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Muscle-Specific Kinase Myasthenia
Gravis
Lucia S. Borges and David P. Richman*

Department of Neurology, University of California, Davis, Davis, CA, United States

Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-
negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and
are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic
transmembrane receptor tyrosine kinase crucial to the development and maintenance
of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4
immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal
muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as
well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA
DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth
decade of life. Some of the standard treatments of AChR-MG have been found to have
limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors.
Therefore, current treatment involves immunosuppression, primarily by corticosteroids.
In addition, patients respond especially well to B cell depletion agents, e.g., rituximab,
with long-term remissions. Future treatments will likely derive from the ongoing
analysis of the pathogenic mechanisms underlying this disease, including histologic
and physiologic studies of the neuromuscular junction in patients as well as information
derived from the development and study of animal models of the disease.

Keywords: myasthenia gravis, muscle specific kinase, neuromuscular junction, pathogenesis, treatment, animal
models, review

INTRODUCTION

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction synapse (NMJ)
characterized by weakness that worsens with continued muscle work and improves with resting
of the involved muscle(s). Non-immune genetic diseases of this synapse, referred to as congenital
myasthenic syndromes, produce similar symptoms (1, 2). For MG, the distribution of weakness
is distinctive, involving primarily the extraocular muscles. In ocular MG, involvement is limited
to these muscles. In more severe cases (generalized MG), the pontine- and bulbar-innervated
muscles and the respiratory muscles are commonly also affected. Least frequently involved are the
extremity muscles.

Most MG patients have circulating antibodies (Abs) to the NMJ postsynaptic neurotransmitter
receptor, nicotinic acetylcholine receptor (AChR), AChR-MG (3, 4). The pathogenic role of these
Abs has been demonstrated by induction of MG in experimental animals by both passive transfer of
MG serum Abs (5) or anti-AChR monoclonal Abs (mAbs) (6–8) and by active immunization with
purified AChR (9). For both AChR-MG and its experimental models, the Abs induce a destructive
inflammatory attack on the AChR-containing postsynaptic membrane (10–13). In generalized MG,
AChR Abs are present in 90 percent of patients. The remaining cases were initially designated as
seronegative MG.
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The earliest studies of these AChR Ab-negative MG cases
failed to identify clinical or electrophysiologic features that
distinguished it from AChR-MG. In 2001, Hoch and coworkers
identified Abs to a different postsynaptic membrane protein,
muscle-specific kinase (MuSK), present in the sera of 30–
50 percent of seronegative MG patients (14). Once this
group of MuSK-Ab-positive MG patients (MuSK-MG) was
identified, clinical characteristics of MuSK-MG were discerned
that distinguish it from AChR-MG, suggesting that MuSK-
MG is a distinct autoimmune disease. Most striking is muscle
wasting in many of the affected muscles. Although MuSK-MG
is also an Ab-mediated disease, inflammatory damage to the
NMJ does not occur. In fact, the majority of the Abs are of the
IgG4 immunoglobulin subclass, which is characterized partly by
inability to activate complement or bind to Fc receptors. The
proposed mode of action of these auto-Abs is blockade of the
normal function of MuSK.

Many of the standard treatments of AChR-MG are of
limited effectiveness in MuSK-MG, including thymectomy and
cholinesterase inhibitors. Therefore, current treatment involves
immunosuppression, primarily by corticosteroids or B cell
depletion agents.

Since the initial identification of MuSK-MG, a number of
experimental animal models of this disease have been developed.
As is the case in AChR-MG, careful analyses of both the human
disease and the animal models have led to the determination
of the pathogenic mechanisms underlying this disease. Such
information has the potential for the development of improved
treatments of MuSK-MG and similar diseases.

MuSK AND THE NEUROMUSCULAR
JUNCTION

Muscle specific kinase was identified as a postsynaptic integral
membrane protein playing a pivotal role in the development
of the NMJ (15–19). This synapse begins to form when the
axon growth cone of a developing motor neuron encounters a
developing myotube and begins to secrete agrin, a glycoprotein
with a laminin-binding domain that anchors it to the extracellular
matrix (20–25). Prior to the arrival of the axon, AChRs, which
initially are spread diffusely along the myotube, begin to cluster
in the central region of the myotube (26, 27). When the axon
growth cone eventually encounters this region and secretes agrin
(Figure 1) (9, 10), the agrin induces more extensive dense
clustering of the AChRs in the postsynaptic endplate membrane,
which is the first step in the elaboration of this structure into its
adult architecture (Figure 2), including a pretzel-like topographic
profile (Figure 3A) and marked folding and specialization of that
membrane at the ultrastructural level (Figure 3B) (20–25, 28–34).

Both the initial spontaneous AChR clustering and the agrin-
induced effects require the presence of MuSK (23, 35, 36). The
paradoxical observation that agrin and MuSK do not bind in vitro
led to a search for a third (intermediary) protein required for
their interaction, which was eventually found and identified as
the postsynaptic transmembrane protein low density lipoprotein
receptor-related protein 4 (lrp4) (37–39).

The agrin-lrp4-MuSK interaction leads first to MuSK
dimerization and then self-phosphorylation. The latter effect
initiates a series of intracellular protein phosphorylations
mediated through a downstream signal transduction pathway
beginning with Dok7 and ending with rapsyn and the β

subunit of AChR (40–43). Activation of this pathway results in
dense AChR clustering, the first step in the elaboration of the
postsynaptic components of the synapse (Figure 2) (44, 45). The
AChR clustering also includes MuSK and lrp4 and the other
components of the MuSK-associated signaling pathway (21, 46).

Activation of the agrin/lrp4/MuSK pathway leads, as well,
to increased expression/synthesis of the components of the
pathway and other endplate-specific proteins (by subsynaptic
muscle nuclei) (22, 47–49). The induced AChR clustering,
and the eventual elaboration of the entire adult postsynaptic
endplate structure, involves polymerization of actin leading
to the production of an intracellular scaffolding, comprised
of a number of proteins, upon which the mature structure
of the muscle endplate is formed. This process results in
tight packing of the phosphorylated AChRs on the peaks
of the synaptic folds opposite the specialized nerve terminal
(Figure 3B) (44, 45, 50). This actin/cytoskeletal remodeling is
contributed to by a number of other proteins in the MuSK
signaling pathway, most prominently cortactin, which when
phosphorylated directly enhances further actin polymerization
(44, 51). Extracellularly, ColQ, the collagen-like portion of the
NMJ enzyme acetylcholinesterase, binds to the extracellular
portion of concentrated (clustered) MuSK (52, 53) and also to the
extracellular matrix protein perlecan, leading to anchoring of the
enzyme to the extracellular matrix at the clustering sites (53).

The agrin/lrp4-induced activation (phosphorylation) of
MuSK is also associated with development of the presynaptic
portion of the NMJ. MuSK activation initiates a separate (less well
understood) retrograde pathway, resulting first in a stop signal
terminating the travels of the motor axon (Figure 1) (54, 55). The
increased concentration (clustering) of lrp4 at the developing
NMJ induced by activation of the MuSK transduction pathway
is required for the further development of the axon growth
cone into the adult specialized presynaptic nerve terminal. The
concentrated lrp4 binds the nerve terminal, but the presynaptic
“receptor” for lrp4 and the subsequent developmental steps have
not yet been identified (56) (21).

The further maturation of the NMJ and, in particular, the
mechanisms involved in the maintenance of the mature NMJ,
are even less well understood (33, 55, 57, 58). Maintenance of the
NMJ does appear to require MuSK functionality, as demonstrated
by the dissolution of the synapse in adult animals (in the absence
of inflammation) both in (1) experimental MuSK-MG induced by
either passive or active immunization with MuSK (59–63) and (2)
in adult animals in which MuSK has been inactivated or knocked
down (64, 65).

MuSK MOLECULAR STRUCTURE

Muscle specific kinase is a 100 kD single-pass transmembrane
receptor tyrosine kinase with an N-terminal extracellular domain
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FIGURE 1 | Developing NMJ: The motor axon growth cone releases agrin into the intercellular matrix when it reaches a developing myotube. Agrin binds lrp4 and
the complex binds MuSK resulting in activation of MuSK, which self-phosphorylates and then initiates a series of phosphorylations beginning with Dok7 and ending
with rapsyn and 8 subunit of AChR. This process induces dense AChR clustering, the first step in the development of both the postsynaptic and presynaptic
portions of the mature NMJ. From Richman (66) with permission.

FIGURE 2 | Mature NMJ: Motor axon action potentials reach the motor nerve terminal leading to release of vesicles of acetylcholine (ACh), which diffuses across the
synaptic clef to bind to the tightly packed acetylcholine receptors (AChR) located on the peaks of the folds of the endplate membrane. After AChR activation, ACh is
then hydrolyzed by acetylcholinesterase (AChE) in the muscle basal lamina. VGSC, voltage-gated sodium channels; VGKC, voltage-gated potassium channels;
VGCC, voltage-gated calcium channels. From Richman (66) with permission.
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FIGURE 3 | (A) Photomicrograph (x80) of longitudinal frozen section of
diaphragm muscle stained immunohistochemically with alpha-bungarotoxin to
label AChR (red) and anti-synapsin plus anti-neurofilament Abs to label
presynaptic nerve terminals and axons (green), demonstrating pretzel
appearance of endplate membrane. (B) Electron micrograph (×5000) of
transverse section of diaphragm muscle neuromuscular junction
demonstrating highly folded endplate membrane. [Modified from (63) with
permission].

followed by a short transmembrane domain and then a
C-terminal cytoplasmic domain (Figure 4) (15, 16, 18, 19). The
extracellular domain of MuSK, which is required for interaction
with agrin and lrp4, comprises three immunoglobulin (Ig)-
like domains (37, 39, 67) followed by a cysteine-rich frizzled-
like region (labeled C6-box in Figure 4) (15, 16, 18, 45). The
cytoplasmic domain contains the kinase activity and signaling
components of the molecule that lead to the development of the
postsynaptic apparatus (see above) (45).

The first two extracellular Ig-like domains, which are rigidly
joined in a linear array (67), appear to play a dual role in
activation of MuSK signaling. First, Ig-1 is crucial for binding

FIGURE 4 | MuSK Structure (Modified from 15). FLR, Frizzled-like region.

to the MuSK ligand, i.e., agrin-associated lrp4 (68). Second, it is
the substrate for the dimerization of two MuSK molecules (67).
Dimerization is required for MuSK (trans) autophosphorylation,
the first step in the activation of the MuSK-associated signaling
pathway (69, 70). Autophosphorylation, along with binding of
Dok7, an intracellular MuSK target, results in full activation
of the MuSK kinase activity (71, 72). It is the combination of
ligand (agrin/lrp4) binding and the full establishment of its kinase
activity that results in the sequence of protein phosphorylations
by MuSK that comprise the MuSK-associated signaling pathway
that leads first to AChR clustering and subsequently to formation
of the mature NMJ. The role of the frizzled-like region, which
functions as a receptor for the wnt family of intracellular signaling
proteins, is not yet well understood (73–76).

Early studies employing both rat and human MuSK have
determined that it is only the extracellular domain of the
molecule that is the target of the MuSK Abs in MuSK-MG (see
below) (14, 77).

ANTI-MuSK MYASTHENIA

Disease Characteristics
The MuSK Ab-positive subgroup of “seronegative patients,” anti-
MuSK MG, does have clinical similarities to AChR-MG but
tends to differ significantly in exhibiting more focal involvement
than AChR-MG, frequently with severe involvement of neck,
shoulder, facial and bulbar-innervated muscles, although there
is considerable variability from patient to patient (78–82). When
the extremities are involved, proximal muscles are more affected
than distal ones (83). Unlike AChR-MG, many patients have
wasting of these muscles (78, 79, 81, 84–86), and data suggest
that this represents a direct myopathy and is not the result
of denervation, a point that remains somewhat controversial
(86–91).

The demographic characteristics of MuSK-MG differ from
AChR MG. In the latter disease, the age/incidence curve is
bimodal with a peak in the early 20’s, which is majority female,
and with a second peak in the 60’s and 70’s, which is majority
male (92–94). In contrast, MuSK-MG tends to occur in the 30’s
with very strong female predominance (95). Also, MuSK-MG is
highly associated with the HLA DR14-DQ5 haplotype (96).

The restricted HLA (MHC) class II association in MuSK-MG
suggests a role for T helper cells in this Ab-mediated disease.
A recent study observed antigen (MuSK)-specific T cell responses
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in cultures of circulating mononuclear cells (MNC) from MuSK-
MG patients. These anti-MuSK responses utilized a somewhat
limited number of T cell receptor variable region genes (97–99),
consistent with a genetically influenced disease-specific T cell
response. Also, in contrast to AChR-MG, only rare MuSK MG
patients have been found to have thymic lymphoid hyperplasia
(97–101).

Remarkably, data concerning NMJ histology and
microphysiology in MuSK-MG are very limited. In the
three histologic studies available (102–104), only relatively mild
abnormalities of NMJ morphology/function were observed. The
changes were all postsynaptic, including partially denervated
postsynaptic membrane and moderate degeneration of
postsynaptic folds (102). One of two microelectrode studies
found only postsynaptic abnormalities, marked decrease in
miniature endplate potential (MEPP) amplitudes (103). However,
the other study found both postsynaptic abnormalities, mild
decrease in MEPP amplitudes, and presynaptic abnormalities,
reduced levels of presynaptic acetylcholine release (102).

Anti-MuSK Antibodies in MuSK-MG
Anti-MuSK Abs are detected in 1–10% of patients with MG,
40% of the AChR Ab-negative patients (14, 77, 78, 80, 81, 105).
Most of the anti-MuSK Abs belong to the IgG4 immunoglobulin
subclass (77, 106), which is unable to either activate complement
or induce antigenic modulation (107). However, passive transfer
of the IgG4 component of MuSK-MG serum is especially effective
in inducing the experimental disease (108).

Abs of the IgG4 subclass behave as if they are functionally
monovalent (109). Because of single amino acid differences in the
IgG4 heavy chain constant region, the inter-heavy chain disulfide
bonds that join the two halves of the immunoglobulin molecule
are markedly weakened, leading to frequent separation of the
two heavy chains. The resultant “half molecules,” consisting of a
single light chain covalently bound to a single heavy chain, can
readily bind to a half molecule from another IgG4 Ab to reform a
complete Ab molecule, so called “Fab arm exchange” (109, 110).
The new Ab molecule is now bispecific, that is each Ab arm binds
a different antigen. Such Abs, including IgG4 MuSK Abs, cannot
crosslink single antigens and, therefore cannot induce antigenic
modulation (which requires antigen crosslinking), a mechanism
important in AChR-MG. Also as noted above, these IgG4 Abs
are minimally interactive with the innate immune system, in that
they are deficient in complement activation and in binding to cell
surface Fc receptors (107). Anti-MuSK Abs of the IgG1 subclass,
a subclass capable of engaging these components of the innate
immune system, are also present in most MuSK-MG patients, but
at much lower levels than the IgG4 Abs (111, 112). The role the
IgG1 Abs play in MuSK-MG is not known.

Hence, the pathogenic mode of action of the auto-Abs in
MuSK-MG differs from that of the AChR Abs in AChR-MG.
Rather than inducing destructive damage to the NMJ or antigenic
modulation, the anti-MuSK Abs mask the binding sites on
MuSK that interact with its binding proteins (ligands), including
lrp4/agrin and ColQ, thereby blocking MuSK function (106, 111).
Blockade of MuSK ligand binding leads to a reduced postsynaptic

density of AChRs and impairs their alignment in the postsynaptic
membrane (60).

Most anti-MuSK Abs bind to the Ig-like domains of the
extracellular portion of MuSK (Figure 4) (14, 77, 106, 113, 114).
In one study of 53 MuSK-MG patients, all had Abs to Ig-like
domain 1 and about 50 percent also had Abs to Ig-like domain 2.
For female patients, it was rare to have Ab reactivity to domains
other than Ig-like domain 1 (113). However, Abs to the frizzled-
like domain have been observed in MuSK MG (115).

ANIMAL MODELS OF ANTI-MuSK MG

As noted above, few human studies have addressed directly
the pathogenesis of MuSK-MG (102–104). None have observed
complement-mediated injury or cellular infiltration of the NMJ.
In fact, initially there was controversy concerning the role of anti-
MuSK Abs in MuSK-MG pathogenesis (103, 116, 117), in spite of
the ability of these Abs to act as MuSK antagonists in vitro. On
the other hand, experimental studies, involving the induction of
experimental models of MuSK-MG, have provided the strongest
evidence concerning the pathogenic mechanisms underlying this
disease. The data from MuSK-MG animal models induced by
both passive and active immunization with MuSK demonstrate
the role of the anti-MuSK Abs in the induction of both the
weakness and the morphological and physiological NMJ changes
observed in MuSK-MG (59, 60, 117–123).

Passive Immunization Studies
A number of studies have assessed the effect of daily
intraperitoneal injections into immunosuppressed mice of very
large amounts of IgG (usually 35–50 mg per day) purified from
(human) MuSK-MG serum. In one study, injections for 5 days
produced reduced neuromuscular transmission but without
clinical weakness (118). A second study made use of IgG purified
from a severely affected patient injected for 14 days (total of
0.68 g), which resulted in weakness and weight loss. Histologic
analysis of these animals found patchy reduction in NMJ AChR
staining, reduced registration between nerve terminals and motor
endplates (59) and reduced phosphorylation of the downstream
components of the MuSK signaling pathway (60). The Abs also
produce internalization of MuSK with more rapid degradation
leading to reduced endplate MuSK concentrations (60, 117). The
marked effectiveness of passive transfer of the IgG4 component of
MuSK-MG serum is consistent with the role of these mechanisms
in inducing the experimental disease (108). These observations,
along with the absence of observed complement-mediated injury,
support the hypothesis that the MuSK Abs induce the disease by
blocking MuSK signaling in vivo with the resultant postsynaptic
changes described above, as well as damage to the nerve
terminals (see below).

Active Immunization Studies
In rabbits (117) and, to a lesser extent in mice (118–123),
repeatedly immunized with MuSK protein (of human or rat
origin) over extended periods of time, induces mild weakness
along with mild electrophysiologic evidence of disordered
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neuromuscular transmission and varying degrees of reduction
in motor endplate size. For mice there has been considerable
variability among strains in the susceptibility to the active
induction of experimental MuSK-MG (118–123). For C57BL6,
the distribution of weakness and wasting follows the gradient
of normal MuSK expression in individual muscles (120), which
somewhat mimics the distribution of muscle involvement in
MuSK-MG (see above).

In contrast to the variability in response and the requirement
for repeated immunizations in mice, the experimental disease in
inbred Lewis rats is highly stereotyped. A single immunization
of mouse MuSK ectodomain in adjuvants results in reproducible
severe weakness (death within 4 weeks), along with muscle
wasting and electrodiagnostic abnormalities typical of MuSK-
MG. Histologically, there are extensive postsynaptic and
presynaptic changes. The NMJ morphologic findings include
fragmented NMJs with varying degrees of postsynaptic muscle
end plate destruction, along with abnormal nerve terminals.
The presynaptic changes are characterized by reduced terminal
size, ongoing terminal degeneration and lack of registration
between endplate and nerve terminals. In addition, there is local
axon sprouting, and extrajunctional dispersion of cholinesterase
activity (61–63).

PATHOGENESIS OF MuSK-MG

Data from analysis of both MuSK-MG and its animal
models described above have contributed to the information
concerning the pathogenesis of the human disease. With the
identification of MuSK Abs in “seronegative MG” patients,
the initial hypothesis was that the MuSK Abs indeed induce
the disease. As noted above, at the time, the hypothesis
was not universally accepted (103, 116, 117). The alternative
hypothesis advanced was that these Abs are an epiphenomenon
occurring in parallel with the disease or even occurring as
a result of the disease (103, 116). The dual observations
(see above) of (1) the ability of IgG isolated from patient
serum, when injected into immunosuppressed mice, to induce
a disease similar to human MuSK-MG, and (2) immunization
of normal animals with purified MuSK protein, leading to
the production of MuSK Abs, also results in a disease that is
highly similar to human MuSK-MG, together strongly support
the hypothesis that the MuSK Abs are the etiologic agents
in this disease.

Multiple observations of neuromuscular junction histology
from the various animal models, along with the few
histologic observations available from MuSK-MG patients,
all demonstrating the absence of inflammatory damage, suggests
that the innate immune system, especially the complement
cascade, does not play a role in this disease. This characteristic
distinguishes MuSK-MG from AChR-MG. It should be noted,
however, that the data from the mouse passive transfer models
employing human anti-MuSK IgG are somewhat confounded
by both the necessary pretreatment with immunosuppressive
agents, the extremely high doses of human Ig required to
induce disease and the necessity in this model for interaction

between the injected human IgG and the recipient mouse’s innate
immune system. This heterologous interaction, theoretically,
may not be strong enough to induce a vigorous inflammatory
reaction. On the other hand, for the active immunization model,
immunosuppressive agents are not employed and the Ab and
the innate immune system components, e.g., complement
proteins and inflammatory cells expressing Fc receptors, are
autologous (syngeneic) and hence capable of inducing a strong
inflammatory response. At least in humans, the absence of
observed inflammation in the NMJ, may be the result of the high
proportion of IgG4 anti-MuSK Abs in MuSK MG (see above).

Despite the lack of inflammatory damage to the
neuromuscular junction in MuSK-MG and its animal models
and the theoretical inability of the human anti-MuSK IgG4 to
induce antigenic modulation (i.e., increased MuSK turnover),
the concentration of AChR in the postsynaptic membrane is
reduced, and, to a lesser extent, so is the MuSK concentration
(60, 117). The current hypothesis is that the MuSK Abs act as
antagonists to the MuSK function as a receptor kinase, with its
natural ligand being the agrin/lrp4 complex. In vitro, MuSK
Abs from MuSK-MG patients and from actively immunized
animals block agrin-induced AChR clustering and downstream
phosphorylation in muscle cells in tissue culture (14, 59, 106,
111, 124, 125). The latter observations and the development
of the above abnormalities in the NMJs in adult animals (with
fully developed neuromuscular junctions) in which experimental
MuSK-MG is either actively or passively induced, suggests that
MuSK plays a crucial role not only in the development of the
NMJ, but also plays a role in the maintenance of this synapse
in adult animals. Subsequent studies of adult animals in which
MuSK has been inactivated or knocked down demonstrated
similar NMJ changes (64, 65).

As noted above, presynaptic involvement is another
characteristic of MuSK-MG that distinguishes it from AChR-
MG. In the latter disease presynaptic dysfunction is absent except
in the setting of severe NMJ inflammation (12). Otherwise,
presynaptic activity, in fact, is increased (126). Similar to the
human disease, the experimental models of MuSK-MG noted
above exhibit non-inflammatory structural and functional
abnormalities of both presynaptic and postsynaptic portions of
the NMJ. The abnormal presynaptic function is most readily
observed in the severe form of experimental MuSK-MG that
occurs in the active-immunization rat model (63). In that
disease model, both the cross-sectional area of individual nerve
terminals is reduced as is the total nerve terminal cross-sectional
area across the entire NMJ. In addition, the actively induced
rat model and the passive transfer mouse model have both
demonstrated abnormal registration between the nerve terminals
and the muscle endplates. Whether the observed reduction in
NMJ cholinesterase activity in MuSK-MG plays a role in the
muscle weakness is yet to be determined.

TREATMENT OF MuSK-MG

Early on, the treatment of seronegative MG simply
followed the protocols developed for seropositive MG,
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i.e., AChR-MG, including use of cholinesterase inhibitors,
thymectomy, corticosteroids, plasma exchange and intravenous
immunoglobulin and cytotoxic immunosuppressants. However,
with the clear identification of the MuSK-MG subset of
“seronegative” patients, data began to accumulate that a number
of these treatments were ineffective, or even detrimental, in
these patients. Thymectomy appears not to play a role in the
treatment of this disease (78, 80, 96, 105, 127, 128). Some studies
suggest other differences in response to treatment, including
observations that MuSK-MG patients may respond poorly to
intravenous immunoglobulin (78, 80, 96, 105, 129, 130). There
is also a striking absence of improvement with cholinesterase
inhibitors (101, 130–133). In fact, a number of MuSK-MG
patients worsen in response these agents (101, 131). The latter
observation may derive from diminished acetylcholinesterase
concentrations at the NMJ, perhaps as a result of MuSK Ab-
mediated blockade of ColQ binding to MuSK or Ab-mediated
reduction in MuSK concentration (52, 53).

Current Treatments
Corticosteroids
Patients with MuSK-MG respond especially well to high dose
corticosteroids (129, 134–136). This appears to be most often
true for patients with rapidly progressive or aggressive disease.
The effectiveness of steroid treatment, along with the absence
of a role for thymectomy and the limited or absent role for
cholinesterase inhibitors, make corticosteroids the foundation
of the current treatment of this disease. However, about 15
percent of patients treated with high dose corticosteroids do
not adequately respond, so called refractory disease. This figure
is somewhat higher than the comparable data in AChR-MG
(137, 138). Similar to the case in AChR-MG, the significant
side effects of these agents often limit their effectiveness.
In both diseases, the treatment protocols aim at inducing a
remission with high doses, followed by slow tapering of the
dose to the lowest effective dose (139). An additional issue
in MuSK-MG is the muscle wasting that occurs uniquely in
this form of autoimmune MG. In many patients, in spite
of the early effectiveness of corticosteroids in inducing a
clinical remission, the muscle wasting appears to continue to
progress (135).

Standard Cytotoxic Immunosuppressants
Cytotoxic agents effective in preventing and treating solid organ
transplant rejection have been used as single immunosuppressive
agents in the treatment of AChR-MG, including azathioprine,
mycophenolate mofetil and cyclosporine, with some efficacy in
inducing remission. Their major role in that disease, however, has
been as steroid-sparing treatments, that is, effective in facilitating
corticosteroid dose tapering (140). Anecdotal data for MuSK-
MG suggest that these agents are even less effective in inducing
remission than in AChR-MG but, similarly, may be useful as
steroid-sparing medications (135, 140, 141).

Immune-Directed Biologic Treatments
The B cell depleting agent rituximab, a chimeric anti-CD20
monoclonal Ab, has been especially effective in MuSK-MG.

Because of its toxicity profile, including a 1:10,000 risk of the
induction of progressive multifocal leukoencephalopathy, the
drug has been used primarily in treatment of (steroid)-refractory
patients. A significant number of reported studies, all limited
by relatively small numbers of subjects, have shown efficacy
in this disease (142–146). In a number of cases, treatment led
to eventual elimination of the need for other immune-directed
treatments, e.g., steroids, and without the necessity for repeated
rituximab infusions (143–145). A recent set of clinical guidelines
has supported earlier use of this agent when an initial standard
treatment does not induce rapid remission (140). One successful
protocol is to use two courses of rituximab at a dose of 375 mg
per meter squared body surface area weekly for four doses, each
course separated by 6 months. A 4-infusion course can then
be repeated as needed (143). It appears that adding an infusion
1 month later and another 2 months later improves efficacy even
further (147).

Short-Term Immune-Directed Treatment
Plasma exchange has been a rapidly effective treatment for active
AChR-MG. Intravenous immunoglobulin infusions have been
equally effective and somewhat safer (148). Initial studies of
plasma exchange in acute MuSK-MG demonstrated its efficacy
in this disease (129, 134, 149). Unlike in AChR-MG, the efficacy
of intravenous immunoglobulin in MuSK-MG appears to be less
than that of plasma exchange (130, 134, 136, 150), but the data
supporting the latter statement are much less robust (151, 152).

Future Treatments: Antigen-Specific
Agents
As noted above, the various immune-directed treatments
currently in use have been reasonably effective in MuSK-MG.
However, these treatments are all limited by their broad effect
on the immune system: on both the pathogenic (autoimmune)
components and the normally functioning components. As
in all other autoimmune diseases, the treatment paradigm
is to adjust drug dosages and timing to maximize the
effect on the autoimmune portion of the immune response
while reducing the “off-target” effect on the remainder of
the immune system.

A theoretical means of focusing the treatment on the
autoimmune portion is to employ an antigen-specific therapy,
that is, one only targeting the attack on the auto-antigen.
For an Ab-mediated disease such as MG, this would involve
targeting the auto-Abs. One possibly means to accomplish this
therapeutic effect involves physical removal of the auto-Abs, for
example, by immunoadsorption plasmapheresis. For AChR-MG,
such antigen-specific Ab removal employing an affinity column
containing AChR antigen as the affinity agent has been examined.
To date, this approach has been no more effective than gross
removal of all Abs by plasma exchange (153, 154).

An alternative antigen-specific approach is to target the B cells
that are secreting the auto-Abs. This approach is currently under
study in both AChR-MG and in MuSK-MG, through the use of
either genetically engineered Abs or genetically engineered T cells
that target the pathogenic autoimmune B cells (155, 156).
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