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ABSTRACT OF THE DISSERTATION 
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Even in the absence of pathology such as Alzheimer’s disease, aging is associated with 

cognitive decline.  Nevertheless, some older individuals appear to maintain their cognitive 

abilities, raising the question of what neural factors might promote “successful” cognitive aging 

(SCA).  From the current literature, it is unclear whether there are unique neural factors that give 

rise to individual differences in SCA, or whether the same neural factors relate to cognition across 

adulthood.  Little is known about the relative importance of different aspects of neural integrity 



 

 

x 

 

(i.e. brain structure, task-related functional response, and functional connectivity) to promoting 

SCA or how different neural factors interact in their contribution to SCA.   

We aimed to characterize the neural signature of SCA, defined by working memory 

performance.  Sixty-four healthy adults, ages 23 to 78, underwent structural and functional 

magnetic resonance imaging during a working memory task.  We focused on measuring the 

cortical thickness and surface area of the dorsolateral prefrontal cortex (DLPFC) and task-related 

activation within the DLPFC including laterality effects.  We also focused on the “default-mode 

network” by measuring task-related deactivation in the medial prefrontal cortex (MPFC), 

functional connectivity between the MPFC and posterior cingulate (PC), and MPFC structure.  

We aimed to determine how these neural measures related to working memory and whether or 

not these brain-cognition relationships differed by age.  We also explored the relative contribution 

of and inter-relationships between these neural measures in predicting SCA.   

Larger DLPFC surface area, greater left and right DLPFC activation, more bilateral 

DLPFC activation, and greater MPFC deactivation were each associated with better working 

memory performance.  These brain-cognition relationships did not differ with age, thus SCA did 

not result from a unique neural signature but occurred when older adults maintained the same 

brain-cognition relationships present throughout adulthood.  Results of multivariate analyses 

showed how different aspects of the neural system (i.e., brain structure and function) work 

together to achieve good cognitive function in aging.  Right DLPFC activation and MPFC 

deactivation were the strongest contributors to SCA, suggesting that brain-based interventions 

should focus on preventing or reversing age-related alterations in those aspects of the neural 

system.  



 

 

1 

 

INTRODUCTION 

 

The Aging of the Population  

Across the globe, the older adult population is rapidly increasing in number, a trend 

which is expected to continue for several years to come.  Gains in longevity and the aging of the 

“baby boomer” generation are contributing to the increasing number of older adults, and 

decreasing birth rates are causing older adults to represent a larger proportion of the total 

population (Kinsella & He, 2009).  While 10% of the world’s population was age 60 or older in 

2000, this proportion is projected to climb to 17% by 2030 and 32% by 2100 (Lutz, Sanderson, & 

Scherbov, 2008).    

Given the rising numbers of older adults, the well-being of older individuals is a major 

public health issue.  This includes the physical health, as well as the quality of life, of older 

individuals.  Accordingly, important research is being conducted aimed at understanding, 

treating, and preventing age-related illnesses, including dementias such as Alzheimer’s disease.  

Prevalence estimates suggest that approximately 14% of individuals age 71 or older in the United 

States have dementia (Plassman et al., 2007).  While far from insignificant, these estimates do 

indicate that the majority of older adults do not suffer from dementia.  Thus, factors influencing 

the well-being of healthy older adults also warrant study, in hopes of maintaining and/or 

improving quality of life among the elderly.   

 

Cognitive Decline in Aging and Evidence for “Successful” Cognitive Aging  

Even among individuals free of dementia and other neurocognitive disorders, aging is 

associated with declines in several cognitive domains.  Specifically, performance differences 

between healthy older and younger adults have been observed in the following domains: 

executive functions (e.g., working memory), episodic memory, processing speed, visuospatial 
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function, complex attention (e.g., divided attention), and word-finding (Drag & Bieliauskas, 

2010).  In contrast, crystallized knowledge, such as vocabulary, has been shown to remain stable 

or even improve in older age (Park et al., 2002; Salthouse, 2004).  Although several domains 

appear to be affected in aging, some have argued that age-related declines are more prominent in 

some domains compared to others.   For example, the “frontal lobe hypothesis” posits that age-

related declines are first seen in cognitive abilities supported by the frontal lobes, such as 

executive function (West, 1996).  Others have argued that slowed processing speed accounts for 

the declines seen in other cognitive domains (Salthouse, 1996).    

Despite group differences in cognition (i.e., comparing younger to older adults), 

individual differences in cognitive functioning are apparent among healthy older adults, 

suggesting that cognitive decline is not an inevitable consequence of aging.  Ylikoski et al. (1999) 

conducted a cluster analysis using older individuals’ performances on several cognitive measures 

and identified subgroups of individuals representing those with average performance, those with 

above-average performance, and those considered “at risk” for cognitive impairment.  When 

older adults are followed longitudinally, different trajectories of cognitive aging emerge, 

reflecting decline, stability, and even improvement within individuals (Wilson et al., 2002).   

Together, these findings indicate that it is possible to maintain cognitive functioning in aging, a 

phenomenon first referred to as “successful” aging by Rowe and Kahn (1987).  Although there 

are many factors that lead to good quality of life, maintenance of good cognitive performance is 

cited by older adults as a crucial component of success in aging (Reichstadt, Depp, Palinkas, 

Folsom, & Jeste, 2007) and is one of the most frequent criteria found in the myriad of researcher-

based definitions of successful aging (Depp & Jeste, 2006).  

  What factors promote this “successful” cognitive aging (SCA), and how might we 

intervene to improve cognition (and hence, quality of life) among older adults?  Much research 

effort has been devoted to identifying correlates of SCA.  Although progress has been made in 
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identifying neural changes with aging and understanding how these changes relate to SCA 

(reviewed below), there are also several areas that still need to be examined in order to 

completely appreciate the neural signature (or signatures) of maintaining good cognitive 

performance into old age. 

 

Age-Related Differences in Brain Structure  

On a neuronal level, non-pathological aging is associated with decreased dendritic 

aborization and reductions in dendritic spines and synaptic connections (Dickstein et al., 2007; 

Uylings & de Brabander, 2002).   While present in normal aging (Uylings & de Brabander, 2002), 

neuronal loss is much less prominent than that seen in age-related pathologies such as 

Alzheimer’s disease (Dickstein et al., 2007). 

Volumetric studies show that brain regions are not uniformly affected by aging.  In a 

cross-sectional study of 148 healthy adults, Raz et al. (1997) found that negative associations 

between age and volume  were greatest for the prefrontal cortex.  Negative age associations  were 

also found for prefrontal white matter, superior parietal cortex and white matter, inferior temporal 

cortex, hippocampal formation, and fusiform gyrus.  Similarly, via a multivariate analysis of 

voxel-based morphometry data, Bergfield et al. (2010) found the strongest evidence for age-

associated volume differences in frontal regions such that older age was associated with reduced 

volume, although negative associations between age and volume were also seen in temporal and 

parietal regions and the caudate.   In a longitudinal study of healthy adults aged 55 to 90, 

significant volume loss was found after just one year in regions including the prefrontal cortex, 

temporal lobe (e.g., hippocampus), and parietal lobe (e.g., precuneus) (Fjell, Walhovd, et al., 

2009).    

To date, most studies of structural differences in aging have focused on volume as the 

measure of interest.  However, a recent study of genetic influences on brain size (Panizzon et al., 
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2009) suggests that the two measures of which cortical volume is composed – thickness and 

surface area – are determined by different genetic factors.  This finding raises the possibility that 

cortical thickness and surface area might be differentially affected in aging.   Fjell et al. (2009) 

examined cortical thickness across the adult lifespan in six samples of healthy individuals and 

found that older age was associated with thinner  cortex in frontal and temporal regions, and, to a 

lesser extent,  in parietal and occipital regions.  In contrast, regions including the inferior 

temporal lobes and anterior cingulate did not show age effects.  Dickerson et al. (2009) examined 

both cortical thickness and surface area in medial temporal regions in normal aging and 

Alzheimer’s disease and found that normal age -related volumetric differences were primarily 

driven by older adults having decreased surface area compared to younger adults.   Volumetric 

differences between younger adults and older adults with Alzheimer’s disease were primarily 

driven by differences in cortical thickness.  To our knowledge, only one study has examined age 

effects on surface area on a whole-brain level (Ostby et al., 2009).  Although this study only 

included young individuals (ages 8 to 30), a negative relationship was found between age and 

total surface area and surface area in all lobes.   

Studies of white matter integrity using diffusion-tensor imaging have also revealed age-

associated differences (Sullivan & Pfefferbaum, 2006).  Like volumetric and cortical thickness 

studies, the greatest age-effects are observed in frontal regions; such that healthy older adults 

have lower fractional anisotropy and greater diffusivity than younger adults, findings which are 

thought to indicate an age-related breakdown in white matter integrity such as through 

demyelination and/or reductions in the number of white matter fibers.  

How are these structural differences seen in normal aging related to cognitive 

performance?  In other words, can SCA be predicted by size and integrity of brain structure?  

Relationships between brain volume and cognitive performance among older adults have been 

widely studied (Kaup, Mirzakhanian, Jeste, & Eyler, 2011).  In general, larger global and regional 
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brain volume measures are associated with better cognitive performance among older adults, with 

the most support existing for positive relationships between frontal volume and executive 

functioning and hippocampal formation volume and global cognition and memory.  White matter 

integrity has also been found to be related to cognition in aging (Madden, Bennett, & Song, 

2009), with the most evidence available supporting a positive relationship with processing speed 

and executive functioning.  There are several gaps in the existing literature, however, that prevent 

a full understanding of how brain structural integrity might help to preserve good cognitive 

function in old age.  First, it is unclear whether positive structure-cognition relationships originate 

in older adulthood or whether these relationships merely persist across the adult lifespan.  There 

is a lack of longitudinal studies examining this issue, and few cross-sectional studies have directly 

tested whether structure-cognition relationships differ in direction or magnitude between older 

and younger adults.  Thus, it is unknown whether special mechanisms may come into play during 

aging that increase the coupling between brain size and cognitive performance or if better 

structural integrity is a life-long advantage.  Second, in contrast to the plethora of volumetric 

studies and a growing number of studies of white matter integrity, few studies have examined 

relationships between age-related differences in cortical thickness and cognition, and no studies 

to our knowledge have examined relationships between surface area and cognition in aging.  In a 

study of cortical thickness, Fjell et al. (2006) found that high-performing older adults (on a 

composite measure of fluid cognitive functioning) had thicker cortex than average-performing 

older adults in several regions including right posterior cingulate and left subcallosal gyrus.  

Interestingly, cortical thickness in these two regions was greater in high-performing older adults 

compared to high-performing younger adults, as well.  Although these findings are based on 

cross-sectional data, they raise the possibility that neural compensation in the form of thickening 

of cortex may have helped to improve performance among those older adults.  As surface area is 

a great source of individual variability in neural structure size (Im et al., 2008; Pakkenberg & 
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Gundersen, 1997), the lack of studies examining how individual differences in surface area relate 

to cognition in aging represents an important gap in our knowledge.  

 

Age-Related Differences in Brain Function during Cognitive Challenge  

In addition to structural brain changes, the responsiveness of the brain during cognitive 

tasks has also been shown to differ between younger and older adults.  In particular, frontal 

“over-activation” has been observed in aging, such that older adults show increased bilateral 

activation during cognitive challenge tasks compared to younger adults.  Cabeza (2002) describes 

this pattern as the hemispheric asymmetry reduction in older adults (HAROLD) model, and 

reviews studies showing this pattern for a variety of cognitive challenge tasks, including 

executive functioning, working memory, memory, and facial perception tasks.   Another 

activation pattern seen in aging is the posterior-anterior shift in aging (PASA), in which older 

adults show less occipital activation and greater frontal activation compared to younger adults 

(Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008), a pattern first observed by Grady et al. (1994) 

and subsequently replicated using a variety of cognitive challenge tasks (Davis et al., 2008).   

How these age-related differences in brain activation relate to SCA is less clear.  As 

reviewed in Reuter-Lorenz and Cappell (2008), findings of age-related over-activation, such as 

those consistent with the HAROLD model, have been interpreted in several ways.  First, if the 

degree of over-activation is positively related to cognitive performance, over-activation is 

generally interpreted as being compensatory and beneficial for cognition.  Similarly, if older 

adults show over-activation but do not differ in their level of cognitive performance from young 

adults, the over-activation is again interpreted as compensatory.  When over-activation in older 

adults has been found to be related to poorer cognitive performance, such findings have been 

interpreted as representing dedifferentiation (i.e., activation that is more generalized and/or less 

efficient) or as reflecting different cognitive strategies.   
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 Eyler et al. (2011) reviewed studies relating brain function to cognition in aging.   

Of the 80 studies reviewed, findings from 29 of the studies  reflected HAROLD and/or PASA 

patterns.  Thus, while there is support in the literature for these age-related functional pattern 

differences, there are also a number of studies that do not find these patterns.   Among the 

reviewed studies showing HAROLD and/or PASA patterns, findings were mixed regarding 

whether or not these patterns were compensatory (i.e., associated with better performance).  A 

recent meta-analysis (Spreng, Wojtowicz, & Grady, 2010) aggregated findings across 80 

functional magnetic resonance imaging (fMRI)/positron emission tomography (PET) studies of 

young and older adults during performance of various cognitive tasks.  Most activation 

differences between young and older adults were found in frontal regions, such that older adults 

had greater frontal activation.  When older adults performed as well as young adults, they showed 

greater activation in the left dorsolateral prefrontal cortex (DLPFC).  When older adults 

performed worse than young adults, they showed greater activation in the right DLPFC and right 

rostrolateral PFC.   These findings led the authors to conclude that over-activation of the left PFC 

is beneficial for cognition, while recruitment of right PFC regions is not.  Furthermore, the PASA 

pattern was also supported, such that when older adults performed worse than young adults, they 

had less posterior activation, suggesting that this pattern is not compensatory.  

Several questions remain regarding the relationship between brain activation and 

cognition in aging.  For example, if there are age-related differences in brain response that are 

compensatory in nature, what neural factors are driving the need for this compensation?  

Alternatively, if age-related differences in brain response reflect dedifferentiation and/or neural 

inefficiency, what components of neural integrity are breaking down and causing this 

inefficiency?   These issues have not been adequately addressed as few studies have examined the 

association between age-related differences in brain activation and other measures of neural 

integrity, such as brain structure.  This issue is discussed further below.   
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Age-Related Functional Differences in the “Default-Mode Network”  

In healthy young adults, particular brain regions, including medial prefrontal cortex 

(MPFC), posterior cingulate (PC), and inferior parietal lobule, have been found to be consistently 

more active during rest than during task performance.  In other words, these areas deactivate 

during task performance.   Because of this, these regions have been referred to as the “default 

mode network” (DMN) (Buckner, Andrews-Hanna, & Schacter, 2008).  Functional connectivity 

studies, which involve the  analysis of blood-oxygen-level-dependent (BOLD) fluctuations that 

occur in the absence of the demands of a specific task (Fox & Raichle, 2007),  have also 

confirmed the existence of the DMN (Greicius, Krasnow, Reiss, & Menon, 2003).  In addition, 

functional connectivity studies have revealed that the DMN shows negative functional 

correlations (i.e., anti-correlations) with the “task-positive network”, a group of regions such as 

the DLPFC that are more active during task performance than during rest (Fox et al., 2005). 

The DMN has been interpreted as reflecting several possible processes such as thinking 

about oneself or one’s environment, recalling the past, planning for the future, considering the 

viewpoints of others (i.e., theory of mind) (Buckner et al., 2008; Buckner & Vincent, 2007), as 

well as representing “intrinsic” brain activity (Fox & Raichle, 2007).  Indeed, in comparison to 

the brain’s total energy expenditure, relatively little additional energy is spent responding to 

tasks, further arguing for the existence and importance of intrinsic neural activity (Raichle & 

Mintun, 2006; Raichle & Snyder, 2007).   Abnormal DMN activity and/or DMN resting state 

functional connectivity have been found in several neuropsychiatric disorders, including autism, 

schizophrenia, depression, and Alzheimer’s disease (Buckner et al., 2008; Buckner & Vincent, 

2007; Fox & Raichle, 2007; Greicius, 2008).    

Studies have found age-related differences in DMN deactivation, such that older adults 

show less DMN deactivation compared to younger adults (Grady, Springer, Hongwanishkul, 
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McIntosh, & Winocur, 2006; Lustig et al., 2003; Persson, Lustig, Nelson, & Reuter-Lorenz, 

2007; Sambataro et al., 2010).  Functional connectivity analyses have provided supporting 

evidence that the DMN during rest (Damoiseaux et al., 2008; Esposito et al., 2008; Koch et al., 

2010) and during task performance (Andrews-Hanna et al., 2007; Sambataro et al., 2010) is 

reduced among healthy older adults compared to young adults.  However, Beason-Held et al. 

(2009) conducted an 8-year longitudinal PET study of regional cerebral blood flow among older 

adults (mean age at baseline = 68.4, SD = 6.8) and found that the DMN generally remained stable 

over time and concluded that, after a certain age, the DMN does not appear to change. 

Some relationships between DMN function and cognitive performance in aging have 

emerged.  Sambataro et al. (2010) found that greater DMN deactivation and greater functional 

connectivity between DMN regions during a working memory task were associated with better 

working memory performance among younger and older adults.   In Andrews-Hanna et al. 

(2007), less DMN functional connectivity during task performance among older adults was 

associated with worse cognitive performance (executive functioning, processing speed, and 

memory).  Damoiseaux et al. (2008) found that, among older adults but not younger adults, 

resting state activity in anterior DMN was positively associated with a measure of executive 

function (Trails B) but unassociated with another measure of executive function (WISC Maze), 

processing speed, or memory.   In contrast to these studies finding relationships between DMN 

and cognition, Lustig et al. (2003) did not find significant associations between deactivation 

within DMN regions and cognitive performance among healthy younger or older adults.    

Findings of less deactivation of the DMN during task performance among older adults in 

comparison to younger adults (Grady et al., 2006; Lustig et al., 2003; Persson et al., 2007; 

Sambataro et al., 2010) and greater DMN activation during task performance among older adults 

in comparison to younger adults (Grady et al., 2006) have been interpreted to suggest that older 

adults might have difficulty disengaging from the DMN when faced with cognitive challenge.  
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Further investigation is needed to explore DMN function in aging, how it relates to cognitive 

performance, and how the nature of the relationship might change with age.   

 

Relationship between Different Measures of Neural Integrity in Aging 

 As reviewed above, relationships between cognition, on the one hand, and measures of 

brain structure, brain activation during task performance, DMN deactivation and functional 

connectivity, on the other hand, have been found within the context of aging.  While each of these 

neural measures is interesting in its own right, the brain is a complex system and its overall 

integrity likely depends on a combination of structural size, task-related activation and 

deactivation, and functional connectivity between regions.  How do these different measures of 

neural integrity work together to yield good cognitive performance, particularly when parts of the 

system might be comprised or altered due to aging?   

When considering the findings reviewed above as a whole, some unexpected, and 

perhaps counterintuitive, associations emerge.  Namely, prominent age-related shrinkage is seen 

in the frontal lobe, yet older adults show increased and more bilateral activation in frontal regions 

compared to younger adults.   This increased frontal brain activation during task performance 

among older adults also occurs within the context of older age being associated with less DMN 

deactivation and functional connectivity.  As few studies have combined imaging modalities (e.g., 

structural, functional, and functional connectivity) within the same samples in studies of aging, it 

is not yet possible to draw conclusions regarding the inter-relationships of these measures in 

aging, and even less is known about how these inter-relationships impact cognition.   

 Several theories have been posited in attempts to conceptualize how structural integrity 

and brain activation might interact to contribute to cognition in aging.  For example, Greenwood 

(2007) has hypothesized that age-related decreases in brain structure size lead to strategy changes 

among older adults, which in turn leads to increased brain activation.  Stern et al. (2009) 
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discusses the ideas of brain reserve, cognitive reserve, and neural compensation.  Brain/cognitive 

reserve refer to factors that, if present, make individuals less susceptible to the deleterious effects 

of age-related declines in neural integrity.   These might include having larger brain structures to 

begin with or having completed higher levels of education.  Neural compensation is a term that 

refers to when either 1) older adults engage at least some brain regions different from those 

engaged by younger adults to perform the same task, or 2) young and older adults engage the 

same brain regions but these regions interact differently in the old.   Per Stern’s definition, neural 

compensation only means that older adults’ brains are working differently, not that these changes 

are necessarily beneficial to cognitive performance.   

 A particularly comprehensive theory, posited by Park and Reuter-Lorenz (2009) is the 

“scaffolding theory of aging and cognition.”  They propose that, in order to handle cognitive tasks 

in the face of age-related declines in the structural integrity of the brain, older adults might rely 

on “scaffolds” to boost cognitive performance, in the form of recruiting additional brain regions 

to do a task.  The authors apply the same theory to younger adults as well, positing that younger 

adults might recruit additional brain areas when faced with a particularly challenging cognitive 

task.  For older adults, the “challenge” that calls for scaffolding includes both the cognitive task 

itself, as well as coping with a degraded brain structural system.  Park and Reuter-Lorenz further 

propose that the aging brain’s ability to scaffold is limited, because of reductions in neural 

integrity, and consequently, neural plasticity.  Thus, at some point, scaffolding processes are no 

longer enough to maintain good cognition, potentially explaining why some older adults do show 

cognitive decline while others maintain cognition.   This theory also proposes a role for 

intervention work, as the authors hypothesize that the brain’s ability to scaffold may be facilitated 

by cognitive training exercises or physical activity.   

Some empirical findings regarding relationships between grey matter volume and 

function in response to a challenge task in aging have been reported; however, they do not 
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correspond with the ideas proposed in the theories above.  Kannurpatti et al. (2010) found that 

older adults had less total gray matter volume and showed less activation during a Digit-Symbol 

Verification Task than younger adults.  Gray matter volume was correlated with activation, such 

that age-related reduction in gray matter volume contributed to, but did not totally explain, age-

related differences in activation.   The same pattern of results was seen in Brodtmann et al. 

(2009), such that age was negatively associated with total gray matter volume and with activation 

in striate and ventral extrastiate cortices during a visuoperception task among adults across a wide 

age range, and volume was positively correlated with activation.   Similarly, Thomsen et al. 

(2004) found that older adults had less gray matter density (measured via voxel-based 

morphometry) in the left middle frontal gyrus and less activation in the same region during a 

dichotic listening task compared to young adults.   In contrast to these findings, Johnson et al. 

(2000) found that degree of atrophy was unrelated to activation during a semantic decision task 

among healthy individuals (including both young and older adults), although significant 

relationships were found among patients with Alzheimer’s disease such that greater atrophy in the 

left inferior frontal gyrus was associated with greater activation in that area.  Further work is 

needed in this area regarding SCA, especially as none of the above studies commented on how 

the relationships between brain structure and function related to cognition.  Unlike the above 

reviewed theories that posit that declines in structural integrity would promote increased brain 

activation, these studies suggest that volumetric decreases were associated with decreased 

activation.  However, none of these studies examined structure-function relationships in the 

prefrontal cortex, the region where most age-related brain activation increases have been found 

and the region about which Park and Reuter-Lorenz (2009) and Greenwood (2007) make the 

strongest hypotheses.    

 How might DMN function interact with other measures of neural integrity to contribute 

to SCA?  This issue has not been fully addressed.  One relevant study found a positive association 
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between white matter integrity and functional connectivity within the DMN during task 

performance among older adults (Andrews-Hanna et al., 2007).  Whereas brain volume has been 

used as a covariate in analyses of the DMN in aging (Beason-Held et al., 2009; Damoiseaux et 

al., 2008), to our knowledge, direct relationships between DMN deactivation and/or functional 

connectivity and structural measures such as volume, cortical thickness, or surface area have not 

been examined.  Furthermore, there is a need to understand how DMN function might relate to 

brain activation in task-positive regions in aging.  While Sambataro et al. (2010) found that, 

compared to younger adults, older adults showed reduced functional correlations between DMN 

regions during task performance, they also found that older adults showed reduced anti-

correlations between the DMN and the task-positive network.  It may be that these networks and 

the opposing relationship between them are broken down in aging.  How the two facets of brain 

response (i.e., response in task-positive regions and DMN regions), as well as how DMN function 

and brain structure, might interact in predicting cognitive success in aging warrants further 

examination. 

 Many questions remain regarding how various aspects of neural integrity inter-relate and 

interact in their contribution to SCA.  It may be that there are several ways in which neural 

integrity promotes SCA.  For example, one possibility is that some older adults may show 

minimal age-related changes in brain structure and youthful brain functioning patterns, and 

consequently maintain good cognitive performance.  Alternatively, brain function may alter 

among older adults in order to successfully compensate for structural changes, resulting in 

maintenance of cognitive performance levels.   Furthermore, increases in brain response during 

task performance may help to compensate for DMN reductions in older adults, facilitating good 

cognition.  All of these possibilities require exploration, in order to fully understand how neural 

integrity contributes to SCA.    
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Another unanswered question is whether some aspects of neural integrity are more 

important than others in regard to their effects on SCA.  For instance, compensatory brain 

activation could be sufficient to negate the negative effects of other aspects of neural integrity on 

cognition.  If particular components of neural integrity are identified as being more important for 

SCA, intervention efforts could then be focused on the improving the integrity of those 

components. For example, in regards to possible interventions targeting brain function, it may be 

beneficial to attempt to increase task-related activation among older adults (assuming that it 

would be compensatory), or, to make older adults’ task-related activation more similar to that of 

younger adults. 

 

Summary and Rationale for the Present Study 

Due to the aging of the population, the well-being of older adults has become a prominent 

public health concern.  One factor influencing the quality of life among older adults is cognitive 

functioning.  Although aging is associated with declines in several cognitive domains, SCA is 

possible as evidenced by the heterogeneity in cognitive performance seen among older adults.   

Several measures of neural integrity, including brain structure, brain activation in response to 

cognitive challenge, and DMN function, have been found to relate to SCA.   Specifically, positive 

relationships between brain volume and cognition are relatively well-established among older 

adults, while relationships with cortical thickness and surface area have not been widely studied.   

It has also not been established whether the structure-cognition relationships that have been 

observed are specific to aging, or whether these relationships merely persist from younger 

adulthood.  Studies of age-related differences in brain activation during task performance have 

generally found that older adults show greater bilateral activation in frontal regions and less 

activation in posterior regions.  Furthermore, most evidence suggests that such age-related 

differences in activation are associated with better cognitive performance among older adults.  
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The limited evidence available suggests that coordinated activity of the DMN is positively 

associated with cognition among older adults.  Although such individual neural correlates of SCA 

have been found, to our knowledge, there have been no studies examining the inter-relationships 

between multiple types of neural measures (i.e., brain structure, brain activation in response to 

task performance, DMN function) and their interactive contribution to cognition in aging.  The 

overall integrity of the neural system likely depends on each of these different brain measures.  

Thus, truly understanding how neural factors influence SCA requires simultaneous examination 

of these components.   

In the present study, we plan to address gaps in the current literature on the neural 

correlates of SCA.  Specifically, we will provide evidence regarding whether there are brain-

cognition relationships unique to the aging process, by investigating whether brain-cognition 

relationships differ by age in a sample including younger, middle-aged, and older adults.  We will 

also help to establish the relationships between measures of cortical thickness and surface area 

and SCA, as these measures have been understudied in comparison to volume.  Finally, this study 

will represent a first examination of how multiple measures of neural integrity (i.e. brain 

structure, task-related activation, and DMN function) relate to SCA.  The latter analysis is 

particularly important given that the ultimate goal of SCA research is to develop interventions 

that could improve cognitive functioning among older adults.  Understanding the relative 

contribution of different types of neural integrity would provide needed information regarding 

where [i.e. on which aspect(s) of neural integrity] to focus such interventions and in what way to 

attempt to change neural integrity (i.e., by making the brain structurally and/or functionally more 

similar to the brains of young adults or by promoting neural compensation).     

 

Aims and Hypotheses 
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Aim 1:  To characterize the neural signature of SCA by determining whether and how brain-

cognition relationships differ by age. 

Hypothesis 1A:  Cortical thickness and surface area of the DLPFC will be positively 

associated with working memory performance across all ages, but these relationships will be 

significantly stronger among older adults. 

Hypothesis 1B:  Greater bilateral DLPFC activation in response to the working memory 

challenge task will be associated with better working memory performance among older adults, 

but more lateralized DLPFC activation will be associated with better performance among younger 

and middle-aged adults.   

Hypothesis 1C:  Greater MPFC deactivation will be positively associated with working 

memory performance among older adults, but these factors will be unassociated in younger and 

middle aged adults. 

Hypothesis 1D:  Functional connectivity between regions of the DMN [i.e., medial 

prefrontal cortex (MPFC) and posterior cingulate (PC)] will be positively associated with 

working memory performance among older adults, but these factors will be unassociated in 

younger and middle aged adults.  

 

Aim 2:  To characterize the neural signature of SCA by exploring the relative contribution and 

inter-relationships of different measures of neural integrity to predicting cognitive performance.   

Specifically, we will use a variable selection technique [the least absolute shrinkage and selection 

operator (LASSO)] method to explore the strength and relative contributions of multiple neural 

measures (DLFPC cortical thickness and surface area, task-related DLPFC activation, MPFC 

cortical thickness and surface area, task-related MPFC deactivation, and functional connectivity 

between the MPFC and PC) in predicting working memory performance in aging. We will also 
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use partial least squares regression to examine what linear combinations of these variables best 

relate to SCA. 
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METHODS 

Participants 

Data for this study were drawn from one of three previous studies, in which healthy 

adults completed structural magnetic resonance imaging (MRI) and functional magnetic 

resonance imaging (fMRI) during an N-back working memory task.  Thus, the current participant 

pool reflects a combination of study samples.    

Recruitment methods for the original studies included flyers and advertisements posted in 

the community.   Some of the older adult participants were recruited as a result of their previous 

participation in studies of healthy aging and their agreement to be contacted by other research 

projects.  For each study, participants were initially screened for eligibility over the telephone, 

and later completed questionnaires that assessed for exclusion criteria during their study visit.  

Exclusion criteria common across the studies included the following: 1) contraindications for 

undergoing the MRI scan, 2) left-handedness, 3) history of loss of consciousness > 15 minutes, or 

a 4) history of an Axis I disorder.  One of the three studies also excluded for evidence of mild 

cognitive impairment (i.e., defined in as a Dementia Rating Scale total score < 130 and/or a 

memory subscale score < 22).   

103 healthy adults in total had completed the original studies at the time of the present 

analyses.  Individuals who did not have complete structural MRI, fMRI, and/or N-back 

performance data were not included in the present analyses.  Specifically, 23 individuals were 

excluded due to poor quality anatomical data and/or measurements in Freesurfer, 5 individuals 

were excluded due to poor quality fMRI data (e.g., due to excessive motion or poor signal-to-

noise ratio), 5 individuals were excluded due to loss of fMRI data, and 6 individuals were 

excluded due to missing N-back performance data.  Thus, 64 healthy adults, ages 23 to 78, were 

included in the present analyses.  Table 1 lists demographic characteristics of the entire sample, 
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as well as characteristics separately for the young (ages 23 to 39), middle-aged (ages 40 to 59), 

and older adults (ages 60 to 78).   

 

Procedures 

Demographic variables and health status were obtained via interview and/or 

questionnaires.  Neuroimaging data collection was completed at the UCSD Keck Center for 

Functional Magnetic Resonance Imaging.  All but 6 of the participants also completed 

neuropsychological assessments, but the same batteries were not given across studies.   To 

estimate premorbid verbal intellectual functioning, participants in two studies were administered 

the American National Adult Reading Test (ANART) (Grober, Sliwinski, & Korey, 1991), and 

participants in one study were administered the North American Adult Reading Test (NAART) 

(Blair & Spreen, 1989).  Estimated verbal IQ data for the entire sample, and separately for the 

young, middle-aged, and older adults, are presented in Table 1. 

 

Cognitive Measure:  N-Back Working Memory Accuracy 

During fMRI data collection, participants were administered an N-back working memory 

task.  In the N-back task, single letters appear on the screen for 500 msec, followed by an asterisk 

for 1000 msec.   The task is composed of the following conditions:  In 0-back, participants are 

asked to press a button whenever they see the letter “X”.  In 1-back, participants are asked press a 

button whenever the current letter matches the previous letter that they saw.  In 2-back, 

participants are asked to press a button whenever the current letter matches the letter they saw 

two letters before. In 3-back, participants are asked to press a button whenever the current letter 

matches the letter they saw three letters before.  The N-back task is a block-design fMRI 

paradigm. Each block contains 11 letters, including three targets.  Two of the original studies 

used a version of the N-back task that includes 4 blocks of all of the above conditions, while one 
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of the original studies used a version that includes 6 blocks of 0-back, 5 blocks of 1-back, and 5 

blocks of 2-back but no blocks of 3-back.  Accuracy and reaction time for each condition are 

recorded.  For the present study, we used participant’s mean accuracy across the 1- and 2-back 

conditions as the outcome measure (henceforth referred to as N-back accuracy), as not all 

participants had 3-back data and the 0-back condition is more a measure of attention than 

working memory.   

 

Rationale for Selection of Working Memory Measure:  The domain of working memory was 

chosen as a measure of SCA for the following reasons: 1) age-related group differences are well-

documented, such that older adults perform more poorly than younger adults (Drag & 

Bieliauskas, 2010), 2) heterogeneity in working memory performance has been observed among 

older adults (Wilson et al., 2002) implying that there are some individuals who are still 

“successful” in regards to working memory performance in aging, 3) working memory has shown 

to correlate with other cognitive domains, such as fluid intelligence (Kane & Engle, 2002; Kane 

et al., 2004), that show declines in aging (Bugg, Zook, DeLosh, Davalos, & Davis, 2006; Horn & 

Cattell, 1967), and 4) working memory performance has been shown to relate to everyday 

functioning, such as medication adherence (Insel, Morrow, Brewer, & Figueredo, 2006), among 

older adults.  

Our measure of working memory, N-back accuracy averaged across the 1- and 2-back 

conditions, is from an experimental fMRI paradigm task.  From a practical standpoint, this 

measure was chosen as our primary outcome because all participants were administered this 

measure in the original studies.  To validate the use of this measure as an index of working 

memory ability, we examined its relationship to a standardized, more commonly used measure of 

working memory, Digit Span Backwards from the Wechsler Adult Intelligence Scale – Third 

Edition (Wechsler, 1997).  Specifically, in a sample of 52 healthy adults including some 



21 

 

 

 

participants in the present study, we found that N-back accuracy is significantly positively 

correlated with Digit Span Backwards (r = .36, p < .01), suggesting that these indices measure a 

similar construct.   

 As older adults evidence decline, as well as variability, in several cognitive domains, 

other measures (e.g., processing speed, episodic memory) might have been just as appropriate to 

examine as indices of SCA.  Examining a more global measure of cognitive function as an SCA 

outcome measure may be ideal, so as to define SCA in a broader fashion.  However, the present 

study is limited from doing this by lack of overlapping cognitive measures administered to the 

participants in the original studies.  

 

Neuroimaging Procedures and Measures: 

All images were collected on one of two 3 Tesla General Electric magnetic resonance 

scanners with an 8-channel head coil at the UCSD Keck Center for Functional Magnetic 

Resonance Imaging (54 individuals were scanned on one scanner, 10 on the other).  A localizer 

scan was obtained prior to the following scans in order to ensure that participants were aligned 

well inside the scanner.  As described below, specific scan parameters differed between studies, 

and one study used two variations of scan parameters.  To account for differences in the scanner 

and scanning parameters, a categorical variable reflecting the study that each individual 

participated in was included in the statistical models.   

 

Study 1 (n = 9):  

Scanner: 1 

Structural MRI collection: A high-resolution T1-weighted anatomical image was 

acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE) 
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sequence with the following parameters:  166 slices, Slice thickness = 1.2mm, TR = 7.02, 

TI = 900, Flip angle = 8 deg, Echo = 3.0 ms. 

N-back fMRI collection:  BOLD signal was measured using gradient echo echoplanar 

imaging.  Images were acquired with the following parameters:  32 slices, 195 reps, slice 

thickness = 4mm, TR = 2500ms, TE = 32, Flip angle = 90 deg, Echo = 30ms.   Field 

maps were collected and applied to correct for image distortion.  (Field map corrections 

were not available for two individuals because of technical problems).   

 

Study 2 (n = 29):   

Scanner:  2 

Structural MRI collection: A high-resolution T1-weighted anatomical image was 

acquired using an FSPGR sequence with the following parameters:  172 slices, slice 

thickness = 1.2mm, TR = 8.1, TI = 600, Flip Angle = 8 deg, Echo = 3.2 ms.  

N-back fMRI collection:  BOLD signal was measured using gradient echo echoplanar 

imaging.  Images were acquired with the following parameters:  32 slices, 195 reps, slice 

thickness = 4mm, TR = 2500ms, TE = 32, Flip angle = 90 deg, Echo = 30ms.  Field maps 

were applied to correct for image distortion. 

 
 
Study 3A (n = 25):   

Scanner:  2 

Structural MRI collection:  A high-resolution T1-weighted anatomical image was 

acquired using an FSPGR sequence with the following parameters:  124 slices, Slice 

thickness = 1.3mm, TR = 9.4 to 9.9ms, TI = 300ms, Flip Angle = 15 deg, Echo = 4.0 to 

4.1 ms. 
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N-back fMRI collection:  BOLD signal was measured using gradient echo echoplanar 

imaging.  Images were acquired with the following parameters:  32 slices, 195 reps, Slice 

thickness = 4mm, TR = 2500ms, TE = 30, Flip angle = 90 deg, Echo = 30ms.  Field maps 

were not collected. 

 

Study 3B (n = 11):   

Scanner:  2 (except for 1 subject collected on scanner 1). 

Structural MRI collection:  A high-resolution T1-weighted anatomical image was 

acquired using an FSPGR sequence with the following parameters:  124 slices, Slice 

thickness = 1.3mm, TR = 7.9ms, TI = 300ms, Flip Angle = 15 deg, Echo = 3.1ms. 

N-back fMRI collection:  BOLD signal was measured using gradient echo echoplanar 

imaging.  Images were acquired with the following parameters:  32 slices, 195 reps, Slice 

thickness = 4mm, TR = 2500ms, TE = 30, Flip angle = 90 deg, Echo = 30ms.  Field maps 

were not collected.   

 

Neuroimaging Data Analysis 

Structural Analysis 

FreeSurfer, a publicly available software package, was used to generate cortical thickness 

and surface area measurements from the structural MRI scans.  FreeSurfer conducts an 

automated, fully 3D whole-brain segmentation procedure that uses a probabilistic atlas and 

applies a Bayesian classification rule to assign a neuroanatomical label to each voxel (Fischl et 

al., 2002; Fischl et al., 2004).   Cortical surface reconstruction was accomplished in a multi-step 

process using FreeSurfer tools (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). The 

cortical surface model was manually reviewed and edited for technical accuracy and the surface 

was then parcellated into 66 cortical regions-of-interest (ROIs) (33 per hemisphere) based on a 
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probabilistic atlas (Desikan et al., 2006).  For each ROI, cortical thickness was calculated as the 

distance between the pial surface and the gray/white boundary (Fischl & Dale, 2000) and surface 

area was calculated as the sum of the areas of each tessellation within the ROI.  All calculations 

are done in individuals’ native space.    

Freesurfer methods have shown good validity, in that segmentation and volumetric 

calculations derived from Freesurfer are comparable to measurements made using manual 

methods (Fischl et al., 2002).  Although studies focused on comparing Freesurfer measurement 

and manual measurement of hippocampal volume in particular have shown that Freesurfer tends 

to give larger hippocampal volumes, the Freesurfer measures and manual-based measures were 

still strongly correlated (Cherbuin, Anstey, Reglade-Meslin, & Sachdev, 2009; Tae, Kim, Lee, 

Nam, & Kim, 2008).  Despite the volumetric differences between the measurement methods, 

Cherbuin (2009) found that, when relating volume to other variables (e.g., age, cognitive 

performance), similar relationships were observed regardless of whether the Freesurfer-based or 

manual-based measurements were used.  In further support of Freesurfer’s validity, when 

comparing patient and control groups, Freesurfer and manual methods have been shown to yield 

similar volumetric differences (Lehmann et al., 2010).   

Cortical thickness and surface area of the DLPFC were the focus of our analyses.  We 

chose to focus on DLPFC cortical thickness and surface area because age-related shrinkage is 

prominent in prefrontal regions (Bergfield et al., 2010; Raz et al., 1997), and the DLFPC has been 

implicated in contributing to working memory performance (Kane & Engle, 2002).  As 

FreeSurfer does not generate an ROI specific to the DLPFC, left and right hemisphere DLPFC 

ROIs were created following methods used in Boes et al. (2011).   The DLPFC ROIs were 

created on the Freesurfer “fsaverage” brain and then applied to each participant’s native image 

space using the Freesurfer program “mri_label2label.” The DLPFC ROIs are depicted in Figure 

1. 
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We also measured global surface area (i.e., a sum of the surface area of all Freesurfer-

generated ROIs) and global mean cortical thickness (i.e., mean cortical thickness of each 

hemisphere’s ROIs weighted by the surface area of each hemisphere) in order to determine 

whether any observed brain-cognition relationships were specific to the DLPFC, rather than 

merely being reflective of correlations between cognition and global brain measures.   

Although we did not have specific hypotheses regarding the potential relationship 

between MPFC structure and working memory performance in aging, we measured MPFC 

surface area and cortical thickness to complement our analyses, described below, of MPFC 

function.  Freesurfer was used to create an MPFC ROI following methods described in Holt et al. 

(2011).  As with the DLPFC ROIs, the MPFC ROI was initially created on the fsaverage brain 

and then applied to each participant’s native image space.   The boundaries of the MPFC ROI are 

shown in Figure 1.    

 

fMRI during Working Memory Challenge (N-Back) 

AFNI software (Cox, 1996) was used to correct for motion within each functional run, 

and extreme motion outliers were excluded. A 6mm FWHM spatial filter was applied.  For 

examination of regional activation, a general linear model that included a baseline and linear 

trend plus regressors for each trial type (0-, 1-, 2-, or 3-back)/(0-, 1-, and 2-back) and parameters 

to account for any residual motion were calculated. A map of the fit coefficient for the predictor 

of interest (i.e., the contrast between the 2-back and 1-back conditions or “2- minus 1-back”) was 

created for each participant.  The contrast of 2- minus 1-back was chosen to examine brain 

response specific to the most challenging condition (i.e. 2-back) that all of the participants 

completed.   

We focused our analyses on DLPFC activation, because age-related differences in brain 

response during working memory tasks, as well as correlations with performance, have been 
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observed in the DLPFC.  Reuter-Lorenz et al. (2000) found that older adults show more bilateral 

activation in frontal regions than younger adults during a verbal working memory task, such that 

young adults activated the left DLPFC and older adults showed significant activation in the right 

DLFPC and weak activation in the left DLPFC.  Others have shown that activation in the DLPFC 

(combined across hemispheres) is equivalent or even lower among older adults compared to 

young adults (Rosano et al., 2005).  Mixed findings have emerged when examining the 

relationship between DLFPC activation and performance on working memory tasks.  Reuter-

Lorenz et al. (2000) found that older adults showing more bilateral DLFPC activation performed 

faster on a verbal working memory task.  Rypma et al. (2008) found that DLFPC activation 

(combined across hemispheres) was positively associated with accuracy among older adults, but 

not related to accuracy in younger adults.  Rypma et al. (2005) found that DLPFC activation 

(combined across hemispheres) was negatively associated with reaction time among older adults 

(i.e., greater activity correlates with faster reaction time), while the opposite relationship was 

found among younger adults.  A similar pattern with reaction time was found in Rypma et al. 

(2008); however the relationship in the old group was not significant.   

 We applied individuals’ FreeSurfer-generated DLPFC ROIs to their N-back functional 

MRI data so that both the structural and functional analyses would be conducted in individuals’ 

native image space.  To accomplish this, SUMA software (Saad, Reynolds, Argall, Japee, & Cox, 

2004), which enables the integration of surface-based analyses and AFNI analyses, was used to 

align the FreeSurfer surfaces to the functional run for each individual.  The FreeSurfer ROIs were 

converted to SUMA format for each individual using the AFNI program @FSlabel2dset.  Then, 

AFNI programs SurfPatch and 3dSurfMask were used to generate left and right DLPFC ROI 

masks viewable in AFNI.   

Because studies of brain activation in aging have emphasized differences in laterality of 

frontal activation between younger and older adults, we examined the laterality of DLPFC 
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activation.  We first counted the number of positively-activated voxels above a specified 

threshold (p < .05) within the left and right DLPFC ROI masks and then divided these counts by 

the total number of voxels contained within each mask, thus giving the percentage of activated 

voxels within the left and right DLPFC ROI masks.   Using these percentages, a laterality index 

was calculated based on the following formula: 

Laterality Index =  Left hemisphere – Right Hemisphere  (Seghier, 2008)                 

                               Left hemisphere + Right Hemisphere 

 

Thus, a laterality index of 0 reflects bilateral activation.  Various cut-off values, ranging from 

|0.1| to |0.3| have been used to identify laterality, where a positive laterality index value over the 

cut-off indicates left lateralization while a negative value indicates right lateralization (Seghier, 

2008).  In addition the DLPFC lateralization, we also examined DLPFC activation separately 

within each hemisphere.  To be consistent with the laterality index measurement, hemispheric 

DLPFC activation was also calculated by counting the number of positively-activated voxels 

above a specified threshold (p < .05) within the left DLPFC ROI and right DLPFC ROI masks 

and dividing by the total number of voxels contained within each ROI mask. 

In addition to DLPFC activation, we examined N-Back task-related deactivation in the 

MPFC.  As mentioned above, studies have shown that older age is associated with less  

deactivation of DMN regions such as the MPFC (Grady et al., 2006; Lustig et al., 2003; Persson 

et al., 2007; Sambataro et al., 2010), and there is evidence suggesting a relationship between these 

age-related differences and cognitive performance (Sambataro et al., 2010).  To measure MPFC 

deactivation, we calculated a count of the number of voxels negatively activated (i.e., 

deactivated) above a specified threshold (p < .05) within the MPFC ROI and divided by the total 

number of voxels contained within the ROI, giving the percentage of deactivated voxels within 

the MPFC ROI. 
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Functional Connectivity during Working Memory Challenge (N-Back) 

In order to examine functional connectivity between regions during the N-back task, 

residual motion, whole brain signal (averaged across the whole brain), white matter signal 

(averaged across white matter ROIs), and ventricular signal (averaged across all ventricular 

ROIs) were removed by regression, following Fox et al. (2011). Participants were engaged in 

task-related activity at all times, i.e., there were no “resting” blocks in which no response was 

required.  It has been demonstrated that low-frequency correlated fluctuations in BOLD signal 

within the default mode can be observed under many conditions, including rest with eyes closed 

and rest while viewing visual stimuli (Greicius et al., 2003), as well as during performance of 

cognitive tasks (Hampson, Driesen, Skudlarski, Gore, & Constable, 2006).  Indeed, the initial 

“discovery” of the default mode network came as a result of observing consistent spatial patterns 

in the regions that were deactivated during a variety of challenge tasks (Raichle & Snyder, 2007).  

Thus, we examined the task-negative or default mode network, across the entire time course of 

the working memory task.    

We focused our analysis on the functional connectivity between regions of the DMN, 

given evidence of age-related reductions in DMN connectivity during rest (Damoiseaux et al., 

2008; Esposito et al., 2008; Koch et al., 2010) and task performance (Andrews-Hanna et al., 

2007; Sambataro et al., 2010) and associations with cognition (Andrews-Hanna et al., 2007; 

Damoiseaux et al., 2008; Sambataro et al., 2010).  Similar to Andrews-Hanna et al. (2007), we 

focused our analyses on the functional correlations between the MPFC and PC.  Specifically, we 

created a subject-specific “seed region” reference function in the PC, by averaging BOLD 

response across all voxels in a spherical ROI surrounding specified Talairach coordinates (-5 -49 

+40) as in Fox et al. (2011).   We then calculated the mean correlation between time courses in 

the seed region and voxels within the MPFC ROI.     
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Statistical Analysis  

The distributions of the independent and dependent variables were examined for potential 

outliers and normality.   One-way Analysis of Variance (ANOVA) and Chi-Square tests were 

conducted to examine sample characteristics and identify potential confounding variables, in 

order to determine whether there were any confounding variables to include as covariates in the 

following statistical models.   

 

Aim 1: 

Hypothesis 1A:  Cortical thickness and surface area of the DLPFC will be positively 

associated with working memory performance in all age groups, but these relationships will 

be significantly stronger among older adults.  These effects will be found above and beyond 

relationships between global brain measures (i.e., global mean cortical thickness and global 

surface area) and working memory performance. 

We tested four regression models, each with N-back accuracy as the outcome measure.  

Model 1 predictor variables:  1) age (as a continuous variable), 2) right DLPFC cortical thickness, 

and 3) age X right DLPFC thickness.  Model 2 predictor variables:  1) age (as a continuous 

variable), 2) left DLPFC cortical thickness, and 3) age X left DLPFC thickness.  Model 3 

predictor variables: 1) age (as a continuous variable), 2) right DLPFC surface area, and 3) age x 

right DLPFC surface area.   Model 4 predictor variables: 1) age (as a continuous variable), 2) left 

DLPFC surface area, and 3) age x left DLPFC surface area.   All predictor variables were mean-

centered.   

We tested Hypothesis 1A by determining if 1) there is a significant effect of DLPFC 

cortical thickness/surface area, and 2) there is a significant interaction of DLPFC cortical 

thickness/surface area with age.  The second condition would mean that the relationship between 

DLPFC cortical thickness/surface area and working memory differs by age.    



30 

 

 

 

To explore whether observed significant effects were specific to the DLPFC, models with 

the above predictors were conducted with the DLPFC cortical thickness and/or surface area 

variables adjusted for global mean cortical thickness and/or global surface area, respectively.   

 

Hypothesis 1B:  Greater bilateral DLPFC activation in response to the working memory 

challenge task will be associated with better working memory performance among older 

adults, but more lateralized DLPFC activation will be associated with better performance 

among younger and middle-aged adults.   

We focused our analyses on the DLPFC laterality index.  In a regression model with N-

back accuracy as the outcome measure, we tested the following predictor variables: 1) age (as a 

continuous variable), 2) DLPFC laterality index, and 3) age x DLPFC laterality index.  We tested 

Hypothesis 1B by determining if 1) there is a significant effect of DLPFC laterality index, and 2) 

there is a significant interaction between DLFPC laterality index with age.  A significant 

interaction would mean that the relationship between the laterality of DLPFC activation with 

working memory differs by age.   

We also examined DLPFC activation separately for each hemisphere.  In regression 

models with N-back accuracy as the outcome measure, we tested the following predictor 

variables: 1) age (as a continuous variable), 2) right/left DLPFC activation, and 3) age x right/left 

DLPFC activation.  

 

Hypothesis 1C:  Greater MPFC deactivation will be positively associated with working 

memory performance among older adults, but these factors will be unassociated in younger 

and middle aged adults. 

In a regression model with N-back accuracy as the outcome measure, we tested the 

following predictor variables: 1) age (as a continuous variable), 2) MPFC deactivation, and 3) age 
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x MPFC deactivation.  We tested Hypothesis 1C by determining if 1) there is a significant effect 

of MPFC deactivation, and 2) there is a significant interaction of MPFC deactivation with age.  A 

significant interaction would mean that the relationship MPFC deactivation with working 

memory differs by age.   

 

Hypothesis 1D:  Functional connectivity between regions of the default-mode network (i.e., 

MPFC and PC) will be positively associated with working memory performance among 

older adults, but these factors will be unassociated in younger and middle aged adults.  

In a regression model with N-back accuracy as the outcome measure, we tested the 

following predictor variables: 1) age (as a continuous variable), 2) functional connectivity 

between the MPFC and PC seed region, and 3) age x functional connectivity between these 

regions.  We tested Hypothesis 1D by determining if 1) there is a significant effect of functional 

connectivity between the MPFC and PC seed region, and 2) there is a significant interaction of 

functional connectivity between these regions with age.  A significant interaction would mean 

that the relationship between functional connectivity between MPFC and PC and working 

memory differs by age.   

 

Aim 2: 

Exploratory Analysis A:  We used a variable selection technique (the least absolute 

shrinkage and selection operator (LASSO)) method to explore the strength and relative 

contributions of the examined neural measures (cortical thickness and surface area of the 

DLPFC, task-related activation in the DLFPC, task-related deactivation in the MPFC, and 

functional connectivity between the MPFC and PC) in predicting SCA.  

The following variables were standardized into Z-scores (calculated by subtracting the 

mean for each variable from each participant’s value and dividing by the variable’s standard 
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deviation)  and entered into the LASSO analysis to test their relationship to N-back accuracy:  1) 

age (as a continuous variable), 2) global surface area, 3) global mean cortical thickness, 4) right 

DLPFC surface area, 5) left DLPFC surface area, 6) right DLPFC cortical thickness, 7) left 

DLPFC cortical thickness, 8) right DLPFC activation, 9) left DLPFC activation, 10) DLPFC 

laterality index, 11) MPFC surface area, 12) MPFC cortical thickness, 13) MPFC deactivation, 

and 14) mean functional connectivity between the MPFC and PCC seed.   All age X brain 

measure interaction terms were also included in the model. 

The LASSO method is designed to select predictor variables to yield a sparse model (i.e. 

a model achieving good model fit with the fewest number of predictor variables).  The LASSO 

works by shrinking regression coefficients of the predictor variables such that some are reduced 

to zero and eliminated from the model (Bunea et al., 2011; Tibshirani, 1996).  The LASSO 

method is capable of handling a large number of predictor variables, even when the number of 

variables exceeds the sample size (Bunea et al., 2011).  Results from this analysis show which 

measures of neural integrity are most predictive of working memory performance, and which 

measures do not contribute to working memory performance when included within the same 

model as other measures of neural integrity.   

 

Exploratory Analysis B:  We also used partial least squares regression to examine what 

linear combinations of the above variables best relate to our measure of SCA. 

The same predictor variables in Exploratory Analysis A were entered into a partial least 

squares (PLS) regression analysis with N-back accuracy as the outcome measure.  Specifically, in 

PLS, latent variables are created based on the predictor variables in a way that maximizes the 

covariance between those latent variables and the outcome measure.   Like LASSO, PLS 

regression is capable of handling a large number of predictor variables, even within the context of 

a relatively small sample size (Abdi, 2010).  Results from this analysis reflect the linear 
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combination of variables that best predicts working memory performance.  In other words, this 

analysis shows how the predictor variables relate to one another in their ability to predict working 

memory performance.   
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RESULTS 

Identification of Outliers and Examination of Variable Distributions 

 SPSS boxplots were used to identify potential outliers in the N-back performance 

variable and among the neural variables.  For each variable, outliers were defined as cases falling 

greater than or equal to 1.5 times the interquartile range below the first quartile and cases falling 

greater than or equal to 1.5 times the interquartile range above the third quartile.  No outliers were 

identified for global surface area, global mean cortical thickness, right DLPFC surface area, right 

or left DLPFC mean thickness, or right or left DLPFC activation.  One outlier was identified for 

N-back performance, one outlier for left DLPFC surface area, 5 outliers for the DLPFC laterality 

index, two outliers for MPFC surface area, one outlier for MPFC mean thickness, one outlier for 

MPFC deactivation, and 3 outliers for MPFC-PC seed functional connectivity.  These outliers 

were excluded from analyses including these variables.   

 Histograms were used to examine the distributions of the N-back performance and neural 

variables.  The N-back performance distribution was negatively skewed.   Common 

transformations, including log, inverse, and square-root transformations, were applied but did not 

result in improved normality.  Thus, we chose to use the N-back performance variable in its 

original metric in the following analyses to facilitate interpretability.  The neural variables tended 

to follow a normal distribution, with the exception of MPFC deactivation and right DLPFC 

activation, which were positively skewed.   Left DLPFC activation was also slightly positively 

skewed.  These variables were also kept in their original metric, rather than applying 

transformations, in order to facilitate interpretability. 

 

Identification of Potential Confounding Variables 

As listed in Table 1, by treating age as a categorical variable, chi-square tests showed that 

the younger, middle-aged, and older adult groups are well-matched in regards to gender (X
2

2 = 
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3.0, p = .22) and proportion of ethnic minorities (X
2

8 = 8.8, p = .36), and a one-way ANOVA 

showed that the age groups are well-matched in regards to estimated premorbid verbal 

intelligence (F2,55 = 2.29, p = .11).   Based on a one-away ANOVA, the age groups are discrepant 

in regards to education (F2,61 = 3.8, p = .027), such that the older adults have significantly more 

education than middle aged adults (Tukey HSD = 2.00, p = .021).  The older and younger adults 

did not differ in their mean level of education (Tukey HSD = 1.14, p = .22), nor did the younger 

and middle aged adults (Tukey HSD = .86, p = .42).   

Years of education was not significantly correlated with N-back accuracy in any age 

group (Young: r = .05, p = .81; Middle: r = .065, p = .79; Older: r = -.006, p = .98) or across all 

age groups (r = -.04, p = .76).  There was also no significant correlation between estimated 

premorbid verbal IQ and N-back accuracy in any age group (Young: r = .17, p = .42; Middle: r = 

.12, p = .64; Older: r = .088, p = .75) or across all age groups (r = .10, p = .44).  Thus, we did not 

include years of education or estimated IQ as covariates in models predicting N-back accuracy.   

To ascertain whether participant characteristics, N-back accuracy, or the neural measures 

differed depending on the specific study under which individuals’ data were collected, we 

conducted a one-way ANOVA examining the effect of study on those variables.  The following 

variables did not differ by study:  Age (treated as a continuous variable), education, estimated 

premorbid verbal IQ, N-back accuracy, global surface area, global mean cortical thickness, right 

or left DLPFC surface area, right or left DLPFC cortical thickness, DLPFC laterality index, left or 

right DLPFC activation, MPFC surface area, MPFC deactivation, and functional connectivity 

between the PC seed and MPFC (all p > .05).   MPFC cortical thickness did differ by study (p = 

.028), thus a study variable is used as a covariate in the regression analyses involving MPFC 

cortical thickness.  

 

Relationship of Age to Working Memory Performance 



36 

 

 

 

Age (treated as a continuous variable) is significantly negatively correlated with N-back 

accuracy (r = -.25, p = .045), as shown in Graph 1.   Mean N-back accuracy was .83 (SD = .18) 

among the younger adults, .83 (SD = .14) among the middle-aged adults, and .75 (SD = .16) 

among the older adults.   

 

Relationship of Age to Brain Variables 

Bivariate correlations showed that age (treated as a continuous variable) is negatively 

correlated with global mean thickness (r = -.61, p < .0005), left DLPFC thickness (r = -.37, p 

=.003), and right (r = -.36, p = .004) and left (r = -.32, p = .01) DLPFC activation.  Age is 

positively correlated with the DLPFC laterality index (r = .33, p = .011); younger adults’ mean 

laterality index is .01 (SD=.18), middle-aged adults’ mean laterality index is .09 (SD=.17), and 

older adults’ mean laterality index is .18 (SD=.20).  Scatterplots of these relationships are shown 

in Graphs 2 and 3.  Although all of the correlations were negative, age was not significantly 

related to global surface area (r = -.24, p = .053), right DLPFC surface area (r = -.24, p = .06), 

left DLPFC surface area (r = -.17, p = .20), right DLPFC thickness (r = -.21, p = .09), or MPFC-

PC seed functional connectivity (r = -.22, p = .09).  Age was also not related to deactivation 

within the MPFC ROI (r = -.08, p = .55), MPFC surface area (r =-.06, p = .63), or MPFC cortical 

thickness (r = -.033, p = .80).    A regression model with MPFC cortical thickness as the 

dependent variable and study and age as predictors was also non-significant (p > .05).   

In order to explore possible non-linear effects of age on the above brain variables, 

regression models were conducted including the linear and quadratic terms of age (mean-

centered) as predictor variables, with the above brain variables as the dependent variables.  All 

quadratic age effects were non-significant (p > .05).    A regression model with MPFC cortical 

thickness as the dependent variable and study, age, and age-squared as predictors was also non-

significant (p > .05).   
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Relationships between SCA and DLPFC Structure:   

 Bivariate correlations showed that N-back accuracy is positively correlated with left 

DLPFC surface area (r = .30, p = .02), but not significantly correlated with global surface area (r 

= .25, p = .051), right DLPFC surface area (r = .21, p = .11), global mean thickness (r = .054, p = 

.68), right DLPFC thickness (r = -.046, p = .72), or left DLPFC thickness (r = .065, p = .61).   

A regression model with N-back accuracy as the outcome measure and predictors of 1) 

age (as a continuous variable), 2) left DLPFC surface area, and 3) age X left DLPFC surface area 

was significant (F3,58 = 2.89, p = .043, R
2
 = .13, Cohen’s f

2
 = .15), with left DLPFC surface area 

being the only significant predictor (standardized β = .29, t = 2.21, p = .031).  To examine 

whether this relationship was potentially driven by a relationship with global surface area, a 

regression model for N-back accuracy with the predictors of 1) age, 2) left DLPFC surface area 

adjusted for global surface area, and 3) age X adjusted left DLPFC surface area was also 

conducted.  The model was significant (F3,58 = 2.86, p = .044, R
2
 = .13, Cohen’s f

2
 = .15), with 

adjusted left DLPFC surface area being the only significant predictor (standardized β = .27, t = 

2.20, p = .032).   Thus, left DLPFC surface area is positively associated with N-back accuracy, 

with or without adjusting for global surface area, and this relationship did not differ with age.  

Graph 4 depicts this relationship between N-back accuracy and left DLPFC surface area, adjusted 

for global surface area.  A regression model with N-back accuracy as the outcome measure and 

predictors of 1) age, 2) right DLPFC surface area, and 3) age X right DLPFC surface area was not 

significant (F3,59 = 1.88, p = .14, R
2
 = .09).   

A regression model with N-back accuracy as the outcome measure and predictors of 1) 

age (as a continuous variable), 2) right DLPFC cortical thickness, and 4) age X right DLPFC 

thickness was not significant (F3,59 = 2.17, p = .10, R
2
 = .10).  A regression model with N-back 

accuracy as the outcome measure and predictors of 1) age (as a continuous variable), 2) left 
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DLPFC cortical thickness, and 3 ) age X left DLPFC thickness was also not significant (F3,59 = 

1.40, p = .25, R
2
 = .07).    

 

Relationship between SCA and DLPFC Activation during Working Memory Challenge 

Figure 2 shows the whole-brain fMRI analysis for the N-back 2- minus 1-back contrast, 

specifically, one-sample T-test results calculated separately for each age group in Talairach space.  

We first focus on brain response in the DLPFC following our hypotheses. 

Bivariate correlations showed that N-back accuracy is negatively correlated with the 

DLPFC laterality index (r = -.34, p = .008), measured based on the DLPFC ROI.   A regression 

model with N-back accuracy as the outcome variable and predictors of 1) age (as a continuous 

variable), 2) DLPFC laterality index, and 3) age X DLPFC laterality index was significant 

(F3,54=3.43, p = .023, R
2
 = .16, Cohen’s f

2
 = .19), with the only significant predictor being DLPFC 

laterality index (standardized β = -.29, t = -2.21, p = .032).  Graph 5 depicts the relationship 

between N-back accuracy and the DLPFC laterality index, and suggests that bilateral DLPFC 

activation is associated with the best performance while individuals with more left-lateralized 

activation performed the worst. 

 Bivariate correlations showed that N-back accuracy is positively correlated with 

activation within the right (r = .33, p = .009) and left (r = .29, p = .020) DLPFC ROIs.  A 

regression model with N-back accuracy as the outcome variable and predictors of 1) age (as a 

continuous variable), 2) right DLPFC activation, and 3) age X right DLPFC activation was 

significant (F3,59 = 2.97, p = .039, R
2
 = .13, Cohen’s f

2
 = .15), with right DLPFC activation 

(standardized β = .28, t = 2.1, p =.039) being the only significant predictor.  A regression model 

with N-back accuracy as the outcome variable and predictors of 1) age (as a continuous variable), 

2) left DLPFC activation, and 3) age X left DLPFC activation was not significant (F3,59 = 2.66, p 

= .057, R
2
 = .12).  
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Given that we did not find age-related increases in DLPFC activation as we expected 

following the HAROLD or PASA models, we chose to examine whether regions outside of the 

DLPFC showed increased activation in aging in support of these models.  A whole-brain fMRI 

regression analysis was conducted using AFNI program 3dRegAna.  Study, age (as a continuous 

variable), N-back accuracy, and age x N-back accuracy were included as predictor variables.   

The AFNI program AlphaSim was used to determine the cluster size (65 voxels) needed to 

achieve statistical significance when setting the whole-brain threshold to p = .05.   As shown in 

Figure 3, there were significant clusters of age and performance main effects.  However, there 

were no significant clusters of age X N-back accuracy interaction.   Correlations between the 

mean fit coefficient within each significant cluster, calculated using the AFNI program 

3dROIstats, and age and N-back accuracy are shown in Table 2.   

Contrary to our expectations, the whole-brain analysis did not show increased frontal or 

greater bilateral activation in aging.  Negative associations with age were found for a cluster 

containing bilateral frontal regions, bilateral cingulate, and bilateral caudate and for a cluster 

containing bilateral inferior and superior parietal lobules.  In these regions, older age was 

associated with reductions in the activation seen among the young, and these age-related 

reductions in activation were associated with poorer performance.   Positive age associations were 

found for clusters containing nodes of the DMN, the medial frontal gyrus and posterior cingulate, 

such that older age was associated with reduced deactivation.  A positive age association was also 

found for a cluster containing right temporal and occipital regions, such that younger adults 

showed slight deactivation while older adults showed slight activation.   None of these age-

related differences in deactivation appeared to affect performance, as performance correlations 

with these clusters were non-significant.  

Positive associations with performance were found for clusters that included bilateral 

middle frontal gyrus, right inferior frontal gyrus, bilateral precuneus, bilateral inferior parietal 



40 

 

 

 

lobule, and bilateral superior parietal lobule.  Greater activation in these regions was associated 

with better performance, and older age was associated with significantly reduced activation in all 

of these regions, except for one of the two clusters containing right middle frontal gyrus. 

 

Relationship between SCA and MPFC Structure 

Bivariate correlations showed that N-back accuracy is positively correlated with MPFC 

surface area (r = .28, p = .032), while N-back accuracy is not related to MPFC thickness (r = 

.074, p = 57).  A regression model with N-back accuracy as the outcome measure and predictors 

of 1) age (as a continuous variable), 2) MPFC surface area, and 3) age X MPFC surface area was 

significant (F3,57 = 2.82, p = .047, R
2
 = .13) but there were no significant individual predictors (all 

p > .05).  A regression model with N-back accuracy as the outcome measure and predictors of 1) 

study, 2) age, 3)MPFC thickness, and 4) age X MPFC thickness was not significant (F4,57 = 1.32, 

p = .27, R
2
 = .09).   

 

Relationship between SCA and Deactivation within the MPFC ROI 

Bivariate correlations showed that N-back accuracy is positively correlated with 

deactivation with the MPFC ROI (r = .29, p = .020).  A regression model with N-back accuracy 

as the outcome variable and predictors of 1) age (as a continuous variable), 2) deactivation within 

the MPFC ROI, and 3) age X MPFC deactivation was significant (F3,58 = 3.21, p = .030, R
2
 = .14, 

Cohen’s f
2
 = .16), with MPFC deactivation being the only significant predictor (standardized β = 

.28, t = 2.29, p =.025).  Thus, as shown in Graph 6, greater deactivation within the MPFC ROI is 

associated with better N-back accuracy. This relationship did not differ with age.   

 

Relationship between SCA and DMN Functional Connectivity 
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Figure 4 shows whole-brain functional connectivity maps using the PC seed point, 

specifically one-sample T-test results calculated separately for each age group.  As can be seen, 

even though participants were engaged in the N-back task, a DMN connectivity pattern was 

revealed.   Following our hypotheses, we focus on functional connectivity between the PC seed 

and MPFC ROI. 

Bivariate correlations showed that N-back accuracy (r = .077, p = .56) is not significantly 

correlated with the degree of synchrony between the MPFC ROI and PC seed.   A regression 

model with N-back accuracy as the outcome variable and predictors of 1) age (as a continuous 

variable), 2) MPFC-PC seed functional connectivity, and 3) age X MPFC-PC seed functional 

connectivity was not significant (F3,56 = 1.22, p = .31, R
2
 =.06).   

 

Strength and Relative Contribution of the Neural Measures in Predicting SCA 

Using the R package “lars” (Efron, Hastie, Johnstone, & Tibshirani, 2004), a LASSO 

analysis was conducted with N-back accuracy (z-score) as the outcome variable.  The following 

Z-score transformed variables were entered as predictors:  1) age (as a continuous variable), 2) 

global surface area, 3) global mean cortical thickness, 4) right DLPFC surface area, 5) left 

DLPFC surface area, 6) right DLPFC cortical thickness, 7) left DLPFC cortical thickness, 8) right 

DLPFC activation, 9) left DLPFC activation, 10) DLPFC laterality index, 11) MPFC surface 

area, 12) MPFC cortical thickness, 13) MPFC deactivation, and 14) mean functional connectivity 

between the MPFC and PCC seed.  All age X brain interaction terms were also included as 

predictors.  As the previously identified outliers were excluded, data from 52 participants were 

included in this LASSO analysis.   

The LASSO model resulted in an R
2
 value of 0.55.  A two-step model minimized the Cp 

statistic, meaning that two steps (i.e., a model containing the intercept=0 and two predictor 

variables) provided the best balance between including variables in the model versus over-fitting 
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the data.  The resulting model includes right DLPFC activation as the strongest predictor of N-

back accuracy (β = .08), followed by MPFC deactivation (β =.05).  None of the age x brain 

measure predictors were strongly associated with N-back working memory performance. 

 

Linear Combinations of the Neural Measures in Predicting SCA 

Using the R package “pls” (Mevik & Wehrens, 2007), a partial least squares regression 

(PLS) analysis was conducted with N-back accuracy (z-score) as the outcome variable and all of 

the same predictor variables as were included in the LASSO analysis.  As in the LASSO analysis, 

data from 52 participants were included.   The PLSR was run using “leave-one-out” cross 

validation, which gives the root mean squared error of prediction (RMSEP) for each number of 

components.   

A one component result minimized the RMSEP value (RMSEP = 0.98).  This component 

explained 14% of the variance among the predictor variables and 29% of the variance in the 

outcome variable (N-back accuracy).   Table 3 lists the loading values, showing how each 

variable relates to the component.   The variables of age, DLPFC laterality index, and right and 

left DLPFC activation had among the strongest loading values, followed closely by global surface 

area, left DLPFC surface area, and MPFC deactivation. 
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DISCUSSION 

In order to better understand the neural signature of SCA, we first determined whether 

there were brain-cognition relationships unique to the aging process that predicted our measure of 

cognition or whether the same relationships persisted across adulthood.  Contrary to our 

hypotheses (as summarized in Table 4), relationships between working memory performance and 

our structural and functional brain measures did not differ with age.  At least when considering 

the neural measures examined in our study, SCA did not appear to result from brain-cognition 

relationships unique to older adulthood.   Instead, SCA resulted from older adults maintaining the 

same brain-cognition relationships that occur throughout adulthood.   The specific neural factors 

supporting good working memory performance across adulthood are detailed below.   

It is well-known that older age is associated with reduced volume in frontal regions, 

including the DLPFC (Bergfield et al., 2010; Fjell, Walhovd, et al., 2009; Raz et al., 1997), but it 

has not been reported whether age-related volumetric differences in the DLPFC are due to 

differences in cortical thickness, cortical surface area, or both.  In the present study, we found that 

age was negatively associated with DLPFC cortical thickness in the left hemisphere, but there 

were no significant age relationships with right DLPFC cortical thickness or DLPFC surface area 

in either hemisphere.  Following the radial unit hypothesis, which posits that the cortex is 

composed of columns of developmentally-related cells (Rakic, 1988; Rakic, 2000), our findings 

suggest that age-related differences in DLPFC structure are primarily driven by a loss of cells 

within DLPFC radial columns, rather than a loss in the number of DLPFC columns.   

Compared to the abundance of studies examining how brain volume relates to cognition 

in aging, less is known about the relationship between cortical surface area and cortical thickness 

in aging.  Although cortical thinning has been cited as a neuropathological process in Alzheimer’s 

disease (Dickerson, Bakkour, et al., 2009; Dickerson, Feczko, et al., 2009), in the present study of 

healthy adults, age-related differences in left DLPFC cortical thickness were unrelated to our 
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cognitive measure.  Instead, left DLPFC surface area was positively associated with working 

memory across adulthood.   These findings suggest that working memory performance is largely 

unaffected by age-related structural differences in the DLPFC.  Rather, it appears that adults who 

have developed greater DLPFC surface area, particularly in the left hemisphere, will continue to 

perform better on working memory tasks into older age.   

A common, although not universal, finding in the literature is that, during cognitive 

challenge tasks, older adults show a shift from posterior to anterior activation (PASA) and 

increased bilateral activation (HAROLD) compared to younger adults, and there is some evidence 

to suggest that these functional differences may facilitate cognitive performance.  Our findings 

did not follow these patterns.  Namely, task-related activation within our region of interest, the 

DLPFC, decreased with age in both hemispheres, DLPFC activation shifted from being bilateral 

among the younger adults to being left-lateralized among the older adults, and bilateral DLPFC 

activation was associated with better working memory performance across the age groups.  

Further in contrast with the HAROLD and PASA models, there was no evidence that older age 

was associated with  activation increases in regions outside of the DLPFC, as the positive age 

relationships found in the whole-brain fMRI analysis were not truly age-related increases in 

activation but rather age-related decreases in deactivation.   

Our finding that older age was associated with less  task-related activation is not an 

unprecedented result and is corroborated by the literature.  Reduced frontal activation among 

older adults compared to younger adults has been reported including in studies of selective 

attention (Solbakk et al., 2008), speeded response preparation (Vallesi, McIntosh, & Stuss, 2009), 

probabilistic learning (Fera et al., 2005), recognition memory (Brassen & Buchel, 2009; Gutchess 

et al., 2007), and executive functioning (Rosano et al., 2005).  Some previous studies of working 

memory have found that older age was associated with less activation within a structurally-

defined DLPFC ROI.  In Rypma and D'Esposito (2000), bilateral DLPFC activation was found 
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among younger adults during a working memory task, and, in comparison, older adults  showed 

less DLPFC activation in both right and left DLPFC ROIs.  Similarly, Rypma, Prabhakaran, 

Desmond, and Gabrieli (2001) found that, compared to younger adults, older adults showed less 

DLPFC activation, driven by age differences within the right DLPFC in particular.  

Unfortunately, we cannot compare our findings of greater left-lateralization in aging with these 

studies, as neither directly tested for laterality effects.   

From our findings, SCA, as defined as good working memory ability, appears to refer to 

older adults who are able to maintain the greater and more bilateral DLPFC activation seen 

among the young.  Brain aging as it relates to working memory and related cognitive processes 

may diverge from the HAROLD and PASA patterns.  It may be that there are not functional 

changes that come online in aging to compensate for (or even attempt to compensate for) a 

declining working memory system.  Alternatively, our findings may differ at least somewhat 

from previous studies that found the HAROLD and PASA patterns, as, unlike most functional 

MRI studies, we examined activation within a structurally-defined ROI, making our 

measurements independent of age-related structural differences.   We also cannot rule out the 

possibly that our results may have been influenced by altered hemodynamic response in aging, 

particularly as we did not measure or control for resting cerebral blood flow.  However, 

measuring the contrast between the BOLD signal response to the 2-back condition minus the 1-

back condition as we did makes it more likely that our fMRI findings truly reflect age differences 

in task-related response rather than neurovascular differences (D'Esposito, Deouell, & Gazzaley, 

2003). 

 In addition to DLPFC structure and function, we examined how function in the DMN, 

specifically the MPFC, related to SCA.  While deactivation measured based on the MPFC ROI 

was not associated with aging, a whole-brain analysis revealed a small cluster within the medial 

frontal gyrus for which older age was associated with reduced deactivation.  This discrepancy is 
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likely related to differences in imaging analysis methods.  For the MPFC ROI analysis, 

deactivation was calculated by measuring the percentage of voxels deactivated across the entire 

structurally-defined ROI mask, whereas the whole-brain analysis results reflect a relatively 

smaller cluster for which the mean fit coefficient is more negative among the young adults (M = -

.21, SD = .23) than among the middle-aged (M = -.05, SD = .17) and older adults (M = .07, SD = 

.25).   In addition, our structurally-defined MPFC ROI and the small cluster obtained from the 

whole-brain analysis are not entirely overlapping in space, likely contributing to the discrepancy.  

Nevertheless, findings of age-related reductions in MPFC deactivation are consistent with 

previous studies (Lustig et al., 2003; Persson et al., 2007; Sambataro et al., 2010), none of which 

conducted their analyses using a structurally-defined MPFC ROI.    

With respect to the relationship between MPFC deactivation and cognition, we found that 

greater MPFC deactivation, as measured across the entire MPFC ROI, was positively associated 

with working memory performance across adulthood, consistent with the findings of Sambataro 

(2010).    However, the observed age-associated reductions in deactivation within the 

functionally-defined medial frontal gyrus cluster were not related to performance.   Thus, the 

observed age effects did not appear to be deleterious to performance, rather overall MPFC 

deactivation predicted performance across age groups.  Thus, as far as MPFC deactivation, SCA 

appears to result from maintaining the same greater deactivation—better performance relationship 

throughout adulthood.   

In functional connectivity analyses, we showed that, throughout adulthood, the DMN is 

apparent even during task performance.  In line with previous studies finding that older adults 

have weaker DMN functional connectivity during task performance (Andrews-Hanna et al., 2007; 

Sambataro et al., 2010), we found a trend for an age-associated reduction in MPFC-PC functional 

connectivity.   However, unlike in Sambataro et al. (2010) and Andrews-Hanna et al. (2007), 

MPFC-PC functional connectivity was not associated with working memory performance.   The 
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fact that the age relationship was only at a trend level and that a performance relationship was not 

found may have been contributed to by a difference in methodology between our study and these 

previous studies.   While we measured the functional correlations within a structurally-defined 

MPFC ROI, Sambataro et al. used a whole-brain analysis approach and Andrews-Hanna et al. 

used a functionally-defined MPFC ROI.   

The most novel aspects of the present study are our use of multivariate statistical 

techniques to explore the relative contribution and inter-relationships of the examined neural 

measures in predicting SCA.  When considering all of the examined neural variables within the 

same model, activation within the right DLPFC was found to be the strongest predictor of 

working memory performance, followed closely by deactivation within the MPFC.   We were 

somewhat surprised that the DLPFC laterality index was not also revealed as one of the strongest 

predictors, but this is likely contributed to by the fact that the right DLPFC activation and DLPFC 

laterality index variables are somewhat redundant with one another.  It was also interesting that 

no structural measure was found to be among the strongest predictors, suggesting that functional 

measures are more important than structural measures in predicting SCA.   It should be noted, 

however, that although they were not the strongest predictors and did not get included in the final 

LASSO model, the DLPFC laterality index and left DLPFC surface area variables were next in 

line to enter the LASSO model, suggesting that these variables do play a contributing, albeit 

smaller, role in promoting good working memory.  As no age X brain interaction variables were 

found to be important predictors, this again argues against the idea that unique neural factors give 

rise to SCA.   Analyzing the data in this fashion to reveal right DLPFC activation and MPFC 

deactivation as the most important contributors to SCA is particularly informative for possible 

brain-based interventions.  Specifically, intervention efforts aimed at maintaining or improving 

cognition among older adults should target these aspects of the neural system, particularly as right 

DLPFC activation, and to some extent MPFC deactivation, are altered in aging.   
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Using another multivariate technique, partial least squares regression, we were able to 

determine the combination of neural variables that was most predictive of our measure of SCA.  

Results from this analysis show that being younger, having greater right and left DLPFC 

activation, less left-lateralized (i.e. more bilateral) DLPFC activation, larger global surface area, 

larger DLPFC surface area (particularly in the left hemisphere), and greater MPFC deactivation is 

a combination that promotes good working memory performance.  This analysis highlights the 

importance of thinking of the brain as being a system whose components work together to 

achieve a cognitive function.  Again, the lack of importance of age X brain interaction variables 

indicates that the different aspects of the neural system work together in a similar manner across 

adulthood.  Although components of the system may change in the aging brain (e.g., DLPFC 

activation decreases), there is no indication that the components of the neural system begin to 

work together in a different manner to compensate for such changes.  In other words, there is no 

indication that some components begin to take on a more important role or that other components 

come to take on a lesser role in supporting performance.   

Some limitations should be considered in interpreting our results.  First, we defined SCA 

based on performance on a measure of working memory.  While working memory is an important 

cognitive domain in which older adults experience decline, SCA is clearly a multi-faceted 

construct that is broader and more complex than can be captured by a single cognitive domain.  

Future studies should examine SCA in a broader fashion such as by defining SCA based on 

performance on a comprehensive cognitive battery.   In addition, as with all cross-sectional 

studies, our conclusions regarding age-related changes are limited.  To truly understand what 

neural factors promote SCA and how brain-cognition relationships might remain the same or 

change as individuals age, a longitudinal design including repeated measurements of brain factors 

and cognition is needed.   Further, although we clearly did not find evidence for age X brain 

interactions in our ROI analyses, it is possible that we were unable to detect true interaction 
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effects in our whole-brain fMRI analysis.  We used the AFNI program 3dRegAna to explore, in a 

whole-brain fashion, whether there were regions where the relationship between task-related 

BOLD signal and working memory performance differed by age.  While 3dRegAna is a widely 

used method for such an analysis, its limitation is that it is fairly strict, meaning that to find a 

significant cluster of interaction, it is often the case that the brain-cognition relationship must be 

in opposite directions in different age groups.  3dRegAna is less successful at picking up, for 

example, regions where there might be a brain-cognition relationship in one age group but no 

association within another age group.   Thus, we cannot be certain that there are not regions 

outside of our DLPFC ROI that might show this sort of interaction effect.    Finally, a possible 

limitation of the present study was our choice to combine data from different study samples, 

including data that was originally collected for purposes other than the present analyses.  This has 

the potential to bias our findings.  First, some participants from the original studies were excluded 

from the present study due to incomplete data, primarily because of poor image quality.  Second, 

there was the potential for systematic differences in the data related to differences in the studies 

under which the data was collected.  However, this did not appear to significantly affect the 

results, as the only variable that differed by study was MPFC cortical thickness, a variable that 

was not related to age or working memory.   

In summary, the present study is one of the first to examine neural correlates of SCA by 

investigating brain structure, task-related activation and deactivation, and functional connectivity 

within the same sample of young, middle-aged, and older adults.  Instead of finding that unique 

neural relationships emerge in aging to give rise to SCA as we expected, we found that the same 

neural factors work together in a similar manner across adulthood to support cognition, despite 

age-related changes among individual components of the system.  Task-related activation, task-

related deactivation, and brain structure were all found to be important to SCA but to varying 

degrees.   
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Our results could be extended in the future by applying similar multi-modal imaging and 

multivariate statistical approaches to additional studies of SCA, with the goal of understanding 

how components of the neural system work together to promote good performance in other 

cognitive domains and/or how the neural system supports good cognition longitudinally.  Given 

that studies using paradigms other than working memory tasks have found evidence for age-

related functional differences consistent with the HAROLD and PASA patterns, it would be 

interesting to apply our methodologies to understand how the neural system might work 

differently in younger and older adults when these functional pattern differences are apparent.   It 

could be, for example, that among younger adults, brain structure and function are equally 

important in supporting cognition.  Whereas among older adults showing the HAROLD and/or 

PASA pattern, function may play a greater role than structure, as the age-related functional 

differences might be compensating for comprised brain structure.   In addition to examining such 

possibilities within the context of SCA, it will also likely prove important to investigate these 

sorts of questions within cognitively-compromised older adult populations, such as individuals 

with Mild Cognitive Impairment or Alzheimer’s disease.  Doing so could lead to a better 

understanding of how the neural system breaks down and results in age-related cognitive 

impairment.  Brain-based interventions aimed at preventing, or at least slowing, the deterioration 

of the neural system could then use this information to determine when (i.e. at what stage in 

progression of the neural changes) and where (i.e. on what aspect of the neural system) to 

intervene. 
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TABLE 1:   Sample Characteristics 

 * = p < .05 

 

 

 

 Entire Sample 

 
By Age Group  

  

 (N=64) 
Young  

(n = 26) 
Middle 

(n = 19) 
Old  

(n = 19) 
One-Way ANOVA / Chi-

Square comparing Age 

Groups 

Age      

Mean (SD) 46.1 (15.8) 30.2 (5.5) 48.7 (6.5) 65.5 (4.5) F2,61  = 227.1; p < .0005* 

Gender  

# of Participants 

     

 

       Female 40 13 13 14  

       Male 24 13 6 5 X
2

2 = 3.0, p = .22 

Education      

Mean (SD) 15.5 (2.3) 15.4 (2.4) 14.5 (1.8) 16.5 (2.5) F2,61 = 3.8, p = .03* 

Ethnicity  

# of Participants 

     

       Caucasian 51 20 15 16  

       Hispanic 4 3 0 1  

       African American 3 0 2 1  

Asian/Pacific Islander 2 0 1 1  

       Other 4 3 1 0 X
2

8 = 8.8, p = .36 

Estimated Verbal IQ      

Mean (SD)  115.1 (6.2) 113 (5.6) 116.9 (6.8) 116.0 (5.9) F2,55 = 2.29, p = .11 
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FIGURE 1:  DLPFC and MPFC ROIs (shown on Freesurfer “fsaverage” Brain) 
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GRAPH 1:   Relationship between Age and Working Memory Performance  
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GRAPH 2:  Negative Relationships between Age and Brain Variables 
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GRAPH 3:  Positive Relationship between Age and DLPFC Laterality Index (2- minus 1-back) 
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GRAPH 4:  Relationship between Left DLPFC Surface Area (Adjusted for Global Surface Area) and Working Memory Performance 
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FIGURE 2:   Whole-Brain fMRI N-Back Group Analysis in Talairach Space (2- minus 1-back); Unthresholded 
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GRAPH 5:   Relationship between DLPFC Laterality Index (2- minus 1-back) and Working Memory Performance  
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FIGURE 3:  Whole-Brain fMRI 3dRegAna Results for the N-Back Task (2- minus 1-back) in Talairach Space;  Significant Clusters 
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TABLE 2:   Whole-Brain fMRI 3dRegAna Results for the N-Back Task (2- minus 1-back); Significant Clusters  

Effect Cluster # 

Voxels 

Center of Mass Mean Fit 

Coefficient 

(Eta
2
) 

Age 

Correlation 

(r) 

Performance Correlation (r) 

All          Y            M          O 

 (n=63)    (n=26)   (n=19)  (n=18) 

Age 
B Frontal / Cingulate / 

Caudate  
842 -3.2 -14.5 +27.7 -.10 -.52** .28* .30 .17 .15 

 R Occipital-Temporal  645 -20.3 +58.2 +0.3 .10 .44** -.012 .23 .30 -.094 

 B IPL and SPL  474 -2.0 +52.1 +43.3 -.11 -.55** .33** .35† .26 .19 

 Medial Frontal Gyrus 194 +4.2 -53.0 +20.2 .10 .49** -.14 -.13 .25 -.10 

 
L PC / Cuneus / 

Precuneus 
85 +7.5 +56.7 +16.6 .09 .42** -.17 -.026 -.16 -.24 

Performance L IPL/Precuneus 131 +32.0 +44.3 +37.6 .09 -.41** .51** .61** .34 .42† 

 R SPL/Precuneus 122 -24.7 +59.9 +44.7 .10 -.36** .50** .62** .32 .36 

 R MFG/IFG 87 -47.8 -23.6 +24.7 .09 -.32* .48** .60** .36 .21 

 R MFG 83 -30.0 +6.0 +50.2 .11 -.15 .50** .65** .54* .19 

 L MFG 82 +16.2 +0.9 +48.2 .09 -.26* .46** .52** .47* .32 

Age X 

Performance 
No significant clusters       

  

 

†p< .10, *p <.05, **p <.01; R = right, L = left, B = bilateral, IPL = inferior parietal lobule, SPL = superior parietal lobule, PC = posterior 

cingulate, MFG = middle frontal gyrus, IFG = inferior frontal gyrus 
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GRAPH 6:  Relationship between Deactivation within the MPFC ROI (2- minus 1-back) and Working Memory Performance 
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FIGURE 4:   Whole-Brain Functional Connectivity Maps Showing Functional Correlations between the PC Seed Region and Signal in All 

Other Voxels (n=64) in MNI Space; Unthresholded 
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TABLE 3:  Variable Loadings on Component Resulting from PLS Regression  

Variable (z) 
Loading on 

Component 

Age -.34* 

Global mean cortical thickness .22 

Global surface area .27 

Right DLPFC thickness  

Left DLPFC thickness .15 

Right DLPFC surface area .25 

Left DLPFC surface area .27 

DLPFC laterality index -.33* 

Right DLPFC activation .38* 

Left DLPFC activation .30* 

MPFC thickness  

MPFC surface area .25 

MPFC deactivation .29 

MPFC-PC seed functional connectivity .24 

Age x Global mean cortical thickness .20 

Age x Global surface area -.11 

Age x Right DLPFC thickness .19 

Age x Left DLPFC thickness .17 

Age x Right DLPFC surface area  

Age x Left DLPFC surface area  

Age x DLPFC laterality index  

Age x Right DLPFC activation .14 

Age x Left DLPFC activation .16 

Age x MPFC deactivation  

Age x MPFC-PC seed functional connectivity  

              *Loadings > |.30|  
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TABLE 4:  Summary of Aim 1 Hypotheses and Results 

Hypothesis 
Hypothesis 

Supported? 
Result 

Y, MA, and O:  ↑DLPFC cortical 

thickness and ↑DLPFC surface 

area = ↑working memory 

performance. Brain-cognition 

relationship will be significantly 

stronger in O. 

Partially ↑Left DLPFC surface area = ↑N-back 

accuracy across ages.  Right DLPFC 

surface area, left and right DLPFC 

thickness not associated with N-back 

accuracy. 

O:  Bilateral DLPFC activation = 

↑working memory performance. 

Y and MA:  Lateralized DLPFC 

activation = ↑working memory 

performance. 

No Bilateral DLPFC activation (not left-

lateralized) = ↑N-back accuracy across 

ages.  ↑Right DLPFC activation = ↑N-

back accuracy across ages.  Left DLPFC 

activation not significantly associated 

with N-back accuracy. 

O:  ↑MPFC deactivation = 

↑working memory performance.  

Y and MA: No association. 

Partially ↑MPFC deactivation (based on the 

structurally-defined MPFC) = ↑N-back 

accuracy across ages.   

O: ↑Functional connectivity 

between DMN regions (MPFC 

and PC) = ↑working memory 

performance.  Y and MA:  No 

association. 

No Functional connectivity between MPFC 

and PC not associated with N-back 

accuracy. 

Y = younger adults, MA = middle-aged adults, O = older adults, DLPFC = dorsolateral prefrontal 

cortex, MPFC = medial prefrontal cortex, DMN = default mode network, PC = posterior 

cingulate 




