting F508del as 
‘0’ and WT as ‘1’.  
(A) Contrast maps report on the similarity or difference of a clinical feature from the cell-based ClCon measurement when 
using TrIdx as the common y-axis coordinate. Such ∆ phenotype landscapes reveal that some variants either under- (circle 
5), or over- (circle 6) estimate the potential impact of a variant on a given clinical phenotype relative to the cell-based 
derived metric (Figure 4B). Moreover, ∆ clusters 7-9 illustrate that SCV predicts the unique roles a given variant can have 
in a specific tissue environment (Figure 4B).  
(B) Contrast maps between SC and other cell-based and clinical features (z-axis predictions). Highlighted by black arrows 
are the regions that consistently show significant differences between the SC feature and ClCon, FEV1 and PB features. For 
example, the red region contributed by S997F and L997F indicates that this region has a ‘healthier’ SC phenotype (WT-like 
SC) than found for ClCon, FEV1 and PB phenotypes (a more F508del-like value). These results indicate a potential role for 
tissue-specific modifiers that alter the sequence-to-function-to-structure relationships of this SCV cluster to optimize the 
SC phenotype.  
(C) Contrast maps between FEV1 and other features (z-axis predictions). The regions that consistently show significant 
difference in all panels are highlighted by black arrows. For example, E92K, V754M, D614G and S1251N are consistently 
associated with a more severe FEV1 clinical phenotype than observed for other clinical phenotypes, implying that these 
variants may affect specific pathway(s) impacting FEV1 in lung tissue. In contrast, the regions contributed by R74W, P205S 
and L227R consistently show a better FEV1 phenotype where compared to other phenotypes, indicating the activity of a 
variant-specific modifier of FEV1 relative to other clinical phenotypes.  
(D) Contrast maps between PB and other features (z-axis predictions). P205S (black arrow) shows a more severe PB value 
than other clinical phenotypes (SC, FEV1 and PI). V754M has diverse phenotype responses as indicated by black arrows in 
different tissue environments.  
(E) Contrast maps between PI and other features (z-axis predictions). Large areas of deep red in each contrast map indicate 
that the PI phenotype landscape is distinct from other phenotype landscapes. Among them, R334W and T338I are important 
for chloride channel activity, and are resistant to Ivacaftor treatment (Figure S2J, TM6), indicating that the pancreas may 
have tissue-specific modifiers of the fold reflecting the community of protein-protein interactions (Pankow et al., 2015) that 
modify the functional properties of these variants to tailor conductance to pancreatic function. This interpretation is 
consistent with the observation that many variants that impact bicarbonate permeation and onset of pancreatitis but not CF 
(e.g., R74W, R75Q, R117H, S1235R, and D1270N) are predicted to be normal in all other CF phenotype landscapes (Figure 
2A) (LaRusch et al., 2014). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Figure S5. Validation results for prediction of clinical outcome of Ivacaftor, and for landscapes based on GnomAD 
allele frequency. Related to Figure 5.  

(A, B) Validation of predicted FEV1 correction (A) or sweat chloride correction (B) after Ivacaftor treatment using bench 
to bedside landscapes (Figure 5A) with clinical trial results (see Methods). The confidence values of the predictions are 
shown as bars associated to the data points.  

(C) Leave-one-out cross-validation result for Figure 5C.  

(B) Leave-one-out cross-validation result for Figure 5D.  

(E) The molecular variogram of TrIdx landscape in Figure 5C.  

(F) The molecular variogram of ClCon landscape in Figure 5D.  

(G-H) Compare VSP prediction of TrIdx (G) and ClCon (H) based on allele frequency to other variant prediction methods. 
F508del and I507del are removed for the comparison given most of other methods can only predict the impact of missense 
variants. As shown in (G), VSP generates a significantly more accurate prediction of TrIdx than other variant predictive 
methods including Polyphen-2, SIFT, CADD, M-CAP, Envision (Gray et al., 2018), Grantham, as well as POSE (Masica 
et al., 2015) that was trained with the same TrIdx dataset. This result indicates that VSP uniquely captures the local SCV 
relationships defined by allele frequency (Figure 5C; Figure S5E) that drives trafficking by highly regionalized properties 
of the fold (e.g., NBD1 and TMD2 in Figure 2C) to regulate export from the ER. On the other hand, VSP achieves slightly 
higher accuracy in predicting ClCon function when compared with other methods based on ancestral sequence alignment 
(e.g. SIFT, Polyphen-2, POSE etc.), indicating that ClCon function represents the evolutionary trajectory of the fold 
consistent with the broad range in correlating with allele frequency in the SCV relationships for the entire CFTR polypeptide 
(Figure 5D; Figure S5F). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 





Figure S6. Applying VSP to APP and PS1. Related to Figure 6.  

(A) Leave-one-out cross validation result for Figure 6A.  

(B) Receiver operating characteristic curves (ROC) of the prediction of pathogenicity of APP variants (Figure 6A). The 
area under curve (AUC) of different methods are indicated.  

(C) The GnomAD allele frequency of all the variants in the C-terminal exon region (624-770) is plotted. The y-axis is shown 
in log10 scale. The variants in the region of 708-716 that have high allele frequency are labeled. As shown in APP 
pathogenicity-phenotype landscape (Figure 6A), nearly all of the highly pathogenic APP variants (Figure 6A, *) are absent 
from GnomAD emphasizing their rarity in the population. An exception is A713T (Figure 6A, **). The A713T variant has 
an allele count of 25 in 138,632 individuals in GnomAD (Figure 6A, y-axis allele frequency ~0.01%). Together with the 
benign variants A713V and G709S that have 12 alleles and 13 allele counts in GnomAD, respectively (Figure 6A, y-axis 
allele frequency ~0.004-0.005%, region highlighted by ***), VSP maps a high confidence cluster in the transmembrane 
domain that is variable in the population that could be protective (Figure 6B, large balls). To validate the high allele 
frequency region predicted by VSP, we plotted the allele frequency of all the variants found in GnomAD for the C-terminal 
region (624-770) here (C). Indeed, the region between 708-716 has more variants with high allele frequency than all other 
regions, not only for the input variants G709S, A713V and A713T used to generate the phenotype landscape, but also 
including the predicted nearby positions G708G(c.2124C>T), V710I(c.2128G>A), V711V(c.2133C>A), 
I716I(c.2148C>A) and I716I(c.2148C>T) (C).  This high frequency region contains the γ-secretase cleavage sites (C, 
positions at 711 and 713). These SCV relationships lead us to suggest that evolution is continuing to optimize the sequence 
at this region to balance the composition of different Aβ peptides in the cell, perhaps a feature related to their physiologic 
role(s) and/or aging of the population. Consistent with this conclusion, although A713T is annotated as ‘pathogenic’ in 
databases, penetrance of the A713T variant is impacted by genetic and/or environmental modifiers (Carter et al., 1992).  

(D) Leave-one-out cross validation for Figure 6C (left panel) and the comparison (right panel) of the validation result of 
VSP to other regression methods including multivariate linear regression models (e.g. additive or interaction linear 
regressions) and decision-tree based method (Random Forest regression). VSP generates slightly better prediction result 
than other methods. Importantly, regression methods other than Gaussian-process do not explicitly assess the 
uncertainty/confidence of the prediction. Moreover, they cannot predict the age-of-onset for the residues that do not have 
any functional information. In contrast, VSP generates both the prediction and prediction confidence, which allow us to 
directly predict age-of-onset from genome sequence information and enable us to map the predicted value for 
uncharacterized residues in the structures of CFTR, APP and PS1 as shown in the manuscript.  
(E) PS1 variants are grouped by the Aβ-42/Aβ-40 ratio as indicated. Age of onset of PS1 variants in different groups are 
compared (one-way ANOVA, post-hoc Tukey test). The differences are significant for all comparisons indicating that Aβ-
42/Aβ-40 ratio is a critical factor determining patient AO.   
(F) Phenotype landscape (left panel) relating PS1 variants (x-axis) and the absolute Aβ-42 level relative to WT (y-axis) to 
AO of FAD patients (z-axis). The landscape section with a level of Aβ-42 lower than WT (y-axis < 1) is mapped on the γ-
secretase complex structure (PDB: 5FN2) (right panel). The TMs are labeled in the structure and the two catalytic aspartate 
residues on TM 6 and 7 are highlighted (F, right panel, black arrows). A SCV cluster with y<0.3 (i.e., <30% of WT Aβ-42 
level) but still with early AO is indicated by * and the corresponding structural region is highlighted by dashed oval. This 
region has a high Aβ-42/Aβ-40 ratio and early AO (Figure 6C), indicating that decreasing the Aβ-42/Aβ-40 ratio rather than 
decreasing the absolute Aβ-42 level should be set as standard for therapeutic intervention.  
(G) Leave-one-out cross validation result of the Aβ-42 AO-phenotype landscape (F, left panel).  
(H) PS1 variants are grouped by the Aβ-42 level as indicated. AO of PS1 variants in different groups are compared (one-
way ANOVA, post-hoc Tukey test). The group of variants with Aβ-42 > 3-fold change of WT has significant earlier AO 
when compared with other groups with variants that have Aβ-42 < 3-fold change of WT. No significant difference was 
found when we compared variants with Aβ-42 between 1- to 3-fold change of WT and variants with Aβ-42 less than that 
of WT, implying that when patients have Aβ-42 < 3-fold change of WT, further reducing the absolute Aβ-42 level doesn't 
generally confer later AO.  
(I-J) Leave-one-out cross validation results using Aβ-40 level (I) or the total amount of Aβ-40 plus Aβ-42 (J) as y-axis to 
predict AO. This comparison lacks statistical significant in agreement with a previous report (Sun et al., 2017). 

 





Figure S7. Application of VSP to deep mutational scanning (DMS) data and a flow chart describing the application 
of VSP to generate and interpret the phenotype landscape. Related to Discussion and Methods. 

(A-C) VSP models of BRCA1 with input data from deep mutational scanning (DMS) and natural human variation found in 
the population. Variants in the BRCA1 gene are key drivers of breast and ovarian cancer. 58% of pathogenic missense 
variants are found in the RING domain that forms a heterodimer with BARD1.  RING domain is an E3 ubiquitin ligase that 
coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation 
to maintain genomic stability. Based on DMS derived datasets (Starita et al., 2015), we used variant sequence position and 
BARD1 binding scores to predict the E3 ligase activity of RING domain variants by VSP. The leave-one-out cross validation 
results of the VSP model with input data (Starita et al., 2015) from 1747 variants analyzed derived from DMS (A) and 62 
variants found in human population (B) are shown. Pearson’s r-value and the p-value (ANOVA test) with null hypothesis 
as the coefficient equal to zero are indicated. The Pearson’s r-value of the cross-validation result with 62 human variant as 
input (r = 0.57) is higher when compared to 1747 cell-based variants as input (r = 0.46), indicating that VSP using human 
variants can more efficiently capture the predictive power of DMS. (C) Comparison of VSP to other methods in predicting 
E3 ligase activity for 62 variants found in human population. The result shows that VSP using either 1747 DMS variants 
(Pearson's r=0.61) or 62 human variants (Pearson's r= 0.57) as input data in a leave-one-out cross-validation are significantly 
better than other prediction tools, such as Polyphen-2 (Pearson's r=0.15), SIFT (Pearson's r=0.28), and CADD (Pearson's 
r=0.26), as well as Envision  (Gray et al., 2018) (Pearson's r=0.38) that is trained with the DMS datasets together with 
sequence and/or structural properties, indicating that by linking multi-dimensional function properties to the primary 
sequence through SCV, VSP achieves better predictivity. 

(D) A flow chart describing the application of VSP to generate and interpret the phenotype landscape. (Upper panels) Shown 
are the sequential operations used to capture a sparse collection of human variants and their function measurements as 
coordinates for VSP (Input) to generate phenotype landscapes that predict SCV relationships (Output) from which functional 
structures can be generated to interpret the role of variation in biology. (Bottom panels) SCV-based landscape predictions 
can facilitate high definition medicine through a user-friendly landscape view interface (left) that presents variant properties 
of the population to the clinician based on genotype (right) to assess risk management and therapeutic treatment of the 
individual (pop-ups). Phenotype landscape is a rosetta stone translating the language base of the genome to the proteome in 
the context of function and structure. 
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