
UC Davis
UC Davis Previously Published Works

Title
Data-driven analysis of the number of Lennard–Jones types needed in a force field

Permalink
https://escholarship.org/uc/item/3x5408wz

Journal
Communications Chemistry, 3(1)

ISSN
2399-3669

Authors
Schauperl, Michael
Kantonen, Sophie M
Wang, Lee-Ping
et al.

Publication Date
2020

DOI
10.1038/s42004-020-00395-w
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3x5408wz
https://escholarship.org/uc/item/3x5408wz#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Data-driven analysis of the number of
Lennard–Jones types needed in a force field
Michael Schauperl 1, Sophie M Kantonen1, Lee-Ping Wang 2 & Michael K Gilson 1✉

Force fields used in molecular simulations contain numerical parameters, such as

Lennard–Jones (LJ) parameters, which are assigned to the atoms in a molecule based on a

classification of their chemical environments. The number of classes, or types, should be no

more than needed to maximize agreement with experiment, as parsimony avoids overfitting

and simplifies parameter optimization. However, types have historically been crafted based

largely on chemical intuition, so current force fields may contain more types than needed. In

this study, we seek the minimum number of LJ parameter types needed to represent the key

properties of organic liquids. We find that highly competitive force field accuracy is obtained

with minimalist sets of LJ types; e.g., two H types and one type apiece for C, O, and N atoms.

We also find that the fitness surface has multiple minima, which can lead to local trapping of

the optimizer.
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Molecular simulations are a widely used tool to study
biological and chemical questions at an atomistic
level1,2. Applications include modeling of

protein–protein interactions3; protein folding4; the interactions of
nucleic acids5–7; and the binding of small molecules by proteins,
with applications to drug design8,9. Large systems, such as bio-
molecules in solution, pose substantial computational challenges.
Improved hardware and sampling algorithms have significantly
improved the ability of simulations to sample phase space10–12.
Nonetheless, simulation results still can deviate significantly from
experimental measurements13,14, and the underlying potential
functions, also known as force fields (FF), are thought to be an
important source of error15. Indeed, the accuracy of molecular
simulations is necessarily limited by the accuracy of the FF.

There are two broad approaches to improving the accuracy of
FFs. One approach is based on the recognition that most bio-
molecular FFs have for decades used the same functional form,
which comprises harmonic bond-stretches and angle-bends,
sinusoidal torsional terms, Lennard–Jones (LJ) interactions to
model the van der Waals forces, and atom-centered point charges
to model the electrostatics. Changing this functional form to one
which can capture the physics in greater detail is a promising
route to improve FF accuracy. Improved functional forms may
include new terms, e.g., to capture polarization more accu-
rately16–18, or replace old terms with newer more accurate ones,
e.g., 6–12 LJ potential with a new exp-6 form19. The second
approach to improving FFs is to keep the simplistic form of
common biomolecular FFs and instead improve the selection of
the FF’s adjustable parameters, such as torsional barriers, partial
charges, and LJ radii and well-depths. This can be done by
including more, and more relevant, training data in the para-
meterization process. For example, the inclusion of host guest
binding data is a promising route to train a force field to accu-
rately describe molecular interactions20–25. In addition, new
parameterization protocols for old force field terms, e.g., point
charges, may be developed26,27.

When improving the parameterization of a FF, it is possible to
adjust not only the numerical parameters assigned to each FF
type — such as the LJ parameters assigned to carbonyl oxygens –
but also the type definitions themselves. For example, every
carbonyl oxygen may be assigned the same LJ parameter, or,
alternatively, distinct LJ parameters may be assigned to subsets of
a functional group, such as the carbonyl oxygen in an amide
group. Such type definitions have historically been based largely
on chemical intuition and by analysis of specific simulation
results28. This has led to an increasing number of FF types as new
parameters were added in an arguably ad hoc manner to solve
perceived problems. A recent effort to streamline FF typologies by
replacing atom-typing with direct chemical perception has led to
a FF with markedly fewer independent parameters28, but there
are still 35 different LJ types and hence 70 LJ parameters.

The increased computational power available in recent years
allows us now to adjust parameters in a more systematic way, and
new tools have been developed to automate this process29,30.
However, parameter optimization is still challenging, as the large
number of FF types and hence of independent parameters means
these calculations are generally subject to the curse of dimen-
sionality. This holds especially for LJ parameters, which are
usually trained and tested against condensed phase data, so that
time-consuming molecular dynamics (MD) simulations must be
run within the optimization loop. In addition, a data-driven
approach that would allow automated deletion, addition, and
modification of FF types as part of the optimization process has
not yet been reported, though there have been initial steps in this
direction31. As a consequence, the type definitions of LJ types
have not changed by much.32–36.

Two approaches to reducing the complexity of LJ parameter
assignments may be considered. One derives bespoke LJ para-
meters for a molecule of interest via an atoms-in-molecules
analysis of its electronic structure37,38. This approach avoids
high-dimensional optimization by using only a few adjustable
parameters that control the mapping from electronic structure
to the LJ parameters. The second approach is to sharply
reduce the number of LJ types. In the context of our effort to
generate an improved version of the restrained electrostatic
potential (RESP)39 partial charge method, we optimized a FF that
allowed only five LJ types, one each for carbon, nitrogen, and
oxygen, and two for hydrogen27. The accuracy reached by this
simplified model surprised us and led us to ask whether FFs really
need all the LJ types which are usually used, or whether, instead,
similar accuracy can be achieved with far fewer LJ types.

Accordingly, the present study explores the accuracy that can
be achieved by FFs with highly reduced numbers of LJ types. We
use ForceBalance to optimize the LJ parameters for chemical
motivated LJ typologies against experimentally measured prop-
erties of pure organic liquids, and then test against a second set of
experimental data. Results are generated for both RESP227 and
regular RESP partial charges39, and the robustness of the con-
clusions are further evaluated with additional runs using a larger
training set and a different test set, and by comparisons with the
baseline SMIRNOFF99Frosst-1.0.728 (SmirFF.7) and generalized
amber force field (GAFF) version1.8 force fields32. We find that
minimalist LJ typing schemes, such as one with only two
hydrogen types and one type each for carbon, oxygen, and
nitrogen, perform as well as much more complex typing schemes.
These results have intriguing implications for future FF
development.

Results
In the first subsection of the Results, we summarize the LJ models
considered in this study. In the next subsection, we report on the
training- and test-set performance of all of the LJ typing models
depicted in Fig. 1, using RESP1 charges and both training set/test
set splits (see Methods section). The third subsection then
examines the complexity of the multidimensional LJ parameter
optimization process. The fourth subsection explores the sensi-
tivity of the results to the partial charges used by re-running the
Training Set 1/Test Set 1 analysis with RESP2 charges27. The
figures present results for the optimizations that gave the lowest
values of the training-set objective function. The means and

Fig. 1 Summary of LJ typing models investigated in this study. Each group
of elements represents one LJ model for which ε and r1/2 parameters were
trained and evaluated. Arrows indicate a “more general → more specific”
relationship between two typing models. Model Set 1 starts from the
simplest model with only one LJ type per element and increases complexity
one element at a time. Model Set 2 is similar but always distinguishes
between polar and apolar hydrogens. The final model is a reoptimized
version of SmirFF.7.
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ranges over the triplicates are provided in the Supporting Infor-
mation (Supplementary Data 1), as are the optimized LJ para-
meter sets (Supplementary Data 2). Because the objective
function scales roughly with the number of data used, it runs
higher for the test sets than for the smaller training sets. To put
training- and test-set objective functions on similar scales in the
figures, the Test Set 1 objective functions were scaled by a factor
of 1/15 and the Test Set 2 objective functions were scaled by 1/3.

LJ Models investigated in this study. Ideally, it would be possible
to optimize not only the numerical LJ parameters associated with
a predefined set of LJ types, but also the type classification itself.
However, we are not aware of any software with this capability.
Therefore, we instead propose various sets of chemically moti-
vated LJ types and optimize the LJ parameters for each of these
models. In total, we consider 11 different models, summarized in
Fig. 1, where the models are abbreviated according to the number
of LJ types for each element. For example, model H4CON has
four H types and one each for C, O, and N, while the first model,
HCON, has just one type per element. Starting from this minimal
set, we first try allowing multiple types for a single element (Fig. 1,
row 2). For example, we split the hydrogen LJ type into four (H
bound to sp3 C, H bound to sp2 or sp C, H bound to N, and H
bound to O) resulting in model H4CON, which has seven types.
We also trained one model with all of the potential element types
(Fig. 1, row 3), to generate model H4C3O3N3. Then, because it
may be necessary to distinguish at least polar and apolar
hydrogens in order to account for hydrogen-bonding, we repe-
ated the procedure from above but always using only a polar and
an apolar hydrogen LJ type. This results in the models H2CON,
H2C3ON, H2CO2N, H2CON2 (Fig. 1, rows 4, 5). Finally, we also
reoptimize LJ parameters for all the types in the current
SmirFF.728 that are represented in the training and test sets,
amounting to 8 hydrogen types, 3, carbon types, 3 oxygen types,
and 1 nitrogen type (Fig. 1, row 6).

Performance of LJ typing models with RESP charges. A single
LJ type per element affords competitive accuracy: Perhaps unex-
pectedly, the simplistic HCON typing model yields test-set
accuracy not much below that obtained with the original
SmirFF.7LJ parameters, although it has only four LJ types,
whereas SmirFF.7 has 15 for the training and test set compounds.
Thus, following optimization with Training Set 1, the HCON
model’s Test Set 1 errors for densities, heats of vaporization
(HOVs), and dielectric constants are 5.70%, 12.30%, and 50.1%,
respectively, while those of SmirFF.7 are 3.84%, 12.72%, and
52.5%; see Figs. 2–4. For the second training/test-set split (see
Methods section), the accuracy of the HCON model (5.46%,
15.28%, 49.3%) is again slightly lower than that of SmirFF.7
(3.89%, 13.50%, 47.5%) (Figs. 5–7). The results for GAFF-1.8,
with 28 atom types for these compounds, are similar to those for
SmirFF.7, as shown in the bottom rows of these figures.

Allowing polar and apolar H types improves accuracy: The
present study agrees with the expectation that distinguishing LJ
types between polar and apolar hydrogens allows substantially
greater accuracy40. Thus, going from HCON to H2CON allows
the objective function to drop substantially for both training sets
and both test sets and in fact to outperform both SmirFF.7 and
GAFF-1.8 for all training and test-sets (Figs. 2–7). Similarly,
splitting the single H type in HC3ON, HCO3N, and HCON2 into
polar and apolar types to yield models H2C3ON, H2CO3N, and
H2CON2, respectively, yields consistently lower values of the
objective function for both test sets (Figs. 4 and 7). However,
none of these models yields convincingly better results than the
simpler H2CON model.

Further splitting of hydrogen into four LJ types does not
appear to be useful, as the results for H2CON and H4CON differ
minimally for the test sets (Figs. 4 and 7). Moreover, given a split
between polar and apolar hydrogen types, adding more carbon,
oxygen, and nitrogen types does not significantly improve
accuracy for either test-set (Figs. 4 and 7).

Splitting H, O types is advantageous, but not C, N: As expected,
adding LJ types for any element to HCON to form models
H4CON, HC3ON, HCO3N, and HCON2 leads to improved
accuracy for both training sets, based on the overall objective
function (Figs. 3 and 6). However, although adding H and O
types additionally leads to improved test-set accuracy, adding C
and N types leads to unchanged or worse test-set accuracy (Figs. 4
and 7). Thus, the gains in training set accuracy on adding carbon
and nitrogen types may be due to overfitting. Interestingly,
increasing the number of oxygen types from one to three, while
keeping the number of hydrogen types fixed, consistently leads to
improved accuracy for heats of vaporization (HOV), though not
for density or dielectric constant.

Optimizations can terminate at multiple local minima: Any LJ
typing model that can be derived from a simpler model by
splitting one or more of its LJ types should, upon optimization, be
able to reach at least as low a value of the objective function for
the training set. In practice, however, this is not consistently
observed. For example, the Training Set 1 objective function of
HCO3N is lower than that of two models with more adjustable
parameters, H2CO3N and H4C3O3N2 (Fig. 3). We conclude that
at least some of these optimizations are terminating at local,
rather than global, minima. (It is also interesting that the
optimized H4C3O3N2 model yields somewhat worse results than
simpler models, for both test sets (Figs. 4, 7).) Further details
regarding the challenges of optimizing larger numbers of LJ
parameters are provided in the subsection dealing with sensitivity
to initial parameter values.

Reparameterization of SMIRNOFF types gives good accuracy:
We used the present training sets to reoptimize parameters for
the full set of 15 LJ types associated with these compounds and
SMIRNOFF force field. This led to the lowest objective functions
obtained for either training set (Figs. 3 and 6). However, for the
test sets, other models with far fewer LJ types, such as H2CON,
yield similar or better test-set results (Figs. 4 and 7). Thus, the
present data do not indicate a need for 15 LJ types.

LJ parameter optimization is sensitive to initial values. As
noted above, we observed several instances where the optimiza-
tion of one LJ model led to lower (better) values of the training-
set objective function than optimization of another LJ model
where one or more types from the first had been split into
multiple independent parameters. This means that the model
with more parameters was not fully optimized, as the parameter
space of the more complex is a superspace of the parameter space
of the simpler model. Closer examination of one such case offers
insight into how the optimization can be trapped at a local
optimum. We focus on the optimization of model H2CO3N with
Training Set 1 and RESP charges, which led to a higher (worse)
value of the objective function (84) than that reached by the
corresponding optimization of HCO3N (39).

We start by comparing optimized parameters for HCO3N and
H2CON. The hydrogen parameters for HCO3N (Table 1) are
similar to those of an aliphatic hydrogen, but its three sets of LJ
oxygen parameters are quite distinct from each other (Table 1). In
comparison, H2CON assigns much smaller radii to polar
hydrogens than to apolar hydrogens (Table 1), but its oxygen
parameters remain similar to those of the initial carbonyl oxygen.
The initial optimization of H2CO3N (H2CO3N in Fig. 3) yields a
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clear distinction between small polar hydrogens and large apolar
hydrogens, while assigning all three oxygen types rather similar
parameters (Table 1). In effect, this optimization yielded
parameters for H2CO3N that are more similar to those of
H2CON than to those of HCO3N and that yield a value of the

objective function (84) between those of H2CON (121) and
HCO3N (39) (Fig. 3).

We conjectured that starting the H2CO3N optimizing with
distinct polar/apolar hydrogen parameters led to trapping of the
parameter search in a local optimum with a prominent split

Fig. 2 Relative errors for Training and Test Set 1. Relative errors for experimental data (heats of vaporization, densities, dielectric constants), and for the
ForceBalance objective function, for Training Set 1 (red) and Test Set 1 (blue). The test set objective functions are scaled by 1/15 (see main text). The
number of parameters may be deduced from names of the LJ models; e.g., HC3ON has 1+ 3+ 1+ 1= 6 parameters.

Fig. 3 Training set results for Training Set 1 optimization of LJ parameters with RESP partial charges. Errors and objective function values are reported
for the Training Set 1 compounds. These results are for the replicates that gave minimum training set values of the objective function for each model.
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between polar and apolar hydrogen parameters and a reduced
split among the oxygen types. To test this conjecture, we
reoptimized the parameters for H2CO3N, this time setting the
initial parameters for all-atom types to the optimized parameters
for HCO3N, with its prominent split of oxygen-type parameters
(Table 1). Thus, the initial parameters for both polar and apolar
hydrogen were the optimized parameters of H in HCO3N. The

outcome was a set of parameters (H2CO3N reoptimized) with a
training-set objective function of 37 (Fig. 3), widely split oxygen
parameters as in the initial guess, and parameters for apolar and
polar hydrogens that are similar to each other and to their
starting guess (Table 1). Thus, we see significant dependence of
the optimization results upon the starting guess, even for an LJ
model with only seven types.

Fig. 4 Test set results for Training Set 1 optimization of LJ parameters with RESP partial charges. Errors and objective function values are reported for
the Test Set 1 compounds. Objective function values are scaled by 1/15 (see main text). These results are for the replicates that gave minimum training set
values of the objective function for each model.

Fig. 5 Relative errors for Training and Test Set 2. Relative errors for experimental data (heats of vaporization, densities, dielectric constants), and
ForceBalance objective function, for Training Set 2 (red) and Test Set 2 (blue). The test set objective functions are scaled by 1/3 (see main text). The
numbers of parameters may be deduced from name of the model; e.g., HC3ON has 1+ 3+ 1+ 1= 6 parameters.
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The concept that the initial optimization of H2CO3N is
trapped in a local optimum may be elaborated by considering the
Euclidean distances among the models considered in this section.
To do this, we consider each model as a point in 24-dimensional
parameter space, based on the 12 r1/2 values and 12 ε values for
the SMIRKS strings in Table 1. To put the values of r1/2 and ε on

an equal footing, we scaled up the values of ε by
r1=2
2 ¼ 13:7, the

ratio of the mean of r1/2 to that of ε. (See Supplementary Table 1).
The distances among the models in Table 1 are given in the form
of a matrix in Table 2. One may see that H2CO3N is closest to
H2CON, with its split hydrogen types, while H2CO3Nreopt is
closest to HCO3N, with its split oxygen types, as anticipated.

As noted in the Methods Section, the ForceBalance objective
function includes a weak restraint, which prevents parameters
from straying very far from the initial parameter values. We
considered whether this restraint might have prevented the first
H2CO3N optimization from reaching the optimal parameters
with split oxygen parameters and similar hydrogen parameters

(i.e., H2CO3Nreopt). To do this, we used ForceBalance to
compute the contribution of the restraint from the first
optimization that would have been associated with the
H2CO3Nreopt parameters. This value, 1.8, would not have been
enough to make the objective function at the H2CO3Nreopt
parameters higher than those at the H2CO3N parameters. Thus,
the weak restraint does not appear to account for the optimizer’s
having missed the lower minimum at the H2CO3Nreopt
parameter set.

Nonetheless, to further test whether the restraints might have
been responsible for introducing a barrier between the apparent
local optima, we reran the initial H2CO3N calculation without
any parameter restraints at all (wreg = 0.0). This optimization
again led to a local optimum with a training objective function
> 80, similar to the initial H2CO3N calculation with restraints
(wreg = 0.1, training objective function 84). We conclude that at
least two valid local optima exist and that which one is discovered
depends on the parameters used to start the optimization run.

Fig. 6 Training set results for Training Set 2 optimization of LJ parameters with RESP partial charges. Errors and objective function values are reported
for the Training Set 2 compounds. These results are for the replicates that gave minimum training set values of the objective function for each model.

Fig. 7 Test set results for Training Set 2 optimization of LJ parameters with RESP partial charges. Errors and objective function values are reported for
the Test Set 2 compounds. Objective function values are scaled by 1/3 (see main text). These results are for the replicates that gave minimum training set
values of the objective function for each model.
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LJ typing models in the context of RESP2 charges. We tested
the robustness of these findings to the choice of partial charges by
retraining all LJ models against Training Set 1, this time with
partial charges generated with the RESP2 method. The RESP2
partial charge model is similar to RESP1, but it uses higher-level
electronic structure calculations and provides a mixing parameter
that allows empirical adjustment of the overall polarity of the
model by scaling between gas-phase and aqueous-phase char-
ges27. Here, we set the mixing parameter to 0.5, corresponding to
equal contributions from these two phases. As detailed in Sup-
plementary Figs. 1–3, many of the same patterns are observed:

● Adding more H and O types allow significantly improved
test-set accuracy but adding more C and N-type does not.

● Splitting H into apolar and polar types consistently improves
test-set accuracy.

● The parameters for model H4C3O3N2 are not fully
optimized, as simpler models reach lower (better) values of
the objective function for the training set.

● Reoptimization of the full set of SMIRNOFF parameters
generates a model that is similar in accuracy to at least one
simpler model.

The overall accuracy obtained with these RESP2 charges is
similar to that obtained with RESP charges. As seen before27,
RESP2 charges tend to give somewhat more accurate dielectric
constants (improvements up to about 20%) and RESP1 charges
give somewhat more accurate densities and HOVs. The results for
the objective function are generally higher for RESP2 than for

models with RESP1, as we decided to weigh the contribution of
the dielectric constant very little, since its calculated values have
larger numerical uncertainties. As previously discussed, the
mixing parameter affords a simple way of tuning RESP2 charges
and should, ideally, be co-optimized with the LJ parameters when
deriving a force field.

Discussion
The central finding of this study is that highly competitive force
field accuracy can be obtained with minimalist sets of LJ types.
For example, merely splitting apolar from polar hydrogens, while
using one type apiece for carbon, oxygen, and nitrogen, yields a
model that meets or exceeds the accuracy of SmirFF.7 and GAFF-
1.8 for the present test sets. This data-driven observation arguably
challenges a chemical intuition that distinct LJ types are needed
for atoms in distinct functional groups. We also found that the
proliferation of LJ types does not necessarily increase accuracy
and can even degrade it, presumably due in part to overfitting.
Taken together, these results suggest that de novo efforts at FF
parameter optimization should start with a minimal set of LJ
types, such as the H2CON, HCO3N, or H2CO3N models. Added
type distinctions may then be tested, but they should be discarded
if not supported by the data. This approach should avoid over-
fitting and speed the optimization process by minimizing the
dimensionality of the search space. As paraphrased from Einstein,
“Everything should be made as simple as possible, but no
simpler.”41.

If one starts with a simple LJ typing model, such as H2CON, a
natural way to increment its complexity in a data-driven manner
is to use a greedy optimization approach: find a type split (e.g., O
to O3) that improves results, lock it in, then find the next split
that improves results and lock it in; etc. This approach would
have worked well in the present setting, where one might progress
from splitting polar and apolar hydrogens to then splitting oxy-
gens, thus reaching perhaps the best model found here, H2CO3N.
However, it is possible that two type splits under consideration
could increase accuracy when used together, but not when used
individually. In such cases, the greedy approach can fail to find
the best typing model, because it considers each split only in
isolation and therefore will never accept either one and so, in
turn, cannot discover the benefit of splitting both types. It is not
known how commonly this situation will occur in the present
setting.

Table 1 Optimized LJ parameters for various LJ typing models. ε: kcal mol−1, r1/2: Å. See the text for details.

HCON HCO3N H2CON H2CO3N H2CO3Nreopt

SMIRKS ε r1/2 ε r1/2 ε r1/2 ε r1/2 ε r1/2
Hydrogen
[#1:1]-[#6X4] 0.017 1.27 0.034 1.42 0.014 1.39 0.023 1.42 0.030 1.42
[#1:1]-[#6X3] 0.017 1.27 0.034 1.42 0.014 1.39 0.023 1.42 0.030 1.42
[#1:1]-[#7] 0.017 1.27 0.034 1.42 0.015 0.69 0.007 0.88 0.031 1.44
[#1:1]-[#8] 0.017 1.27 0.034 1.42 0.015 0.69 0.007 0.88 0.031 1.44
Carbon
[#6:1] 0.074 2.11 0.077 1.84 0.081 2.06 0.078 1.96 0.078 1.87
[#6X4:1] 0.074 2.11 0.077 1.84 0.081 2.06 0.078 1.96 0.078 1.87
[#6X2:1] 0.074 2.11 0.077 1.84 0.081 2.06 0.078 1.96 0.078 1.87
Nitrogen
[#7X3:1] 0.194 1.47 0.231 1.79 0.177 1.80 0.210 1.83 0.245 1.78
[#7:1] 0.194 1.47 0.231 1.79 0.177 1.80 0.210 1.83 0.245 1.78
Oxygen
[#8:1] 0.220 1.11 0.137 1.73 0.205 1.61 0.197 1.71 0.100 1.65
[#8X2H1+ 0:1] 0.220 1.11 0.494 1.89 0.205 1.61 0.218 1.60 0.533 1.87
[#8X2H0+ 0:1] 0.220 1.11 0.087 1.82 0.205 1.61 0.151 1.59 0.096 1.82

Table 2 Matrix of Euclidean distances between the models
listed in Table 1. Only the upper triangle is shown, because
the matrix is symmetric, and the diagonal elements are
identically zero.

HCON HCO3N H2CON H2CO3N H2CO3Nreopt

HCON 4.63 1.39 1.63 5.19
HCO3N 4.67 4.12 0.81
H2CON 1.08 5.27
H2CO3N 4.73
H2CO3Nr
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Another challenging question, which we have not addressed in
this work, is how to decide what types should be tried in the first
place. For example, although we split oxygens into hydroxyls,
ethers, and carbonyls, we could instead have lumped together
with the ethers and carbonyls and thus considered only two types.
Or, we might have tried an entirely different approach, setting up
LJ types based on some measure of polarity, such as the partial
charge assigned to each atom. Perhaps the ideal method would be
to allow the types themselves to evolve in a purely data-driven
manner, as previously explored with Monte Carlo sampling of FF
typing schemes28, but that approach may still be too time-
consuming for current use.

Also, the parameter optimization for a given LJ typing model
has its own challenges. We observed that the steepest descent
optimization method used here led to trapping of the optimizer in
a local, rather than the global, optimum. This problem is expected
to grow more challenging as the number of parameters increases,
and there is always the possibility that a narrow optimum in a
high dimensional parameter space will be missed. The chances of
finding the global optimum may be increased by using multiple
steepest descent optimizations at different initial points in the
parameter space and/or by moving to one of the many global
optimization strategies that have been developed over the years,
such as genetic algorithms42 or Monte Carlo simulated anneal-
ing43. It should be noted, however, that such methods are likely to
require considerably more steps than ForceBalance, and thus risk
being overly time-consuming. The present analysis also points to
a straightforward reality check for the adequacy of a parameter
optimization: if a model with more finely divided types yields
worse accuracy on the training set than another model where
some of the finer types are lumped into coarser type divisions,
then the more detailed model is not fully optimized. That said, if
the finer model does yield better training set accuracy, this still
cannot prove it is fully optimized. These warnings presumably
also apply when LJ parameters are optimized along with other
parameter types, such as bonded terms.

Starting from the one type per element model, HCON, it is of
interest to consider which increases in complexity yield the
greatest improvements inaccuracy. Perhaps the single most useful
step is to distinguish between polar and apolar hydrogens,
making model H2CON. This dramatically and consistently
improves test set accuracy, while adding little complexity to the
typing scheme. However, we saw no benefit to a finer split of
hydrogens into four types. Further study, with perhaps a more
diverse set of compounds, may be needed to definitively assess
whether the finer discrimination among hydrogens by SmirFF.7
and GAFF-1.8, which both have eight hydrogen types, is sup-
ported by available experimental data.

Perhaps the second most useful step to improve accuracy is to
split oxygen types. When used on its own, it is almost as bene-
ficial as splitting polar from apolar hydrogens, and it may also
afford some additional accuracy when used with the hydrogen
split. Here, we used the same chemically intuitive oxygen split as
in SmirFF.7, but others might be as good or better. Splitting
nitrogen types alone did not lead to improved accuracy, though
there may be some benefit to splitting nitrogens in the context of
the polar/apolar hydrogen split. Interestingly, although GAFF-1.8
lists 13 nitrogen types, they all have identical LJ parameters, and
SmirFF.7 has only a single nitrogen type. It should also be
mentioned that the improvement due to adding atom types
depends on the experimental properties used during training and
testing. Also, if other experimental data were used in training, the
preferred order of adding atom types might change, and/or other
atom splits might become more important.

Using more than one carbon LJ type does not lead to improved
accuracy in this study. As in SmirFF.7, our simple LJ typing

models considered a split into three-carbon types, based on
hybridization state, but this improved results for only training
data and it made the test set results worse in most cases, pre-
sumably due to overfitting. We did not expect this result, as the
current SmirFF.7 and GAFF-1.8 epsilon parameters for carbons
have a rather wide range of 0.086 to 0.210 kcal/mol. It may be of
interest to revisit these choices and consider dropping back to a
single carbon LJ type.

Based on the combined results, an LJ typing model with as few
parameters as possible but as many as necessary might be the
H2CO3N model, which distinguishes polar and apolar hydrogens
and three oxygen types. The accuracy with this model is for all
cases similar to or better than even the reoptimized version of
SMIRNOFF.

It is also worth mentioning that there are alternative approa-
ches to generating LJ parameters that involve little or no typing.
These involve running a quantum mechanical electron structure
calculation for the molecule of interest and then computing
bespoke LJ parameters for each atom in the molecule as a func-
tion of the computed electron density37,38,44. These methods may
include empirical parameters, which allow the mapping to be
tuned so that the LJ parameters yield accurate agreement with
reference data, such as the properties of organic liquids
considered here.

This study highlights the benefits of direct chemical perception.
As implemented in the SMIRNOFF force field specification28, this
makes introducing, splitting, or combining LJ types as easy as
copying a line and modifying a SMIRKS string. It also avoids the
complication of other force field specifications where a new LJ
type can be added only by adding a new atom type, which in turn
mandates adding redundant bonded parameters for the new type.
This works both ways, in the sense that adding a new torsion
type, for example, also requires adding a new atom type, which in
turn needs to be assigned LJ parameters. If one does not actually
want to distinguish between the LJ properties of the two atom
types, this leads to multiple atom types with identical LJ
parameters.

Methods
Implementation of Lennard Jones Models. We used the SMIRNOFF FF speci-
fication, which uses SMIRKS45–47 patterns, to define LJ types, as detailed in Table 3
for all 11 LJ models. The parameter definitions are given as an ordered list of
parameter typing rules in ascending order of priority, where each rule consists of a
SMIRKS pattern attached to numerical parameters. The top-level (lowest priority)
SMIRKS pattern is general (matching any atom of a given element). This parameter
is assigned first to all atoms of this element and then overwritten by the more
specific SMIRKS patterns, if present. This makes sure that parameters are assigned
to all atoms.

The parameter definitions are based on the following form of the LJ interaction
energy between atoms i and j:

ELJ;ij ¼ ε
r12min

r12

� �
� 2r6min

r6

� �� �
ð1Þ

ε ¼ εiεj

� �0:5 ð2Þ

rmin ¼ r1=2;i þ r1=2;j ð3Þ
Here r is the interatomic distance, ε is the depth of the energy well, rmin is the
minimum energy interatomic distance, εi, εj, and r1/2,i, r1/2,j are the atomic LJ
parameters we wish to adjust, and the second and third equations define the
Lorentz–Berthelot combining rules.

Optimization and evaluation of Lennard–Jones parameters. The LJ model
optimization procedure is the same as in our previous study27 and is summarized
in this section. We trained all LJ models against experimentally measured densities
and heats of vaporizations of pure organic liquids, properties that have been
extensively used in force field parameterization36,48–50. The trained models then
were tested for their ability to replicate heats of vaporization, densities, and
dielectric constants of a separate set of pure organic liquids. The results were
compared with matched evaluations of SmirFF.728.
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We optimized and tested each LJ typing model for two different test/train splits
of a single collection of 75 compounds (Supplementary Data 3) for which
experimental liquid state data are available Fig. 8 and file Supplementary Data 4 in
Supporting Information). These compounds span 15 distinct LJ atom types in
SmirFF.7 and 28 atom types in GAFF-1.8. Training Set 1 contains 15 molecules
(Fig. 8, top) selected to include functional groups, e.g., ether, alcohol, amine, that
span all the chemistries in the full set of 75 compounds, and Test Set 1 contains the
remaining 60 compounds. Training Set 2 contains 30 compounds drawn at random
from the full set of 75 compounds, and Test Set 2 contains the remaining 45.
Training set 2 happens to also cover all functional groups. Experimental values for
the heats of vaporization of each pure liquid were taken from ThermoML51, and
densities were taken from ThermoML when available, and otherwise from
PubChem52. Dielectric constants were taken from multiple sources53.

The program ForceBalance29 version 1.6.0 was used with the training and test
set data described above to optimize the LJ parameters for the LJ typing models in
Fig. 1. Each LJ type has two parameters, r1/2 and ε. SmirFF.7 parameters were used
as starting values (Table 3)28. The ForceBalance objective function used in this
study is described in the following. The N physical parameters K = (K1, K2…KN)—
here the values of r1/2 and ε for each LJ type—are transformed to mathematical
parameters k = (k1, k2…kN) by shifting and scaling:

ki ¼
1
ti

Ki � Ko
i

� 	
ð4Þ

Here 1/ti is a scaling factor, also called the prior width, defined as 0.1 kcal/mol
for ε and 1.0 Å for r1/2. K0

i is the initial value of the force field parameter Ki. The
objective function L(k) contains a contribution Lm(k) from each training-set
molecule m for a training set with M molecules. Lm(k) quantifies the deviation of its
P computed properties from experiment; Tikhonov regularization with a weighting
factor wreg = 0.1 ensures no extremely large deviations from the starting values:

LðkÞ ¼
XM
m¼1

LmðkÞ þ wreg kj j2 ð5Þ

LmðkÞ ¼
XP
p¼1

1
d2p

ymp ðkÞ � ymp;ref




 


2 ð6Þ

The scaling factors dmp balance the weighting of the properties and remove their
units; we used ddensity = 95 kg/m3 and dHOV = 0.95 kJ/mol for all molecules m.
Here ymp kð Þ is the value of the pth property for molecule m (e.g., its density)
computed for mathematical parameters k, and ymp;ref is the experimental reference
value of this property.

The values of the scaling factors were chosen to afford suitable contributions
from both properties to the objective function. Interestingly, although they place
greater weight on errors in HOV than on errors in density, the percent errors
following fitting are nonetheless greater for HOV than for density (Figs. 2–7).

One could, alternatively, weight the contribution to the objective function of the
error in each calculated property as the inverse of the corresponding experimental

uncertainty. The logic of this is that it would place more weight on experimental
properties that are more certain. However, it is not clear this approach yields the
most useful possible force field. For example, if density data were orders of
magnitude more reliable than energetic data, such as HOVs, then weighting errors
according to experimental uncertainty might yield a force field that was accurate
for densities but not for energetic quantities. This expected tradeoff stems at least in
part from the fact that the functional form of the force field is crude, so no set of
parameters will allow it to accurately replicate all experimental data. If the
functional form were more comprehensive, then fitting to one set of experimental
observables might improve the accuracy for other observables, but that is not likely
to hold when the functional form is fundamentally incapable of replicating all
experimental observables with high accuracy.

The optimization was terminated when the step-size for the mathematical
parameters fell below 0.01 or the unitless objective function changed <1.0 between
two iterations; further details are provided below in this section. All optimizations
were performed three times with different random number seeds for the molecular
dynamics simulations. The Results section reports the lowest values of the objective
function across all three training-set runs and across all three test-sets. The ranges
of these quantities across the triplicates are reported in the Supporting Information
(Supplementary Data 1).

Simulation details. ForceBalance calls OpenMM54 to compute physical properties
from molecular simulations for each iteration of the parameter optimization. For
each iteration and each molecule, a gas phase and a liquid phase simulation at T=
298 K were run to calculate liquid state properties and the heat of vaporization.
ForceBalance was also used to set up simulations with baseline SmirFF.7 and
GAFF1.8 parameters, as well as with optimized parameters for the test set mole-
cules. The gas/liquid difference between the mean potential energy per molecule
plus the pressure-volume term RT was used to calculate the heats of vaporization.
The mean volumes of the liquid state NPT simulations were used to calculate the
liquid state densities. The fluctuations of the simulations box’s dipole moments
were used to calculate the dielectric constant.

For all OpenFF-based simulations, the bonded FF terms were drawn from
SmirFF.7, and covalent bonds to hydrogen atoms were constrained to their
equilibrium lengths with SETTLE (water) and CCMA55,56. Calculations with the
GAFF-1.8 force field were run for comparison32,57. Liquid-phase calculations (700
copies of the molecule of interest) were run for 1.2 ns (0.2 ns equilibration, 1 ns
production), with a Langevin integrator. A timestep of 1 fs and a collision
frequency of 1 ps−1 were applied. A Monte Carlo barostat with a move attempt
interval of 25 timesteps was used to maintain the pressure at 1 atm58. Long-ranged
electrostatics were included via Particle Mesh Ewald summation with a cutoff of
8.5 Å on the short-ranged component. A long-range dispersion correction was
applied. The single-molecule gas phase simulations were run for 25 ns (5 ns
equilibration, 20 ns production) with a timestep of 1 fs using a Langevin integrator
with a collision frequency of 1 ps−1 and, infinite distance cutoffs and without
periodic boundary conditions. The standard errors of the computed densities, heats

Table 3 SMIRKS patterns used for LJ typing, with well-depth ε (kcal/mol) and effective radius r1/2 (Å) parameter values used to
initiate parameter optimization. The first row for each element (bold) gives the parameters used when that element had only a
single type. In this case, the SMIRKS pattern was replaced with a SMIRKS string recognizing all atoms of this element. Starting
parameters for the polar/apolar hydrogen models are given in the bottom rows. The last column gives the SMIRNOFF LJ type
definitions from which these initial values were drawn.

SMIRKS Description Initial ε Initial r1/2 SMIRNOFF SOURCE

Hydrogen
[#1:1]-[#6X4] Hydrogen bound to a sp3 Carbon 0.0157 1.4870 [#1:1]-[#6X4]
[#1:1]-[#6X3] Hydrogen bound to a sp2 Carbon 0.0150 1.4590 [#1:1]-[#6X3]
[#1:1]-[#7] Hydrogen bound to an Oxygen 0.0157 0.6000 [#1:1]-[#7]
[#1:1]-[#8] Hydrogen bound to a Nitrogen 5.27E-05 0.3000 [#1:1]-[#8]
Carbon
[#6X3:1] sp2 Carbon 0.0860 1.9080 [#6:1]
[#6X4:1] sp3 Carbon 0.1094 1.9080 [#6X4:1]
[#6X2:1] sp Carbon 0.2100 1.9080 [#6X2:1]
Oxygen
[#8X1:1] Carbonyl Oxygen 0.2100 1.6612 [#8:1]
[#8X2H0+ 0:1] Alcohol Oxygen 0.1700 1.6837 [#8X2H0+ 0:1]
[#8X2H1+ 0:1] Ether Oxygen 0.2104 1.7210 [#8X2H1+ 0:1]
Nitrogen
[#7X1:1] Nitro Nitrogen 0.1700 1.8240 [#7:1]
[#7X3:1] Amine Nitrogen 0.1700 1.8240 [#7:1]
Polar and Apolar Hydrogens
[#1:1] -[#6] Apolar Hydrogen 0.0157 1.4870 [#1:1]-[#6X4]
[#1:1]-[#7,#8] Polar Hydrogen 0.0157 0.6000 [#1:1]-[#7]
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Fig. 8 Training and test set compounds used in this study. Training and Test Sets 1 are indicated by the headers. Training Set 2 molecules are designated
by the orange squares, and Test Set 2 comprises all molecules on a white background. A SMILES string for each molecule is given under the chemical
structure, and the SMILES strings are provided as a text file (Supplementary Data 3) in the Supporting Information.
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of vaporization, and dielectric constants are roughly 0.001 g cc−1, 0.3 kJ mol−1, and
10%, respectively.

Data availability
The data supporting the findings of this study are available within the article and its
Supplementary Information files. Other relevant source data are available at DOI
10.5281/zenodo.3940634 (https://doi.org/10.5281/zenodo.3940634), or from the
corresponding authors upon reasonable request.

Received: 20 May 2020; Accepted: 28 September 2020;

References
1. Dror, R. O. et al. Biomolecular simulation: a computational microscope for

molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).
2. Shaw, D. E. et al. Atomic-level characterization of the structural dynamics of

proteins. Science 330, 341–346 (2010).
3. Abriata, L. A. & Dal, M. Peraro, assessing the potential of atomistic molecular

dynamics simulations to probe reversible protein-protein recognition and
binding. Sci. Rep. 5, 10549 (2015).

4. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of
biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).

5. Šponer, J., Cang, X. & Cheatham, T. E. III Molecular dynamics simulations of
G-DNA and perspectives on the simulation of nucleic acid structures.Methods
57, 25–39 (2012).

6. Bergonzo, C., Hall, K. B. & Cheatham, T. E. Stem-loop V of varkud satellite
RNA exhibits characteristics of the Mg(2+) bound structure in the presence of
monovalent Ions. J. Phys. Chem. B 119, 12355–12364 (2015).

7. Robertson, J. C. & Cheatham, T. E. DNA backbone Bi/Bii distribution and
dynamics in E2 protein-bound environment determined by molecular
dynamics simulations. J. Phys. Chem. B 119, 14111–14119 (2015).

8. Wang, L., Berne, B. J. & Friesner, R. A. On achieving high accuracy and
reliability in the calculation of relative protein–ligand binding affinities. Proc.
Natl Acad. Sci. USA 109, 1937–1942 (2012).

9. Limongelli, V. et al. Funnel metadynamics as accurate binding free-energy
method. Proc. Natl Acad. Sci. USA 109, 1467–1472 (2012).

10. Henriksen, N. M., Fenley, A. T. & Gilson, M. K. Computational calorimetry:
high-precision calculation of host–guest binding thermodynamics. J. Chem.
Theory Comput. 11, 4377–4394 (2015).

11. Shirts, M. R. & Chodera, J. D. Statistically optimal analysis of samples from
multiple equilibrium states. J. Chem. Phys. 129, 124105 (2008).

12. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for
protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

13. Muddana, H. S. et al. The Sampl4 host–guest blind prediction challenge: an
overview. J. Computer-aided Mol. Des. 28, 305–317 (2014).

14. Muddana, H. S. et al. The sampl4 hydration challenge: evaluation of partial
charge sets with explicit-water molecular dynamics simulations. J. Computer-
aided Mol. Des. 28, 277–287 (2014).

15. Nerenberg, P. S. & Head-Gordon, T. New developments in force fields for
biomolecular simulations. Curr. Opin. Struct. Biol. 49, 129–138 (2018).

16. Lamoureux, G., MacKerell, A. D. & Roux, B. T. A simple polarizable model of
water based on classical drude oscillators. J. Chem. Phys. 119, 5185–5197 2003).

17. Patel, S. & Brooks, C. L. Charmm fluctuating charge force field for proteins: I
parameterization and application to bulk organic liquid simulations. J.
Comput. Chem. 25, 1–16 (2004).

18. Ponder, J. W. et al. Current status of the amoeba polarizable force field. J.
Phys. Chem. B 114, 2549–2564 (2010).

19. Wang, L.-P., Chen, J. & Van, T. Systematic parametrization of polarizable
force fields from quantum chemistry data. J. Chem. Theory Comput. 9,
452–460 (2013).

20. Slochower, D., et al., Binding Thermodynamics of Host-Guest Systems with
Smirnoff99frosst 1.0.5 from the Open Force Field Initiative. 2019.

21. Henriksen, N. M. & Gilson, M. K. Evaluating force field performance in
thermodynamic calculations of cyclodextrin host–guest binding: water
models, partial charges, and host force field parameters. J. Chem. Theory
Comput. 13, 4253–4269 (2017).

22. Yin, J. et al. Toward improved force-field accuracy through sensitivity analysis of
host-guest binding thermodynamics. J. Phys. Chem. B 119, 10145–10155 (2015).

23. Bell, D. R. et al. Calculating binding free energies of host–guest systems using the
amoeba polarizable force field. Phys. Chem. Chem. Phys. 18, 30261–30269 (2016).

24. Skillman, A. G. Sampl3: blinded prediction of host–guest binding affinities,
hydration free energies, and trypsin inhibitors. J. Computer-aided Mol. Des.
26, 473–474 (2012).

25. Rizzi, A. et al. Overview of the sampl6 host–guest binding affinity prediction
challenge. J. Computer-aided Mol. Des. 32, 937–963 (2018).

26. Zhou, A., Schauperl, M. & Nerenberg, P. S. Benchmarking electronic structure
methods for accurate fixed-charge electrostatic models. J. Chem. Inf. Modeling
60, 249–258 (2020).

27. Schauperl, M. et al. Non-bonded force field model with advanced restrained
electrostatic potential charges (Resp2). Commun. Chem. 3, 44 (2020).

28. Mobley, D. et al. Escaping atom types in force fields using direct chemical
perception. J. Chem. Theory Comput. 14, 6076–6092 (2018).

29. Wang, L.-P., Martinez, T. J. & Pande, V. S. Building force fields: an automatic,
systematic, and reproducible approach. J. Phys. Chem. Lett. 5, 1885–1891
(2014).

30. Wu, J. C., Chattree, G. & Ren, P. Automation of amoeba polarizable force field
parameterization for small molecules. Theor. Chem. Acc. 131, 1138 (2012).

31. Zanette, C. et al. Toward learned chemical perception of force field typing
rules. J. Chem. Theory Comput. 15, 402–423 (2019).

32. Wang, J. et al. Development and testing of a general amber force field. J.
Comput Chem. 25, 1157–1174 (2004).

33. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the amber
Ff99sb protein force field. Proteins 78, 1950–1958 (2010).

34. Khoury, G. A., Bhatia, N. & Floudas, C. A. Hydration free energies calculated
using the amber Ff03 charge model for natural and unnatural amino acids and
multiple water models. Comput. Chem. Eng. 71, 745 (2014).

35. Jorgensen, W. L. & Tirado-Rives, J. The Opls [Optimized Potentials for Liquid
Simulations] potential functions for proteins, energy minimizations for
crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666
(1988).

36. Jorgensen, W., Maxwell, D. & Tirado-Rives, J. Development and testing of the
Opls all-atom force field on conformational energetics and properties of
organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

37. Cole, D. J. et al. Biomolecular force field parameterization via atoms-in-
molecule electron density partitioning. J. Chem. Theory Comput. 12,
2312–2323 (2016).

38. Kantonen, S. M. et al. Data-driven mapping of gas-phase quantum
calculations to general force field Lennard-Jones parameters. J. Chem. Theory
Comput. 16, 1115–1127 (2020).

39. Bayly, C. I. et al. A well-behaved electrostatic potential based method using
charge restraints for deriving atomic charges: the resp model. J. Phys. Chem.
97, 10269–10280 (1993).

40. Dauber-Osguthorpe, P. & Hagler, A. T. Biomolecular force fields: where have
we been, where are we now, where do we need to go and how do we get there?.
J. Computer-aided Mol. Des. 33, 133–203 (2019).

41. O’Toole, G. Everything Should Be Made as Simple as Possible, but Not
Simpler. 2011.

42. Davis, L., Handbook of Genetic Algorithms. (1991).
43. Vanderbilt, D. & Louie, S. G. A Monte Carlo simulated annealing approach to

optimization over continuous variables. J. Computational Phys. 56, 259–271
(1984).

44. Tkatchenko, A. & Scheffler, M. Accurate molecular Van Der Waals
interactions from ground-state electron density and free-atom reference data.
Phys. Rev. Lett. 102, 073005 (2009).

45. Sayle, R. 1st-Class Smarts Patterns. In EuroMUG 97. (1997).
46. Smarts Theory Manual. Santa Fe, New Mexico.
47. Weininger, D. Smiles, a chemical language and information system. 1.

Introduction to methodology and encoding rules. J. Chem. Inf. Computer Sci.
28, 31–36 (1988).

48. Ryckaert, J.-P. & Bellemans, A. Molecular dynamics of liquid alkanes. Faraday
Discuss. Chem. Soc. 66, 95–106 (1978).

49. Jorgensen, W. L. Quantum and statistical mechanical studies of liquids. 10.
Transferable intermolecular potential functions for water, alcohols, and ethers.
application to liquid water. J. Am. Chem. Soc. 103, 335–340 (1981).

50. Vanommeslaeghe, K. & MacKerell, A. D. Charmm additive and polarizable
force fields for biophysics and computer-aided drug design. Biochim. Biophys.
Acta (BBA) - Gen. Subj. 1850, 861–871 (2015).

51. Frenkel, M. et al. Xml-based iupac standard for experimental, predicted, and
critically evaluated thermodynamic property data storage and capture
(Thermoml)(Iupac Recommendations 2006). Pure Appl. Chem. 78, 541–612
(2006).

52. Kim, S. et al. Pubchem 2019 update: improved access to chemical data. Nucleic
Acids Res. 47, D1102–D1109 (2018).

53. Lide, D. R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book
of Chemical and Physical Data. (CRC-Press, 1995).

54. Eastman, P. et al. Openmm 4: a reusable, extensible, hardware independent
library for high performance molecular simulation. J. Chem. Theory Comput.
9, 461–469 (2013).

55. Eastman, P. & Pande, V. S. Ccma: a robust, parallelizable constraint method
for molecular simulations. J. Chem. Theory Comput. 6, 434–437 (2010).

56. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the shake
and rattle algorithm for rigid water models. J. Comput. Chem. 13, 952–962
(1992).

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-00395-w ARTICLE

COMMUNICATIONS CHEMISTRY |           (2020) 3:173 | https://doi.org/10.1038/s42004-020-00395-w |www.nature.com/commschem 11

https://doi.org/10.5281/zenodo.3940634
www.nature.com/commschem
www.nature.com/commschem


57. Mackerell, A. D. Empirical force fields for biological macromolecules:
overview and issues. J. Comput. Chem. 25, 1584–1604 (2004).

58. Chow, K.-H. & Ferguson, D. M. Isothermal-Isobaric molecular dynamics
simulations with Monte Carlo volume sampling. Computer Phys. Commun.
91, 283–289 (1995).

Acknowledgments
We thank the other members of the Open Force Field Initiative for useful discussions.
MS acknowledges support of the Austrian Science Fund (Erwin Schrödinger fellowship J-
4150). LPW acknowledges support from the ACS Petroleum Research Fund, award
#58158-DNI6. MKG acknowledges funding from the National Institute of General
Medical Sciences (GM61300). The contents of this paper are solely the responsibility of
the authors and do not necessarily represent the official views of the funders. MKG has
an equity interest in and is a co-founder and scientific advisor of VeraChem LLC.

Author contributions
MS and MKG conceived and designed the study. MS and SK performed the study. MS,
SK, LPW, and MKG analyzed the data. MS, LPW, and MKG contributed reagents/
materials/computational resources. MS and MKG wrote the paper. All authors have
reviewed the manuscript and have given approval to the final version.

Competing interests
The authors declare the following competing interest(s): MKG. has an equity interest in
and is a co-founder and scientific advisor of VeraChem LLC. All other authors declare no
competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42004-
020-00395-w.

Correspondence and requests for materials should be addressed to M.K.G.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-00395-w

12 COMMUNICATIONS CHEMISTRY |           (2020) 3:173 | https://doi.org/10.1038/s42004-020-00395-w |www.nature.com/commschem

https://doi.org/10.1038/s42004-020-00395-w
https://doi.org/10.1038/s42004-020-00395-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commschem

	Data-driven analysis of the number of Lennard–nobreakJones types needed in a force field
	Results
	LJ Models investigated in this study
	Performance of LJ typing models with RESP charges
	LJ parameter optimization is sensitive to initial values
	LJ typing models in the context of RESP2 charges

	Discussion
	Methods
	Implementation of Lennard Jones Models
	Optimization and evaluation of Lennard–nobreakJones parameters
	Simulation details

	Data availability
	References
	Acknowledgments
	Author contributions
	Competing interests
	Additional information




