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Structural equation models (SEMs) can be estimated using a variety of methods. For

complete normally distributed data, two asymptotically efficient estimationmethods exist:

maximum likelihood (ML) and generalized least squares (GLS). With incomplete normally

distributed data, an extension of ML called “full information” ML (FIML), is often the

estimation method of choice. An extension of GLS to incomplete normally distributed

data has never been developed or studied. In this article we define the “full information”

GLS estimator for incomplete normally distributed data (FIGLS). We also identify and

study an important application of the new GLS approach. In many modeling contexts,

the variables in the SEM are linear composites (e.g., sums or averages) of the raw items.

For instance, SEMs often use parcels (sums of raw items) as indicators of latent factors.

If data are missing at the item level, but the model is at the composite level, FIML is

not possible. In this situation, FIGLS may be the only asymptotically efficient estimator

available. Results of a simulation study comparing the new FIGLS estimator to the best

available analytic alternative, two-stage ML, with item-level missing data are presented.

Keywords: missing data, structural equation modeling, item-level missing data, parcels, generalized least squares

estimation

INTRODUCTION

This article proposes a new missing data estimator for incomplete normally distributed data under
an ignorable missingness mechanism (Little and Rubin, 2002). The context is structural equation
models (SEMs) and their special cases such as path analysis (Wright, 1921, 1934; Bollen, 1989). An
ignorable missing mechanism (Little and Rubin, 2002) can be either MCAR (missing completely at
random) orMAR (missing at random). Under anMCARmechanism, missingness does not depend
on any variables in the dataset. Under an MAR mechanism, missingness does not depend on any
variables in the dataset that also contain missing values. State-of-the-art methods for dealing with
ignorable missingness in the case of normal data include full information maximum likelihood
(FIML; Arbuckle, 1996; Allison, 2003) and multiple imputation (MI; Rubin, 1987; Schafer, 1997).
These approaches perform very similarly in large samples (Collins et al., 2001; Larsen, 2011; Yuan
et al., 2012). In fact, when all the assumptions are met, FIML, which is the extension of the complete
data maximum likelihood (ML) estimator, is asymptotically efficient. The FIML estimator is the
default estimator for missing data in SEM software. Thus, one could say that the problem ofmissing
data in the case when data are normally distributed and missingness is ignorable has been solved.
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However, there exists one very common modeling context
where FIML is not possible, namely when data are missing at
the item level, but the model of interest is at the composite
level. Variables in a path analysis model (of which regression
is a special case) are often scale scores, where each scale is a
linear composite (e.g., sum or average) of its corresponding items.
Indicators of latent factors in an SEM are often parcels (sums of
several raw items) rather than the raw items themselves (Little
et al., 2013); parceling is common to reduce model size or to
when the item-level measurement model is not of direct interest.
One cannot fit such a model using FIML in standard software
because the missingness is at the level of items whereas the model
is at the level of composites. To implement FIML, one would
need to specify a model using individual items as indicators
instead of using parcels or composites. For example, suppose
a researcher’s analytic plan was to run a multiple regression
model predicting negative affect from depression, stress, and
big-5 personality factors, using common scales to measure all
constructs. To implement FIML, the researcher would have to fit
a latent variable SEM with latent variables to represent each of
the 8 variables in the model, with as many reflective indicators as
there aremeasured scale items. Thus, if each scale were composed
of 10 items, fitting the item-level model would require fitting
an SEM with 8 latent variables and 80 indicators. This model
is substantially different than the analysis that the researcher
intended, as it involves specifying, testing, and interpreting a
joint factor structure for the items, which is an entirely different
research question. In addition, if the measurement model for
the items is not correctly specified, the structural parameter
estimates will also be incorrect (Rhemtulla, 2016). Moreover,
running such a model would almost certainly require a much
larger sample size than the originally planned multiple regression
model (MacCallum et al., 1999). If there had been no missing
data, the researcher would have simply averaged the items on
each scale and fit the regression or path model of interest to the
data. When item-level missing data arise, the researcher must
now find a statistically appropriate way to deal with it. Dealing
appropriately with missing data should not necessitate testing a
completely different model than the researcher intended.

In this paper, we assume that item-level data are continuous
and normally distributed. While this is not, strictly speaking,
a realistic assumption for the raw items, research has found
that items that have 5–7 categories can be safely treated as
continuous (Rhemtulla et al., 2012). Likert-type items with
5–7 categories are extremely common in psychological and
behavioral research. Further, when the model is at the composite
level, the misspecification of the distribution of the raw items that
comprise the scale (i.e., treating them as continuous when they
are ordinal) is likely to matter even less. For instance, studies
of the relative performance of categorical vs. normal multiple
imputation find, in the context of item-level missing data, that
imputation under the normal model does as well as or better than
imputation under the multinomial model, even when items are
binary or have three categories (Wu et al., 2015). Thus, we do not
consider the continuous treatment of items when interest is in the
composite-level model to be a very strict assumption in practice.

We now summarize existing approaches to dealing with
continuous item-level missing data when the model is at the
composite level. One ad-hoc approach is to set the composite
score to missing whenever any of the corresponding components
(raw items) are missing, and then run FIML on the resulting
dataset. This approach has been referred to as “scale-level” FIML.
This method throws away a lot of information, and at the limit
the researcher may be left with no data if all participants left at
least one item unanswered on each composite (Gottschall et al.,
2012).

Another ad-hoc approach is to create a composite score by
averaging all the available items on that composite for a given
participant. This approach has been referred to as “available-
case” ML (ACML; Savalei and Rhemtulla, 2017) or “proration”
(Mazza et al., 2015). This solution is equivalent to imputing
the participant’s scale mean for the missing items (Schafer and
Graham, 2002). The resulting composite scores typically do
not have any missing values, and the model is estimated on
the composite dataset using ML. If there is some missing data
remaining (e.g., some participants left all items blank), the model
is estimated on the composite dataset using FIML. ACML is
often the method that researchers resort to when they encounter
item-level missing data, because it seems to extract the most
information out of the raw data. While this method will often
work fine, it does not guarantee consistency, i.e., the property
that sample estimates will approach population parameter values
as the sample size grows large. For example, if raw items with
missing values have substantially different means and variances
than items with no missing values, consistency will not hold
(Schafer and Graham, 2002; Graham, 2003). In fact, neither
scale-level FIML nor available-case ML have the property of
consistency under a general ignorable missing data mechanism,
and for this reason we do not discuss them further. Finally,
a reviewer pointed out that a hybrid method is often used in
practice, whereby researchers impute the person-level mean for
the missing items if there are not too many of them, but if
the number of missing items per person is too great, the entire
composite is declared asmissing. Obviously, this approach suffers
from the same shortcomings.

Several theoretically justified alternatives are available to
researchers instead. These alternatives produce consistent
estimates under an ignorable missing data mechanism. The
first option is item-level multiple imputation (item-level MI).
Multiple imputation allows the user to treat missing data during
the imputation stage. Missing item scores are imputed under
the normal model. In the analysis stage, composite scores are
created within each imputed dataset, and the model is fit to
these composite scores using ML. The results are averaged across
imputations using standard formulae (Rubin, 1987). The second
option is two-stageML (TSML), recently proposed by Savalei and
Rhemtulla (2017). This approach represents the best currently
available analytic solution to the problem of item-level missing
data. It performs as well as or better than item-level MI. In fact,
for a large number of imputations, this approach can be thought
of as the analytic equivalent of item-level MI. The technical
details behind TSML will be summarized shortly.
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The third option is to run scale-level FIML while
incorporating a subset of the raw items (as many as possible)
into the model as auxiliary variables (Mazza et al., 2015). This
approach represents a partial solution because all of the raw
items cannot be used as auxiliary variables while the composite
score is also in the model. Thus, while the developers of this
approach refer to it as “FIML,” consistency and asymptotic
efficiency are approximated but not guaranteed. This approach
can also be rather unwieldy and difficult to implement. We will
not discuss it further.

Thus, TSML and item-level MI are theoretically most
appropriate for item-level missing data, and are equivalent in
large samples and with a large number of imputations. However,
TSML is not asymptotically efficient with normally distributed
item-level missing data, although its efficiency is fairly high. In
order to consider the problem of item-level missing data “solved,”
we are seeking a solution that produces an estimator that is
asymptotically efficient with normally distributed data. We now
define one such solution.

We draw upon the analogy with complete data, where two
asymptotically efficient estimationmethods are available for SEM
analysis when the data are normally distributed: ML and GLS
(generalized least squares; Browne, 1974; Bollen, 1989). The
main difference between these two normal-theory estimators is
that GLS uses sample covariance matrix instead of the model-
implied covariance matrix in the weight matrix. These methods
are asymptotically equivalent when the correct model is fit to
data (Shapiro, 1985; Yuan and Chan, 2005). In practice, the
GLS estimator is almost never used with complete data, because
research has shown that it is outperformed by ML (Ding et al.,
1995; Hu and Bentler, 1998; Olsson et al., 1999, 2000). However,
this does not mean that this method cannot be useful in a context
when ML is not available. There is also no reason to expect that
its performance with incomplete data will be the same as its
performance with complete data.

In this article we extend the normal-theory GLS estimator
used in SEM analysis to incomplete data, dubbing it FIGLS
(“full information” GLS). This extension results in a consistent
and asymptotically efficient estimator for incomplete normally
distributed data under an ignorable missing data mechanism.
For models that are based on the raw items, and when the
model is correct, the FIGLS estimator is asymptotically equivalent
to FIML. However, unlike FIML, which cannot be used to
treat item-level missing data when the model is based on the
composites, the FIGLS estimator is straight-forwardly adapted to
this situation. It is also asymptotically efficient with such data,
thus possessing theoretical advantages over TSML and item-level
MI.

The rest of this article is organized as follows. First, we review
the GLS estimator with complete data. Next, we present the
technical details of its extension, FIGLS, to incomplete data.
We then describe the extension of FIGLS to item-level missing
data. For completeness, we also present the technical details of
the comparison estimator for item-level missing data, TSML
(Savalei and Rhemtulla, 2017). Next, we summarize the results
of a simulation study comparing the FIGLS and TSML in the
context of an SEM model with parcels, where missingness is at
the item level. The simulation study varies sample size, percent

missing data, type of missing data mechanism, and strength of
inter-item correlations. We end with a discussion.

TECHNICAL DETAILS

ML and GLS Estimators with Complete
Normally Distributed Data
Let the model representation beµ = µ(θ),6 = 6(θ), whereµ is
the p×1 vector of populationmeans for p variables,6 is the p×p
population covariance matrix, and θ is the q × 1 vector of SEM
parameters (e.g., factor loadings). Let the corresponding sample
vector of means and sample covariance matrix be x and S. The
ML fit function is given by:

FML = tr
{
S6−1

}
+ log |6| − log |S| + (x−µ)′6−1(x−µ),

(1)

where µ = µ(θ) and 6 = 6(θ) are structured according to the
model, but this dependence on θ has been suppressed for clarity.

An important related fit function is the RLS (reweighted least
squares) fit function:

FRLS = (s− σ )′WRLS,cov(s− σ )+ (x−µ)′6−1(x− µ), (2)

where WRLS,cov = 0.5D′
p(6

−1 ⊗ 6−1)Dp, s = vechS and
σ = vech6 (i.e., non-redundant elements of the corresponding
matrices, vectorized), and Dp is the 0–1 duplication matrix of
order p (seeMagnus andNeudecker, 1999, for exact definitions of
the duplication matrix and the vech operator). The ML estimator
can be equivalently viewed as the minimizer of FML or of FRLS,
where the weight matrix in the latter fit function is iteratively
updated (Lee and Jennrich, 1979). Viewing the ML estimator as
theminimizer of FRLS reveals the parallel between theML and the
GLS estimators.

The GLS fit function is given by:

FGLS = (s− σ )′WGLS,cov(s− σ )+ (x− µ)′S−1(x− µ) (3)

where WGLS,cov = 0.5D′
p(S

−1 ⊗ S−1)Dp. Thus, while both the
ML and the GLS estimators assume normality, the ML estimator
uses the model-implied covariance matrix in the weight matrix of
the fit function (in reality, these are iteratively updated estimates,
as the true values are not known), while the GLS estimator uses
the sample covariance matrix and means in the weight matrix
(Bollen, 1989).

It is important to note, in order for the extension to
incomplete data to be clear, that WGLS,cov is an estimate of the
inverse of the asymptotic covariance matrix of s, and S−1 is an
estimate of the inverse of the asymptotic covariance matrix of x.
With complete data, x and S are independent, and the fit function
in (3) is split into two quadratic forms. Its alternative expression
is given by:

FGLS =

(
s − σ

x − µ

)′ (
WGLS,cov 0

0 S−1

) (
s − σ

x − µ

)
(4)

The block-diagonal matrix in the middle is the full weight matrix
WGLS. This is the weight matrix we will generalize to incomplete
data.
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Full-Information GLS Estimator for
Incomplete Normally Distributed Data
(FIGLS)
The mean and the covariance structure must be estimated jointly
with incomplete data, as they are no longer independent. For
this reason, it is helpful to rewrite the model representation as
β = β(θ), where β = (σ ′,µ′)′, a

[
0.5p

(
p+ 1

)
+ p

]
× 1 vector.

The FIML estimator (Arbuckle, 1996; Allison, 2003) is the
extension of theML estimator to incomplete data. Unfortunately,
it is no longer straight-forward to define this estimator as the
minimizer of a fit function analogous to FML. Further, summary
statistics analogous to x and S are not directly available with
incomplete data, and instead the estimate of θ is obtained directly
from the raw data by maximizing the incomplete data log-
likelihood under the proposed model. We omit the details as this
method is not directly relevant to the developments in this paper.

However, an important special case of the FIML approach
is necessary for the development of the GLS estimator for
incomplete data. If the incomplete data log-likelihood is
maximized under the saturated model (i.e., no structure is
imposed on µ and 6), the resulting “saturated” FIML estimates
µ̂ and 6̂ are the incomplete data analogs of x and S. These have
sometimes been referred to as the “EM means” and the “EM”
covariance matrix (e.g., Enders and Peugh, 2004), because they
are most straight-forwardly obtained via the application of the
EM algorithm (e.g., the norm package in R).

Because with incomplete data, µ̂ and 6̂ are no longer
independent, their joint asymptotic covariance matrix is needed.
Let the vector of saturated FIML estimates be β̂ = (σ̂ ′, µ̂′)′. Yuan
and Bentler (2000) gave an explicit expression for the estimate
of the inverse of the asymptotic covariance matrix of β̂ under
MCAR, and Savalei (2010) gave the corresponding expression
under MAR. The exact expressions are omitted here. We denote
the estimate of the asymptotic covariance matrix of β̂ by �̂β . The
weight matrix for the new GLS estimator with missing data is
then set toWFIGLS = �̂−1

β . The FIGLS fit function for incomplete
normally distributed data is given by:

FFIGLS = (β̂ − β)′WFIGLS(β̂ − β) (5)

This function parallels the expression in (4) for complete data.
As with complete data, the FIGLS and the FIML estimators are
asymptotically equivalent when the distributional assumptions
are met and the model is true. They are both asymptotically
efficient. However, the FIML estimator works quite well with
incomplete data, and thus there may not be much application
for the FIGLS estimator in the straight-forward situation where
the model is based on the raw items that contain missing data,
although its study and performance relative to FIML is certainly
encouraged.

The Application of FIGLS When the Model
Is at the Composite Level
We now define the extension of FIGLS to the situation when
data are missing at the item level while the model is at the
composite level. The FIML estimator is no longer possible
without specifying and fitting a model to the raw items. In

contrast, the FIGLS estimator is still available because the weight
matrix for the composite model is a straightforward function of
the item-level means and covariance matrix under a saturated
structure. FIGLS is also asymptotically efficient.

In this setup, the researcher is now interested in grouping
the p variables into k composites. It is not a requirement that
all composites have an equal number of items, and it may be
that some composites consist of a single item. Let C be the
k × p matrix of 0′s and 1′s that corresponds to the linear
transformation of the p components into the k composites. The
structural equation model of interest to the researcher is at the
composite level: µC = µC(θ), 6C = 6C(θ), where µC = Cµ

and 6C = C6C′ are the population means and covariances of
the composites. The parameter θ is now assumed to structure the
means and the covariances of the composite scores, not of the
original raw scores. As before, it is helpful to rewrite the model
in vectorized form as βC = βC(θ), where βC = (σ′C,µ

′
C)

′, a[
0.5k

(
k + 1

)
+ k

]
× 1 vector.

The corresponding saturated model estimates of the means
and covariances of the composites can be obtained from the
corresponding saturated model estimates for the raw items
by µ̂C = Cµ̂ and 6̂C = C6̂C′. We arrange these estimates
in a vector β̂C = (σ̂ ′

C, µ̂
′
C)

′. It is convenient to relate the
saturated estimates for the composites and the raw items, as

follows: β̂C = Cβ β̂ , where Cβ =

[
D+
k

(
C

⊗
C
)
Dp 0

0 C

]
, a

[
0.5k

(
k+ 1

)
+ k

]
×

[
0.5p

(
p+ 1

)
+ p

]
matrix, and D+

k
is the

Moore-Penrose inverse of the duplication matrix of order k
(Magnus and Neudecker, 1999). It follows that the asymptotic
covariance matrix of β̂C is related to the asymptotic covariance
matrix of β̂ as �̂βC = Cβ�̂βCβ

.

The weight matrix for the FIGLS estimator with composites is
given byWFIGLS,C = �̂−1

βC
, and the FIGLS fit function adapted to

composites is given by:

FFIGLS,C = (β̂C−βC)
′WFIGLS,C(β̂C − βC) (6)

Because the weight matrix is optimal in the sense that it is the
inverse of the asymptotic covariance matrix of β̂C (Browne, 1974;
Shapiro, 1985), if optimization is done with this weight matrix
in any software that allows for a custom weight matrix (such
as lavaan; Rosseel, 2012), the default printed standard errors
and tests statistic will be valid, and the parameter estimates will

TABLE 1 | True parameter values for the composite model.

Model 1 Model 2

Unstandardized factor loadings (for

each factor)

0.72, 0.84, 0.96 1.26, 1.47, 1.68

Standardized factor loadings (for each

factor)

0.36, 0.42, 0.48 0.52, 0.60, 0.69

Residual variances of indicators (for

each factor)

3.42, 3.23, 3.02 4.33, 3.76, 3.10

Factor regression coefficients

(F1->F2, F2->F3)

0.6, 0.6 0.6, 0.6

Factor residual variances (F2, F3) 0.64, 0.64 0.64, 0.64
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FIGURE 1 | Model 1 used to generate complete data. In model 2, first-order factor loadings were {0.6, 0.7, 0.8} instead. Variances of all observed and latent

variables are 1.

FIGURE 2 | Composite model, shown with true parameter values for Model 1. Standardized factor loadings for Model 1 are {0.363, 0.423, 0.484} for each

factor. The corresponding true parameter values for Model 2 are given in Table 1. Standardized factor loading values for Model 2 are {0.52, 0.60, 0.69}. These values

were derived algebraically from the corresponding values for the components; the derivations were verified empirically by fitting the analysis model to the population

covariance matrices of the composites. The analysis model was fit with (residual) factor variances fixed to their true values, and all loadings, latent regression

coefficients, and indicator residual variances freely estimated.

be asymptotically efficient. For completeness, we provide the
equations for the standard errors and the test statistic here.

The asymptotic covariance matrix of the FIGLS parameter
estimates θ̌ obtained by minimizing (6) is given by �̌θ =(
1̌′̂�

−1
βC

1̌

)−1
, where 1̌ =

∂βC(θ)
∂θ ′

∣∣∣
θ = θ̌

, the matrix of

model derivatives. Standard errors are obtained from the
diagonal elements of �̌θ . The model test statistic is given by
TFIGLS,C = (N − 1) FFIGLS,C(θ̌), where N is sample size. When
the model is correct, this statistic has an asymptotic chi-square
distribution with

[
0.5k

(
k+ 1

)
+ k

]
− q degrees of freedom.

The Two-Stage Estimator When the Model
Is at the Composite Level (TSML)
We now summarize the details of the TSML estimator (Savalei
and Rhemtulla, 2017), which will be used for comparison in the
simulation study. This approach is not asymptotically efficient,
unlike the FIGLS estimator. Its efficiency is high, however, and
because of the greater simplicity of its fit function it may be
preferred in smaller samples. The TSML fit function is:

FTSML = tr
{
6̂C6−1

}
+log |6| − log

∣∣6̂C

∣∣

+ (µ̂C − µ)′6−1(µ̂C − µ) (7)

This fit function is essentially the complete data ML fit function
in (1), but with the composite saturated estimates µ̂C and 6̂C

replacing x and S. As with FIGLS, the composite saturated
estimates are obtained using the equations µ̂C = Cµ̂ and 6̂C =

C6̂C′, where µ̂ and 6̂ are the saturated estimates for the raw
items (e.g., obtained via the norm package in R). In words, the
TSML parameter estimates θ̃ are obtained by “forgetting” there
was ever missing data. This method has intuitive appeal, but
if one simply plugs in the saturated estimates µ̂C and 6̂C into
standard SEM software and fits the model, the default standard
errors and test statistic will be incorrect. This method is not
asymptotically efficient and requires adjustments to standard
errors and test statistic (Savalei, 2014). These corrections require
special programming as they are currently not automated in
software; however, they will soon be available in lavaan (Rosseel,
2012). For completeness, we give the exact equations here.

Let the model-implied means and covariances
constructed from TSML estimates θ̃ be µ̃C and 6̃C,
and their vectorized version β̃C = ((vech6̃C)

′, µ̃′
C)

′.

The correct asymptotic covariance matrix of θ̃ is given

by �̃θ =
(
1̃′H̃1̃

)−1
1̃′H̃�̂ßC H̃1̃

(
1̃′H̃1̃

)−1
, where 1̃

is the matrix of model derivatives evaluated at θ̃ , and

H̃ =

[
0.5D′

k
(6̃−1

C ⊗ 6̃−1
C )Dk 0

0 6̃−1
C

]
, the complete-data
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normal-theory weight matrix evaluated at θ̃ . Note that H̃
has the same form as the RLS (and therefore, asymptotically,
ML) weight matrix in equation (2) and the GLS matrix in
equations (3) and (4). Standard errors for θ̃ are obtained
from the diagonal elements of �̃θ . A good model test statistic
is the normal-theory residual-based statistic TTSML = (N −

1)
(
β̂C − β̃C

)′ (
�̂−1

βC
− �̂−1

βC
1̃

(
1̃′�̂−1

βC
1̃

)−1
1̃′�̂−1

βC

) (
β̂C − β̃C

)

(Savalei and Bentler, 2009). This statistic has an asymptotic chi-
square distribution with

[
0.5k

(
k+ 1

)
+ 1

]
− q degrees of

freedom.

METHODS

We conducted a simulation study to provide a first evaluation of
the new FIGLS estimator when themodel is based on composites.
The design of this study parallels that of Savalei and Rhemtulla
(2017). Because the best-performing analytic method in that
study was TSML, we include it as a comparison method.

TABLE 2 | Number of useable replications across study conditions.

N Missing % Model1 Model2

mech Miss FIGLS TSML FIGLS TSML

200 MCAR 5 942 943 1,000 1,000

15 921 916 1,000 1,000

30 873 874 1,000 1,000

MAR.lin 5 949 947 1,000 1,000

15 926 927 1,000 1,000

30 851 858 1,000 1,000

MAR.nl 5 939 948 1,000 1,000

15 920 931 1,000 1,000

30 851 861 1,000 1,000

400 MCAR 5 998 999 1,000 1,000

15 998 999 1,000 1,000

30 992 988 1,000 1,000

MAR.lin 5 999 1,000 1,000 1,000

15 997 997 1,000 1,000

30 989 990 1,000 1,000

MAR.nl 5 998 998 1,000 1,000

15 994 996 1,000 1,000

30 992 991 1,000 1,000

600 MCAR 5 1,000 1,000 1,000 1,000

15 1,000 1,000 1,000 1,000

30 999 999 1,000 1,000

MAR.lin 5 1,000 1,000 1,000 1,000

15 1,000 1,000 1,000 1,000

30 998 998 1,000 1,000

MAR.nl 5 1,000 1,000 1,000 1,000

15 1,000 1,000 1,000 1,000

30 999 999 1,000 1,000

“MAR.lin” and “MAR.nl” stand for MAR-linear and MAR-nonlinear missing mechanisms,

respectively.

Data Generation
The number of raw items in the simulated data was set to p = 27,
and the number of composites created from these raw items was
set to k = 9. In this study, all composites consisted of 3 items.
The raw items were set to follow a hierarchical factor model with
9 first-order and 3 second-order factors. Each first order factor
had three indicators, and each second order factor had three first-
order factors as indicators. Two models were used. In Model 1,
the values of first-order factor loadings for each first-order factor
were 0.3, 0.4, and 0.5 (averaging to 0.4); inModel 2, they were 0.6,
0.7, and 0.8 (averaging to 0.7). Values of the second-order factor
loadings were set to 0.6, 0.7, and 0.8 for each second-order factor
(averaging to 0.7) in both models. Second-order Factor 2 was
regressed on second-order Factor 1 with β = 0.6; second-order
Factor 3 was regressed on second-order Factor 2 with β = 0.6.

The variances of all observed and latent variables were 1.
Nine composites were formed out of the 27 raw items by

adding up the 3 indicators of each of the 9 first-order factors, thus
creating parcels consisting of indicators of first-order factors. The
correct model for the composites, which can be derived from the
model for the raw items, is a 3-factor model with three indicators
per factor, with standardized loadings of each factor equal to
0.34, 0.40, 0.46 for Model 1, and 0.46, 0.54, and 0.62 for Model
2. Unstandardized parameter values for the composite models
are summarized in Table 1. The raw model for the 27 items and
the parceled model for the 9 items are shown in Figures 1, 2,
respectively.

Complete data on the raw items were generated in R by
drawing samples from amultivariate normal distribution. Sample
sizes were set to N = 200, 400, or 600. One thousand datasets
were drawn in each condition. Next, nine incomplete datasets
were created from each complete dataset. These corresponded to
the intersection of the three “percent missing data” conditions
and the three “missingness mechanism” conditions, described
next.

Percent missing data was set to be 5, 15, or 30% for 15 out of
the 27 raw items. The remaining items had complete data. The 15
items with missing data were partitioned into 6 sets: {X1, X5,X9},
{X10, X11}, {X14, X15,X16,X18}, {X20, X21}, {X22, X24}, and
{X25, X26}. Items within each set were missing jointly, while
missingness across sets was generated independently.

The missing data mechanisms were MCAR, MAR-linear, and
MAR-nonlinear. MCARmissingness was generated by randomly
picking a row of the dataset and creating missing data for the
items within a set, and repeating until the desired percent of
missing data per item was reached, for each of the six sets. MAR
missingness was generated by using a set of six complete items
{X2, X12,X13,X19,X23,X27} as conditioning variables for each of
the six sets of incomplete items: For a randomly picked row, the
corresponding set was deleted if the corresponding conditioning
variable was >0 (MAR-linear) or >0.67 in absolute value (MAR-
nonlinear), repeating until the desired percent of missing data per
item was reached.

Implementation of Methods
Both FIGLS and TSML implementation require the saturated
FIML estimates µ̂ and 6̂ (arranged in a vector β̂). These
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TABLE 3 | Average bias in factor loadings and latent regression coefficients across all study conditions.

N Missing % Factor loadings Latent regression coefficients

mech Miss Model 1 Model 2 Model 1 Model 2

FIGLS TSML FIGLS TSML FIGLS TSML FIGLS TSML

200 MCAR 5 −0.006 −0.004 −0.037 −0.015 0.093 0.071 0.035 0.017

15 −0.003 0.001 −0.038 −0.016 0.114 0.085 0.038 0.019

30 0.004 0.009 −0.041 −0.020 0.132 0.104 0.046 0.025

MAR.lin 5 −0.010 −0.007 −0.037 −0.015 0.105 0.082 0.034 0.017

15 −0.005 −0.003 −0.038 −0.016 0.111 0.092 0.035 0.017

30 0.009 0.006 −0.037 −0.015 0.099 0.112 0.037 0.018

MAR.nl 5 −0.008 −0.009 −0.037 −0.015 0.096 0.090 0.035 0.017

15 −0.003 −0.001 −0.037 −0.015 0.111 0.084 0.037 0.018

30 0.005 0.010 −0.039 −0.013 0.118 0.092 0.040 0.019

400 MCAR 5 −0.008 −0.009 −0.019 −0.008 0.040 0.037 0.015 0.006

15 −0.011 −0.012 −0.019 −0.007 0.050 0.042 0.015 0.006

30 −0.010 −0.010 −0.017 −0.006 0.065 0.048 0.015 0.006

MAR.lin 5 −0.009 −0.009 −0.019 −0.008 0.037 0.032 0.015 0.006

15 −0.009 −0.009 −0.018 −0.007 0.046 0.039 0.015 0.006

30 −0.005 −0.006 −0.019 −0.007 0.055 0.049 0.016 0.006

MAR.nl 5 −0.008 −0.008 −0.019 −0.008 0.037 0.030 0.015 0.006

15 −0.008 −0.008 −0.019 −0.007 0.038 0.033 0.015 0.006

30 −0.012 −0.009 −0.020 −0.008 0.062 0.051 0.017 0.007

600 MCAR 5 −0.007 −0.006 −0.010 −0.003 0.030 0.023 0.009 0.003

15 −0.007 −0.006 −0.010 −0.003 0.032 0.025 0.009 0.003

30 −0.008 −0.007 −0.010 −0.003 0.047 0.036 0.010 0.004

MAR.lin 5 −0.007 −0.006 −0.010 −0.002 0.030 0.023 0.009 0.003

15 −0.007 −0.007 −0.009 −0.002 0.032 0.025 0.008 0.002

30 −0.008 −0.007 −0.009 −0.002 0.041 0.036 0.009 0.003

MAR.nl 5 −0.008 −0.007 −0.011 −0.003 0.030 0.023 0.009 0.003

15 −0.006 −0.006 −0.010 −0.002 0.033 0.026 0.009 0.003

30 −0.008 −0.006 −0.010 −0.002 0.044 0.036 0.009 0.002

Shaded cells contain bias values that are >0.05 in absolute value.

were obtained by running the saturated model on the full 27-
item incomplete datasets using lavaan 0.5–18 (Rosseel, 2012).
The associated asymptotic covariance matrix �̂β was also
obtained from lavaan. The corresponding saturated estimates
of the composites, µ̂C and 6̂C (arranged in a vector β̂C)
and their associated asymptotic covariance matrix, �̂βC , were
computed using the equations relating these quantities (see
Section Technical Details).

To obtain TSML estimates, the correct model for composites
was fit to data using the complete data ML estimation in lavaan,
with µ̂C and

∑̂
C supplied as “sample” means and covariance

matrix. The correct standard errors and the normal-theory
residual-based statistic were computed in R using the equations
in Section Technical Details. The matrix of model derivatives 1̃

necessary for these computations was obtained from lavaan.
To obtain FIGLS estimates, the correct model for composites

was fit using WLS estimation in lavaan, with the weight
matrix specified to be �̂−1

βC
(lavaan allows for a custom weight

matrix specification, using the “wls.v” option). Default lavaan

computations of standard errors and the model chi-square were
used, as these are already correct for asymptotically efficient
estimators.

For both methods, the model for the composites was fit with
the variance of Factor 1 and the residual variances of Factors 2
and 3 fixed to their true values for identification. All loadings,
latent regression coefficients, and indicator residual variances
were freely estimated. Sample syntax for both TSML and FIGLS
is provided on the Open Science Framework.

Outcome Variables
The following dependent variable measures were used to
compare the two methods:

• Number of useable replications (after removing convergence
failures, condition codes, and outliers)

• Bias of parameter estimates
• Empirical standard deviations of parameter estimates (a

measure of efficiency)
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TABLE 4 | Average efficiency estimates (empirical standard errors) for factor loadings and latent regression coefficients across all study conditions.

N Missing % Factor loadings Latent regression coefficients

mech Miss Model 1 Model 2 Model 1 Model 2

FIGLS TSML FIGLS TSML FIGLS TSML FIGLS TSML

200 MCAR 5 0.282 0.295 0.228 0.227 0.499 0.439 0.167 0.156

15 0.315 0.315 0.237 0.236 0.615 0.564 0.181 0.167

30 0.374 0.383 0.254 0.255 0.651 0.650 0.217 0.185

MAR.lin 5 0.287 0.282 0.229 0.228 0.550 0.481 0.165 0.156

15 0.307 0.303 0.237 0.236 0.588 0.543 0.171 0.163

30 0.365 0.359 0.256 0.257 0.554 0.659 0.183 0.178

MAR.nl 5 0.288 0.288 0.229 0.228 0.492 0.531 0.163 0.156

15 0.315 0.319 0.240 0.238 0.614 0.504 0.177 0.164

30 0.382 0.370 0.262 0.261 0.643 0.624 0.196 0.183

400 MCAR 5 0.198 0.189 0.158 0.158 0.258 0.318 0.103 0.101

15 0.201 0.200 0.163 0.163 0.271 0.273 0.108 0.106

30 0.230 0.226 0.173 0.173 0.394 0.328 0.110 0.109

MAR.lin 5 0.189 0.188 0.158 0.158 0.240 0.260 0.104 0.102

15 0.199 0.199 0.163 0.163 0.325 0.337 0.108 0.106

30 0.225 0.228 0.175 0.175 0.345 0.368 0.113 0.111

MAR.nl 5 0.189 0.189 0.159 0.159 0.251 0.256 0.104 0.102

15 0.201 0.203 0.165 0.165 0.248 0.270 0.107 0.105

30 0.226 0.227 0.178 0.178 0.372 0.368 0.115 0.112

600 MCAR 5 0.152 0.152 0.130 0.130 0.193 0.192 0.085 0.085

15 0.158 0.159 0.133 0.133 0.202 0.201 0.086 0.086

30 0.178 0.178 0.143 0.143 0.302 0.258 0.094 0.093

MAR.lin 5 0.152 0.152 0.130 0.130 0.191 0.187 0.085 0.084

15 0.159 0.160 0.134 0.134 0.199 0.198 0.088 0.087

30 0.178 0.179 0.143 0.144 0.233 0.262 0.093 0.092

MAR.nl 5 0.152 0.152 0.130 0.130 0.193 0.190 0.085 0.085

15 0.161 0.161 0.135 0.135 0.206 0.204 0.088 0.087

30 0.181 0.183 0.146 0.146 0.274 0.283 0.095 0.094

The winning method is bolded in each condition.

• Root mean square error of parameter estimates (a joint
measure of bias and efficiency)

• Coverage of 95% confidence intervals (a combined measure of
bias and quality of standard error estimates)

• Type I error rates of the model test statistic.

An outlier was defined as a parameter estimate of either a factor
loading or a latent regression coefficient that exceeded 10 in
absolute value. Including replications where estimates were this
far from their true values (see Table 1) would bias the summary
statistics across replications.

Bias was computed as the average deviation of each parameter
estimate from its true value across replications. Empirical
standard deviations were computed as the square-root of the
average squared difference between the parameter estimate and
its average in that cell. Coverage was computed as the number
of times out of the number of useable replications that a
95% confidence interval (CI) contained the true value of the
parameter. To simplify presentation, all these measures were

further averaged across parameter estimates of each type. Results
for residual variances and for means were not examined as these
parameters are rarely relevant in confirmatory factor analysis.
Thus, the results were examined jointly for the 9 factor loadings
and for the 2 regression coefficients. Finally, Type I error rates
were computed as the number of times out of the number of
useable replications that a test statistic produced a p < 0.05.

RESULTS

Number of Usable Replications
Convergence failures, condition codes, and outliers were
generally limited to Model 1, and were highest in number with
N = 200. The number of problematic replications outside of
this intersection of conditions was negligible. For Model 1 with
N = 200, the GLS estimator produced greater convergence
rates, but more condition codes and outliers. As a result, the
total number of usable replications in these conditions was very
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TABLE 5 | Average root mean square error estimates for factor loadings and latent regression coefficients across all study conditions.

N Missing % Factor loadings Latent regression coefficients

mech Miss Model 1 Model 2 Model 1 Model 2

FIGLS TSML FIGLS TSML FIGLS TSML FIGLS TSML

200 MCAR 5 0.011 0.010 0.037 0.015 0.093 0.071 0.035 0.017

15 0.010 0.010 0.038 0.016 0.114 0.085 0.038 0.019

30 0.010 0.016 0.041 0.020 0.132 0.104 0.046 0.025

MAR.lin 5 0.013 0.011 0.037 0.015 0.105 0.082 0.034 0.017

15 0.010 0.011 0.038 0.016 0.111 0.092 0.035 0.017

30 0.011 0.012 0.037 0.015 0.099 0.112 0.037 0.018

MAR.nl 5 0.012 0.012 0.037 0.015 0.096 0.090 0.035 0.017

15 0.010 0.011 0.037 0.015 0.111 0.084 0.037 0.018

30 0.014 0.020 0.039 0.013 0.118 0.092 0.040 0.019

400 MCAR 5 0.011 0.011 0.019 0.008 0.040 0.037 0.015 0.006

15 0.014 0.013 0.019 0.007 0.050 0.042 0.015 0.006

30 0.015 0.014 0.017 0.006 0.065 0.048 0.015 0.006

MAR.lin 5 0.010 0.011 0.019 0.008 0.037 0.032 0.015 0.006

15 0.010 0.010 0.018 0.007 0.046 0.039 0.015 0.006

30 0.009 0.009 0.019 0.007 0.055 0.049 0.016 0.006

MAR.nl 5 0.009 0.010 0.018 0.007 0.037 0.030 0.015 0.006

15 0.010 0.010 0.019 0.007 0.038 0.033 0.015 0.006

30 0.013 0.011 0.020 0.008 0.062 0.051 0.017 0.007

600 MCAR 5 0.009 0.007 0.010 0.005 0.030 0.023 0.009 0.003

15 0.009 0.008 0.010 0.005 0.032 0.025 0.009 0.003

30 0.010 0.009 0.010 0.006 0.047 0.036 0.010 0.004

MAR.lin 5 0.008 0.007 0.010 0.005 0.030 0.023 0.009 0.003

15 0.009 0.008 0.009 0.006 0.032 0.025 0.008 0.004

30 0.010 0.009 0.009 0.005 0.041 0.036 0.009 0.003

MAR.nl 5 0.009 0.008 0.011 0.005 0.030 0.023 0.009 0.003

15 0.008 0.007 0.010 0.006 0.033 0.026 0.009 0.004

30 0.009 0.007 0.010 0.006 0.044 0.036 0.009 0.006

The winning method is bolded in each condition.

similar for the two methods. Table 2 gives the number of usable
replications in all study conditions. It is clear that one cannot
recommend one method over another based on the number of
useable replications. The remaining results are based on these
replications only.

Bias of Parameter Estimates
Average bias in the loadings and the latent regression coefficients
was generally small for both methods and across all study
conditions. As expected, bias decreased with sample size. The
results are shown inTable 3. These results correspond to raw bias,
and should be interpreted as the average deviations from the true
parameter values. As Table 1 shows, the unstandardized values
of the factor loadings were quite large. From this perspective,
the largest observed value of the average bias for the factor
loadings, which was 0.01, is tiny. On the other hand, the latent
regression coefficients were 0.6 in the population, whereas the
largest observed value of the average bias was 0.132 for FIGLS
and 0.112 for TSML (both underModel 1). However, these values

improved quite quickly with increasing sample size, even in the
worst missing data conditions.

If the performance of the FIGLS method were being evaluated
on an absolute metric, the observed bias values would be deemed
satisfactory. However, relative to TSML, the FIGLS method does
show considerably more bias, consistently across most study
conditions. This pattern persists even at the largest sample sizes.
These results suggest that while both methods are unbiased
asymptotically, in finite samples the simpler and more stable
TSMLmethod performs better, though these differences aremore
of theoretical than of practical interest.

Efficiency of Parameter Estimates
Average empirical standard deviations of factor loadings and
latent regression coefficient estimates are shown in Table 4.
The winning method is bolded in each condition (each pair of
FIGLS and TSML columns). In general, efficiency estimates are
very similar for the two methods, and they are often identical
at the largest studied sample size. However, it is clear that

Frontiers in Psychology | www.frontiersin.org 9 May 2017 | Volume 8 | Article 767

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Savalei and Rhemtulla Normal Theory GLS for Missing Data

TABLE 6 | Average coverage for factor loadings and latent regression coefficients across all study conditions.

N Missing % Factor loadings Latent regression coefficients

mech Miss Model 1 Model 2 Model 1 Model 2

FIGLS TSML FIGLS TSML FIGLS TSML FIGLS TSML

200 MCAR 5 95.9 94.4 94.6 94.0 94.4 90.9 97.5 95.8

15 96.1 94.3 94.6 94.0 93.2 89.7 97.0 95.2

30 95.8 93.8 94.2 93.6 92.7 88.6 96.9 95.4

MAR.lin 5 95.7 94.4 94.7 94.2 94.5 91.1 97.5 96.3

15 95.6 94.0 94.3 93.9 93.0 90.5 97.2 95.6

30 95.3 93.2 94.3 93.4 93.1 89.9 96.8 95.3

MAR.nl 5 95.8 94.3 94.6 94.0 93.9 90.9 97.5 96.2

15 95.8 94.4 94.2 93.5 94.0 90.8 97.0 95.3

30 95.9 93.7 94.1 93.5 93.4 88.5 96.4 94.8

400 MCAR 5 95.3 94.3 94.8 94.7 94.7 92.8 96.6 95.9

15 94.9 93.8 94.5 94.6 94.5 92.3 96.4 95.7

30 95.0 93.8 94.8 94.7 94.9 92.2 96.4 95.8

MAR.lin 5 95.0 94.1 94.6 94.6 95.4 93.8 96.6 95.8

15 95.2 94.2 94.7 94.6 94.9 93.1 96.5 95.4

30 95.2 94.2 94.4 94.2 94.0 91.7 96.1 95.2

MAR.nl 5 95.2 94.3 94.5 94.4 95.2 93.5 96.2 95.6

15 95.3 94.1 94.7 94.7 94.6 92.9 96.7 95.6

30 95.3 94.2 94.4 94.1 94.8 91.9 96.2 95.4

600 MCAR 5 94.9 94.4 94.7 94.5 94.4 93.1 95.5 95.0

15 95.0 94.5 94.9 94.7 94.2 92.7 95.0 94.3

30 94.6 94.1 94.5 93.9 93.7 92.3 94.7 93.8

MAR.lin 5 94.7 94.2 94.7 94.4 94.5 93.4 95.3 94.5

15 94.9 94.4 94.7 94.4 94.2 93.5 95.2 94.3

30 94.8 94.3 94.5 94.3 94.0 92.5 95.3 94.6

MAR.nl 5 94.6 94.2 94.8 94.5 94.3 93.1 95.2 94.8

15 94.7 94.2 94.6 94.4 93.8 93.1 95.4 94.5

30 94.8 94.0 94.5 94.0 94.0 92.6 94.2 93.8

Coverage rates <93% are bolded. Coverage rates >97% are italicized.

FIGLS’s theoretical efficiency advantage does not as a general
rule translate into an empirical efficiency advantage, at least
in the conditions and sample sizes studied. At N = 600,
FIGLS does have slightly smaller empirical standard deviations
for factor loadings estimates in many conditions, but TSML
has slightly smaller empirical standard deviations for latent
regression coefficients. In smaller sample sizes, TSML tends
to have smaller empirical standard deviations on average. The
differences are againmore of theoretical than of practical interest.
Table 5 gives the RMSEs. The pattern of results here is very
similar to that for bias (Table 3), which is unsurprising given
that RMSEs are a joint measure of bias and efficiency, and the
two methods did not differ very much on efficiency (Table 4). As
with bias, TSML has smaller RMSEs than does FIGLS in most
conditions, but both methods have low RMSEs.

Coverage of 95% Confidence Intervals
Coverage is a joint measure of bias and the quality of the
estimated (rather than empirical) standard errors (that is, how
close these standard errors come to estimating the actual

observed empirical efficiency). Coverage results are shown in
Table 6. Coverage rates <93% are bolded, whereas coverage rates
>97% are italicized. With factor loadings, FIGLS has optimal
coverage in all study conditions. TSML does mostly well, but
exhibits lower than optimal coverage in some conditions (never
dropping below 93%, however), particularly when the sample size
is small or the proportion of missing data is large. Regarding
latent regression coefficients, TSML does not do well in Model
1, exhibiting coverage as low as 88% for the most difficult
intersection of conditions. This behavior improves with sample
size but coverage for TSML is frequently below optimal even at
N = 600. On the other hand, FIGLS has near optimal coverage
in almost all conditions. At N = 200, coverage for FIGLS tends
to be a bit high, exceeding 97% in a few conditions.

Type I Error Rates
Rejection rates of the chi-square tests of fit are given in Table 7.
Values below 4% and above 6% are bolded. While there are
quite a few conditions where the rates deviate from 5% by more
than 1 percentage point, this deviation is never very strong.
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TABLE 7 | Type I error rates across all study conditions.

N Missing % Model 1 Model 2

mech Miss FIGLS TSML FIGLS TSML

200 MCAR 5 3.0 3.3 5.7 5.7

15 3.9 4.4 4.8 5.0

30 6.5 6.9 5.1 5.2

MAR.lin 5 3.0 3.1 4.6 5.0

15 3.0 3.8 6.1 6.2

30 5.4 6.1 6.5 6.6

MAR.nl 5 2.3 3.0 4.7 4.6

15 3.2 3.3 4.7 4.7

30 4.2 4.3 5.2 5.3

400 MCAR 5 4.8 4.8 3.1 3.1

15 4.8 5.0 4.9 4.9

30 6.1 6.2 4.3 4.3

MAR.lin 5 4.1 4.0 3.6 3.6

15 4.9 5.0 4.3 4.3

30 6.5 6.7 3.7 3.8

MAR.nl 5 4.7 4.6 3.4 3.4

15 5.4 5.4 4.8 4.9

30 5.5 5.5 5.0 5.0

600 MCAR 5 5.5 5.5 4.2 4.1

15 5.6 5.6 4.6 4.6

30 5.0 5.0 4.9 4.9

MAR.lin 5 5.9 6.0 3.7 3.7

15 5.4 5.4 4.4 4.3

30 5.1 5.2 4.7 4.7

MAR.nl 5 5.4 5.5 4.3 4.3

15 6.5 6.5 4.8 4.8

30 6.0 6.1 4.9 4.9

Rejection rates below 4% and above 6% are bolded.

Rejection rates never exceed 6.7% in any condition. The lowest
observed value is 2.3%. In general, under-rejection was most
common under Model 1 with N = 200. Most importantly
for the present paper, there is not much difference in rejection
rates across the two methods. The normal theory residual-based
chi-square associated with the TSML estimator and the usual
minimum fit function chi-square associated with the FIGLS
estimator appear to produce highly similar rejection rates. Of
course, both statistics are asymptotically chi-square distributed
with normal data, but in even in small samples, the differences are
minor.

DISCUSSION

This article proposed a new missing data estimator for
incomplete normally distributed data, “full information”
generalized least squares (FIGLS). The new estimator is the
generalization of the GLS estimator to incomplete data. With
complete data, the GLS estimator is not used often, because
it tends to be outperformed by ML (e.g., Olsson et al., 2000).
However, an extension to incomplete data has not been proposed

or studied before. Importantly, the FIGLS estimator is further
extended to be applicable to item-level missing data. Item-level
missing data arise in many contexts. In the context of regression
or path analysis, variables in the model are often scale scores
composed of individual items. In the context of SEM, latent
variable models are often built for parcels (sums of indicators)
and not for raw indicators. Parcels are particularly useful when
the sample size is small and when the measurement model is
not of direct interest (Little et al., 2013). In both these examples,
item-level missing data are quite likely to occur. Common ad-hoc
solutions such as computing composite scores based on all
available items or treating the composite score as missing if any
of the items are missing are unsatisfactory, as they lose efficiency
at best and create bias at worst.

In contrast, the newly proposed FIGLS estimator yields
consistent parameter estimates under MAR and is asymptotically
efficient. The comparison method used in the simulation
presented here, two-stage ML (TSML; Savalei and Rhemtulla,
2017), is also consistent under MAR, but is not asymptotically
efficient, though its efficiency loss is very small. TSML
is essentially the analytic equivalent of item-level multiple
imputation. It is worth repeating that the most popular analytic
method for missing data treatment, FIML, is not possible for
item-level missing data without invoking an item-level model
that would be estimated first—as in most cases this model is not
of direct interest to the researcher, this method is not desirable.

This article also presented the results of a simulation study
comparing FIGLS and TSML with item-level missing data in
the context of an SEM with parcels. These results show that
the two methods perform very similarly. From a practical
standpoint, either method can be successfully used with item-
level missing data, and would represent a vast improvement over
ad-hoc approaches. Bias in parameter estimates was in general
negligible for factor loadings but was considerable for latent
regression coefficients at the smallest sample size; however, it
diminished quickly with increasing sample size. Coverage was
worse for latent regression coefficients than for factor loadings,
and in general required a larger sample size. Rejection rates
were acceptable and sufficiently close to nominal in most study
conditions.

The differences between the methods were usually minor
from a practical standpoint. TSML exhibited a much smaller
bias than FIGLS in many conditions, but while this difference
is theoretically interesting, it was of little practical significance.
Efficiency estimates for FIGLS and TSML were quite similar.
FIGLS had optimal coverage for both factor loadings and latent
regression coefficients in most conditions, while TSML had some
suboptimal coverage in some conditions, particularly for latent
regression coefficients. The methods did not differ much in terms
of the chi-square statistic rejection rates.

This study represents a first preliminary investigation of
the GLS approach to missing data. Further study of FIGLS is
encouraged. TSML is also a relatively new method for item-level
missing data that requires further study. We hope that both of
these methods will soon be automated in popular software. We
share sample code that is implemented in R (and heavily relies on
the lavaan package) on the Open Science Framework.
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