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Abstract

Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate 

exposure from limited information. In this study, chemical structure and physicochemical 

properties were used to predict the probability that a chemical might be associated with any of four 

exposure pathways leading from sources–consumer (near-field), dietary, far-field industrial, and 

far-field pesticide–to the general population. The balanced accuracies of these source-based 
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exposure pathway models range from 73 to 81%, with the error rate for identifying positive 

chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 

13 different exposure models as well as other predictors of human intake rates. We created a 

consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which 

the predictors of exposure were combined by pathway and weighted according to predictive ability 

for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The 

consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median 

intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure 

information. This approach identifies 1880 chemicals for which the median population intake rates 

may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate 

is below 1 μg/kg BW/day for 474572 compounds.

Introduction

One measure of the risk to human health posed by chemicals in the environment is the ratio 

of the dose that potentially causes adverse health effects (i.e., hazard) to the dose received 

from the environment (i.e., exposure)1. Unfortunately, existing sources of hazard and 

exposure data do not address many thousands of chemicals that may be present in the 

environment or used in commerce2–6. High-throughput methods allow the identification and 

further testing of those chemicals which are more likely to pose a risk to people. Comparing 

hazard and exposure is most meaningful when the uncertainty in these estimates is 

quantified, thereby allowing comparison between the upper bound on exposure and lower 

bound on hazard. This approach is being considered by the governments of Australia, 

Canada, Europe, Japan, Korea, Singapore, and the United States as a tool to help accelerate 

the “pace of chemical risk assessment”7. Despite relatively large uncertainties, the estimated 

ratio of hazard to exposure exceeds one million for many chemicals, which allows separation 

of those chemicals for which risk is plausible from those chemicals that are less likely to 

pose a potential health risk8. We distinguish between probabilistic risk-based chemical 

priority setting and formal risk assessment; the latter is more resource-intensive but may 

substantially revise the estimated margin between hazard and exposure1, 3, 9.

The EPA’s Exposure Forecasting (“ExpoCast”) project relies upon high-throughput 

exposure (HTE) models requiring minimal chemical-specific information10 to provide risk-

based context for the high-throughput in vitro bioactivity data that are now available for 

large numbers of chemicals11–13. HTE models are used to make quantitative predictions of 

chemical intake based upon the mechanism of exposure and description of the exposure 

event. Each HTE model can describe one or more exposure pathways, which the 

International Society for Exposure Science defines as “The course an agent takes from the 

source to the target.” 14 Model pathways involve a chemical source (e.g., a household 

product), interactions with environmental media (e.g., air, water, indoor surfaces), and a 

target (e.g., a human individual)15. Each HTE model may also reflect differing assumptions, 

data for describing the environment, choices of evaluation data, and a range of criteria for 

“acceptable” performance16. In addition to these mechanistic HTE models, ExpoCast also 

uses other relevant chemical-specific metrics that may be predictive of exposure (for 

example, existing regulatory exposure assessments or production volumes). Here, both HTE 
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model predictions and other chemical-specific metrics (collectively referred to here as 

“predictors”) are systematically evaluated to assess the relative and collective contributions 

to predict exposure.

To integrate, evaluate, and calibrate existing exposure predictors, ExpoCast has developed an 

approach called the Systematic Empirical Evaluation of Models (SEEM) framework. With 

SEEM, the available predictors are combined into a consensus17 Bayesian regression meta-

model for median population exposure via comparison with human biomonitoring data. 

SEEM is a “meet-in-the-middle” approach18 in which predictions of chemical intake rates 

from “forward” HTE models are compared with rates inferred from the Centers for Disease 

Control and Prevention’s (CDC) National Health and Nutrition Examination Survey 

(NHANES) biomarker data using “reverse” models that attempt to reconstruct exposures. In 

the resulting meta-model, predictors are weighted to reflect their ability to predict the 

biomonitoring-based intakes, and the residual error in the regression provides an estimate of 

the model uncertainty. Here, we improve upon the existing SEEM regression models by 

incorporating exposure pathway information into the model structure.

Incorporating pathway information into SEEM is critical, as not all predictors are relevant 

for all pathways and chemicals. Here we use the simple term “pathway” to represent the 

totality of paths that a chemical may follow from a particular source-type to reach a person. 

Individual source-types, or pathways, contribute widely-varying amounts to overall 

exposure. Proximate sources of exposure (i.e., in ‘near-field’ consumer use scenarios) are 

often the largest contributors to exposures for chemicals with biomonitoring data collected 

by NHANES, while distant sources of exposure generally contribute less to overall exposure 

(i.e., in ‘far-field’ scenarios wherein individuals are exposed to chemicals that were released 

or used away from the current exposure event) 19–21. In updating the SEEM meta-model 

approach, we consider four source-based pathways — consumer (near-field), far-field 

pesticidal, non-pesticidal dietary, and far-field industrial.

Here we have developed an updated consensus SEEM meta-model by applying the revised, 

pathway-based SEEM approach to a suite of thirteen HTE predictors from ExpoCast and its 

collaborators. Each of these predictors is relevant to one or more of the four exposure 

pathways included in the model. The new resulting consensus meta-model is then applied to 

predict chemical intakes for a library of 681,609 chemicals. Since exposure sources and 

pathways are unknown for the majority of these chemicals, we also build chemical structure- 

and property-based machine learning models that quantify the relevance of a chemical to the 

four pathways studied here. Integrating the results of these “pathway predictor” models with 

the SEEM meta-model provides the first estimates of potential human exposure the majority 

of chemicals analyzed.6 These estimates and their uncertainty allow human health risk-based 

comparisons with toxicity data for chemicals subject to the four pathways described 8, 22.

Materials and Methods

The SEEM approach evaluates predictors of exposure based on how well they correlate with 

estimates of chemical intake rate from biomonitoring. Evaluation chemicals and predictors 

are now grouped according to relevant exposure pathway(s). The predictors are combined 
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into a consensus model, with each predictor weighted according to its empirically estimated 

predictive ability. Any errors, approximations, and/or assumptions act to increase the 

estimated uncertainty. A technical glossary of terminology is provided in Table 1.

As illustrated in Fig 1, the updated SEEM framework uses linear regression (Equation 1) to 

integrate all the exposure predictors in Table 2 into a consensus meta-model. When given the 

pathway predictions and other inputs this meta-model can then provide to provide a 

consensus prediction. This method is analogous to quantitative structure-property 

predictors23. Each step is described in detail below, but in summary: Bayesian methods are 

used to estimate possible parameters for Equation 1 that would make the exposure predictors 

consistent with intake rates inferred from NHANES biomonitoring data for 114 chemicals. 

Both the exposure predictors and the NHANES chemicals are assigned to one or more 

pathways. For chemicals without NHANES data, machine learning methods are trained and 

used to assign chemicals to pathways based upon structure, after which Equation 1 is used to 

make predictions for a large library of chemical structures.

All analyses were performed in R version 3.4.3 24. All chemical descriptors, predictors, 

pathway information, and meta-model predictions are provided in Supplemental Table 1. All 

chemical predictions are available through the EPA Chemistry Dashboard (https:/

comptox.epa.gov)25.

Materials and Methods (MM) Section 1: Linear Regression Model

The intake rates (Ri) in units of mg/kg bodyweight (BW)/day for chemical i were 

approximated as:

log Ri = a0 + ∑ j δi, j × a j + ∑kw j, k × log πi, k Equation 1

where a0 represents a “grand mean” intake rate over all chemicals that is unexplained by the 

exposure predictors, δij is a Boolean (0/1) value that represents whether or not exposure to 

chemical i occurs via pathway j, aj represents the additional mean intake rate via pathway j 
over all chemicals with exposure via pathway j that is unexplained by the predictors, and 

wj,k represents the loading (“weight”) of predictor k for chemical i by pathway j (πi,k). wj,k 

is zero if an exposure predictor does not correspond to pathway j. The exposure predictors 

and intake rates inferred from NHANES data were scaled as X′ = X − X
sd X  so that their value 

indicates the number of standard deviations (sd(X)) above or below the average (X) for 

predictor or rates X. This scaling makes the wj,k directly comparable to each other.

MM2: Bayesian Inference of Linear Model Parameters

The SEEM approach evaluates predictors of exposure based on how well they correlate with 

estimates of chemical intake rate. The regression model means aj and loadings wj,k were 

estimated from inferred NHANES intake rates using Bayesian analysis. Bayesian analysis 

combines observed data with prior information and assumptions about the process that 

created the data (i.e., a statistical model) to estimate correlated distributions of model 

parameter values that are consistent with the observed data, prior information, and structure 
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of the statistical model 26. Here, the parameter distributions for the predictor loadings reflect 

different possible combinations of models and other exposure predictors. For example, 

perhaps model A is very important in predicting exposure and model B provides almost no 

information; or perhaps models A and B are equally informative. By sampling from the 

distributions of parameters and evaluating the model with each sampled parameter set, a 

distribution of predictions can be made which can be characterized by a 95% “credible 

interval”. Predictions have 95% probability of falling within the 95% credible interval. (The 

Bayesian concept of a “credible interval” is analogous to, but distinct from, the frequentist 

concept of a “confidence interval”.26)

Bayesian analysis was performed using Markov Chain Monte Carlo (MCMC) as 

implemented by JAGS 27 version 4.2.0, accessed through the R package “runjags” 28. 

Statistical model code is provided in the Supplemental Material. Observations (the inferred 

population median NHANES intake rates) were assumed to be log-normally distributed 

about the SEEM meta-model prediction Ri (Equation 1), with a standard deviation that 

included a chemical-specific (observation) error σi (reflecting the uncertainty in the 

population median) and a SEEM meta-model error σo, so the total error for a chemical was 

σtotal, i = σ0
2 + σi

2 1/2
. The grand and pathway-specific means (a0 and aj) were assumed to 

obey a multivariate normal distribution. The nonzero loadings wj,k on the centered and 

scaled model predictions were also sampled from a multivariate normal distribution. For 

both the means and loadings, the mean of the multivariate distributions was assumed to obey 

a multivariate normal hyper-prior, while the correlation matrices were assumed to obey 

Wishart distributions. The performance of the calibrated model is approximated using the 

base R function “lm” (linear model) to calculate R2 and root mean squared error (RMSE) 

values for a linear regression on the median inferred exposures.

MM3: Pathway Prediction Models

The NHANES chemicals were manually curated using CPDat and assigned definitively as a 

“positive” or “negative” reference chemical for each pathway (Supplemental Table 2). To 

quantify the probability that each pathway is relevant to other chemicals, the random forest 

algorithm 29, 30 was used for each pathway in turn. The random forest algorithm is a 

probabilistic extension of a standard decision (classification) tree approach 31. For chemicals 

with data about whether or not exposure occurs via a specified pathway, a standard 

classification tree approach would find a set of rules for dividing these chemicals into groups 

based on combinations of their physical-chemical properties and structural descriptors to 

produce groups that are as homogeneous as possible with regard to whether exposure occurs 

via the specified pathway. The most-common answer in each group (yes, exposure occurs 

via this pathway; or no, exposure does not occur via this pathway) is considered the tree-

predicted answer for all chemicals in that group. Then, the tree rules can be applied to 

chemicals without pathway data, to predict whether or not the specified pathway is relevant 

for them. The random forest algorithm extends the classification tree approach by using a 

large ensemble of classification trees, each trained on a randomly-chosen subset of the 

available data. For each pathway, 5,000 trees were used. Each tree produced its own model-

predicted yes/no classification for whether exposure occurred via the specified pathway for 

each chemical. The fraction of trees for pathway j that predict a “yes” for chemical i can be 
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interpreted as the probability that exposure to chemical i occurs via pathway j. The 

performance of each classifier tree can then be estimated using the data withheld from the 

training set for that tree, the so called “out of bag” (OOB) error 29, 30. Models were 

evaluated using mean OOB error.

In a standard classification tree, chemicals are repeatedly split into more-refined groups in 

an iterative fashion. Starting with all chemicals in one group, the tree algorithm considers 

splitting the group based on each of the predictors in turn and chooses the split that will 

result in the most homogeneous possible groups. The process repeats iteratively for each 

resulting group until the tree reaches some pre-determined metric balancing accuracy and 

complexity. The random forest randomizes the decision-tree algorithm in that each tree in a 

random forest considers not all possible predictors, but only a randomly-selected subset of 

the available predictors each time it chooses the best possible split 32. The importance of a 

predictor is then assessed based on the increase in group homogeneity resulting from 

splitting on that predictor, averaged across all trees in the random forest 33.

To train the random forest algorithm for each pathway, we chose sets of chemicals that 

might reasonably serve as “positive” or “negative” examples of that pathway, as summarized 

in Table 3. The number of positive and negative chemicals was balanced by randomly 

sampling a subset from the larger of the two sets. Chemicals on the FDA Cumulative 

Estimated Daily Intake (CEDI) list were considered positives for the dietary pathway. The 

ExpoCast screen of chemicals in household products and the Chemical and Products 

Database (CPDat) provided information for multiple sources. The U.S. Geological Services 

National Water-Quality Assessment data portal was used for compounds observed in water 

to identify chemicals with far-field industrial sources. Finally, the EPA Chemistry 

Dashboard (http://comptox.epa.gov) was used to obtain lists of per- and poly-fluorinated 

chemicals from the NORMAN Network (the Network of Reference Laboratories, Research 

Centres and Related Organisations for Monitoring of Emerging Environmental substances).

The random forest algorithm used a total of 743 chemical descriptors as potential predictors 

of exposure pathways. Chemical structures were used to predict 13 physico-chemical 

properties using the OPEn structure–activity/property Relationship App (OPERA) models 34 

for water solubility, vapor pressure, hydroxylation rate constant for the atmospheric, gas-

phase reaction, bioconcentration factor, biodegradation half-life, anaerobic biodegradability, 

boiling point, Henry’s Law constant at 25 °C, fish whole body biotransformation rate 

constant, octanol:air partition coefficient, octanol:water partition coefficient, octanol:soil 

organic carbon partition coefficient, and melting point (10/27/2016)34. For convenience in 

working with large numbers of chemicals and to evaluate the uncertainty introduced when 

predictions are used for chemicals without measured data, only predicted values were used. 

Predicted values might increase the overall estimated error rate (Table 3). Molecular weight 

was considered as an additional descriptor, as calculated directly from formula by EPA’s 

Distributed Structure-Searchable Toxicity (DSSTox) Database 35. Finally, 729 binary 

ToxPrint descriptors were used to identify the presence (1) or absence (0) of specific 

chemical substructures within each structure 36. ToxPrint descriptors are open-source (freely 

available) descriptors that are “designed to provide excellent coverage of environmental, 
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regulatory, and commercial-use chemical space”36, as opposed to proprietary and/or 

pharmaceutical-centered chemical descriptors 37.

MM4: Meta-Model Predictions and Uncertainty Quantification

Three items of information are needed to make SEEM exposure forecasts (Figure 1): 1) 

Markov chains describing likely sets of linear regression model parameters (MM2), 2) 

estimates of whether a given pathway j is relevant to a given chemical i (Probability(δij), 

MM3), and 3) any available predictors (MM6). Because the linear regression is conducted 

on scaled and centered predictors, chemicals without a prediction for a specific model are 

assigned the average value for that model. This average value only contributes to the overall 

predicted rate if the δij for the chemical and pathway is 1. When chemicals are not assigned 

to any pathway, their predicted exposure rate is a0. Predictions were made for a total of 

687,359 compounds for which the chemical structures could be obtained from DSStox. 

Example calculations using the medians of the regression model parameters distributions are 

given for the NHANES chemicals in Supplemental Table 4. In practice, the inferred 

exposure rates are used rather than the meta-model predictions for the NHANES chemicals.

Errors, approximations, and assumptions all act to increase the residual differences between 

the predicted and inferred intake rates. Uncertainty is characterized via the Bayesian 

analysis: the parameters for Equation 1 that are more uncertain have larger estimated 

distributions. A chemical-specific credible interval for each prediction is calculated using 

500 sets of coefficients for Equation 1 that are sampled from the Markov chain (Section 

MM2). For each draw the values δij are assigned from a Bernoulli distribution with the 

probability predicted in Section MM3. The median and quantiles for 0.025 and 0.975 (the 

95% credible interval) are calculated from the 500 draws. The mean and standard deviation 

of the NHANES observations are used to transform the scaled predictions back to mg/kg 

BW/day.

MM5: Chemical Intake Rate Inferences

Median population chemical intake rates were inferred from biomonitoring data. Data on 

urine were previously analyzed and published 20, 22, while data on serum and blood 

concentrations are newly analyzed here.

Biomonitoring data were collected by NHANES, a rolling survey covering roughly 10,000 

individuals every two years. NHANES uses a deliberate sampling protocol so individuals 

can be weighted to reflect the U.S. population. Urine concentration data were analyzed by 

Wambaugh et al. 20 using a model that assumed the concentration of an analyte in urine 

represented steady-state exposure(s) to one or more parent compounds. As chemicals are 

sometimes removed from NHANES monitoring, the most recently reported two-year period 

between 1999 and 2010 was used for each chemical. These estimated exposures were 

reported in Supplemental Information by Ring et al. 22.

Serum and blood concentrations (Conc) were related to intake rates assuming steady-state 

exposure. Chemical-specific whole body clearance rates (CL, in units of L/kg BW/hour) 

were estimated using the R package “httk” v1.8 38, which included in vitro measured 

toxicokinetic rates 8, 39, 40. Exposures were estimated as Rate = Conc × CL. A small subset 
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of NHANES chemicals have human half-lives reported in Arnot, et al. 41. The clearance 

rates for two perfluorinated chemicals (PFOS and PFOA) measured in NHANES were taken 

from recent chemical-specific assessments (0.000081 and 0.00014 L/kg BW/day).42, 43

MM6: Exposure Predictors (High-Throughput Exposure Model Predictions and Metrics)

The consensus intake rate model (Equation 1) is a meta-model that weighs various exposure 

predictors according to their ability to predict the available data on intake rates. Exposure 

predictors are organized via the pathways shown in Figure 2. Each predictor is described 

briefly below, with additional information provided in the associated references. Chemical 

descriptors were harmonized for the various HTE models by providing the same chemical 

descriptor set for analysis. Since there are limitations on the number of chemicals that can be 

run by some models, only those chemicals predicted with >80% chance of being relevant to 

a pathway were provided. The pathway predictor models were refined somewhat while the 

HTE model predictions were being generated. Chemicals were described using the OPERA 
34 physico-chemical descriptors (10/27/2016).

MM6.1: Production Volume—Information on chemical production volume was 

obtained from the 2015 EPA Chemical Data Reporting (CDR) under the Toxic Substances 

Control Act (TSCA) 44. Given that production volumes are provided in coarse bands (e.g., 

1M-10M lb./year), the geometric mean of the limits of each bin was used. Further, the 

production volume of many compounds was confidential, in these cases the average 

production volume of chemicals with reported CDR production volume was used. While 

7856 compounds were covered by the CDR, compounds which were not on the list were 

assumed at 12,500 lb/year, half the minimum requirement for being listed. Chemical 

production volume was considered as a potential predictor for exposure for all four 

pathways.

MM6.2: Stockholm Convention—The Stockholm Convention on Persistent Organic 

Pollutants lists persistent and/or bioaccumulative pollutants whose production is being 

banned or reduced by international treaty 45. The list includes specific chemicals as well as 

broad categories (e.g., all polychlorinated biphenyls or PCBs). Manual enumeration was 

used to identify all chemicals within each class. This list is provided as Supplemental Table 

3. Presence on the Stockholm Convention list was examined as a predictor for industrial and 

pesticidal pathways.

MM6.3: Intake Rate Estimates from EPA REDs—As a part of ongoing assessment 

of pesticide safety, the EPA generates re-registration eligibility documents (REDs) that 

include estimated intake rates for the general U.S. population (mean). These assessments 

have been collected by Wetmore et al. 8 as of 2015 and provide predictions for chemicals 

with far-field pesticide sources.

MM6.4: Food Contact Migration Exposure Model—The model of Biryol, et al. 46 

makes predictions of migration of chemicals into food from packaging (and resulting food 

concentrations) based upon physico-chemical properties, packaging formulation, and the 

properties of the food. The model was developed by fitting a parsimonious linear model to 
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measured migration data obtained from the FDA 47. These migration estimates were 

combined with food intakes from NHANES to estimate exposures via the dietary pathway 

(mg/kg BW/day) for the U.S. population for 1009 chemicals publicly listed by U.S. or 

European regulatory agencies as potential polymer food contact materials. These 

predictions, available in the supplemental information of Biryol, Nicolas, Wambaugh, 

Phillips and Isaacs 46, were used for the dietary pathway.

MM6.5: Fate and Transport Models—Fate and transport models predict intake rates 

based upon compound-specific data both on distribution (e.g., using fugacity) and 

degradation (i.e., using half-lives in environmental media). In many cases, these models 

solve the underlying mass balance at steady-state. Such models usually account for 

multimedia fate and multi-pathway exposure and range from generic nested models like 

USEtox48 to spatially explicit multiscale models like Pangea 49. These models predict 

chemical fate and distribution in representative environmental media (e.g., air, water, soil, 

sediment, biota). “Exposure factors” describing human interaction with environmental media 

and diet are used to determine an average predicted intake rate per each kg of chemical 

emitted. 48, 49.

Since the models for far-field sources make predictions for intake rates based upon the 

amount emitted (i.e., mg/kg BW/day per kg emitted), knowledge of rate and media of 

release to the environment is needed. Unfortunately, this information is not available on a 

high-throughput scale. Instead, production volumes (MM6.1) were used as an additional 

predictor of exposure (πi,k in Equation 1). Because the models are evaluated on the log scale 

(that is, for two model predictions pred1 and pred2, log rate = log pred1 + log pred2) and the 

sum of two logarithms is equal to the product, (i.e., log pred1 + log pred2 = log[pred1 * 

pred2]), we evaluate the effectiveness of production volume as a surrogate for environmental 

release.

MM6.5.1: USEtox Model: The United Nations Environment Programme (UNEP) and 

Society for Environmental Toxicology and Chemistry (SETAC) toxicity and ecotoxicity 

characterization model USEtox 48 version 2.0 is a global scientific consensus fate, exposure 

and effect model that was used as a predictor of far-field industrial sources of chemical 

exposure. USEtox 2.0 consists of a set of nested environmental compartments at indoor, 

urban, continental, and global scale.

MM6.5.2: dynamiCROP pesticide exposure model parameterization: The dynamic 

plant update and crop residue exposure model dynamiCROP 50, 51 was implemented in 

USEtox version 2.0 in a parameterized version 52, 53, and used as a predictor of far-field 

sources of pesticide exposure. The model starts from a set of pesticide mass fractions 

reaching crop, soil, and air upon pesticide application and predicts pesticide residues in 

crops at any given harvest time. Human exposure is then linked to the consumption of these 

residues in harvested crop components after undergoing food processing, and inhalation and 

ingestion exposure is associated with the fractions lost to air and soil after far-field 

environmental distribution.
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MM6.5.3: RAIDAR Model: The Risk Assessment IDentification And Ranking 

(RAIDAR) model is an environmental fate and transport model linked with food web 

bioaccumulation models for representative ecological and agricultural targets and humans. 

RAIDAR was used for far-field industrial chemicals and pesticides. 54

MM6.6: Consumer (Near-Field Source) Models—All models covering the 

consumer pathway require estimated release rates for individual chemicals from consumer 

products. CPDat 55 and data on consumer product use in the high-throughput Stochastic 

Human Exposure and Dose Simulation model (SHEDS-HT) 56 were used to generate inputs 

(product-specific releases) representative of the median U.S. population. These releases were 

aligned with appropriate near-field compartments (e.g., air, surfaces, skin) in each model and 

summed across products to estimate the total release for each chemical. The SHEDS-HT 

model 56 includes a parameterization of the indoor environment that combines data on which 

chemicals are in what products (i.e., composition data) with how often these products are 

used (i.e., pattern of consumer product use) to generate indoor chemical releases (g/day).

MM6.6.1: SHEDS-HT: In SHEDS-HT, the residential module of SHEDS-Multimedia 57 

was modified to reduce the user burden, input data demands, and run times of the higher-tier 

model. SHEDS-HT links chemicals to consumer product categories or food groups (and thus 

exposure scenarios) to make predictions for both direct (intentional use) and indirect 

exposure for the consumer pathway. In modeling indirect (post-use) exposures from near-

field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in 

indoor environmental media. For direct exposures, SHEDS-HT calculates route-specific 

(dermal, inhalation, and ingestion) and total exposure from each product type modeled, and 

then calculates an aggregate chemical exposure from all products for each chemical. In this 

study, SHEDS-HT used the latest version of CPDat 55 and release v0.1.6 of the SHEDS-HT 

code (https://github.com/HumanExposure/SHEDSHTRPackage/releases/tag/v0.1.6) and 

default input files.

MM6.6.2: FINE Model: The Fugacity-based INdoor Exposure (FINE) model is a near-

field fate and exposure model for organic compounds released to the indoor consumer 

environment 58, 59. The model simulates the concentrations of organic compounds in various 

indoor compartments (e.g., gas phase, airborne particles, dust, carpet, vinyl flooring, and 

walls). The model estimates the intake fraction due to indoor air releases through inhalation, 

dermal uptake, and non-dietary dust ingestion by coupling the simulated concentrations with 

recommended exposure factors (e.g., inhalation rate, dust ingestion rate), which were 

obtained from the EPA Exposure Factors Handbook60.

MM6.6.3: RAIDAR-ICE: The RAIDAR-Indoor and Consumer Exposure (RAIDAR-

ICE) model 61 combines an indoor fate model with a physiologically-based biokinetic model 

for simulating exposures and potential risks to a representative human adult living in the 

indoor environment. RAIDAR-ICE is based on the Indoor Chemical Exposure 

Classification/Ranking Model (ICECRM) 62, but in addition to the indirect inhalation, non-

dietary ingestion, and dermal exposure pathways included in ICECRM, RAIDAR-ICE also 

includes direct inhalation, ingestion, and dermal exposure pathways.
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MM6.6.4: Product intake fraction modeling framework: For considering consumer 

exposure in USEtox, the product intake fraction is used as a metric linking the mass taken in 

by humans via all pathways per chemical mass in a specific product application63. Potential 

input models to estimate product application-specific pathways and processes are 

summarized in Huang et al. 64, with specific models coupled with USEtox already for 

building materials 65, food contact materials 66 and personal care products 67.

These exposure predictors correspond to the USEtox Consumer Scenario and USEtox 

Dietary Scenario in Table 2.

Results and Discussion

Source-based Pathway Predictor Models

The 2017 report by the U.S. National Academy of Sciences, Engineering, and Medicine 

(NASEM) “Using 21st Century Science to Improve Risk-Related Evaluations” identified the 

need for HTE models as the basis for “exposure-based priority setting”. These models 

enable a high throughput chemical risk estimation approach under evaluation by regulatory 

agencies worldwide 7, 68, in which dose rates predicted to cause in vitro bioactivity are 

compared directly to predictions of intake rate 1, 8. However, Shin et al.69 argued that, in the 

absence of chemical-specific knowledge of relevant pathways, chemical exposures should be 

simulated via all pathways, generating overly conservative (i.e., higher than reality) 

estimates of exposure 70. The research reported here advances the exposure models available 

for quantitative risk estimation by predicting the pathways likely relevant to each chemical 

based upon structural features and physico-chemical properties and then using this 

information to incorporate a wider range of exposure predictors (Table 2).

Machine learning models were built for each of four source-based pathways – far-field 

pesticide use, non-pesticide dietary exposure, far-field industrial exposure (for example, via 

drinking water), and consumer (for example, near-field exposure to household products). 

The performance of the random forest models for making chemical-specific exposure 

pathway predictions are summarized in Table 3. The pathway model OOB error rates range 

from 19–27%. The balanced accuracies range from 73–81%, with the error rate for 

identifying positive chemicals ranging from 16–36%. Generally, the physico-chemical 

properties and molecular weight were predictive to varying degrees for all pathways. The 

ToxPrint structure descriptors were more mixed in their importance for predicting pathways, 

which is expected since any one structural feature is only present in a small subset of 

chemicals (see Supplemental Table 2).

The pathway predictors are developed by determining training sets of reference chemicals 

that are either known to have exposure via a given pathway (“positives”) or known to not 

have exposure via that pathway (“negative”). Techniques such as suspect screening analysis 

(SSA) 71 and non-targeted analysis (NTA)72 offer the promise of identifying more reference 

chemicals for pathway predictive models, as in Phillips, et al.73, whose SSA measurements 

were used here to identify chemicals with consumer pathway exposure. These models can 

then be informed via SSA/NTA of relevant media, such as water, in which the chemicals that 

were checked for (via analytical standards) but found missing become negatives assuming 
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that the limits of detection for that medium are acceptable 71, 74. However, negatives are still 

problematic since it is possible that a chemical not found by gas chromatography might be 

found by liquid chromatography, and vice versa. One route to developing better training sets 

would be to subdivide the pathways so that each contained more homogenous chemicals 

where one can be confident that the SSA/NTA method employed should detect the 

chemicals, if present. Pharmaceuticals provided helpful negatives for these four pathways, 

but do have relevant exposure both from usage as pharmaceuticals, and environmental 

release 75. If monitoring data similar to NHANES on a significant number of 

pharmaceuticals becomes available, it would allow for the addition of pharmaceutical-

relevant pathways. 55, 71, 74, 76.

Development of the Pathway-Based SEEM Meta-Model

We use the SEEM approach to construct a meta-model of predictors based on their ability to 

describe exposures inferred from the NHANES data. Pathway-based analysis allows 

organization of predictors and evaluation chemicals based on exposure pathways. Models 

that describe, for example, outdoor environmental fate and transport are only examined for 

predictive ability against chemicals with some exposure contribution from outdoor 

environments. In addition to models, data on chemical production volume are analyzed as 

exposure predictors, as well as an indicator (0 or 1) of whether chemicals are listed as 

persistent organic pollutants by the Stockholm convention. Finally, actual intake rate 

estimates from pesticide REDs are included as exposure predictors – these predictions are 

evaluated against inferred intake rates in the same way as the other predictors and are 

included in the consensus model predictions.

Both serum and urine data were used to infer 114 chemical intake rates from NHANES 

(plotted in Supplemental Figure 1 and described in Supplemental Table 4), with mean 0.16 

ng/kg BW/day and standard deviation of 132x greater or lesser. These rates spanned roughly 

twelve orders of magnitude (from 10−15 mg/kg BW/day for 2,2’,4,4’,5,5’-

hexachlorobiphenyl to 0.001 mg/kg BW/day for diethyl phthalate) representing a significant 

increase from the six orders of magnitude range inferred from urine alone by Wambaugh et 

al. (2014) 20. Biomonitoring reflects integration of all routes of exposure and some 

NHANES chemicals are involved in multiple pathways. NHANES covers many pesticides 

and chemicals with consumer exposures but has lesser coverage of chemicals with industrial 

(far-field) and dietary sources. The distribution of NHANES chemicals among the pathways 

is listed in Table 3.

The exposure pathway indicators (δij) were used to allow multivariate regression of inferred 

intake rates on the appropriate predictors. The pathway means indicate relative changes in 

intake rate associated with chemicals for each pathway (Figure 2): +1.02 (consumer), +0.707 

(dietary), +0.572 (far-field pesticides) and −0.08 (far-field industrial). Only the consumer 

and dietary pathway are significantly non-zero, with fold-changes of 145 times greater 

intake rates for consumer pathway exposures and 21 times higher for dietary exposures 

relative to the overall mean a0 of 1.2 ng/kg/day. Chemicals with proximate sources were 

higher than chemicals with only far-field sources, recapitulating the finding from the 

previous SEEM “heuristic” model 20. In contrast, chemicals with only far-field sources are 
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lower than average. The indicator variable for presence on the Stockholm Convention list of 

persistent chemicals was a statistically significant negative factor for both pesticides and 

industrial chemicals, with banned pesticides being 1670 times lower, and banned industrial 

compounds being 5134 times lower on average. Median estimates for all coefficients in the 

multivariate regression are given in Supplemental Table 6. The SHEDS-HT Direct, Food 

Contact, USEtox (pesticide only), and production volume (pesticide only) predictors showed 

significant positive correlation with increased intake rate. The RAIDAR (industrial only), 

USEtox (diet only) and FDA CEDI predictors all showed significant negative correlation 

with intake rate.

Because correlations exist between the predictors it is difficult to directly interpret the 

contributions of each model to the consensus prediction. A univariate (one predictor at a 

time) analysis was performed to determine the correlation between each predictor and 

chemicals associated with a given pathway (Supplemental Figure 2). The results for all 

predictors are given in Supplemental Table 7. In the univariate analysis, the SHEDS-HT 

Direct pathway, RAIDAR-ICE, and production volume all correlate positively (i.e., 95% 

probability of a non-zero dependence) with intake of chemicals by the consumer pathway. 

Both the USEtox and Stockholm Convention predictors correlate negatively with intake rate 

from the far-field pesticidal sources, while production volume correlates positively. Only the 

Stockholm Convention correlates (negatively) with far-field pesticide exposure. Only the 

Food Contact model correlates (positively) with dietary exposure. All other predictors were 

not statistically significant in the univariate analysis; however, while the median estimated 

loading coefficients wik for the meta-model are near zero, the actual values may be positive 

or negative, given the limitations of the evaluation chemicals. Notably, some predictors that 

are significant in the multivariate model do not demonstrate significance in the univariate 

analysis, indicating the benefit for including many relevant models in the meta-analysis17.

In Figure 3, we examine the correlation between inferred intake rate from the NHANES 

biomonitoring data and SEEM meta-model prediction. First, we note that the R2 ~0.8 for a 

weighted linear regression using median coefficient values (trend-line Figure 3) is an 

improvement over the predictive ability of the Wambaugh et al. 20 empirical exposure model 

(R2 ~0.5). The RMSE for the model is ~0.93.

We note that all but six chemicals in Figure 3 have inferred daily intake rates greater than 

10−9 mg/kg BW/day. These six chemicals consist of five pesticides (Endrin, Mirex, Aldrin, 

Dieldrin, and p,p’-DDT) and PCB-153. All six chemicals are persistent organic pollutants 

listed by the Stockholm convention that are detectable in serum by NHANES. The inferred 

intake rates for these six chemicals range from 9×10−16 to 2×10−13 mg/kg BW/day. When 

these six chemicals are omitted, the R2 and RMSE for the linear regression in Figure 3 

changes only slightly to 0.82 and 0.9, respectively. However, the R2 for the six chemicals is 

only 0.03 (RMSE 13.5), indicating that better modeling of these persistent chemicals that 

have very low intake rates is needed. Uncertainty in “emission rates” assumed for these 

persistent chemicals here is a likely explanation for the poor agreement since human 

exposure model evaluations with more detailed emissions information generally show much 

better agreement, e.g. Li et al.77. The present consensus model predictions are biased 

conservatively, in that they tend to overestimate intake rates for these six chemicals. (The 
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dashed line in Figure 3 indicates the 1:1 (perfect predictor) – any point over the 1:1 line is 

overpredicted.)

Consensus Model Predictions

For 687,359 chemicals with structures curated by the EPA’s DSStox library, we used the 

pathway predictor models to identify relevant pathway(s) and the consensus meta-model to 

predict the population median intake rate with 95% credible interval. In Figure 4, exposures 

are predicted for 479,926 chemicals. The pathway predictor models are independent and 

uncorrelated, so that a chemical could have exposure via multiple pathways or none. Each of 

the thousands of pathway training set chemicals (Table 3) was definitively assigned either 

100% or 0% probability depending on whether they were positive or negative training 

chemicals. Note that the x-axis on the left-hand side of Figure 4 is logarithmic. On the left-

hand side of Figure 4, each chemical’s plot symbol is assigned based on whether there is an 

50% or greater probability of exposure by each pathway. The credible interval reflects a 

combination of pathway assignments, pathway means, and model predictions and loadings. 

See Supplemental Table 1 for all chemical descriptors and predictions. Given that most 

chemicals do not have model predictions (Table 2), chemicals intake rates are only being 

driven by the pathway means based on the probability of those pathways being relevant to 

the chemical.

With source-based pathway annotation, we have gained additional information about the 

likely pathway(s) of exposure, and the ability to augment average pathway exposures with 

calibrated model predictions. Of the chemicals examined, only 1880 have an upper limit on 

their 95% credible interval that is greater than 0.1 mg/kg BW/day. These compounds are 

plotted in Panel a of Figure 4. The credible interval reflects a combination of scenarios 

where the values for predictors are large and the confidence in those predictors is significant. 

For the very highest predicted intake rates in Panel a, the credible intervals are very large, 

reflecting large uncertainty (exposure could be very high or very low). The prediction for the 

highest chemical exposure, Dihexyl nonanedioate, is driven by dietary exposure predicted by 

the Biyol et al. 46 model which, lacking any measured data, assumed that this compound 

might be a significant fraction of some packaging materials. Better characterization of the 

actual occurrence and weight fraction of chemicals such as Dihexyl nonanedioate, where 

assumptions may be too conservative, would reduce this uncertainty. The median credible 

interval in Panel a spans 8.5 orders of magnitude, with a high of 12.7 and a low of 4.5.

As shown in Panel b of Figure 4, there is 95% confidence that the median intake rate is 

below 0.1 μg/kg BW/day for 478,046 compounds. Chemicals produced/imported in 

quantities of more than 25,000 lbs./year (“high production volume chemicals”) must be 

reported to the EPA, however, since production/import of most of the chemicals considered 

here are not listed as high production volume the actual production is unknown and we 

assume a default of 12,500 lbs./year. If these chemicals are instead produced at just below 

the reporting requirement, the number of chemicals exceeding 0.1 mg/kg BW/day would be 

1962. The median credible interval in Panel b spans 4.3 orders of magnitude, with a high of 

16.1 and a low of 0.9.
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An exposure pathway may cover multiple “exposure routes”, defined as “The way an agent 

enters a target after contact (e.g., by ingestion, inhalation, or dermal absorption).”14 Many of 

the models analyzed here can produce route-specific estimates, and the coarse, source-based 

pathway categories used here could be refined in the future if more data become available to 

predict likely routes for new chemicals (e.g. ingestion of industrial chemicals via water vs. 

inhalation of contaminated air). We believe that our current source-based pathway categories 

are an appropriate level of refinement given the level of information available for tens of 

thousands of chemicals.

The SEEM meta-model extrapolates intake rates from 114 chemicals that can be inferred 

from NHANES biomonitoring data. We make a strong assumption that chemicals without 

biomonitoring data will have similar intake rates to those within NHANES. The selection of 

NHANES chemicals by the CDC is not intended to represent all chemical space but does 

contain a mix of chemicals above and below the limits of detection 20. While the NHANES 

chemicals do cover all four exposure pathways modeled here, there are certainly chemicals 

of interest in regions of chemical space (e.g., hydrophobicity, ionization, function) as well as 

exposure pathways that are not covered.

There are at least two reasons to desire expanding the available set of chemicals with 

biomonitoring data suitable for model evaluation. First, many chemicals with the highest 

predicted intake rates have not been included in targeted bio-monitoring efforts. New data on 

these chemicals would provide critical evaluation data. Second, statistical ability to evaluate 

model predictions generally increases with the number of samples and would be especially 

improved by expanding the chemical space covered.

The 95% credible intervals reported here reflect uncertainty about the population median 

intake rate, and do not reflect population variability. The NHANES data do not necessarily 

capture the most highly exposed individuals, including those with occupational exposures. 

There are some significant limitations for estimating intake rates for highly exposed 

individuals because any given chemical is monitored via spot samples for a cohort of 

roughly 2500 individuals78. Since a log-normal population distribution was assumed, the 

median (mean of the distribution) is more certain than the overall shape of the distribution. 

While spot samples are informative about median intake rates, variation in exposure 

magnitudes, duration, and time from sampling confounds the estimation of higher moments 

of the distribution 79.

The steady-state approximation for exposure reconstruction is less than ideal, particularly for 

chemicals with short half-lives and irregular use patterns 20, 80, 81. At a minimum, data for 

chemical volume of distribution and clearance rate are needed to make more elaborate 

inferences 82, 83. Unfortunately, these data are not available for all NHANES chemicals 38. 

Despite these limitations, the median intake rate can be reasonably estimated from 

population biomarker data since those samples average over the various exposure scenarios 

– even for rapidly cleared chemicals 84. Further, it has been shown via simulation study that 

most chemicals with potential environmental exposure do reach steady-state within a few 

weeks 85.
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The biomarkers used here for evaluation and calibration represent the general U.S. 

population as characterized by NHANES. Separate analyses are possible for specific 

demographic groups (e.g., children, women of reproductive age) 20 if there is sufficient 

representation within the NHANES cohort but have not been performed here. We have not 

evaluated how representative NHANES is of non-U.S. populations, although the SEEM 

approach could be applied to any similar chemical exposure biomonitoring data set 

representing other. Similarly, the predictors examined here are primarily for the general U.S. 

population, but other exposure data and model scenarios could be used in consensus 

predictions for other populations.

Of 687,359 chemicals evaluated, 30% have less than a 50% probability for exposure via any 

of the four pathways modeled here. Since the various pathways act to either raise or lower 

predicted intake rate, these chemicals were predicted to have a moderate exposure rate (the 

grand mean exposure rate, a0, from Equation 1). However, these chemicals should be 

thought of as being outside the “applicability domain”17 of the meta-model because we have 

not characterized the uncertainty since there are no NHANES data for these chemicals. It is 

possible that these chemicals have no significant use resulting in exposure to the population, 

or that exposure to them occurs by a route different than those modeled here (e.g., 

pharmaceuticals). The source-based pathways used in this study – far-field pesticide, far-

field industrial, dietary, and consumer – are imperfect and incomplete 86, 87. These pathways 

are demonstrative, and could be refined and replaced with other, more descriptive pathways 

assuming there are sufficient data. Despite these limitations, the nearly two thousand 

chemicals in Figure 4a remain priorities since they are predicted to be like NHANES 

chemicals with high exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

BW body weight

CDC U.S. Centers for Disease Control and Prevention

CDR EPA Chemical Data Reporting

CPDat EPA Chemical and Products Database
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DSSTox Distributed Structure-Searchable Toxicity

EPA U.S. Environmental Protection Agency

ExpoCast the EPA Exposure Forecaster research program

FDA U.S. Food and Drug Administration

FINE Fugacity-based INdoor Exposure model

HTE High Throughput Exposure models

MCMC Markov Chain Monte Carlo

NASEM U.S. National Academy of Sciences, Engineering, and 

Medicine

NHANES CDC National Health and Nutrition Examination Survey

OOB Random Forest Out of Bag error

NTA non-targeted chemical analysis

OPERA OPEn structure–activity/property Relationship App

RAIDAR Risk Assessment IDentification And Ranking model

RAIDAR-ICE RAIDAR-Indoor and Consumer Exposure model

SEEM the Systematic Empirical Evaluation of Models framework

RED EPA Pesticide Re-Registration Eligibility Document

SHEDS-HT high-throughput Stochastic Human Exposure and Dose 

Simulation model

SSA suspect screening chemical analysis

TSCA Toxic Substances Control Act

USEtox United Nations Environment Programme (UNEP) and 

Society for Environmental Toxicology and Chemistry 

(SETAC) toxicity and ecotoxicity characterization model
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Figure 1: 
The Systematic Empirical Evaluation of Models (SEEM) framework combines predictors of 

exposure (πi,k) according to how well they explain the available intake rates (Ri). In the top 

half of the figure we describe how the overall average (grand mean) a0, the pathway 

averages aj, and the model weights wj,k are determined with Bayesian analysis. Each wj,k is 

an evaluation of each predictor, as well as a calibration of how to align that predictor with 

the intake rates. In the bottom half of the figure we explain how for chemicals without intake 

rates, we extrapolate the averages and weights from the Bayesian analysis to combine the 

predictors into a consensus prediction. The predictors are centered such that if no predictor 

is available, the average value is used. The pathway indicators δi,j, are predicted using the 

Random Forest algorithm (Table 3).
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Figure 2: 
Exposure predictors are organized to give a consensus prediction of intake rate based upon 

the exposure pathway(s) associated with a chemical. The exposure pathway indicators (δij) 

determine whether (1) or not (0) each pathway is associated --- if 1 (“yes”), then the 

predictors to the right will modify the estimated intake rate. The pathway means (ai) indicate 

overall relative changes in intake rate associated with each pathway. Each exposure predictor 

and the NHANES intake rates were scaled so that their mean was zero and any value 

indicates the number of standard deviations above or below the mean. When a given 

predictor is unavailable for a given chemical, the mean value is used.
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Figure 3: 
A pathway-based SEEM meta-analysis allows disparate sources of exposure information 

(e.g., expert estimates of intake rate and high-throughput exposure estimates, both described 

here as “models”). Chemicals with no predictions for a given model are assigned either the 

average exposure predicted for that model or zero, depending on whether or not a chemical 

is predicted to have exposure via the pathway relevant to that model. Most of the 114 

NHANES chemicals analyzed are predicted to have exposure via multiple pathways and are 

distributed according to Table 2. The unexplained chemical-to-chemical variability is an 

empirical estimate of the uncertainty of our calibrated predictions. The dashed line indicates 

identity (perfect predictor) while the solid line indicates a least squares regression on the 

medians (with gray shaded region indicating standard error).
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Figure 4: 
The 95% credible interval (vertical line) and median predicted exposure (points in Panel A) 

for 479,926 chemicals. The 1880 chemicals whose confidence intervals exceed 0.1 mg/kg 

BW/day are ranked on a logarithmic scale (Panel a) and all remaining chemicals plotted on 

an arithmetic scale (panel b). The shape of each plot-point in Panel a indicates the predicted 

(>50% probability) or assumed (training set) exposure pathways. Chemicals may have 

exposure by none (i.e., “unknown” pathway), one, or more than one of the four pathways. 

The upper limit of the 95% interval for the vast majority of chemicals is less than 1 μg/kg 

BW/day. The upper limit of the credible interval for the first four chemicals in panel A is 

truncated for plotting clarity.
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Table 1:

Partial Technical Glossary

Term Explanation

ExpoCast (Exposure 
Forecasting) Project

An ongoing U.S. Environmental Protection Agency project to develop new methods, data, and models for high-
throughput exposure assessment (i.e., thousands of chemicals). 11, 88

Exposure Predictor In this analysis “exposure predictor” refers to both the predictions of specific exposure models as well as other 
exposure-related information

Exposure Pathway “The course an agent [chemical] takes from the source [environmental release] to the target [human].” 14 In this 
analysis we use the simple term “pathway” to represent the totality of paths that a chemical may follow from a 
particular source to reach a person.

Grand Mean The overall mean of a regression. In this analysis, the grand mean a0 describes the average intake rate inferred from 
NHANES in contrast to the pathway-specific means. 89

Intake “The process by which an agent [chemical] crosses an outer exposure surface [some portion of an individual] of a 
target [human] without passing an absorption barrier, i.e. through ingestion or inhalation.” 14

Intake rate Daily average intake (mg/kg body weight/day).

Meet-in-the-Middle An approach in which predictions from models that make predictions from upstream data (e.g., activity) are 
compared with models that make inferences from downstream data (e.g., biomarkers). An approach in which 
predictions from models that make predictions from upstream data (e.g., 18

Near-field / Far-field 
Sources

”Near-field” sources are proximate, indoor sources such as consumer product use in domestic settings, while “far-
field” sources are distal with exposure mediated by environmental fate and transport. 56, 70, 86

Random Forest 
Algorithm

A machine learning approach in which an ensemble of decision trees is used to make probabilistic predictions. 29

Systematic Empirical 
Evaluation of Models 
(SEEM)

SEEM is a consensus modeling method for exposure model evaluation and calibration. SEEM uses a meet-in-the-
middle approach to calibrate high-throughput exposure predictors with intake rates inferred from biomonitoring 
data.20, 21
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Table 2:

Exposure Predictors Evaluated

Predictor Materials and 
Methods 
Section

Chemicals 
Predicted

Pathways

EPA Inventory Update Reporting and Chemical Data Reporting (CDR) 
(2015)44EPA Inventory Update Reporting and Chemical Data Reporting (CDR) 
(2015)44

MM6.1 7856 All

Stockholm Convention of Banned Persistent Organic Pollutants 
(2017)45Stockholm Convention of Banned Persistent Organic Pollutants 
(2017)45

MM6.2 248 Far-Field Industrial 
and Pesticide

EPA Pesticide Reregistration Eligibility Documents (REDs) Exposure 
Assessments (Through 2015)8, 40

MM6.3 239 Far-Field Pesticide

Food Contact Substance Migration Model (2017)46Food Contact Substance 
Migration Model (2017)46

MM6.4 940 Dietary

United Nations Environment Program and Society for Environmental 
Toxicology and Chemistry toxicity model (USEtox) Industrial Scenario 
(2.0)50–53

MM6.5.1 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0)48USEtox Pesticide Scenario (2.0)48 MM6.5.2 8167 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) Far-Field (2.95)54Risk 
Assessment IDentification And Ranking (RAIDAR) Far-Field (2.95)54

MM6.5.3 7511 Far-Field Industrial 
and Pesticide

EPA Stochastic Human Exposure Dose Simulator High-Throughput (SHEDS-
HT) Near-Field Direct (2017)90EPA Stochastic Human Exposure Dose 
Simulator High-Throughput (SHEDS-HT) Near-Field Direct (2017)90 MM6.6.1 1119

Consumer (Near-
Field)

SHEDS-HT Near-field Indirect (2017)90SHEDS-HT Near-field Indirect 
(2017)90 MM6.6.1 645 Consumer

Fugacity-based INdoor Exposure (FINE) (2017)58, 59Fugacity-based INdoor 
Exposure (FINE) (2017)58, 59 MM6.6.2 1221 Consumer

RAIDAR-ICE Near-Field (0.804)61, 62 RAIDAR-ICE Near-Field (0.804)61, 62 MM6.6.3 615 Consumer

USEtox Consumer Scenario (2.0)63–65 MM6.6.4 8167 Consumer

USEtox Dietary Scenario (2.0)63, 65, 66 MM6.6.4 8167 Dietary
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Table 3:

Training Sets and Performance of Random Forest Models for Exposure Pathways

NHANES 
Chemicals Positives Negatives

OOB 
Error 
Rate

Positives 
Error 
Rate

Balanced 
Accuracy

Sources of Positive 
Example Chemicals

Sources of 
Negative Example 
Chemicals

Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, 
CPDat (Food, Food 
Additive, Food Contact), 
NHANES Curation

Pharmapendium, 
CPDat (non-food), 
NHANES Curation

Consumer 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), 
ExpoCast, NHANES 
Curation

CPDat 
(Agricultural, 
Industrial), FDA 
CEDI, NHANES 
Curation

Far-Field 
Pesticide 
Sources

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, 
CPDat (Pesticide), 
NHANES Curation

Pharmapendium, 
Industrial Positives, 
NHANES Curation

Far Field 
Industrial 
Sources

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN 
PFAS, Stockholm 
Convention, CPDat 
(Industrial, 
Industrial_Fluid), 
NHANES Curation

Pharmapendium, 
Pesticide Positives, 
NHANES Curation
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