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Purpose: Metal objects present in x-ray computed tomography (CT) scans are accompanied by physi-
cal phenomena that render CT projections inconsistent with the linear assumption made for analytical
reconstruction. The inconsistencies create artifacts in reconstructed images. Metal artifact reduction
algorithms replace the inconsistent projection data passing through metals with estimates of the true
underlying projection data, but when the data estimates are inaccurate, secondary artifacts are gener-
ated. The secondary artifacts may be as unacceptable as the original metal artifacts; therefore, better
projection data estimation is critical. This research uses computer vision techniques to create better
estimates of the underlying projection data using observations about the appearance and nature of
metal artifacts.
Methods: The authors developed a method of estimating underlying projection data through the use
of an intermediate image, called the prior image. This method generates the prior image by segment-
ing regions of the originally reconstructed image, and discriminating between regions that are likely
to be metal artifacts and those that are likely to represent anatomical structures. Regions identified as
metal artifact are replaced with a constant soft-tissue value, while structures such as bone or air pock-
ets are preserved. This prior image is reprojected (forward projected), and the reprojections guide the
estimation of the underlying projection data using previously published interpolation techniques. The
algorithm is tested on head CT test cases containing metal implants and compared against existing
methods.
Results: Using the new method of prior image generation on test images, metal artifacts were elimi-
nated or reduced and fewer secondary artifacts were present than with previous methods. The results
apply even in the case of multiple metal objects, which is a challenging problem. The authors did
not observe secondary artifacts that were comparable to or worse than the original metal artifacts, as
sometimes occurred with the other methods. The accuracy of the prior was found to be more critical
than the particular interpolation method.
Conclusions: Metals produce predictable artifacts in CT images of the head. Using the
new method, metal artifacts can be discriminated from anatomy, and the discrimination can
be used to reduce metal artifacts. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4749931]

Key words: metal artifact, computed tomography, image segmentation, sinogram in-painting, beam
hardening

I. INTRODUCTION

When metal objects are present in x-ray computed tomog-
raphy (CT) scans, they are accompanied by bright and dark
shadows and streaks, collectively called metal artifacts. These
artifacts are due to physical processes that cause the assump-
tion of linearity in the reconstruction to break down, so that
the scanner projections cannot be accurately reconstructed
using filtered backprojection or Radon transform inversion.
The artifacts obscure information about anatomical structures,
making it difficult for radiologists to correctly interpret the
images or for computer programs to analyze them. The prob-
lem has existed for many years,1, 2 and there has been re-

cent progress, but comparisons across different methods have
not been made other than with linear interpolation across the
metal traces.1–13 As a result, there is no robust or widely ac-
cepted solution, and it continues to be a challenging research
problem.

The separation of artifact from real tissue is not a trivial
task. The CT number (voxel intensity) ranges of metal arti-
facts and anatomical structures overlap, as do their gradient
ranges. Metal artifact reduction (MAR) algorithms operate in
projection space, so that the scanner projection samples, i. e.,
measured ray-sums, that do not pass through metal contribute
to the final image, along with estimated ray-sums that replace
the measured ray-sums passing through the metal. In this
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research, we improve upon a class of MAR algorithms based
on sinogram in-painting.1–13 Sinogram in-painting methods
are vulnerable to the misrepresentation of anatomical edges
that overlap the metal traces. Various algorithms have tried
to address this problem.3–8, 12, 13 We segment regions contami-
nated by metal artifacts from anatomical structures in the orig-
inally reconstructed image, henceforth called the original im-
age. Voxel values in regions affected by artifacts are replaced
with values from surrounding regions. Thus, a “prior” image
is built. The prior image represents prior knowledge that can
be used to guide ray-sum estimation within the metal trace.
As in other sinogram in-painting methods, the measured ray-
sums outside the traces are left unmodified. The corrected
projections are reconstructed to provide the artifact-reduced
image.

II. BACKGROUND

II.A. Causes of metal artifacts

Metal artifacts are caused by beam hardening (the prefer-
ential attenuation of low energy photons in a polyenergetic
x-ray beam), photon scatter, partial volume effects, photon
starvation, and data sampling errors. Data sampling errors
can be caused by inexact detector or view positions, cone
beam effects, or patient motion.14 Beam hardening and scat-
ter cause low-frequency artifacts, which appear as bright and
dark shadows around the metal, obscuring the anatomy ac-
tually present in the affected areas. The appearance of these
artifacts will be explained in more detail in Sec. III. The
other phenomena listed above create high frequency artifacts,
namely, streaks. Low frequency artifacts are difficult to re-
move, but high frequency artifacts can usually be removed by
nonlinear filtering.15, 16

II.B. Current approaches

Besides sinogram in-painting, other CT reconstruction
methods can be used for MAR. Iterative reconstruction algo-
rithms have been used to reconstruct from noise-limited data.
These can be adapted for MAR.17–19 Iterative reconstruction
requires accurate modeling of the x-ray generation and at-
tenuation processes in the body and the detector, which is
difficult to accomplish. Another drawback of iterative meth-
ods is that they are slow because they require repeated recon-
structions. Multiple-energy decomposition methods are used
to decompose materials into basis materials, and are less sus-
ceptible to beam hardening artifacts.20, 21 Therefore, energy
decomposition can be used to reduce metal artifacts.12, 21, 22

Energy decomposition methods take into account the energy-
dependent attenuation coefficients of different materials. As
a result, they can compensate for artifacts from beam harden-
ing. Two or more x-ray spectra are required for energy decom-
position, but multienergy imaging is not standard in clinical
scanning protocols, nor does it compensate for scatter. Itera-
tive reconstruction of dual energy data21 has the potential to
provide excellent images if the dual spectra and models are
available. While iterative reconstruction and energy decom-

position based methods have shown good preliminary results,
sinogram in-painting is the most practical approach because
it is computationally simple, and needs only one energy spec-
trum. Its most serious challenge is accurate data estimation.

In sinogram in-painting methods, the metal objects are
identified in the projection space. The regions in the projec-
tion space occupied by the metal are called metal traces. In
some methods,1–6 metal objects are located in the original im-
age by thresholding, and the traces are located by calculation
or reprojection. We use the term scanner projections to de-
note log-attenuation projections measured from the scanner,
or a linearly processed version of them, for example, after re-
binning to parallel projections. In other methods,7 the metal
traces are located directly in the scanner projections. Early
work1, 2 interpolated the scanner projection data on either side
of the traces. This method, which we call direct interpolation
(DI), misses edges of real structures as shown in Fig. 1. In the
picture, a soft tissue background contains a piece of metal and
a bony structure. Projections at two angles are shown. In one
angle, the bone does not interfere with the metal projection,
and the projection can be interpolated without loss of edge in-
formation. In the other angle, interpolation of the data would
result in an edge being blurred away. The missing edge infor-
mation results in secondary artifacts in images, which may be
as severe as the metal artifacts.

It was proposed that edges be recorded from the original
image.3 The edges could be reprojected and combined with
the scanner projections to create a smoother projection on
which interpolation could be performed. However, a method
for recording edge information in reprojections was not de-
fined, but is critical in the performance of a MAR algorithm.
It was proposed that the true values of image voxels be
estimated using k-means clustering and thresholding.5 The
reprojections of the estimated voxel values would be used as
replacement data in the metal trace. This method was reported
to fail when the artifacts were as bright as bone or as dark
as air, which occurred in almost all of our test images. Other
existing methods built upon the notion of a prior knowledge
image that contains edge information.6–8 These methods
differ in how they utilize the prior, using various interpolation
techniques. One method uses the ratio of scanner projections

FIG. 1. A schematic of an object and two projections. Direct interpolation
results in missed edges in one projection.

Medical Physics, Vol. 39, No. 10, October 2012
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to prior reprojections instead of the difference.6 Other meth-
ods require repeated reconstructions, each of which improves
the prior.7, 8 However, all these methods rely on intensity
thresholding to produce the prior image, and intensity thresh-
olding leads to voxel misclassification in the prior. Knowledge
of the materials and accurate modeling helps retire some of
this risk.12 Voxel misclassification leads to false edges or
missed edges and therefore to secondary artifacts. We call
the thresholded-prior methods TP-MAR.5–8 Some TP-MAR
methods suggest doing a first pass MAR with DI, and then
thresholding this corrected image to create a prior. However,
the secondary artifacts from DI-MAR can be intense enough
that thresholding still leads to voxel misclassification.

We see that while the notion of the prior image is not new,
little attention has been paid to generating an accurate prior
image. The sinogram in-painting methods we have mentioned
focus on the interpolation technique. Our experiments, de-
scribed in Secs. V and VI, show that the accuracy of the prior
has greater impact on artifact reduction than the particular in-
terpolation technique. There is much room for improvement
and for the use of image segmentation, in particular, in the
generation of a prior image. Strictly speaking, prior knowl-
edge consists of the observations we make about metal arti-
facts, but we use the term prior image for a combination of
the observations and measured image.

III. SIMULATION STUDY OF METAL ARTIFACTS
CAUSED BY BEAM HARDENING

In order to segment areas of artifact and anatomy, we must
understand the process of artifact generation. To help us un-
derstand the appearance of the metal artifacts, we simulate
beam hardening because it leads to low-frequency artifacts.
Beam hardening artifacts are similar in appearance to scat-
ter artifacts, which we have not simulated. Subsequently, we
will make observations that we use to discriminate between
regions of artifact and anatomical structures.

The monoenergetic attenuation process can be described
using the Beer-Lambert law.23 If I0 is the incident number of
photons with energy E0, and μ (x, E0) is the linear attenua-
tion coefficient at energy E0 for the material at some point
represented by the vector x, then the number of photons at the
detector is given by

I (s, θ ) = I0e
− ∫s+lθ∈L μ(s+lθ ,Eo)dl .

In the above equation, the integration is done over the
scanned space L between source and detector, s is a vector
representing the source position, and θ is a unit vector in the
direction from the source position to a detector element.

During reconstruction, we reconstruct the log attenuation
projections:

p (s, θ ) =
∫

s+lθ∈L

μ (s + lθ , Eo) dl = ln
(

I0

I (s, θ )

)
.

Now, if we have a polyenergetic spectrum S, then the inci-
dent number of photons is given by integrating the number of
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FIG. 2. X-ray spectrum used in beam hardening simulations.

photons at all energies E,

I0 =
∫

S (E) dE,

and the polyenergetic attenuation process is described as

I (s, θ ) =
∫

S(E)e− ∫s+lθ∈L μ(s+lθ ,E)dldE.

In this case, the relationship between measured projec-
tions p and log-attenuation no longer applies, leading to beam
hardening artifacts.24 Compensation for beam hardening due
to anatomical tissues is applied during scanner calibration or
sometimes in postprocessing.25

We simulate two-dimensional (2D) axial projections of el-
lipsoids in air of varying eccentricity, using a polyenergetic
spectrum. The simulated spectrum is shown in Fig. 2. It was
obtained using the program XSPECW2.26 The tube voltage
is 150 kVp, the beam filtration is 4 mm of aluminum, and
there is a 10◦ tungsten anode target. The simulated material is
iron, whose energy-dependent attenuation cross sections we
obtain with XCOM.27 There are 1400 projections, the detec-
tor spacing is 0.5 mm at isocenter, and the source-to-isocenter
distance is 500 mm. The projections are reconstructed with a
Hanning filter with a cutoff of 10 lp/cm. Our image values are
clamped between −1024 and 15 383. A monoenergetic simu-
lation was also done for comparison, with a nominal CT value
of 30 000 HU (μ corresponding to 80 keV).

While simulations of metal artifacts have been undertaken
before,14 the shape-dependence of the artifacts was not inves-
tigated, nor was the accuracy of reprojections through metal.
Our simulations, discussed in this section, demonstrate the
shape dependence of the beam hardening artifacts, explain
their appearance with respect to shape, and show how repro-
jection through the metal cannot quantify the metal.

Figure 3 illustrates the shape dependence of the beam
hardening artifact. When the object cross section is circular,
the beam hardening artifact does not exist outside the ob-
ject. However, beam hardening is visible within the object in
the form of cupping. As the object’s eccentricity increases,
the beam hardening artifact amplitude outside the object in-
creases. The dark artifact is along the long axis of the ellipse,
and the bright artifact is along the short axis.

Figure 4 illustrates the formation of the bright and dark
parts of the artifact. Ideal (monoenergetic) and hardened

Medical Physics, Vol. 39, No. 10, October 2012
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FIG. 3. Illustration of the beam hardening artifact dependence with object
shape. The ellipse eccentricity increases from left to right. The top row shows
an ideal (monoenergetic) simulation and the bottom two rows show simulated
beam hardening. For round objects beam hardening is visible only within the
object. This is the well-known cupping artifact. As the metal object eccen-
tricity increases, the artifacts increase as well and are visible outside the ob-
ject. The dark artifacts are along the long axis (maximum projections). Top
two rows: Window Width (WW)/Window Level (WL) = 500/0, bottom row:
WW/WL = 6000/12 000 HU.

(polyenergetic) projection data that were filtered with the
Ram-Lak kernel are shown next to the image. With a greater
ray length through the hardening material, there is a bigger
discrepancy between hardened and ideal projections. In the
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FIG. 4. Illustration of the formation of the beam hardening artifact for a
metal object with elliptical cross section. Filtered projections are shown at
two angles that correspond to the longest and shortest path lengths through
the center of the object.

ideal case, the undershoots of the filtered projection data in
all angles perfectly compensate for the metal trace data back-
projected across the image. But in the hardened case, there is
a distortion of amplitudes. The amplitude of the central ray
drops less relative to the ideal in the shorter path (0◦) than in
the longer path (90◦). The undershoots are even smaller along
the longer paths relative to the ideal case (due to more harden-
ing) than the shorter paths. This leaves the shorter paths with
relatively less negative compensation, leading to the bright
artifact, and the longer paths with relatively too much com-
pensation, leading to the dark artifact.

Note that the metal attenuation cannot be quantified by
simply reprojecting the metal voxels in a reconstructed im-
age. The hardening of the beam causes overestimation of the
reprojections in the direction of highest attenuation, and un-
derestimation in the direction of lowest attenuation. Figure 5
shows that the discrepancy between original hardened pro-
jections and reprojections increases with eccentricity. This is
because the metal object voxels are reconstructed using pro-
jections with different amounts of hardening in each view, but
the voxels summed in each reprojected view are the same vox-
els. Considering the central ray along the long axis, the vox-
els along it were reconstructed using relatively less-hardened
projections along with the more-hardened projections. When
compared with the most hardened projections, the reprojec-
tions will therefore be greater. A similar reasoning exists for
every other ray through the metal. Due to this shape depen-
dence, a simple beam hardening inversion cannot be per-
formed as is done for bone correction in head images in which
the skull is roughly ring-shaped in each axial slice.25

We make three observations about metal artifacts in CT
images, which are confirmed by the above simulations: the
artifacts are adjacent to metal pieces, the amplitude of the
artifacts decreases as the distance from the metal increases,
and the local maxima through metal in projection space cor-
respond to dark artifacts in the image.

IV. METHOD

Our method to build a prior image operates on the original
image. The goal is to discriminate artifacts from real struc-
tures in the original image so that we can replace artifact-
contaminated regions of the original image with tissue val-
ues, thus generating a prior. Our method for segmenting ar-
tifacts uses the three observations about metal artifacts given
in the previous paragraph. We describe the main concepts in
the paragraphs below, and then give details for each step in
subsections.

Based on the first observation, local image extrema that are
adjacent to the metal voxels and smaller than a given scale are
identified and interpreted as metal artifacts. The grouping of
voxels for artifact identification (labeling) is done via region
growing. The region growing uses a distance-based parame-
ter for voxel inclusion, which makes use of the second ob-
servation. The distance-based parameter limits the inclusion
of anatomy into the artifact labels. As will be discussed in
detail below, these image regions are removed by replacing
their voxel values with surrounding voxel values. Also based

Medical Physics, Vol. 39, No. 10, October 2012
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on the second observation, when a local maximum label con-
tains both artifact and bone, we use a discriminant curve to
classify voxels within it as belonging either to artifact or to
bone. We restore the bone voxels to the image. Based on the
third observation, when a local maximum through metal is
found in projection space, we can expect to find local image
minima corresponding to it. As a result, we can interpret im-
age minima as artifacts even when they are split off from the
metal. The dark artifacts can split off from the metal in the
presence of high density CT objects, or multiple pieces of
metal. The approach, implemented in MATLAB version 7.10
(The MathWorks Inc., Natick, MA), has the following steps.
Figure 6 shows intermediate outputs.

IV.A. Segmentation of metal

Metal voxels are segmented by region growing. Seeds for
region growing are voxels above 7000 Hounsfield units (HU).
Neighboring voxels are successively added to the region if
they are above 3000 HU. Teeth, which have the highest CT
intensities for human tissue, are usually less than 3000 HU, so
anatomy is not included in metal labels. Labels are generated
for each connected metal region.

We then contour the anatomy to prevent dark artifacts from
blending into the surrounding air. Figure 6(a) shows the con-
tour by a dotted line. If dark artifacts blended into the sur-
rounding air (as shown in the rectangle), they would not be
interpreted as local minima. The contouring method we used
is described in Appendix A.

IV.B. Removal of local maxima and minima

Metal artifacts create local maxima and minima around
the metal. The removal of maxima and minima are, respec-
tively, performed using closing-by-reconstruction (CBR) fol-

lowed by opening-by-reconstruction (OBR).28 CBR is a mor-
phological operation that performs grayscale dilation with
a structuring element followed by iterative erosion that is
constrained by the original image. Similarly, OBR first per-
forms grayscale erosion followed by iterations of dilation con-
strained by the original image. CBR eliminates dark regions
(local image minima), and OBR eliminates bright regions (lo-
cal image maxima) that are smaller than the scale determined
by the structuring element. Larger extrema or regions without
extrema are left alone. CBR and OBR, respectively, replace
voxel values in the closed or opened regions with values de-
rived from voxels surrounding these regions. The structuring
element should be at least twice as large as any metal piece in
the image to use replacement values outside the artifacts. In
order to prevent a too-large structuring element from flood-
ing a local minimum with diffuse bright artifact values, we
recommend clamping the image at a high soft tissue value
(100 HU) and restoring the image values after CBR.

The OBR and CBR operations will also remove anatom-
ical structures that are smaller than the scale of the structur-
ing element. Figure 6(b) shows the result of OBR and CBR,
where anatomical structures have been eliminated along with
artifacts. We restore the anatomical structures to the prior by
using the following steps to discriminate between anatomy
and artifacts.

IV.C. Recovery of nonadjacent anatomical structures

The OBR and CBR processed image is subtracted from the
original image. In this difference image [shown in Fig. 6(c)],
small intensity differences, attributed to noise or artifact, are
eliminated by thresholding. We used a threshold of three times
the image noise, which was about 20 HU for our head images.

Next, the positive and negative differences are consid-
ered separately. Region growing is performed on the negative

Medical Physics, Vol. 39, No. 10, October 2012
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(b). after OBR/CBR (c).  a - b(a). original with contour

(d). positive labels (e). Non-adj. restored (f). Prior

FIG. 6. Stages in the generation of a prior image of a CT head scan. The contour is represented by the dotted line in (a), the image after CBR and OBR in
(b), the difference image (a–b) in (c), labels from the positive differences are in (d), the recovery of nonadjacent labels is shown in (e), and the final prior image
is in (f). WW/WL = 200/0 HU in (a), (b), (e), and (f). WW/WL 200/−1000 HU in (c).

voxels of the difference image, using an intervoxel intensity
threshold that depends on distance from the metal. The justi-
fication for a distance-dependent threshold is our second ob-
servation, from which we infer that intervoxel variations in
artifacts decrease as distance from the metal increases. The
distance-dependent threshold limits the grouping of artifacts
with anatomy. We generate a distance transform of the image,
which is the smallest distance from each voxel to any metal
voxel. Our distance-dependent threshold is defined as a func-
tion of the distance transform as

Tδ (x) = max(T e−aD(x), Tmin),

where D(x) is the value of the distance transform at location x,
and T, Tmin, and a are constants. We choose T to be 5000 HU
to accommodate the large variations in or near the metal, a
= 0.05, and Tmin = 100. All values were determined empiri-
cally, but are not critical as shown by experiments (varying a
from 0 to 0.2) and Tmin between 50 and 200 HU.

Similarly, region growing is performed on the positive dif-
ferences. We use the same equation and parameters for region
growing of the positive voxels. From region growing, we get
labels of positive or negative polarity. For example, positive
polarity labels are shown in Fig. 6(d).

If the labeled regions are not in the neighborhood of a
metal label, they are interpreted as anatomical structures, and
the voxel values of the original image are restored in those re-
gions. Figure 6(e) shows the recovery of labeled regions that

are not neighboring the metals. The artifact labels may bor-
der metal pieces or be separated by interference patterns. We
define a neighborhood size of 10 mm.

IV.D. Recovery of adjacent anatomical structures

If a region of positive artifact grows into bone, voxels
containing bone would be included in the labeled region
and incorrectly replaced with soft tissue values. We exploit
the observation that artifact amplitude drops as a function
of distance from metal. In the positive labeled regions
that remain after the recovery of nonadjacent labels, voxel
values of the original image are plotted against the distance
transform values. Figure 7(a) shows an example plot. The
artifacts generate a cluster in the plot. To separate the artifact
cluster from nonartifact voxels, a set of exponential curves
is generated with different parameters. The equation for the
family of curves is

Ic (D) = (Imax − Imin) e−cD + Imin,

where c is the curve parameter, Imax is the maximum value in
the region, and D is the distance (distance-transform value).
Imin is the minimum of the region values and an outlier bound
of 200 HU. The outlier bound value was chosen because the
minimum CT number within the artifact cluster was always
about 200 HU in our test cases. In any case, lower artifact
intensities are removed in a subsequent step. We used no
outlier bounds for the upper CT value.
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FIG. 7. The relationship between the image intensity and the distance trans-
form for the image in Fig. 6 is shown in (a). The line shows the exponen-
tial curve with the best separation of artifact from anatomy. The number of
points under each exponential curve, normalized by the area under the curve
is shown in (b).

For each curve, the number of voxels under that curve is
normalized by the area under the curve. The normalized num-
ber of voxels drops past the curve that includes the cluster
[Fig. 7(b)]. We choose a curve that is past the peak, to ensure
we have captured the cluster, even at the expense of some
anatomy. Voxels above this curve are recovered because they
are more influenced by anatomy than artifact.

In order to determine whether artifact has indeed grown
into anatomy, we compute from the intensity-distance plot,
the highest CT value at each distance. We use distance bins
of 1 mm. Then we compute the skewness of the resulting dis-
tribution. If the skewness is less than 0.15, we assumed that
these labels must have grown into bone. The skewness thresh-
old was selected because in our images, the skewness values
were about 0.3 in images where the artifact did not grow into
bone, and from −0.1 to 0.1 when it did.

IV.E. Deletion of dark artifacts

The local maxima of the projection data are located and
matched with negative labels. From Sec. III, we have seen that
the local maxima in projection space correspond to dark arti-
facts in the image. We compute centroids and eigenvectors of

Detector Samples

V
ie

w
s

FIG. 8. Reprojections through metal voxels. The local maxima are shown
by red circles.

negative labels. For each negative label, we reproject its cen-
troid in the direction of its largest eigenvector. If the centroid
projects onto a point that is in the neighborhood of the local
maximum of the metal trace, then the label is considered an
artifact. We have used a neighborhood size of 10◦ and 5 mm.

To determine the local maxima in projection space, we re-
project only the metal. Figure 8 shows the metal traces. In
each projection view, we find the maxima in the sample di-
rection. There are one or more maxima in each view. For each
trace and for each view, we extract the local maxima values.
We fit a sliding polynomial to the local maxima values ex-
tracted at each view. Then we locate the maxima of the fit-
ted curve. The sliding polynomial reduces spurious maxima
which may appear due to noise or sampling errors.

We do not use the correspondence of each negative label
with a local maximum in projections as a requirement for
classifying that label as an artifact, because with multiple pro-
jection maxima, negative regions may be combined by region
growing. However, the step allows us to add the negative la-
bels that have broken off from the metal. We cannot apply
this rule for the bright artifacts (image local maxima), because
they do not correspond to local maxima in projection space,
rather, they correspond to regions between the local maxima,
and are more diffuse in appearance than the dark artifacts.

The processed image created thus far is thresholded by the
method in Appendix B. The segmented metal voxels are re-
stored, because each metal piece is a real structure, not an arti-
fact. This completes the generation of the prior image, shown
in Fig. 6(f). This prior is reprojected, and the reprojections are
used in interpolation, as described in Appendix C.

V. RESULTS

Our method was tested on axial head CT scans. Figures 9
and 10 each show four sets of images with metal artifacts
produced from metal coils in cerebral aneurysms, from a
deep brain stimulator, and from dental fillings. The original
images and images corrected by our MAR algorithm are
shown. For comparison, results are also shown for DI-
MAR (i. e., no prior) and an exemplified TP-MAR (i. e., a
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FIG. 9. Four sets of images are shown in columns. Each set contains the original, the proposed method, DI-MAR, and TP-MAR corrected images. In all cases,
the proposed prior results in improvements over the original image, over DI, and over TP-MAR. WW/WL = 200/40 HU for cases 1, 2, and 4, and = 500/0 HU
for case 3. The arrows point to examples we discuss in the text.
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FIG. 10. Another four examples are shown. WW/WL = 200/40 HU for cases 5–7 and 500/40 HU for case 8.

thresholded prior, using the same interpolation described in
Appendix C). To generate the TP-MAR prior, we have thresh-
olded the DI-MAR corrected image. Although TP-MAR
algorithms vary, we used CT number values recommended
in Refs. 5 and 6 for threshold values. Then we used the
difference interpolation method for data replacement in the
metal traces. In the case of DI-MAR, the metal piece was
added back to the corrected image. Since the interpolation
technique was the same for all the MAR algorithms, the prior
image determined the improvement.

Artifacts are removed by our algorithm even for multiple
metal pieces, and from large metal pieces which produce dark
artifacts below −1000 HU (arrow 1), and bright artifacts with
the CT intensity of bone or cartilage (arrow 2). There were
fewer secondary artifacts with our method than the others.

There are residual artifacts in the dental images, especially
in Fig. 10 (arrow 3), resulting from the imperfect separation
of the artifact from teeth. DI-MAR produces secondary arti-
facts comparable to the original metal artifacts. The TP-MAR
images are better than DI-MAR but not as good as those with
our prior.

VI. DISCUSSION

VI.A. Analysis of results

Our algorithm preserves anatomical structures in the prior
image, which is why secondary artifacts are reduced. DI-
MAR loses edge information in the metal traces, so estimated
data are inconsistent with the rest of the sinogram and sec-
ondary artifacts are generated, as shown by arrow 4 in Fig. 9.
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TP-MAR also loses edge information as described later, but
to a smaller extent than DI-MAR.

Our method operates at a region level while TP-MAR
methods operate at a voxel level. A region is more informative
than a voxel in distinguishing artifacts from anatomy because
the region can be examined against more criteria than thresh-
olds. We identify a region with constant polarity, and test if
the region or a part of it fits the criteria for artifacts. Consid-
ering the positive regions, we use the intensity/distance rela-
tionship (observation 2) to separate bone from bright artifacts.
Negative regions can be matched with local maxima in the
Radon transform (observation 3) to identify them as artifacts.

A TP-MAR prior is generated by thresholding an image
into air, soft tissue, or bone. With misclassification of arti-
fact voxels as bone or air, large errors may be produced in
the final corrected image, especially when the ratio interpo-
lation (discussed below) is used. Therefore, some TP-MAR
methods recommend a first-pass DI-MAR to provide an im-
age with smaller amplitude artifacts, so that thresholding of
this corrected image is more likely to create a good prior.
However, our experiments show that the secondary artifacts
with DI-MAR may be comparable to or worse than the origi-
nal metal artifacts. Using poor quality DI-MAR images yields
poor priors. In the deep-brain stimulator case with multiple
metals (Fig. 9, case 2), the DI-MAR secondary artifacts are
worse than the metal artifacts in the original image (arrow 4).
This leads to a prior that is worse than the prior from thresh-
olding the original image. In the dental cases (cases 4 and 8),
the secondary artifacts are misclassified as anatomical struc-
tures by thresholding, and preserved or enhanced in the final
TP-MAR corrected image.

Figure 11 shows the different priors responsible for the im-
age quality in case 4. The original image is corrected with
DI-MAR. The DI-MAR image is then thresholded to produce
a TP-MAR prior. Note the partial loss of bone and air pocket
structures in the thresholded prior (arrow 5), and better preser-
vation in the proposed prior. The partial loss is why the image
quality of the TP-MAR image is in between that of DI-MAR
and our method. The DI-MAR algorithm itself results in the

FIG. 11. Priors corresponding to case 4. The left image shows the TP-MAR
prior, created by thresholding the DI-MAR image (Fig. 9, row 3). The loss of
anatomical edges near the metal leads to a final TP-MAR image that is not
much better than DI-MAR in this example. This is because both DI-MAR
and TP-MAR have missed nearly the same structures. The right image is the
proposed prior, and preserves more of the anatomical structure.

FIG. 12. Images reconstructed with ratio interpolation. The priors for the top
row images were thresholded DI-MAR images (Fig. 9, row 3), and the pri-
ors for the bottom row images were from our proposed method. Along with
Fig. 9, these images suggest that the prior is more critical than the inter-
polation technique. However, for multiple pieces of metal, the interpolation
technique itself begins to play a role as seen by the degraded image quality
of the right column compared to Fig. 9.

loss of some edge structure, especially if those structures are
close to the metal pieces.

In order to study the impact of the interpolation technique
relative to the accuracy of the prior, we also use the ratio
interpolation with our prior and with the thresholded prior.6

This interpolation uses the ratio of scanner projections and
reprojections, so that the reprojections themselves need not
be substituted in the trace. This is a potential improvement
on methods that directly use the reprojections in the metal
trace, e. g.,5 because reprojections may themselves be inaccu-
rate. The interpolation technique results are shown in Fig. 12.
Comparing with the difference interpolation shown in Fig. 9,
we see that in the case of a single metal object, the image
quality of the difference interpolation and ratio interpolation
methods is nearly the same when our prior was used. The
image quality of the ratio interpolation image is nearly the
same as the difference interpolation also when the thresholded
prior was used. These two results indicate that the prior has
greater impact than the particular interpolation method. Note
that the ratio interpolation however only works well when
the metal object is removed from the prior. The reason is the
same one that we discuss in Sec. III, i. e., that beam hardening
coupled with thresholding creates overestimated or underes-
timated reprojections. These reprojections are naturally con-
sistent across view angles, but not once they are multiplied by
the ratio of projections, which are not a constant unless the
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reprojections exactly equal the scanner projections. There-
fore, ratio interpolation works well for images with single
metal objects, not those containing multiple ones. For mul-
tiple metal objects, the metals should not be left out of the
prior, because while interpolating the trace of one metal piece,
we must consider the interfering edges created by the second
metal trace. If we leave them out, we miss edges and cre-
ate secondary artifacts (arrow 6). Therefore, the interpolation
method itself has an impact when there are multiple pieces of
metal.

Metal objects that are close together will have traces that
overlap in more views than objects that are far apart. For this
reason, we recommend that the metal thresholds be lowered,
or the metal objects dilated, to reduce possible high frequency
secondary artifacts resulting from one metal trace abruptly en-
tering and leaving another trace. However, for metal objects
that are close together, we are likely to get some secondary ar-
tifacts because we do not correctly quantify the metal pieces
themselves. We saw evidence of this error in case 2 in Fig. 9.
There is also a blurry region around each piece of metal re-
sulting from the smoothing of data in the spline fit. All MAR
algorithms in the literature exhibit similar blurring. A non-
linear correction for reduction of discontinuity may be help-
ful. In cases 4 and 8, the separation of bone from artifact us-
ing a one-parameter curve was imperfect. This is because of
the interference between the four metal pieces, which makes
the distance-intensity relationship deviate from the exponen-
tial form we see with smaller or fewer pieces. Also due to
interference, the artifacts were as bright as the metal edges,
and were not excluded by thresholding. For these reasons, the
image quality of case 8 is not as good as the other cases. The
image quality from the other methods is poor too because the
metal pieces are large, close together, and embedded in dense
anatomical structures.

VI.B. Limitations of this research and future work

One of the limitations of this research is that we have tested
our algorithm only on head images. Optimization and testing
of our algorithm for head images was considered to be of high
impact due to the clinical importance of head CTs, subtle dif-
ferences in normal and abnormal findings, and the frequent
occurrence of metal artifacts. We have set the parameters at
each stage based on CT values of anatomical tissue, air, and
metal. We have also tested the algorithm steps within ranges
of parameter values to reduce the risks of overfitting. How-
ever, the parameters (or the criteria to choose them) may need
examination or adjustment for other anatomical regions, and
further studies to assess the performance of our algorithm on
those regions are needed.

Another concern is the robustness of the algorithm in the
presence of different implants or more pieces of metal. Our
data set was limited. The cases we tested had endovascu-
lar coils, deep-brain stimulators, and dental fillings. These
comprise the common metal implants in head CT images at
our facility. More pieces will lead to more complicated in-
terference patterns. We have seen that when multiple pieces
of metal are close together (as in case 8), the clusters in the

intensity-distance relationship are not as well extracted by a
single-parameter exponential as they are when there are fewer
pieces. Multiple rounds of cluster identification or a superpo-
sition of discrimination curves may be required in such cases.
In future work, a higher dimensional hypersurface may be in-
vestigated, involving the gradient and other predictors of ar-
tifacts, for better discrimination of bright artifacts from bone.
Consideration of gradient amplitude and phase might help in
removing the residual bright artifact in the prior for the dental
image.

A third limitation is that if noise due to photon starvation
is the dominant artifact, our method is unlikely to work. How-
ever, images from modern CT scanners are not usually limited
by photon starvation. These scanners have more powerful x-
ray tubes and use a variety of modulation techniques to obtain
enough power (photon counts) to reduce noise while limiting
dose. In addition, adaptive filtering is applied in the scanners
to reduce noise to acceptable levels.15

In future work, we can add to the prior knowledge to
build a more accurate prior image. An anatomical atlas may
help distinguish between anatomy and artifact. An instance
of where an atlas may have been useful is case 8. The resid-
ual bright artifact in the soft tissue between the teeth in the
prior for the dental image could be identified as unlikely to be
anatomical. Machine learning techniques could potentially be
useful classifying the labels as artifacts or anatomy. There is
much potential for exploration of computer vision and learn-
ing algorithms in developing a prior image.

VII. CONCLUSION

Metal artifacts are predictable because phenomena such
as beam hardening that cause them are well understood. We
have made some observations about the appearance of metal
artifacts and used these to segment the metal artifacts from
anatomical structures. We have used the results of the seg-
mentation to build up a prior knowledge image that guides the
data replacement step for an effective metal artifact reduction.
We have tested this concept of using image segmentation and
artifact predictability to discriminate artifacts from anatomy
on head images. The priors resulting from our method pro-
duce better quality images than DI-MAR or priors obtained
from thresholding other images. We have found that an accu-
rate prior knowledge image has more impact on final image
quality than the choice of a particular interpolation technique.
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APPENDIX A: CONTOURING THE OUTER
BOUNDARY

We create a closed contour along the outer boundary of
the anatomy in the original image, shown by the broken line
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in Fig. 6(a). The contour is assigned a low value of soft tis-
sue such as It = −100 HU. The contour must be at least two
voxels thick to prevent the later steps from removing it.

There are many contour tracking algorithms which would
work for this simple contour generation problem; we have
used an algorithm that thresholds the image, and then con-
nects outer boundary pixels with 8-connectivity. We use a
threshold of −600 HU, which is well below soft-tissue inten-
sities, to account for tissue corrupted by artifacts. If there are
multiple disconnected objects in the image, and hence multi-
ple contours, we keep only the largest one.

APPENDIX B: CORRECTION OF ERRORS FROM
ARTIFACT REGION REPLACEMENT

OBR and CBR replace regions of voxels with single val-
ues. If left this way, the prior image would be “patchy,” and
the final image would have the appearance of patchy texture.
To avoid this, voxel values between the limits of It and Imin

are replaced with the mode value of the original image. This
range includes most soft tissue, but the exact limits are not
critical, and the range can be made larger. Soft tissue varia-
tions will be removed from the prior. The soft tissue variations
do not contribute to secondary artifacts, and it is better to re-
place them, to avoid patchiness from CBR and OBR. The data
replacement method, described below, does not substitute the
scanner projections with the reprojections of the prior, so the
soft tissue details are not lost.

APPENDIX C: REPLACEMENT OF SINOGRAM DATA

The prior [shown in Fig. 6(f)] is then reprojected, and
the metal trace is found in the reprojections by calculation
of the rays passing through the metal image. We have used
the method described in Ref. 3 for data replacement. In this
method, the reprojections are subtracted from the scanner pro-
jections. The difference projections are smoother than the
scanner projections. The interpolation of metal traces is done
on the difference projections and the interpolated result is
added to the reprojections to create the final corrected projec-
tions that are then reconstructed to create the final image. We
modify this interpolation method in that we fit a second order
spline to five samples on both sides of the metal trace instead
of using linear interpolation. Linear interpolation of two sam-
ples should not be relied upon because sampling errors and
noise will result in poor estimates of data.
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