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Abstract 

The Delta and Decay rules are two learning rules used to update 
expected values in reinforcement learning (RL) models.  The 
delta rule learns average rewards, whereas the decay rule learns 
cumulative rewards for each option. Participants learned to 
select between pairs of options that had reward probabilities of 
.65 (option A) versus .35 (option B) or .75 (option C) versus 
.25 (option D) on separate trials in a binary-outcome choice 
task. Crucially, during training there were twice as AB trials as 
CD trials, therefore participants experienced more cumulative 
reward from option A even though option C had a higher 
average reward rate (.75 versus .65).  Participants then decided 
between novel combinations of options (e.g, A versus C). The 
Decay model predicted more A choices, but the Delta model 
predicted more C choices, because those respective options had 
higher cumulative versus average reward values. Results were 
more in line with the Decay model’s predictions. This suggests 
that people may retrieve memories of cumulative reward to 
compute expected value instead of learning average rewards 
for each option. 

Keywords: reinforcement learning, delta rule, decay rule, 
prediction error, base rates, probability learning 

Introduction 

The Delta Rule model is a simple learning model that has 

become the default model of behavior in simple choice tasks 

where participants learn via feedback.  Delta-based learning 

models have been applied to a variety of learning contexts 

including reward/value learning, associative conditioning, 

and category learning (e.g. Sutton & Barto, 1981; 1998; 

Williams, 1992; Jacobs, 1988; Gluck & Bower, 1988; 

Rumelhart & McClelland, 1986; Widrow & Hoff, 1960; 

Rescorla & Wagner, 1972; Busemeyer & Stout, 2002; Daw, 

O’Doherty, Dayan, Seymour, & Dolan, 2006).   

In the present study, we examine RL model predictions for 

two alternative choice tasks in which participants receive 

binary rewards based on fixed probabilities tied to each 

option.  Take for example a hypothetical task in which 

participants learn to choose between an option A that is 

rewarded 65% of the time and option B that is rewarded 35% 

of the time. Delta rule models can accurately learn which 

options are more valuable in this scenario by tracking the 

recency-weighted average reward participants receive.  If 

rewards (r) are coded as 1 when a reward is given and 0 when 

a reward is not given then the expected value (EV) for each j 

option is computed by the Delta rule on each t trial as: 

𝐸𝑉𝑗(𝑡 + 1) = 𝐸𝑉𝑗(𝑡) + 𝛼 ∙ (𝑟(𝑡) − 𝐸𝑉𝑗(𝑡)) ∙ 𝐼𝑗       (1) 

Where 𝐼𝑗 is simply an indicator value that is set to 1 if option 

j is selected on trial t, and 0 otherwise.  Critically, the update 

function on the delta rule means that expected values are only 

updated for the chosen selection. If participants choose A for 

an AB pair, they update their information about A, but not B.  

The portion of Equation 1 in parentheses is known as the 

prediction error, and it is modulated by the learning rate 

parameter (0 ≤ 𝛼 < 1). Higher values of 𝛼 indicate greater 

weight to recent outcomes, while lower values indicate less 

weight to recent outcomes.  When 𝛼=0 no learning takes 

place and expected values remain at their starting points, and 

when 𝛼=1 expected values are equal to the last outcome 

received for each option.   

The predicted probability that option j will be chosen on 

trial t, 𝑃|𝐶𝑗(𝑡)| , is calculated using a Softmax rule:  

    𝑃|𝐶𝑗(𝑡)| =
𝑒

𝛽∙𝐸𝑉𝑗(𝑡)

∑ 𝑒
𝛽∙𝐸𝑉𝑗(𝑡)𝑁(𝑗)

1

                      (2) 
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Where 𝛽 = 3𝑐 − 1 (0 ≤ 𝑐), and c is an inverse 

temperature parameter that determines how consistently the 

option with the higher expected value is selected (Yechiam 

& Ert, 2007).  When 𝑐=0 choices are random, and as 𝑐 

increases the option with the highest expected value is 

selected most often.  

The Delta rule model is sometimes called the Basic RL 

model (Collins & Frank, 2012; Worthy, Maddox, & 

Markman, 2007).  In their 1981 paper Sutton and Barto  

referred to it as the Rescorla-Wagner/Widrow-Hoff rule after 

noting that the learning rules presented in those two papers 

were identical, and also noting how common similar Delta-

based learning mechanisms were to a wide variety of models.  

A canonical finding in the neuroscience literature is that 

prediction errors are correlated with activation in the ventral 

striatum and medial prefrontal cortex (Schultz, Dayan, & 

Montague, 1997, Schultz & Dickinson, 2000; McClure, 

Berns, & Montague, 2002; Pessiglione, Seymour, Flandin, 

Dolan, & Frith, 2006; Hare, O’Doherty, Camerer, Schultz, & 

Rangel, 2008; Samanez-Larkin, Worthy, Mata, McClure, & 

Knutson, 2014).   

In the AB choice scenario described above, the Delta Rule 

model will learn to select the option with the higher expected 

value as long as both of its parameters are non-zero.  For the 

purpose of this paper, the key component of the Delta rule 

model is that it learns recency-weighted average rewards 

provided by each option.  In a binary outcome task with 

rewards coded as 0 or 1 this will roughly equate to the average 

probability of reward receipt provided by each option.   

We contrast the Delta Rule model with a separate model 

for explaining the updating of expected values, the Decay 

Rule model.  The Decay Rule model was developed by Erev 

and Roth (1998), and further examined by Yechiam and 

colleagues (Yechiam & Busemeyer, 2005; Yechiam & Ert, 

2007).  So far, it has enjoyed less wide spread adoption, but 

is a core component of the Prospect Valence Learning model 

(PVL; Ahn et al., 2008) model of the Iowa Gambling Task 

(although Delta-based versions of PVL exist as well; Worthy, 

Pang, & Byrne 2013). Outside of the Iowa Gambling Task 

literature, however, most modeling efforts focus more on 

utilizing the delta rule rather than the decay rule. 

The Decay Rule model also tracks expected values, but it 

does so without utilizing prediction errors.  Specifically, on 

each t trial the EV for each j option is updated according to: 

𝐸𝑉𝑗(𝑡 + 1) = 𝐸𝑉𝑗(𝑡) ∙ 𝐴 + 𝑟(𝑡) ∙ 𝐼𝑗                  (3) 

As in Equation 1, 𝐼𝑗  is an indicator variable that is set to 1 

if option j was selected on trial t, and 0 otherwise.  A 

(0 ≤ 𝐴 ≤ 1) is a decay parameter, and 𝑟(𝑡) is the reward 

given on each trial.  While Equations 1 and 3 share some 

similarities the key difference is that the Decay rule tracks the 

recency-weighted cumulative reward provided by each 

option, whereas the Delta rule tracks the recency-weighted 

average reward provided by each option.  In the  example AB 

choice task described above with reward probabilities of .65 

and .35 the Decay rule’s EVs will not converge to the average 

reward provided by each option, but will instead increment to 

larger values as one option is selected and rewarded more 

often than the other.  This incremental process is balanced by 

the decay parameter which causes all options to decay in 

value on each trial, particularly options that are not selected.  

The Decay rule will also predict greater perseveration, or 

repeated sampling of options chosen on previous trials, 

provided that rewards are given instead of losses, because 

selected options will increase in value, while non-selected 

options will decrease in value (Worthy et al., 2013).   

It's also worth noting that our view of the Decay model as 

learning a combined memory of previous rewards is similar 

to the theory of Decision by Sampling where value is derived 

from sampling previously experienced items in memory 

(Stewart, Chater, & Brown, 2006).  It’s also similar to the 

idea behind the Instance-based learning model (IBL; 

Gonzalez & Dutt, 2011).  While the Decay model does not 

store specific instances, its expected values should be very 

similar to the expected value that come fromblending 

instances in the IBL.  While it is beyond out present scope, 

future work should compare these models more directly.   

To summarize, for the present study, the key difference 

between the Delta and Decay rule models is the Delta Rule 

model learns average rewards provided by each option, while 

the Decay Rule model learns cumulative rewards provided by 

each option, both weighted by recent action selection history.  

The Decay rule model will also predict more perseveration 

than the Delta Rule model because it decays non-chosen 

actions.   

One question that emerges is which model is better at 

accounting for human behavior in simple decision-making 

tasks like the hypothetical AB task described above?  

Previous work suggests that the Decay Rule model usually 

provides better fits to data than the Delta Rule model because 

it accounts for perseveration better than the Delta Rule 

model; however, the Delta Rule model has shown superior 

generalization to other tasks precisely because it does not 

give as much weight to past choices, or perseverative 

tendencies, and gives more weight to past outcomes 

compared to the Decay Rule model (Steingroever, Wetzels, 

& Wagenmakers, 2014).  Here, we provide novel evidence to 

differentiate between the two models by pitting them against 

each other in an experiment for which they make qualitatively 

different predictions about choice behavior. 

Manipulating Base Rates to Compare the Two 

Models 

The present experiment is based on early research on 

probability learning. One critical question from the 

probability learning literature is whether people learn 

probabilities per se when performing simple binary outcome 

tasks like the one describe above, or whether they simply 

store memories for past rewards which are later translated 

into probability judgments (Estes, 1976). The key insight in 

this study was that memory and probability learning could be 

disentangled by manipulating choice base rates; models that 

assume people learn to track probabilities per se will be 

unaffected by base rate manipulations, whereas memory 
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based models will form stronger memory for higher 

frequency options. Results from three experiments supported 

the idea that participants use memories for outcomes instead 

of tracking probabilities directly (Estes, 1976). 

     Although not anticipated at the time, this question maps 

onto key differences between the Delta Rule and Decay Rule 

models. The Delta Rule model learns the probability of 

receiving a reward for each option, and the Decay Rule model 

tracks how often each option has provided a reward.  The 

Decay Rule model’s EVs can be thought of as a summation 

of how often participants have been rewarded after selecting 

each option, which decays in memory. 

To investigate this difference in how the two models may 

be affected by base rate differences in choice availability, we 

designed a task resembling the AB choice scenario used to 

introduce the two models above. The task involves four 

choices A-D, that are learned in pairs; participants are shown 

A versus B, make a choice, and receive feedback, or they are 

shown C versus D, and they make a choice and receive 

feedback. These trials are interspersed and the probabilities 

of reward receipt associated with each option are: [.65, .35, 

.75, .25] for options A-D respectively.  Thus A is the optimal 

choice on AB trials, and C is the optimal choice on CD trials, 

and the optimal choice overall.   

The key base rate manipulation is, over 150 training trials, 

there are 100 AB trials, and only 50 CD trials.  Thus AB trials 

occur twice as often as CD trials.  This manipulation should 

not affect the Delta Rule’s EVs because this model learns 

average rewards.  The EVs for the Delta Rule model should 

roughly correspond to the actual reward probabilities 

provided by each option.  However, for the Decay Rule 

model the expected values should be affected by the 

differences in base rates.  Because the Decay Rule model 

learns cumulative rewards provided by each option, or a 

decaying memory of total reward, the EV for option A should 

be the highest, most notably higher than the EV for option C, 

which has a higher probability of reward receipt (.75 versus 

.65).   

To test these qualitatively different predictions between the 

Delta and Decay models, we use a post-learning test phase in 

which participants choose amongst novel pairs of choices that 

they were not previously trained on (CA, CB, AD, BD).  CA 

trials are of most interest, as the Delta Rule model should 

predict more C choices and the Decay Model should predict 

more A choices.   

To verify these predictions, we simulated this task with the 

Delta and Decay Rule models, and examined their predictions 

for the EVs of each option (A, B, C, and D) at the end of 

training. We simulated 1000 data sets for each combination 

of or A  and cor A varied from 0 to 1 in increments of 

.05, and  cvaried from 0 to 5 in increments of .25.  We then 

examined the average expected values for each option for the 

Delta and Decay Rule models across the 1,000 simulations 

for each parameter combination.   

Figure 1 plots the average probability of selecting option C 

on CA trials for each parameter combination for the Delta (a) 

and Decay (b) models. The key result can be seen by looking 

at the scales on the right-hand side of each figure.  Delta 

Model predictions range from .5 to about .75, while Decay 

model predictions range from about .15 to .55.  Overall it 

seems clear that the Delta model generally predicts more C 

choices, while the Decay model generally predicts more A 

choices.   

 

a. 

 
b. 

 
Figure1 (a): Expected values at the end of training for each 

model, averaged across all parameter combinations. (b): 

Probability of selecting the optimal option predicted by each 

model, averaged across all parameter combinations.  

 

The predictions of the Delta Rule model are more optimal 

because option C has an objectively higher value than option 

A.  However, the question is what will human subjects 

prefer?  Given the close alignment between our present 

question about expected value and Estes (1976) work on 

probability learning, we predicted that participants would not 

learn EVs directly and instead would make choices based on 

memories of rewarding events, as predicted by the Decay 

Rule model.  
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Experiment 

Method 

Participants 

Thirty-three participants from Texas A&M University 

participated in the experiment for partial fulfillment of a 

course requirement.  The Internal Review Board approved the 

experiment, and participants gave informed consent. 

 

Materials and Procedure 

Participants performed the experiment on PCs using Matlab 

software with Psychtoolbox version 2.54.  The experiment 

was identical to the simulation described above.  Of note, 

participants did receive feedback during the test phase.  

Future work should replicate the experiment with no 

feedback during test. 

Results 

We computed the proportion of optimal choices made for 

each trial type.  These are shown in Figure 2.  The first letter 

of each pair is the optimal choice (e.g. C for CA trials).  We 

conducted one sample t-tests for each pair using the ratio of 

their objective reward probabilities.  For example, for CA 

trials we used a test probability of .75/(.75+.65)=.5357. We 

compared against this baseline because it allowed us to test 

for a bias that differed from the bias from one option being 

objectively more rewarding than the other.  As seen in Figure 

2 participants selected option C on CA trials only 40% of the 

time.  This is significantly different from the test value of 

.5357, t(32)=-3.16, p=.003, BF=10.86.  The median of the 

distribution was .40, with .24 and .56 as the 25th and 75th 

percentiles.  15% of participants selected option C more than 

70% of the time compared to 30% who selected option A 

more than 70% of the time. These results are more consistent 

with the Decay model than the Delta model, although a small 

group of participants appeared to have learned that C had a 

higher probably of reward.   

For CB trials participants selected option C only 42.6% of 

the time.  This is far from 68.8% of trials which corresponds 

to the ratio of the two options’ reward probabilities, t(32)=-

5.31, p<.001, BF=2,540; this BF corresponds to extreme 

evidence for the alternative hypothesis.  For AD trials 

participants selected option A on 77.9% of trials, which is 

slightly more than the .722 ratio of those options’ reward 

probabilities, t(32)=2.20, p=.041, BF=1.35.  Similarly, for 

BD trials, option B was selected (67%) slightly more often 

than the default value of 58.3% of trials predicted by the ratio 

of the options’ reward probabilities, t(32)=2.29, p=.029, 

BF=1.79.   

The left side of Figure 2 shows the proportion of optimal 

choices made during training.  On AB trials option A was 

selected 72.2% of the time which is more than the 65% of 

trials predicted by the ratio of the options’ reward 

probabilities, t(32)=3.25, p=.003, BF=13.30.  On CD trials 

option C was selected (70%) slightly less often than the 75% 

from the options’ reward probability ratio, t(32)=-2.17, 

p=.038, BF=1.46.  These clearly demonstrate that 

participants learned which option was more rewarding, but 

participants maximized more on AB trials than on CD trials 

by picking the optimal choice more than probability matching 

would dictate.   

 

 

 
 

Figure 2: Proportion of objectively optimal choices for each 

trial type.  The first letter listed in each pair represents the 

optimal choice. 

 

We also examined the observed reward probabilities and 

total average reward.  For options A-D the proportion of trials 

that participants received reward after selecting each option 

was [.646; .389; .735; .217].  The total rewards for options A-

D, averaged across subjects, were [68.9; 23.1; 41.2; 6.2].  

This demonstrates that option A was rewarded on more trials 

than option C, even though option C was rewarded more on 

average, each time it was selected. 

 

Theoretical Analysis 
We next fit the Delta Rule and Decay Rule models to 

participants’ data individually by maximizing the log-

likelihood of the model’s next-step-ahead predictions on each 

trial.  EVs were initialized at .5 and updated according to 

Equations 1 or 3 above, for the Delta and Decay Rule models, 

respectively.  Equation 2 was used for both models to 

compute action selection probabilities.  Fits were obtained 

using Matlab’s fminsearch algorithm with 100 random 

starting points per subject.  The average BIC for the Delta 

Rule model 308, while the average for the Decay Rule model 

was 275 (lower is better).  This difference in BIC suggests 

extreme evidence that the Decay model better accounts for 

the data than the Delta model, with a BF of over 22 million 

(Wagenmakers, 2007).  Data from 28 of 33 participants 

(85%) was best fit by the Decay Rule model, which is 

significantly different than 50% by a binomial test, p<.001.  

However, McFadden’s pseudo R2 computed against a 

completely random null model (ln(.50) *249) was only .22 

for the Decay model and .12 for the Delta model.  Thus, there 

is still a great deal of variance in behavior that is not 

accounted for by either model. 
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For the Delta rule model the average learning rate 

parameter () was .30 (SD=.30), and the average inverse 

temperature parameter (c) was 1.72 (SD=1.61).  For the 

Decay Rule model the average decay parameter (A) was .85 

(SD=.25), and the average inverse temperature parameter 

value was .37 (SD=.27).  For the Delta Rule model the 

average best fitting expected values for options A-D averaged 

across all trials and then across participants were [.60; .31; 

.66; .30].  The same values for the Decay Rule model were 

[9.50; 4.58; 4.67; 1.09]. This is important because even 

though parameters were allowed to freely vary for each 

participant, the Delta Rule model had the highest expected 

value for option C, while the Decay Rule model had the 

highest expected value for option A.  This result reinforces 

our assertion that the two models make opposite predictions 

for test trials that are relatively consistent across the 

parameter spaces of the models.  Despite the differences in 

base rates the Delta rule model cannot predict a higher 

expected value for option A than option C, which is likely 

one reason why it cannot provide as good of fit to the data. 

Discussion 

Here we have demonstrated that the Delta and Decay rule 

models make divergent predictions about learning options’ 

values when their base rates differ.  The Delta rule model 

learns a recency-weighted average reward associated with 

each option, while the Decay rule model learns the recency-

weighted cumulative reward provided by each option.  In our 

simulations, we showed that the Delta rule model prefers 

options based on the learned probability of reward assigned 

to each option, while the Decay rule model prefers options 

that have provided more reward overall on past trials.  In our 

experiment, the critical test between the two models was 

whether human participants preferred option A, the more 

frequently rewarded option, or C, the option with the highest 

reward probability.  The Decay model predicted more A 

choices because participants had received more reward 

overall from option A due to its higher base rate.  The Delta 

model favored option C because it had a higher average rate 

of reward, even though it was available as a choice alternative 

less often.  Most participants selected option A more than 

option C on these critical trials, in support of the Decay 

model’s predictions.  This suggests that they based their 

decisions more on how often each item was associated with 

reward in memory, rather than on a learned estimate of the 

probability of reward receipt. 

Delta-based learning is commonly used to model the 

learning of action values from experience in diverse fields 

such as Psychology (Otto &Love, 2010), Computer Science 

and Neuroscience (e.g., McClure et al., 2003).  Given the 

predominance and prevalence of this formalism—and the 

assumptions it makes about how value learning unfolds—it 

is important to validate that the Delta learning model does 

indeed provide the best account of learning, as 

operationalized by choice behavior or with neural activity.  

Here we provide a clear case where the Decay rule appears to 

provide a better account of human behavior than the Delta 

rule.  Participants’ choices were more in line with how often 

they had been rewarded for each option in total rather than on 

average.  This is in line with theories that suggest that people 

do not learn probabilities of reward directly, but they store 

instances of reward associated with each option in memory 

and then translate these into choice probabilities that guide 

their behavior (Gonzalez & Dutt, 2011; Stewart et al., 2006). 

Although, our results support the Decay model there is still 

an extensive body of work that supports predictions made by 

the Delta rule model (Rangel et al., 2008).  A major finding 

is that prediction errors from the Delta model are correlated 

activation of the ventral striatum (e.g. Hare et al., 2008; 

McClure et al., 2003).  One future line of work we are 

currently pursuing is to examine ways in which a Decay rule 

model might generate a prediction error.  We believe there 

are possible candidate Decay rule model prediction errors, 

but future work is needed to examine how these metrics 

would compare to prediction errors from Delta rule models.  

Additional work can also be undertaken to identify whether 

neural activation in RL tasks, as measured by fMRI, is better 

characterized by Decay rule versus Delta rule prediction 

errors and expected values.  This could potentially be 

addressed with extant data sets, applying model-based fMRI 

using each model.  The Delta and Decay rule models make 

similar predictions in a number of situations.  Therefore, it is 

possible that some of the key findings that have been 

supported predictions made by Delta rule models over the 

past several decades could also be predicted by Decay 

models.  Alternatively, there may be situations where Decay 

models make predictions that do not align with human 

behavior or cognition (e.g. Steingroever et al., 2014).  Finally, 

Bayesian versions of the Delta rule model have recently been 

developed to account for uncertainty in addition to expected 

value (Gershman, 2015).  A Bayesian Decay model may 

account for more variance in behavior, such as the 

exploration/exploitation tradeoff, than the simple variant we 

used here and should be explored in future work.   

It is worth noting that modifications could be made to the 

Delta rule model by allowing EVs to decay on each trial or 

by adding a perseveration component (Worthy & Maddox, 

2014).  Thus, a modified Delta rule model with additional 

parameters may be able to account for the pattern of behavior 

we observed, although such a model would still not allow 

rewards to cause a cumulative increase in EV.  Here, we have 

focused on parsimonious models that represent default 

models of each type in order to generate specific predictions 

regarding whether people learn average reward probabilities 

or memories for rewarding events, but developing a more 

complex model with additional parameters may be useful in 

other cases.  A major point of Estes’ 1976 paper is that 

“probability learning is in a sense a misnomer,” or that people 

do not directly learn reward probabilities. The Delta Rule 

model tacitly assumes probability learning, which is 

inconsistent with the data from most of our participants.  It 

will be necessary to replicate and extend this work, and 

further test the key predictions made about learning and 

behavior by different formal models. 
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