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ABSTRACT1
This paper presents a new method for estimating traffic density on freeways, and an adaptation2
for real-time applications.  This method uses re-identified vehicles and their travel times3
estimated from a real-time vehicle re-identification (REID) system which attempts to4
anonymously match vehicles based on their inductive signatures.  The accuracy of the section-5
based density estimation algorithm is validated against ground-truth data obtained from recorded6
video for a six-lane, 0.66-mile freeway segment of I-405N in Irvine, California, during the7
morning peak period. The proposed density estimation algorithm results are compared against a8
g-factor based method which relies on inductive loop detector occupancy data and estimated9
vehicle lengths from the Caltrans Performance Measurement System (PeMS) as well as a10
selected REID method which uses a sparse REID algorithm based on long vehicle detection and11
volume counts at detector stations.   Although the g-factor approach produces real-time density12
estimates, it requires seasonally calibrated parameters.  In addition to the calibration effort to13
maintain overall accuracy of the system, the g-factor approach will also produce errors in density14
estimation if the actual composition of vehicles yields a different observed g-factor from the15
calibrated value.  In contrast, the proposed method uses an existing vehicle re-identification16
model based on the matching of inductive vehicle signatures between two locations spanning a17
freeway section.  This approach does not require assumptions on the vehicle composition, hence18
does not require calibration. The proposed algorithm obtained section-based density measures19
with a mean absolute percentage error (MAPE) of less than four percent when compared against20
groundtruth data and provides accurate density estimates even during congested conditions,21
improving upon both the PeMS and selected alternative REID based methods.22

Key words: traffic density, vehicle re-identificationg-factors, real-time estimation23
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INTRODUCTION1
Density is a measure of the concentration of vehicles, defined as the number of vehicles per lane2
per unit distance. Density is an important dimension in determining the level of service (LOS) of3
a freeway segment, and is, in fact, designated in the Highway Capacity Manual 2000 (HCM4
2000) as the primary variable by which to distinguish LOS (0).  While other traffic measures5
such as volume and speed can be used as surrogate indicators of congestion, density is the most6
valuable parameter for doing so (20).  Problems arise, however, in measuring traffic density from7
existing point-based traffic monitoring devices such as widely deployed inductive loop detectors8
(ILDs) which collect measurements of volume and occupancy.  However doing so is desirable9
due to the existing communications and system architectures that are in place to support these10
devices.11

Theoretically, traffic density can be determined from point-based flow and space-mean speed12
measures according to the fundamental equation of traffic flow, density = flow / space-mean-13
speed. For freeways, flow measurements can be readily obtained from ILDs but space-mean-14
speed measures cannot be directly measured. Instead, point measures of time aggregated15
occupancy coupled with an assumption of vehicle length have been used to estimate density from16
ILDs. Nevertheless, density is a spatial measure and to estimate it accurately, information about17
the section, rather than a point, is needed. Hence, density estimation from point sources such as18
ILDs can be broken into two broad methods delineated by the spatial characteristics of the19
measured data:20

1) Point-based estimates of vehicle lengths and loop occupancy21
2) Section-based estimates of travel time and coarse vehicle trajectories derived from22

point sources23

Point-Based Estimation24
Traditional operational measurements from ILDs include volume and occupancy (defined as the25
percentage ‘on-time’ of the detector), both of which represent point measures but are often used26
in conjunction with an assumption or measurement of effective vehicle length (defined as the27
length of roadway traversed by the vehicle during the ‘on-time’ of the detector and sometimes28
referred to as the g-factor) to estimate traffic density, speed, and/or travel time (1). Thus, since29
conventional ILDs produce volume and occupancy at a point in space over time, they cannot30
directly capture traffic density, which represents a measurement over space within a snapshot in31
time. Where double loop configurations are installed, vehicle length and speed can be measured32
directly, this however would still represent a point measure and therefore estimates of density33
from this approach may still be inaccurate.34

In order to use the widely deployed  ILDs where single loops are installed to measure traffic35
density, assumptions need to be made regarding the average length of vehicles sampled, which36
are typically estimated from historical data, and cannot be directly obtained in real-time (2-6)..37
As pointed out by Jia et al. (7), average effective vehicle lengths vary significantly over time,38
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station, and lane and should therefore not be set as static values and doing so would result in1
density estimates that are not sensitive to temporal changes in vehicle mix which would affect2
the actual average vehicle length represented.  This would be of special concern if density3
estimates are required at short time intervals to capture traffic instability, since vehicle mix4
would vary to a greater degree in smaller sampling periods.  This generally results in poor5
estimates of traffic density during peak periods when traffic conditions are unstable, such as6
from the initial onset until the final dissipation of traffic congestion, which corresponds to the7
period when accurate measures of traffic density are most desired. Although the inaccuracies of8
estimating density from point-based occupancy and either measured or estimated effective9
vehicle length are apparent, this method represents the state-of-the-practice (7).10

The Performance Measurement System (PeMS) managed by Caltrans, gathers occupancy and11
volume data from over 25,000 single and double inductive loop detectors throughout California12
(8).  To estimate speed PeMS employs an adaptive g-factor approach which is based on the13
assumption that an initial g-factor can be estimated when traffic is under free-flow conditions14
(7).  Although they do not estimate density as part of their performance measures, it can be15
derived from occupancy and the adaptive g-factor for any time, t, and lane, l, for which16
occupancy data is available according to Equation 1:17 ( , ) = ( , )( , ) Eq. 118

Density estimated from this equation represents a point-based estimate from which estimates at19
two adjacent stations can be averaged together to estimate section-density.  This approach for20
averaging point densities to obtain section estimates neglects the detailed geometry changes21
within a section, such as the lane drops, however, given the complexities of estimating a section22
density from point estimates, there is no clear average that would fare better.  In general and for23
the purpose of this paper, the inclusion of PeMS density estimate is used to show its inadequacy24
in estimating link conditions, even when considering ‘real-time’ estimates of g-factors.25

Section-Based Estimation26
Considering that section-based measures are required for accurate density estimation, methods27
for obtaining section measures from existing ILDs have been developed by several researchers28
(9-15) in order to overcome the limitations presented by point-based ILD measurements.  In29
general, these methods attempt to uniquely match vehicles as they traverse a section of roadway30
bounded by upstream and downstream ILDs and are referred to as ‘vehicle re-identification’31
(REID) techniques. After re-identifying a vehicle over a section, one can determine whether the32
vehicle is in the section at any time, and by aggregating all vehicle pairings, one can determine33
the number of vehicles in the section at any given time, thus producing an estimate of density34
under the theoretically correct interpretation. Thus, vehicle REID is ideally suited for density35
estimation.36

37
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TABLE 1 provides a brief summary of REID methods along with implementation status, total1
match rate (the percent of vehicles matched over the total number of vehicles detected), and2
correct match rates (the total number of vehicle correctly matched over the total number of3
vehicles detected). Each of the REID methods listed in4
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TABLE 1 is capable of estimating travel time with minimal error and the results vary more1
significantly in their total and correct match rates.  Total match rate becomes important for2
density estimation since it is essential to obtain an accurate count of the number of vehicle in a3
section at any time, meaning that a high percent of the vehicle population must be matched.4
Further, traffic management agencies operate in real-time and thus rely on accurate real-time5
estimates of traffic conditions so real-time implementation is an essential characteristic of a6
vehicle REID method for this purpose.7

8



Hernandez, Tok, and Ritchie 7

TABLE 1 Summary and Comparison of Vehicle REID Methods1
Author and
Year (Ref.) Summary of approach Implementation Status Total Match Rate Correct Match

Rate

Coifman,
2003 (16)

Two algorithms are deployed to match vehicles based
on measured lengths from dual loop detectors
outputting bivalent signals: 1) for congested
conditions, all vehicles are attempted to be matched
based on platoons patterns, 2) for uncongested
conditions, only long vehicles are attempted to be
matched.

-Dual loop detector sites capable of
reporting individual vehicle lengths;
-Real-time application and implementation;
-Running on a freeway segment in Oakland,
CA, as part of the Berkeley Highway Lab;
-Published method for density estimation
using this reidentification method

-75% in congested
conditions
-7% in uncongested
conditions

-98.4% for
congested
conditions (see
ref. 9)
-Not reported for
uncongested
conditions

Tawfik,
2004 (11)

Applied a decision tree approach using vehicle length,
speed, lane assignment, travel time, and inductive
signature spatiotemporal pattern differences to
inductive signature data to identify matched vehicle
pairs.

-Dual loop detector sites capable of
reporting individual vehicle inductive
signatures;
-Real-time application possible but not
currently implemented

81% 90%

Jeng, 2006
(12)

Data compression and transformation techniques were
applied to raw inductive signatures prior to applying a
vehicle reidentification method.  The reidentification
method is based on temporal-spatial search space
reduction and computation of summed differences
between the compressed data points.

-Dual or Single loop detector sites capable
of reporting individual vehicle inductive
signatures;
-Real-time application and implementation
coupled with real-time vehicle classification
-Running on a freeway segment in Irvine,
CA, as part of CTM Labs1

98% 80%

Kwon, 2006
(13)

Focused on processing raw signatures via a signal
restoration approach prior to applying pattern
recognition algorithms to obtain matched vehicle
pairs.  Pattern matching relied on calculating the
minimum difference between processed signature
features of candidate signature identified by the
upstream station estimated speed.

-Dual or Single loop detector sites capable
of recording inductive signature output
stream;
-Real-time application developed but not
currently implemented

~90% for small test
dataset, not reported
for all datasets used

~89% for test
datasets

Cetin, 2009
(15)

Two stage approach: 1) Bayesian method for matching
similar vehicles based on detector attributes, 2)
Assignment problem for restricting possible
assignment to single vehicle pairs.

-Implemented with weigh-in-motion (WIM)
and automatic vehicle classification (AVC)
system data but can be applied to ILD
signatures;
-Offline algorithm, historical application

Not reported;
Only FHWA classes

4-13 included in
analysis, passenger

vehicles not included

97% AVC data
99% WIM data

Nyode,
2011 (14)

Focused on pre-processing of inductive/magnetic
signals via signal processing techniques.  Matched
signals based on finding the maximum cross
correlation coefficient.

-Dual sensors required but may be inductive
loops or magnetic sensors
-Real-time application and implementation
possible but does not currently exist

Not reported, test
data gathered from

one lane of a
multilane facility

95% on a sample
data set of front
and rear loops at

same station
1The real-time Inductive Signature Performance Evaluation project can be found through the CTM Labs website: http://www.ctmlabs.net/projects/inductive-signature-2
performance-evaluation3
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1

Due to the current real-time implementation and high total and correct match rates compared to2
the other algorithms, the real-time inductive signature based REID method developed by Jeng et3
al. (12), referred to as RTREID-2, is used as the basis for the density estimation algorithm4
presented in this paper.  In addition to providing real-time matched vehicle data, unlike all other5
listed REID algorithms, the selected algorithm also classifies vehicles into the five detailed6
classes shown in TABLE 2 with 97.6% accuracy (18). The reader is directed to (12) and (18) for7
further detail on the selected REID and classification algorithms.8

9

10

FIGURE 1 Overview of selected vehicle REID algorithm, RTREID-2 (12).11

TABLE 2 Vehicle Classes from Liu et al. (18) following the MOVES Vehicle Classification12
Scheme (19)13

Vehicle Type Class Vehicle Class
Motorcycle 0 Motorcycle

Passenger Car 1 Passenger Car
Passenger Truck 2 4-tire single unit vehicleLight Commercial Truck 2

Intercity Bus 3

Buses and 4+ tire single unit Trucks

Transit Bus 3
School Bus 3

Refuse Truck 3
Single Unit Short-haul Truck 3
Single Unit Long-haul Truck 3

Motor Home 3
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Combination Short-haul Truck 4 Multi-unit trucksCombination Long-haul Truck 4
1

Additionally, the REID and density estimation methods proposed by Coifman (16) represent the2
first attempt in obtaining spatially derived density estimates from ILDs and have been shown to3
be operational with purportedly low error rates.  For these reasons, this method was also selected4
for analysis in this paper.  A description of the density estimation approach proposed by Coifman5
(16) is provided later in the paper.6

PROPOSED METHOD7
As mentioned in the introduction, incorporating information about a vehicle’s trajectory over8
space and time into density estimation would significantly improve the accuracy of the estimate.9
In this section, the theoretical framework for the density estimation algorithm is presented,10
followed by a description of the inductive signature REID and classification based density11
estimation method. Further, an explanation of how the proposed method is adapted to work in12
real-time is provided. And finally, a comparison between the proposed signature based density13
estimation algorithm and the selected alternative method by Coifman (16) is provided.14

Theoretical Framework15
Intrinsically, vehicle trajectories over a section of roadway can provide a direct count of the16
number of vehicles in that section at any given time and therefore provide an accurate density17
measure.  In more detail, for a closed section of a multi-lane roadway where all vehicles are18
matched at the entry and exit points, assuming that no vehicles can go in reverse, the trajectory19
of each vehicle is represented by non-decreasing functions as shown in FIGURE 1. The20
intersecting trajectories in FIGURE 1 illustrate that arrival and departure order is not preserved21
in multi-lane facilities, since vehicles may change lanes. Trajectories crossing the horizontal22
lines which represent the up and downstream stations give the corresponding entry and exit times23
of each vehicle.24
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1

FIGURE 2 Trajectory diagram for a section of roadway identified by an upstream and2
downstream station in which all trajectories are known3

At any given time (t*), the number of vehicles within the section can be obtained by finding the4
number of trajectories that intersect the vertical line, shown in orange in FIGURE 1, at t*5
between the upstream and downstream stations.  Since each trajectory is a non-decreasing6
function, a vehicle is within the section if and only if it crosses the entry point before t* and exits7
after t*.  Hence, even if vehicles cannot be directly observed within the section, the number of8
vehicles within the section at t* can be determined by summing the number of vehicles which9
meet the following two criteria: (1) the time crossing the entry point is earlier than t*, and (2)10
the time cross the exit is greater than t*.11

Since the number of lane-miles within the section is readily obtainable as the sum of the length12
of each lane found within the section (for lanes without drops, the length would be equivalent to13
the length of the section), the density of the section at t* can be expressed as the number of14
vehicles in the section at t* divided by the number of lane-miles as shown in Equation 1.15 ( ∗) = ∑ ( )∑ Eq. 116

where17 ( ∗) = ∗( ) = 1 < ∗ > ∗0 ℎ= ℎ ℎ
18
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This method is referred to as ‘theoretical’ because existing real-time vehicle REID approaches1
do not produce trajectory or entry and exit times for all vehicles, but rather for some proportion2
of the vehicle population (9-14). Thus a temporal-spatial search method for estimating coarse3
trajectory information of unmatched vehicles was developed.4

Inductive Signature REID Based Density Estimation Algorithm5
Assume that only a sample of vehicles is tracked at the entry and exit points. The density of the6
section at t* can still be estimated using the theoretical framework if travel characteristics of the7
sample of matched vehicles is representative of the overall population that were present in the8
section at t*. Hence, FIGURE 3 is adapted from the theoretical framework (see FIGURE 2) such9
that some vehicle trajectories and entry and exit time pairs remain unknown as a result of the10
RTREID-2 algorithm. In FIGURE 3, the unmatched vehicles’ actual trajectories are shown as11
grey lines, with short solid lines representing an actuation of the upstream or downstream station12
sensor.  Green lines are partially known vehicle trajectories that result as output of the REID13
algorithm. These trajectories are considered to be ‘partially known’ since only the entry and exit14
times and upstream and downstream lane assignments are known but the full trajectories is15
unknown. Orange circles indicate the vehicles which contribute to traffic density and thus16
should be counted during the estimation algorithm. Note that although some trajectories are17
unknown, crossing times, station volumes, and vehicle class at the upstream and downstream18
stations are known, though not as pairs.19

20
FIGURE 3 Trajectory diagram considering a REID system with unmatched vehicle pairs21

In order to capture the presence of the unmatched vehicles, a temporal and spatial aggregation22
approach is required to count the possible number of unmatched vehicles within the section at t*.23
To appropriately count density-contributing unmatched vehicles, knowledge of the vehicle type24
and lane presence of unmatched vehicles is used. The proposed inductive signature REID based25
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density estimation algorithm which follows from FIGURE 3 is outlined in the flow chart shown1
in FIGURE 4 and detailed as follows. First, vehicles within the section at t*, i.e. vehicles with2
an upstream station crossing time less than t* and a downstream station crossing time greater3
than t*, are counted and referred to as the count of matched vehicles, Vmatched.  Second, the set of4
matched vehicles is used to compute a median travel time, tmedian, k, by class and lane facility type5
(such as single or high occupancy lanes). Third, the upstream set of unmatched vehicles, Vup, is6
determined by counting the unmatched vehicles which passed the upstream station between t* -7
tmedian, k and t* by vehicle class. At the same time, the downstream set of unmatched vehicles,8
Vdown, is determined by counting the unmatched vehicles which passed the downstream station9
between t* and t* + tmedian, k by vehicle class. Fourth, the count of matched vehicles known to be10
in the section at t*, Vmatched, the upstream and downstream unmatched vehicles possibly in the11
section at t*, Vup and Vdown, respectively, are combined to get the total count of vehicles in the12
section at t*, N(t*).  Lastly, the density of the freeway section, k(t*), is computed by dividing the13
total count by the section length, d, as shown in the last step of FIGURE 4.14

15
FIGURE 4 Flow Chart of the Inductive Signature REID Based Density Estimation Algorithm16

DETAILS REGARDING THE USE OF MEDIAN TRAVEL TIME17

Select time instance, t*

Find matched vehicles
in the section at t*:

tdown,i > t*and tup,i ≤ t*

Find unmatched vehicles at
the upstream station by

Class
(Vup) between tmed

k and t*

( ∗) = ( ∗) + ( ∗) + ( ∗)2Sum the vehicles in the section at t*,

Compute Median
Travel Time by

Class, tmed
k

Count matched
vehicles, Vmatched

Count unmatched
vehicles, Vup + Vdpen

Find unmatched vehicles at
the downstream station by

Class
(Vdown) between t* and tmed

k

For each vehicle
class, k…

( ∗) = ( ∗)Compute Density:
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The use of median travel time of matched vehicles is able to capture the population of unmatched1
vehicles that may be in the section and thus contribute to the section density with minimal error2
with a corresponding mean absolute percentage error (MAPE) of 4.45 percent for all vehicle3
classes and 2.43 percent for class 1 vehicles only. FIGURE 5 depicts the comparison between4
median travel times based on all re-identified and groundtruth vehicle pairs found within the5
section at the same one-minute time instances.  The cumulative percentile plot shows that 90% of6
the REID median travel times have errors of fewer than eight percent.  Occasionally, there may7
be no matched vehicles for a given vehicle class, especially during periods when vehicle of that8
particular class are severely under-represented.  In such circumstances, the median travel time9
across all vehicle classes is used for that class.10

Furthermore, both upstream and downstream unmatched sets are expected to include some fast11
vehicles that were not in the section as well as miss out on some slow vehicles that were in the12
section at t*.  However, the use of median travel times in the sampling frame would cause most13
of these errors to cancel out, since it has been shown that the travel time distribution obtained14
from the matched set is similar to the unmatched set.15

16
(a) (b)17

FIGURE 5 (a) A comparison of average and median travel times for REID and groundtruth data18
at one minute time slices and (b) cumulative percentile of the MAPE error in median travel time19
for REID against groundtruth data.20

Real-Time Adaptation of the Inductive Signature REID Based Density21
Estimation Algorithm22
The density algorithm presented requires that all vehicles in the section at the sampling instance23
exit the downstream station before the density can be estimated.  Two related issues arise in24
obtaining real-time measures of density using this approach.  Since vehicles can only be25
determined to be within the section at the sampling instance after they have traversed the26
downstream station, the density can only be determined after the last vehicle sampled exits the27
section.  More importantly, since it is impossible to know when the last vehicle leaves the28
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section, a large enough lag time needs to be considered before the density estimate can be1
obtained which limits its ability to provide current density estimates.  Hence, a modification to2
the algorithm is suggested for real-time applications, and is presented in the flow chart of3
FIGURE 6. In essence, the requirement for all vehicles to exit the downstream station is relaxed4
in this variation of the original algorithm.  This is achieved by modifying the approach used to5
estimate the median vehicle class travel times as well as the up- and down-stream unmatched set.6
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1

FIGURE 6 Flow Chart of the Inductive Signature REID Based Density Estimation Algorithm2
adaptation for real-time application3

Comparison of the Signature Based REID Based Density Estimation4
Algorithm to the Selected Alternative Method5

Identify time of most
recently re-identified

vehicle at downstream
station, t0

Find matched vehicles
at downstream station in

sampling period:
t* < tdown,i ≤ t* + Δt

( ∗) = _ _ ( ∗) + _ _ ( ∗)2Compute vehicles in the section at t*,

Compute Median
Travel Time by

Class, tmed
k

Sum adjusted volumes
at upstream station:
Vtot_up_adj=∑ Vup_adj,k

Compute volume
adjustment

factors by Class,
VadjF,k = tmed

k / Δt

For each vehicle
class, k…

( ∗) = ( ∗)Compute Density:

Count upstream
vehicles by class at
upstream station

(Vup,k )
between t* - Δt and t*

From provided
sampling interval, Δt,

establish sampling time
instance, t* = t0 - Δt

Count downstream
vehicles by class at

downstream station
(Vdown,k )

between t* and t* + Δt

Compute adjusted upstream
volume by Class:

Vup_adj,k = VadjF,k × Vup,k

Compute adjusted
downstream volume by

Class:
Vdown_adj,k = VadjF,k × Vdown,k

Sum adjusted volumes
at downstream station:

Vtot_down_adj=∑ Vdown_adj,k
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As mentioned in the Introduction, a second density estimation method based on an alternate1
method of vehicle REID which uses bivalent loop outputs, as opposed to inductive signatures,2
was selected for comparison to the proposed method.  Coifman’s density estimation method (16)3
combines travel time information with station volumes to derive density by assuming that as a4
matched vehicle traverses the section all vehicles that passed the upstream station after the5
matched vehicle entered the section must still be in the section when the matched vehicle exits at6
the downstream station.  Accordingly, all vehicles that crossed the downstream station as the7
matched vehicle traversed the section would have exited the section by the time the matched8
vehicle crossed at the downstream station.  Thus, for each matched vehicle, two values of density9
are estimated for the upstream and downstream stations at t1, and t2, corresponding to the10
upstream and downstream traversal time of matched vehicle according Equations 2 and 3.11

For each matched vehicle pair [ ( ), ( )]:12

, ( ) = ( ) ( ) Eq. 213

, ( ) = ( ) ( ) Eq. 314

where15

and = upstream and downstream station traversal time16 ( ) ( ) = cumulative upstream vehicle number at times and17 ( ) ( )= cumulative downstream vehicle number at times and18

, ( ) = upstream density at times and19

, ( ) = downstream density at times and20

= distance between the upstream and downstream stations21

Some key differences between the density estimation method proposed by Coifman and the22
method proposed in this paper are (1) the continuity of density estimates over time and by lane,23
(2) the reliance on travel times estimates from certain vehicle classes, and (3) assumptions of24
lane changing behaviors. First, Coifman's model produces two estimates of density, one at each25
location corresponding to the times a matched truck crosses the upstream and downstream26
station. The method proposed in this paper samples multiple matched vehicles, and provides a27
single estimate of density that represents the section at a time instance. Second, Coifman's model28
identifies the travel time of a truck, then assumes that all vehicles in the traffic stream share the29
same travel time as the matched truck (which is usually slower than smaller vehicles, especially30
for multi-lane facilities). The model proposed in this paper establishes the median travel time for31
each vehicle class to account for their representative travel times to identify unmatched vehicles32
that may be in the section corresponding to the sampling time instance. Third, Coifman’s33
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reidentification model assumes that most vehicles will not change lanes so that platoons of1
vehicle entries and exits into the roadway section are maintained.   Because of these constraints,2
the usefulness of the method may be restricted to road facilities with single or few lanes where3
queue discipline is maintained such that vehicles follow first-in-first-out queuing procedures and4
truck section travel times are similar to general traffic.  The REID method used in this paper5
makes no assumptions about lane assignments in matching vehicles and the density estimation6
algorithm counts of vehicles in the section are based on matched vehicle pairs.7

RESULTS8
Density estimated from PeMS adaptive g-factors, Coifman’s estimation algorithm based on9
REID of long vehicles (16), and the proposed inductive signature REID based density algorithms10
were evaluated for the same study area at one and five minute intervals.  Each was compared to11
groundtruth data captured from video analysis. This section provides details on the study area,12
groundtruth data process, and comparison of the three density estimation methods.13

STUDY AREA14
Data was collected from I-405N in Irvine, California. FIGURE 7 depicts the study area. The15
mainline stations at Laguna Canyon 1 (LC1) and Sand Canyon (SC) comprise a 0.66-mile16
segment spanning four mainline and two high occupancy vehicle lanes in the northbound17
direction.  The study segment also contains an off-ramp at Sand Canyon (SC Off-ramp) for18
which data were also collected. Each of the detector locations contains double square inductive19
loop detectors that are connected to advanced loop detector cards located in the traffic cabinets20
adjacent to the freeway. The detector cards are connected to the field computer, a small industrial21
PC running a Linux operating system, via a USB interface.  The detector cards process22
inductance signals at 1200 samples per second as vehicles pass over the loop sensors, while a23
client program logs these in binary format to the PC hard drive. All PC clocks were24
synchronized with side-fire video recorders.25

Additionally, point data from PeMS was downloaded for the same study section and time period.26
This data consisted of 30-second loop detector occupancy and five minute g-factor estimates for27
the mainline and HOV lanes at Laguna Canyon (PeMS VDS ID #1209176 and #1209177) and28
Sand Canyon (PeMS VDS ID# 1213963 and #1213966). Although loops at these two locations29
are different from the loops in the Irvine detector testbed described above, they are located30
within very close proximity as shown in FIGURE 7, and are expected to share similar31
corresponding g-factor values.32
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1

FIGURE 7 Study Area, I-405 Northbound between Laguna Canyon 1 and Sand Canyon in2
Irvine, California3

GROUNDTRUTH DATA4
Side-fire camcorders were set up at three locations (LC1, SC, and SC Off-ramp) to record5
vehicles traversing the entry and exit detector stations. Video and signature data were collected6
during the morning peak period continuously from 6:35AM to 10:00AM on Tuesday, May 12th,7
2009. The vehicles observed in the video were matched to their corresponding inductive8
signature, and were matched between detector stations spanning the section as well.9

The groundtruth dataset of vehicle matches between the upstream and downstream detector10
stations was obtained for nine distinct non-overlapping three to five minute periods spread11
throughout the three and a half hour period, capturing both congested and uncongested12
conditions. The total groundtruth dataset consisted of vehicle matches and classifications of13
5,712 vehicle pairs.  Groundtruth density was obtained by determining the actual number of14
vehicles in the section at specific times, then dividing the result by the sum of length of lanes15
within the section.  The number of vehicles within the section was obtained from the set of16
groundtruth vehicle matches that had crossed the upstream detector prior to each time instance17
and the downstream detector subsequent to the corresponding time instance.18

A NOTE ABOUT DATA AGGREGATION AND ALGORITHM PERFORMANCE19
Since PeMS provides only five minute g-factor estimates, the same g-factor value is used over20
each corresponding one minute sub-interval within the five minute interval, and used with 3021
second occupancy measures available from PeMS.  PeMS density estimates for each station were22
averaged together by time of day to produce a density estimate for the section, as shown in23
Equation 6:24

( ) = ∑ ( , ) ∑ ( , )
Eq. 625



Hernandez, Tok, and Ritchie 19

An attempt to estimate density using the long vehicle REID method (16) on the study section1
yielded poor results.  This was likely due to the greater number of lanes and length of the section2
of the study site used in this study, which would result in less platoon and lane discipline,3
adversely affecting the ability to obtain matches.  Hence, it was decided not to implement the4
REID procedures proposed in (16), further considering that there are also several parameters5
which are site specific and would require re-calibration.  Instead, the groundtruth dataset of6
trucks re-identified by video were used in place of the algorithm to ensure that all available truck7
matches were used for estimating density, all of which were true matches.  Note that there is a8
temporal gap in truck REID between 9:04AM and 9:33AM in which video groundtruth of trucks9
was not carried out, and was not a consequence of the density estimation technique.  This does10
not affect the results, however, since comparisons between methods are only made for the nine11
time periods with groundtruth data, which are fully represented using the long vehicle REID12
based density estimation method.  The long vehicle REID based density estimation method13
produces two density estimates per matched vehicle, one for each station corresponding to two14
different times (the upstream and downstream traversal times, t2 and t1, respectively): kLV,u(t2)15
and kLV,d(t1).  Therefore, to compare to the proposed section-based method, the two density16
estimates were averaged by time and reported for the entire section. Equation 7 was applied to17
aggregate the separate station estimates resulting from the CT-density algorithm.18 ( ∗) = ∑ , ( ) , ( ), ∈[ ∗, ∗ ] Eq. 719

where20
t* = time instance for calculating density21
tint = time aggregation interval22 , ( ), , ( ) = density estimated for upstream and downstream23

stations at t1 and t224
N = number of re-identified vehicles between t* and tint25

26

COMPARISON OF DENSITY ESTIMATES27
Each method was compared against groundtruth density.  Density estimates were evaluated28
based on the mean absolute percentage error (MAPE), computed by Equation 8:29

1 100%

where
 is the performance measure of the model being compared

      is the performance measure of the groundtruthed data
         is the number of samples in the data

MODEL GT

n GT

MODEL

GT

x xMAPE
n x

x
x
n


 

 set

30

Eq. 8
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FIGURE 8 depicts the correlation between the inductive signature REID, long vehicle based1
REID, and PeMS adaptive g-factor density estimates with the groundtruth density for one-minute2
time aggregation/instance. FIGURE 9 depicts the one-minute time density estimates each of the3
three algorithms. The overall MAPE for each algorithm is shown in TABLE 3 along with the4
MAPE by LOS as defined by the Highway Capacity Manual for multilane highways (1, p. 298).5
Note that during the study period, the freeway section did not experience LOS A.6

TABLE 3 MAPE by LOS for the inductive signature REID based density algorithm, the long7
vehicle REID based density algorithm, and PeMS adaptive g-factor based density estimation8
methods.9
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Long Vehicle REID 64.9 16.5 2.5 34.3 18.2 20.1
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1
(a)2

3

(b)4

FIGURE 8 Comparison of inductive signature REID based, long vehicle REID based, and PeMS5
adaptive g-factor based density estimation algorithms to groundtruth data for one-minute6
aggregation/time instance: (a) correlation comparison and (b) cumulative error distribution.7
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FIGURE 9 Comparison of density estimation methods: inductive signature REID, long vehicle REID, and PeMS adaptive g-factor for
one minute time instances.
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DISCUSSION
The groundtruth dataset used for model comparison contains highly congested and uncongested
conditions ranging from around 20 to 75 vehicle per mile per lane (vpmpl).  Of the density
estimation methods compared in this paper, the inductive signature REID based method provides
the most accurate depiction of the section density with under 4 percent MAPE at one minute time
intervals.

The point-based method which uses occupancy and adaptive g-factors provided by PeMS at the
upstream and downstream stations tends to underestimate the section density during periods of
congestion.  A possible explanation could be due to the inability of the point-based density
estimation approach to account for the traffic condition between detector stations.  In addition, it
can be observed that the trend of density estimates by PeMS do not follow closely to
groundtruth.  This may also be explained by the use of a fixed g-Factor value over five-minute
periods, which are not sensitive to the changes in proportions of long vehicles present in the
section that result in dynamic g-Factors beyond the fidelity provided by PeMS. Additionally,
clock synchronization is not guaranteed between the PeMS and study clocks, therefore estimates
may be slightly unsynchronized, but as can be seen in FIGURE 9, this is unlikely the cause for
most of the large errors.  Alternately, to provide a less direct comparison of point to section
measures, dual loop vehicle length estimates at the same loop locations as those used by
RTREID-2 could be calculated to determine point based density.  This was not done for this
paper, since a direct comparison to PeMS adaptive g-factors was the main interest.

The long vehicle REID based density estimation method relies on the travel times of a sparse
REID set of long vehicles to compute density.  This method is employed because long vehicles
may be captured from bivalent loop outputs during congested and uncongested conditions.  The
results show that density estimates based on this method—even with the use of groundtruth set
of matched vehicles to obtain section travel travel times—tend to overestimate section density.
This can be expected as the algorithm uses the resulting travel time from long vehicles to count
cumulative volumes at the upstream and downstream stations.  Since long vehicles typically
correspond to trucks with longer travel times, the corresponding counts obtained are expected to
result in higher estimates of density.  Also, temporal and spatial aggregation is difficult
considering that two density estimates are provided at different times for each matched vehicle at
both the upstream and downstream lanes.  It is difficult to estimate density in the presence of a
lane drop, such as at the study site, without aggregating the density estimates across all lanes and
at specified time intervals, which limits the ability to provide density estimates by lane or lane-
type (i.e. HOV or main line).  Coifman suggests that the density algorithm is mostly useful for
diagnosing periods in which there is detector drift/error and to determine lane-inflows/outflows
from ramps or high percentage of lane change maneuvers.    Notwithstanding, the long vehicle
REID algorithm is expected to yield better results when applied on a shorter section with fewer
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lanes, since the difference in travel times between trucks and the overall traffic may not be as
significant and platoon discipline is expected to be maintained.

CONCLUSIONS
The paper describes a method to estimate traffic density using travel time information from re-
identified vehicles and vehicle class counts at the entry and exit stations.  The algorithm was
compared to a point-based estimated density which relied on occupancy and time adaptive g-
factors and an algorithm which used cumulative station counts and travel times from a sparse re-
identification system based on matching long vehicles.   The results compared against
groundtruth data show that the proposed method for estimating density yielded under 4 percent
MAPE, and is significantly better than the alternative methods used in comparison.

An adaption to the original algorithm is also presented for real-time applications as well.  Since
the proposed method does not require calibrated model parameters, it has great potential for
spatial transferability.  The inductive signature reidentification based density algorithm is
currently deployed in the Inductive Signature Performance Evaluation (ISPE) website which
demonstrates its ability to provide section density information for a corridor containing six
contiguous sections between 0.13 and 2.07 miles in length and spanning a total distance of 6.8
miles.
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