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Abstract

Scaling Limit of Anyonic Chains and Quantum Simulation of Conformal Field Theory

by

Modjtaba Shokrian Zini

We provide a mathematical definition of a low energy scaling limit of a sequence of

general non-relativistic quantum theories in any dimension, and apply our formalism to

anyonic chains. We formulate Conjecture 2.5.3 on conditions when a unitary rational

(1 + 1)−d conformal field theory would arise as such a limit and verify the conjecture

for the Ising minimal model M(4, 3) using su(2)2 anyonic chains. Our work is based

on the existence of a Fourier transform relation between Temperley-Lieb generators {ei}

and some finite stage operators of the Virasoro generators {Lm + L−m} and {i(Lm −

L−m)} for unitary minimal models M(k + 2, k + 1) (proven for k = 2). An earlier

attempt [1], called the Koo-Saleur formula, has slower convergence with characteristics

that hinder the convergence of algebras of observables, an important contribution of this

work. Assuming Conjecture 2.5.3, most of our main results for M(4, 3) hold for higher

(k ≥ 3) unitary minimal models M(k + 2, k + 1) as well. Our approach is supported by

extensive numerical simulation and physical proofs in the physics literature. It is also

inspired by an eventual application to an efficient simulation of conformal field theories by

quantum computers. We approach the definition of the unitary evolution and correlator

simulation problems in the same spirit of topological quantum field theory simulation as

established by M. Freedman et. al. [2]. Under certain conditions, we present complexity

theoretic hardness results on the simulation problems by using the framework of fermionic

quantum computation by Bravyi and Kitaev [3].
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Chapter 1

Introduction

1.1 Thesis outline

In this chapter, we review the background materials for the thesis involving mathe-

matical models of topological and conformal quantum field theory and anyonic chains.

The second chapter is mostly based on our work on “CFT as Scaling Limit of Anyonic

Chains” [4]. We start by outlining our results on scaling limit of anyonic chains (2.1). We

motivate the discussion behind scaling limit and provide a detailed overview of the main

theorems. This includes the ideas behind the proofs and conjectures for future works.

With this background, previous works are then discussed (2.2). The next sections (2.3-

2.5) are all devoted to proving the results in the outline and eventually (2.6) discussing

in more details the conjectures and possible future research directions.

The structure of the third chapter is similar and a continuation of the relevant work in

[4]. We introduce the simulation problems briefly (3.1) before reviewing previous works

on quantum field theory simulation (3.2). Next, we discuss two simulation problems

concerning unitary evolution (3.3) and correlation function (3.4). We motivate our def-

initions for these problems and outline our partial results. We also include discussions

1



Introduction Chapter 1

in each case with regards to why we fail to prove the problems are in BQP, and what

the alternative approaches could be. The last sections include proving those results (3.5)

and showing our definitions are well-defined (3.6).

1.2 Modular Tensor Category (MTC)

Reshetikhin and Turaev introduced a 3-manifold invariant in [5] using modular tensor

categories (MTCs), believed to be the mathematical realization of Witten’s path integral

formulation of TQFT from non-abelian Chern-Simon theories. In this thesis, we will

consider MTC as the model of (2 + 1)−d TQFT. An MTC is a category with a long list

of extra structures. As the exact details of the definition are not used, we briefly overview

the concept while mentioning the connection to physics along the way. We refer to [6]

for the details.

A modular tensor category comes with a diagram calculus which allows us to compute

morphism composition. The diagram calculus will be introduced in figures below as

each structure is defined. In this calculus, morphisms are composed by stacking up

their corresponding diagram, and tensor product of morphisms is done by putting their

diagrams next to each other (Figure 1.1). The identities that will be introduced later

which the so-called structure morphisms will have to satisfy, are the necessary identities

making the morphisms invariant with respect to diagram isotopies. Hence, one is able

to alter the diagram without changing the morphism as long as the motion is an isotopy

(just like in identifying two knot diagrams).

We start with an abelian semisimple category C with C−linear Hom spaces and

add a monoidal structure on C. This is given by a bi-functor ⊗ : C × C → C with the

following additional data.

• There is an identity element 1 (vacuum) with respect to ⊗ (corresponding to fu-

2



Introduction Chapter 1

X

Z

f

g

Y

X

f

Y

,

W

h

Z

Figure 1.1: g ◦ f : X → Z, f ⊗ h : X ⊗W → Y ⊗ Z.

sion). More precisely, there are left and right unit constraints lX : 1⊗X '−→ X, rX :

X ⊗ 1
'−→ X.

• There are isomorphism structure maps called associators αX,Y,Z : (X ⊗ Y )⊗ Z '−→

X ⊗ (Y ⊗ Z).

These satisfy compatibility axioms expressed in the form of commuting pentagon and

triangle diagrams (Figures 1.2 and 1.3).

((X ⊗ Y )⊗W )⊗ Z

(X ⊗ (Y ⊗W ))⊗ Z (X ⊗ Y )⊗ (W ⊗ Z)

X ⊗ ((Y ⊗W )⊗ Z) X ⊗ (Y ⊗ (W ⊗ Z))

αX,Y,W⊗idZ αX⊗Y,W,Z

αX,Y⊗W,Z αX,Y,W⊗Z

idX⊗αY,W,Z

Figure 1.2: Pentagon axiom.

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

αX,1,Y

rX⊗idY
idX⊗lY

Figure 1.3: Triangle axiom.

Next, assume a rigidity structure on C. This corresponds to having a left and right

dual ∗X,X∗ for each object X ∈ Obj(C) with structure maps evX : X∗⊗X → 1, coevX :

3



Introduction Chapter 1

1 → X ⊗ X∗ for the right dual and similarly for the left dual ev′X , coev′X . Ultimately,

the left and right dual will turn out to be isomorphic and correspond to antiparticles in

physics terminology. The structure maps satisfy compatibility axioms with the monoidal

structure. One such axiom is the composition below being idX . Other axioms are derived

similarly.

X
l−1
X−−→ 1⊗X coevX⊗idX−−−−−−→ (X ⊗X∗)⊗X

αX,X∗,X−−−−−→ X ⊗ (X∗ ⊗X)
idX⊗evX−−−−−→ X ⊗ 1

rX−→ X.

X

coevX

X

evX

Figure 1.4: Diagrams for coevX , evX . By convention, the identity object 1 is repre-
sented by “empty” at the bottom of coevX and top of evX .

Let L(C) denote the set of isomorphism class of simple objects. Mathematically, one

can view them as irreducible representations of some algebra, and physically, they will

represent the quasi-particles (anyons) of a (2 + 1)−d TQFT.

Definition 1.2.1 A fusion category is an abelian semisimple C−linear rigid monoidal

category such that 1 is simple and L(C) is finite. We call |L(C)| the rank of C.

Finiteness of L(C) usually corresponds to some algebra having finitely many irre-

ducible representations. We will see this in the case of rational CFTs. A fusion category

has fusion rules N c
ab. These are nonnegative integers that can be interpreted as the

multiplicities of a simple object (anyon) c in the tensor product (fusion) of a, b ∈ L(C):

a⊗ b = ⊕cN c
abc.

Note N c
ab = dimC Hom(c, a ⊗ b) as a C−vector space. A fusion is shown by a trivalent

4



Introduction Chapter 1

graph (Figure 1.5).

c

a b
µ

Figure 1.5: Trivalent graph with µ ∈ Hom(c, a⊗ b).

Schur’s lemma holds in an MTC, i.e. Hom(X,X) ∼= C for X ∈ L(C) (Figure 1.6).

This is applied extensively while using diagram calculus; a diagram of any shape sending

X to X is always equal to a scalar.

X

f

X

= α

X

X

Figure 1.6: Schur’s lemma: f ∈ Hom(X,X) =⇒ f = α idX for X ∈ L(C).

Next we add a pivotal followed by a spherical structure. The pivotal structure

identifies the double dual with the identity functor, allowing us to define the notion of

left and right trace. The spherical structure is built on top of that to identify the left

and right trace.

A pivotal structure is a natural isomorphism δ : idC → (·)∗∗ which is compatible with

monoidal and dual structure:

δX⊗Y = δX ⊗ δY , δ1 = id1, δ−1
X∗ = δ∗X .

The notion of spherical structure requires us to define the left and right trace of an

endomorphism (Figure 1.7). Let f ∈ Hom(X,X) and define the left trace as Trl(f) =

evX ◦ (idX∗ ⊗ f) ◦ (idX∗ ⊗ δ−1
X ) ◦ coevX∗ . The right trace is similarly defined. Spherical

means Trl = Trr, which allows the unambiguous definition of trace Tr := Trl = Trr, and

5



Introduction Chapter 1

the quantum dimension of simple objects dimX := Tr(idX).

f

Trl(f)

f

Trr(f)

Figure 1.7: Left and right trace for f : X → X.

Next, we introduce braiding. This corresponds to moving quasiparticles around each

other in a 2−d space. Braiding is a natural isomorphism c : ⊗ → ⊗ ◦ Swap where Swap

is the swap functor on C × C, in other words cX,Y : X ⊗ Y
'−→ Y ⊗ X (Figure 1.8).

Compatibility with all previously introduced structures, notably the monoidal structure,

are imposed, including for example the hexagon commutative diagram 1.9.

X Y

XY

Figure 1.8: cX,Y : X ⊗ Y '−→ Y ⊗X.

(X ⊗ Y )⊗ Z

(Y ⊗X)⊗ Z X ⊗ (Y ⊗ Z)

Y ⊗ (X ⊗ Z) (Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

cX,Y ⊗idZ αX,Y,Z

αY,X,Z cX,Y⊗Z

idY ⊗cX,Z
αY,Z,X

Figure 1.9: Hexagon axiom. The same must hold if we replace ca,b with c−1
b,a.

Definition 1.2.2 A spherical braided category is a ribbon category. A pre-modular ten-

sor category is a ribbon fusion category.

6
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Given a pre-modular tensor category C, one can form the S-matrix with entries sX,Y

given by (Figure 1.10)

sXY = Tr(cY,X ◦ cX,Y ), ∀X, Y ∈ L(C)

X Y

XY

YX

Figure 1.10: sX,Y = Tr(cY,X ◦ cX,Y ).

Definition 1.2.3 If the S−matrix is non-degenerate, C is called a modular tensor cate-

gory.

The T -matrix is a diagonal matrix given by TXX = θX where θX idX is the morphism

given by Figure 1.11 (by Schur’s lemma).

X

X

= θX

X

Figure 1.11: Twist θX .

These matrices satisfy

(ST )3 = e
2πic
8 S2 , S2 = C.

C = (δij∗)ij is the charge conjugation matrix and c is the (topological) central charge

which is defined modulo 8. Furthermore, the Anderson-Moore-Vafa theorem states that

7
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T is a finite order matrix and the central charge c is rational. This implies θX = e2πihj for

some hj ∈ Q. The notation hj is also encountered later in CFT (conformal weight). The

data S, T of an MTC is called its modular data as it gives a projective representation of

SL(2,Z).

We will be working with unitary MTCs. This means a conjugation f of morphisms,

with respect to which all structure morphisms introduced so far are compatible. Conju-

gation should be thought of as taking the diagram of f upside-down. Further, we have a

positive definite hermitian form on the Hom spaces provided by the trace

〈g, f〉 = Tr(g ◦ f), for g : X → Y, f : X → Y.

Given a unitary fusion category, one can compute the change of basis coefficients in

Hom(a, (b⊗ c)⊗d)→ Hom(a, b⊗ (c⊗d)) using the unitary F−move in Figure 1.12 (also

called the 6−j symbols because of the six parameters a, b, c, d, e, ẽ). If the fusion rules are

multiplicity-free, meaning N z
xy ∈ {0, 1} for all x, y, z ∈ L(C), the labels for intertwiners

like ν ∈ Hom(e, b⊗ c) are discarded.

a

b c d

µ
ν

e =
∑
ẽ,ν̃,µ̃

F bcd;ẽν̃µ̃
a;eνµ

a

b c d

ẽ
µ̃
ν̃

Figure 1.12: The F−move.

One can transform a fusion tree in Figure 1.13 to any other with any pattern of

branching from a to j1 ⊗ . . .⊗ jn using repeatedly the F−move.

A basis for Hom(a, j1 ⊗ · · · ⊗ jn) is given by the admissible fusion trees, where ad-

missible means all possible choices of xi in Figure 1.13 not violating the fusion rules.

Computation shows that this is an orthogonal basis [7].

8
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a

j1 j2 jn−1 jn

xn−2

x1

j3
. . .

Figure 1.13: Basis for Hom(a, j1 ⊗ · · · ⊗ jn) in a multiplicity-free setting.

Remark 1.2.1 The basis given by the configurations |x1 . . . xn−2〉 provides the so-called

hidden localities that are used in simulating topological quantum field theory on a quan-

tum computer. The gates in the paradigm of topological quantum computation are the

braidings, as unitarity means braiding is also unitary cX,Y = c−1
X,Y .

1.2.1 Affine Kac-Moody Lie algebra su(2)k MTC

Here, we review the unitary MTC given by irreps of the affine Kac-Moody Lie algebra

su(2)k (su(2) at level k) for k ≥ 2. The k + 1 simple objects are irreducible modules of

WZW model su(2)k introduced later in 1.3.7. They are labelled by half-integers L(C) =

{0, 1
2
, . . . , k

2
}. The fusion rules are the multiplicity-free fusion rules of su(2) (Clebsch-

Gordan rule) capped at level k:

j1 ⊗ j2 = |j1 − j2| ⊕ (|j1 − j2|+ 1)⊕ . . .⊕min{j1 + j2, k − j1 − j2}. (1.1)

The S−matrix is given by

Sj
′

j =

√
2

k + 2
sin
(π(2j + 1)(2j′ + 1)

k + 2

)
,

with the central charge c = 3k
k+2

.

We list the important data for su(2)2 for future reference. Let us use the labels

9



Introduction Chapter 1

{1, σ, ψ} instead of {0, 1
2
, 1}. Fusion rules are as follows

σ2 = 1 + ψ, σψ = ψσ = σ, ψ2 = 1

with quantum dimensions {1,
√

2, 1}. The twists are θ1 = 1, θσ = e
3πi
8 , θψ = −1 with

central charge c = 3
2
. S−matrix is

S =
1

2


1

√
2 1

√
2 0 −

√
2

1 −
√

2 1

 .

Finally, the nontrivial entries of the F−move are given by

F σσσ
σ = − 1√

2

1 1

1 −1

 , Fψσψ
σ = (−1), F σψσ

ψ = (−1).

We refer to [8, section 5.3] for more details.

1.2.2 Temperley-Lieb algebra

The Temperley-Lieb algebra operators ei are depicted in Figure 1.14. These operators

act on a fusion tree in Figure 1.13 when ji = j, by stacking up at xi−th position

(connecting ji−1, ji+1). Note that in su(2)k, all anyons are self-dual.

j j

j j

Figure 1.14: TL operator for self-dual spin j ∈ L(C).

10
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pn+1 = pn

. . .

. . .

−Tr(pn−1)
Tr(pn)

pn
. . .

. . .

pn

. . .

Figure 1.15: Jones-Wenzl projectors recursive relation.

In the case of su(2)k, the TL operators satisfy the identities

e2
i = dei, eiei±1ei = ei, [ei, ej] = 0, for |i− j| > 1, (1.2)

where d = dim j, and more explicitly

ei |xi−1xixi+1〉 =
∑

x′i∈L(C)

(e[i]xi+1
xi−1

)
x′i
xi |xi−1x

′
ixi+1〉 , (e[i]xi+1

xi−1
)
x′i
xi = δxi−1,xi+1

√√√√ S0
xi
S0
x′i

S0
xi−1

S0
xi+1

.

(1.3)

1.2.3 Jones-Temperley-Lieb JTLk MTC

There is a closely related MTC to the su(2)k MTC and TL algebra, obtained from

the Jones-Temperley-Lieb algebra JTLk. This algebra is itself obtained by taking the

quotient of the TL algebra for spin j = 1
2

by Jones-Wenzl projectors pk+1, k ≥ 0. We

only briefly review this MTC to clear any confusion that may arise due to their similarity

with su(2)k, and the fact that our anyonic chains are based on su(2)k but there are others

in the literature ([9]) that are based on JTLk.

The projectors are defined inductively as in Figure 1.15 with initial values p0 =

id0, p1 = id 1
2
, the identity morphism of vacuum and 1

2
, respectively. These projectors

themselves can form an MTC with the diagram calculus inherited from su(2)k.

For k even, JTLk MTC has simple objects {p0, . . . , pk}, while for k odd, the even

11
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indices form an MTC. JTL2 is called the Ising MTC, while JTL3 with objects {1, τ} is

called the Fibonacci MTC, with τ the Fibonacci anyon. The fusion rules are multiplicity-

free and identical to those of su(2)k by identifying pi → i
2
.

As an example, to obtain JTL2, we quotient TL by

p3 = ejej+1 + ej+1ej −
√

2(ej + ej+1) + 1.

JTL2 MTC has objects {p0, p1, p2} which is also relabelled by {1, σ, ψ} and is closely

related to su(2)2 MTC.

Remark 1.2.2 There is a difference in the Frobenius-Schur indicator of the spin σ

[8] which can be observed by comparing θσ in both MTCs.

The fusion rules and quantum dimensions are the same as su(2)2. The twist at σ differs:

θ1 = 1, θσ = e
πi
8 , θψ = −1.

Furthermore, the central charge is c = 1
2

and while the S−matrix is the same, the

nontrivial fusion entries differ at F σσσ
σ by a negative sign:

F σσσ
σ =

1√
2

1 1

1 −1

 , Fψσψ
σ = (−1), F σψσ

ψ = (−1).

1.3 Vertex Operator Algebra (VOA)

A VOA is a mathematical axiomatization of the chiral algebra of a CFT. However,

the story behind the discovery of this framework has less to do with physics. A series

of bold conjectures, named Monstrous moonshine, emerged in the late 1970s and early

1980s [10], describing a profound connection between modular forms in number theory

12
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and the Monster group in sporadic group theory.

The field of SL(2,Z)−modular invariant functions with complex variable τ in the

upper half-plane is generated by the modular function

J(q) = q−1 + 196884q + 21493760q2 + . . . , where q = e2πiτ . (1.4)

The Monstrous moonshine conjectures were based on a relationship behind the sequence

of coefficients of J with the dimensions of the irreducible representations of the Monster

group (McKay-Thompson and Conway-Norton conjectures).

It was proved in 1980s ([11, 12, 13, 14]) that these numbers are dimensions of repre-

sentations of the Monster group; but more importantly, it was shown that the (modular

invariant) character of a VOA V\, called Monster VOA (or the moonshine module), co-

incides with J(q) with some appropriate scaling. Like all VOAs, it is a graded vector

space endowed with some algebra structure but its symmetry is provided by the Monster

group. We refer to the introductory materials in [15] for more details.

This new mathematical structure V\ was then interpreted as an inherently string-

theoretic structure: the “chiral algebra” underlying the Z2−orbifold conformal field the-

ory based on the 24-dimensional Leech lattice [16, 12].

VOA is our preferred framework for (chiral) CFT. We will provide two important

examples of VOAs, the unitary minimal models and WZW models su(2)k. An important

fact common to both of these models ties the discussion of MTC and VOA [17, and

references therein]:

The representation category of the VOA forms a unitary MTC.

Remark 1.3.1 Regarding the connection between (2 + 1)−d TQFT represented by an

MTC and a rational (1 + 1)−d CFT, we need to mention the FFRS formalism [18, 19,

13
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20, 21, 22, 23] which is a rigorous construction and classification of all rational (1+1)−d

CFTs on compact surfaces (for all genera). This formalism establishes the connection

between (2 + 1)−d TQFT and a rational (1 + 1)−d CFT, but its construction is at a high

level and not useful for detailed computational purposes.

Remark 1.3.2 VOAs should be thought of as studying CFT infinitesimally at “the level

of Lie algebra”, where representations of the Virasoro Lie algebra are taken into account.

On the other hand, LCN, another framework discussed in section 1.5, provides the Lie

group point of view, where representations of the Lie group of orientation preserving

diffeomorphisms of the circle Diff+(S1) are taken into account.

From a mathematical point of view, VOA is the one-complex-dimensional analogue

of both Lie algebra and commutative associative algebra [15]; a statement that is made

precise using operad language [24]. This remarkable fact shows the richness of the theory.

This will be more evident as we will be deriving infinitely many complicated identities

involving nonassociative products generated by a single commutativity (or associativity

or Jacobi) identity.

The notations and definition for VOA follow closely those of [25] and will use formal

calculus as an essential tool. Let N0 be the set of nonnegative integers. Consider an

N0−graded C−vector space V = ⊕∞n=0Vn, where the weight spaces Vn satisfy dimVn <∞,

equipped with a linear map called the vertex operator, mapping into formal Laurent

series with coefficients in End(V)

Y (·, z) : V → End(V)[[z, z−1]], Y (v, z) =
∑
n∈Z

v(n)z
−n−1,

where z is the formal variable and v(n) ∈ End(V) are called the mode operators of v. The

14
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mode operators satisfy

v(n)u = 0, for all v, u ∈ V and n sufficiently large.

The vertex operator can be looked at as the analogue of the product from the left in an

algebra, where Y (a, z)b should be thought of as a.b, or complexified as az.b. This last

analogy can be made precise [26], but we will use it as a guide for intuition.

As will be shown later, the vertex operator Y (a, z) implements the state-operator

correspondence of CFTs. They are the field operators which insert the state a at a

space-time point z = 0 with a small neighborhood locally parameterized by z.

As a different notation, which will be motivated later, for a homogeneous vector v in

some weight space with weight wt v, we can shift the index to obtain

Y (v, z) =
∑
n∈Z

(v)nz
−n−wt v = z−wt v

∑
n∈Z

(v)nz
−n,

where (v)n = v(n+wt v−1).

Further, there are two distinguished vectors, the vacuum Ω ∈ V0 and the conformal

or Virasoro vector ω ∈ V2.

The vacuum field is the identity Y (Ω, z) = 1(= idV). We set a convention throughout

this thesis to use 1 as the identity operator. The creation property holds

v(−1)Ω = v =⇒ Y (v, z)Ω = v + . . . ∈ V [[z]].

Creation property can be seen as the analog of the unit axiom in the definition of an alge-

bra with unit. It gives the operator-state or field-state correspondence limz→0 Y (v, z)Ω =

v when we replace the indeterminate z with a complex number. That is why we may use

the terms “conformal field” and “conformal vector” interchangeably.

15
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Remark 1.3.3 Motivated from the analogy of product in an algebra, a generating set S

for the VOA is defined as a set for which {
∏

i s
(i)
(ni)

Ω|s(i) ∈ S, ni ∈ Z} spans V as a vector

space.

The Virasoro vector ω gives the modes and field

ω(n+1) = (ω)n = Ln, Y (ω, z) =
∑
n∈Z

Lnz
−n−2,

where the Lns generate the Virasoro Lie algebra L. This has relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 · 1, ∀m,n ∈ Z, (1.5)

where the constant c is called the central charge (also called rank V) and 1 is the central

element of L acting as identity on V . It turns out that the Virasoro field is a descendant

of the vacuum, i.e. obtained by applying Virasoro modes on the vacuum as ω = ω(−1)Ω =

L−2Ω.

Remark 1.3.4 The Virasoro algebra is the central extension of the Witt algebra {ln},

the lie algebra of Diff+(S1). More explicitly, one has ln = − ∂
∂z
z−n+1. This algebra is

related to conformal symmetry (and thus to CFT) as holomorphic maps can be written

as exponentials of
∑∞

i=−1 cili, while Möbius maps as exponentials of c−1l−1 + c0l0 + c1l1.

The Lie subalgebra {L−1, L0, L1} generates an action of SL(2,C) on the formal variable

z by Möbius transformations, where L−1 is translation, L0 is dilation/rotation, and L1

is inversion. These will be used to define conformal (Möbius) covariance of correlation

functions further below, where the analytic action of these series is analyzed.

The grading of V is the spectral decomposition of L0, so L0v = nv for any homogeneous

v ∈ Vn. A homogeneous vector v is quasi-primary (like ω) if L1v = 0 and it is primary

(like Ω) if Lnv = 0,∀n > 0.

16
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We also have the translation covariance property for the vertex operator

d

dz
Y (v, z) = Y (L−1v, z) = [L−1, Y (v, z)], (1.6)

where the left side is the formal derivative of a Laurent series.

Finally, for all a, b ∈ V , there exists k ∈ N0 such that

(z1 − z2)k[Y (a, z1), Y (b, z2)] = 0 (locality condition). (1.7)

Evidently, we are defining products of vertex operators using formal series, and the

relations above should be interpreted in that context. Physically and analytically, we

want a framework in which expectation values of Y (a, z1)Y (b, z2) (discussed in more

details in section 1.3.3) make sense if insertions are time-ordered, i.e. |z1| > |z2|. This is

the case for a VOA with the above axioms, where expectation values of Y (a, z1)Y (b, z2)

will give a rational function h(z1,z2)
(z1−z2)k

(h ∈ C[z±1 , z
±
2 ]), with singularity at z1 = z2, that is

expanded in its Taylor series in the time-ordered region |z1| > |z2|.

As a result, the commutator [Y (a, z1), Y (b, z2)] is what is called an expansion of zero:

the difference of the expansion of a rational function in two opposite directions, here

|z1| > |z2| and |z2| > |z1|. This is one strength of formal calculus, where such expansion

only makes sense in a formal context; by getting rid of the singularity of z1 = z2 using

(z1 − z2)k, we get the numerator of the rational function h for both Y (a, z1)Y (b, z2) and

Y (b, z2)Y (a, z1), ensuring the difference is zero.

The above condition is also called weak commutativity, a one-complex-dimensional

analogue of the commutativity axiom in commutative algebras, analogous to az1 .(bz2 .c) =

bz2 .(az1 .c), but weak due to the existence of the power (z1 − z2)k. This axiom can be

17
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replaced with weak associativity:

(z0 + z2)lY (a, z0 + z2)Y (b, z2)c = (z0 + z2)lY (Y (a, z0)b, z2)c, (1.8)

The same discussion above applies, where the regions in which expectation values are

defined are |z0 + z2| > |z2| and |z2| > |z0|. Notice by formal calculus convention, the

binomial expansion of

(x+ y)n =
∑
k∈N

(
n

k

)
xn−kyk,

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
, (1.9)

for n < 0 is the expansion with nonnegative powers for y, or the Taylor expansion in the

region |x| > |y|. Note the expansion for n ≥ 0 is the same for (x + y)n and (y + x)n as(
n
k

)
= 0 when k > n.

Thus the order of addition of formal variables allude to the region where expectation

values are analytically defined; the expansion of Y (a, z0 + z2) assumes |z0| > |z2| as it

involves negative powers of (z0 + z2). As a result, we need to take care of the singularity

at z0 = z2 to make both sides equal, hence the factor (z0 + z2)l.

The expansion of the expression Y (Y (a, z0)b, z2) is what is called the operator product

expansion for Y (a, z1)Y (b, z2) (for z1 = z2 + z0) in the physics literature. Furthermore,

weak associativity is analogous to a.(b.c) = (a.b).c which complexified is az0+z2 .(bz2 .c) =

(az0 .b)z2 .c. This finishes the description of vertex operator algebra.

Definition 1.3.1 The tuple (V , Y,Ω, ω) with the above properties is called a vertex op-

erator algebra (VOA).

There exist some immediate implications of the above axioms that we list below. For
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any two homogeneous vectors u, v ∈ V ,

wt ((v)nu) = wt u− n.

Motivated from the above equation and the creation property, modes (v)n for n > −wt v

are called the annihilation modes while the rest are called the creation modes. This

also implies that the vacuum is an example of a primary field as it has energy zero, thus

wt LnΩ = −n. The vacuum also satisfies L−1Ω = 0, a fact that is used later in conformal

covariance of correlation functions (Remark 1.3.7).

The locality axiom implies the Jacobi or the Borcherds identity, the one-complex-

dimensional analogue of the Jacobi identity in Lie algebra. To express this identity, we

need to introduce the formal delta function, analogous to the Dirac delta function,

δ(z) =
∑
n∈Z

zn. (1.10)

The delta function is the most important expansion of zero, that of (1−z)−1−(−z+1)−1.

It is also the unique function in C[[z, z−1]] such that Reszf(z)δ(z) = f(1) for all Laurent

polynomials f ∈ C[z, z−1], where Resz is the residue giving the coefficient of z−1. More

generally,

Resz1f(z1)z−1
2 δ(

z1

z2

) = f(z2). (1.11)

Previously in (1.7) and (1.8), it was mentioned how the same rational function is expressed

in three different regions. Using the delta function, we can put all those expressions in
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one single Jacobi identity as follows

z−1
0 δ(

z1 − z2

z0

)Y (a, z1)Y (b, z2)− z−1
0 δ(
−z2 + z1

z0

)Y (b, z2)Y (a, z1) = (1.12)

z−1
1 δ(

z2 + z0

z1

)Y (Y (a, z0)b, z2).

This is analogous to the Lie algebra Jacobi identity ada(adbc) − adb(adac) = adadabc,

where ad (the adjoint action) should be replaced by the complexified product, giving

az1 .(bz2 .c)− bz2 .(az1 .c) = (az1−z2 .b)z2 .c. This axiom can replace locality in the definition.

In fact, any of the associativity or commutativity or Jacobi axioms implies the other two

[15].

The above is a generator of infinitely many complicated identities for the nonassocia-

tive products v(n)u. As an equivalent formulation:

∞∑
j=0

(
p

j

)
[a(q+j)b](p+k−j)c =

∞∑
j=0

(−1)j
(
q

j

)
a(p+q−j)b(k+j)c (1.13)

−
∞∑
j=0

(−1)j+q
(
q

j

)
b(q+k−j)a(p+j)c, a, b, c ∈ V , p, q, k ∈ Z.

1.3.1 VOA modules and intertwiners

The next objects to discuss are the modules of a VOA. A module has a structure

similar to that of a VOA and some compatibility properties with the VOA.

A module (also called a sector or representation) (A, YA) for a VOA (V , Y,Ω, ω), is

an N0−graded vector space A with a linear map

YA(·, z) : V → End(A)[[z, z−1]], YA(v, z) =
∑
n∈Z

vA(n)z
−n−1,
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where vA(n) are the mode operators of v. The spectrum of ωA(1) = L0,A gives the weights

or grading of the module

A =
⊕
n∈N0

An.

A0 is called the top-level and An the n−th level of module A. For an irreducible module,

L0,Aa = hAa,∀a ∈ A0 where hA is called the conformal or highest weight of A, and

L0,Aa = (hA + n)a, ∀a ∈ An.

Lastly, there is an analogous notation of (v)n for a homogeneous vector v ∈ V ,

YA(v, z) =
∑
n∈Z

(v)n,Az
−n−wt v,

where (v)n,A = v(n+wt v−1),A and for any two homogeneous vectors u, v ∈ V ,

wt ((v)n,Au) = wt u− n.

The vertex operator and YA(ω, z) satisfy all the axioms of a VOA, except the creativity

property which does not make sense in this context unless A = V . Locality holds and

as a result, Borcherds identity (1.13) also holds in this case with the obvious necessary

changes. The subscript A will be dropped from the mode operators involved as it will be

clear from the context.

Finally, the character for a module A is defined as

char(A) = TrA(qL0− c
24 ) =

∑
n∈N0

dim(An) qn+h− c
24 .

Let A,B,C be irreducible modules with corresponding conformal weights hA, hB, hC .
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An intertwiner of type
(
C
A B

)
is a map

Y(·, z) : A→ End(B,C)[[z, z−1]], Y(a, z) =
∑
m∈Z

a(m)z
−τ−m,

where τ = hA + hB − hC . It has the following notation for homogeneous a ∈ Ak

Y(a, z) =
∑
n∈Z

(a)nz
−n−k−τ , (1.14)

and it satisfies similar axioms as the vertex operator. Intertwiners are part of the funda-

mental features of a CFT as they describe the fusion rules of the representation category

of the VOA.

b c

a

Y(a, z)

Figure 1.16: Intertwiner Y(a, z) as a trivalent graph (recall Figure 1.5).

Most important corollary of all the above definitions, is the infinitesimal conformal

covariance of the primary fields. Assuming a to be primary, for n > 0,

[Ln,Y(a, z)] = (zn+1∂z + (wt a)(n+ 1)zn)Y(a, z). (1.15)

1.3.2 Further conditions on VOA and unitarity

There are many properties that the VOAs in our consideration will have, and most

of the time we will be assuming such properties. In this writing, the condition C2−co-

finiteness is imposed on the VOAs. This is a technical condition that means the space

C2 = span{u(−2)v| u, v ∈ V} has finite co-dimension CV = dim(V/C2) < ∞. It is
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assumed in many settings for its applications, like ensuring the representation category

of the VOA is a modular tensor category. However, more relevant to our computational

purposes is a result [27, 28] on the growth of the dimension of the weight spaces of an

irreducible module A that follows, which states

dimAn ≤ (dimA0) · e2π

√
CVn
6 .

This at-most-exponential growth is necessary if an approach to simulation requires a

truncation of energy up to some N , where one can not afford more than polynomially

many qubits to be used to simulate the vector space.

An important class of VOAs consists of the unitary minimal models (UMMs) intro-

duced in section 1.3.5. A UMM V satisfies many properties such as being CFT-type, i.e.

V0 = CΩ where only the vacuum has energy zero. Also, V has finitely many irreducible

modules and every V−module is a direct sum of irreducible V−modules (rationality).

Last but not least, V is unitary. We define unitarity below and refer to [29, 25] for more

details.

In the category of VOAs, morphisms are grade-preserving vector space maps that

preserve the field (product) and conformal structure, i.e. f : V → W satisfies

f(YV(v, z)u) = YW(f(v), z)f(u)⇐⇒ f(v(n)u) = f(v)(n)f(u)

f(ΩV) = ΩW , f(ωV) = ωW .

For two modules of V , the concept of a V−module map can be naturally defined.

Morphisms introduced below to define a unitary VOA (and later full CFT) are morphisms

in the category of VOAs.

A unitary VOA has some invariant positive definite hermitian form (·, ·)V : V×V → C
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with (Ω,Ω) = 1. Further, there is an anti-linear involution (so-called PCT operator)

η : V → V for which (η·, ·) = 〈·, ·〉 is an invariant bilinear form on V [25, section 5.1]

〈c, Y (a, z)b〉 =
〈
Y (ezL1(−z−2)L0a, z−1)c, b

〉
, a, b, c ∈ V .

We will assume anti-linearity in the first and linearity in the second argument of (·, ·)

when substituting complex numbers instead of z.

It follows that η is antiunitary (η(a), η(b)) = (η2(b), a) = (b, a). Moreover, for a, b, c ∈

V with a homogeneous and quasi-primary (i.e. ezL1a = a), we have

(c, Y (a, z)b) = (−1)wt a(Y (η(a), z−1)c, b),

in other words (a)†n = (−1)wt a(η(a))−n. A hermitian field satisfies η(a) = a. The

conformal field ω is hermitian implying L†n = L−n.

Remark 1.3.5 For example,

(L−2Ω, L−2Ω) = (Ω, L2L−2Ω) =︸︷︷︸
Ω primary so L2Ω=0

(Ω, [L2, L−2]Ω) (1.16)

=︸︷︷︸
eq. (1.5)

(Ω, (4L0 +
c

2
1)Ω) =

c

2
.

This is a well-known calculation done for anyonic chains to compute the central charge of

the scaling limit, where one calculates (L̃−2Ω̃, L̃−2Ω̃) where L̃−2, Ω̃ are the finite versions

of L−2 and the vacuum.

One can similarly define unitary modules: a positive definite form (·, ·)A : A × A → C

with an anti-linear involution ηA : A → A with similar properties as above. Notice the

Virasoro field satisfies L†n = L−n with respect to (·, ·)A as well.
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More generally, for the VOAs in this work, there exists a hermitian conjugate of any

intertwiner Y (of type
(
C
A B

)
) called Y† (of type

(
B
A C

)
) for which

(c,Y(a, z)b)C = (−1)wt a(Y†(ηA(a), z−1)c, b)B

for b ∈ B, c ∈ C and quasi-primary homogeneous a ∈ A.

Using the hermitian form, one can define a norm in the obvious way and get the

completion of a graded unitary module (which includes V itself) denoted by A.

1.3.3 Correlation functions

In this section, we can define the correlation function of intertwiners.

Remark 1.3.6 Y(a, z) is not necessarily a linear operator for a general value of z ∈ C

as it is a Laurent series.

First, we recall the notion of configuration space for X ⊂ C as

Confn(X) = {(x1, . . . , xn) ∈ X | xi 6= xj}

and let C× = C − {0}. Let zi ∈ C× and a(i) ∈ Ai be fields in the irreducible modules

Ai. Let Yi be of type
(

Ci
Ai Ci−1

)
with irreducible modules Ci and u ∈ Cn, v ∈ C0. The

correlation function is defined as

(u,Yn(a(n), zn) . . .Y1(a(1), z1)v). (1.17)

This is generally a multi -valued rational function G(z1,...,zn)∏
i z
ri
i

∏
i<j(zi−zj)

sij on Confn(C×) [30],

and thus single-valued on the universal covering space ˜Confn(C×).

There is bound on the order of singularities sij ∈ N0 that depends only on a(i) and
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a(j); more precisely, sij ≤ kij where (a(i))na
(j) = 0 for all n ≥ kij. This is the highest

mode before which a(i) does not annihilate a(j). For the order ri of poles at zi, there is

a similar bound depending only on a(i) and v. This order also includes the contribution

from τi = hAi + hCi−1
− hCi corresponding to Yi. Therefore, ri can be real numbers as

τi depends on the conformal weights which are real numbers in general. As a result, we

have a single-valued rational function if all intertwiners are the vertex operator Y (), as

in this case τi = 0.

In general, the correlator is single-valued when restricting to time-ordered insertion

points 0 < |z1| < . . . < |zn|. In fact, in this regime, one can compute the correlation

function above by summing up all the terms in the formal calculus sum directly

∑
k1,...,kn

(u, P knYn(a(n), zn)P kn−1Yn−1(a(n−1), zn−1) . . . P k1Y1(a(1), z1)v), (1.18)

where P ki is the projection onto (Ci)ki weight space of the irreducible module Ci. The

sum above is equivalent to

∑
m1,...,mn∈Z

(u, (a(n))mn(a(n−1))mn−1 . . . (a
(1))m1v)

n∏
i=1

z−mi−wt a(i)−τi
i , (1.19)

The reason behind the unambiguity of this sum, where terms can be added in any order,

is its absolute convergence. In fact, the sum above is uniformly convergent and bounded

in any compact neighborhood of (z1, . . . , zn) in Confn(C×) (see [30, Thm. 3.5],[31, and

references therein]).

Symmetries of a QFT manifest themselves as symmetries of the correlation function.

A CFT is expected to have conformal invariant correlation functions. For simplicity, we

illustrate this when all intertwiners are the vertex operator.

Primary fields are conformal invariant, while quasi-primary fields are only Möbius
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invariant. More precisely, assume a(i)s and u, v are primary, i.e. Lna
(i) = Lnu = Lnv =

0,∀n > 0. Let U ⊂ C be an open domain containing all zi and 0 and f : U → U a

biholomorphic map which fixes the origin. According to Remark 1.3.4, one can find a

series g = 0L−1 + c0L0 + . . . for which exp(g) = f where the zero coefficient of L−1

ensures there is no translation (f(0) = 0). Exponentiation of the infinitesimal conformal

covariance relation in (1.15) yields an action eg on primary fields where

egY (a, w)e−g = (
df

dz
(w))wt aY (a, f(w)), w ∈ U . (1.20)

One can view u, v as insertions Y (u, 0)Ω, Y (v, 0)Ω. As they are primary, egu = f ′(0)wt uu

and egv = f ′(0)wt vv. Applying these equations, we obtain the conformal covariance of

the correlator [32]

(u, Y (a(n), zn) . . . Y (a(1), z1)v) = (1.21)

f ′(0)
wt u

f ′(0)wt v

n∏
i=1

f ′(zi)
wt a(i)(u, Y (a(n), f(zn)) . . . Y (a(1), f(z1))v).

All the above applies to quasi-primary fields (L1a
(i) = L1u = L1v = 0), if using a Möbius

map coming from g = 0L−1 + c0L0 + c1L1.

Remark 1.3.7 If u = v = Ω, the conformal f does not need to fix the origin, since

L−1Ω = 0.

1.3.4 Full CFT

A full CFT on the plane can be constructed from two chiral CFTs, called the chiral

or left-moving VL and the antichiral or right-moving VR. Notice the category of VOAs

is closed under tensor product, i.e. VL ⊗VR is also a VOA with vacuum Ω = ΩVL ⊗ΩVR
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and the conformal vector ω = ωVL ⊗ ΩVR + ΩVL ⊗ ωVR .

The Hilbert space H of a full CFT decomposes to a sum of irreducible modules of

VL ⊗ VR in the form of

H =
⊕
i,j

ZijA[i]⊗B[j]

where the sum is over irreps of VL and VR (A[i] and B[j] respectively) for some integer

multiplicities Zij ∈ N0. We shall assume VL = VR = V .

Remark 1.3.8 To have a CFT, we need the character of the Hilbert space to be modular

invariant. This means Z = (Zij)i,j is modular invariant, commuting with the S, T matrix

of the MTC given by the representation category of V.

A particular class of such full CFTs is the diagonal full CFT, which appears in scaling

limit of anyonic chains with periodic boundary conditions. Any irreducible module is

coupled with its contragredient module

H =
⊕

irreducible modules

Ai ⊗ A′i,

where A′i is the contragredient module of Ai. The contragredient module A′ is defined as

the linear functionals that vanish except on finitely many of the weight spaces, in other

words

A′ =
⊕
n

A′n,

which can be given a V−module structure. In the case of unitary modules, this means an-

other isomorphic copy of the module itself. Thus the Z−matrix is identity and obviously

modular invariant.

The conformal vector ω = ωL ⊗ ΩR + ΩL ⊗ ωR has mode operators

Ln = Ln + Ln,
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where the first term is the Virasoro mode for the left-moving part and the second for the

right-moving one. The conformal field is defined as

Y(ω, (z, z)) =
∑
n∈Z

Lnz
−n−2 + Lnz

−n−2.

Primary fields a ∈ H are accordingly defined as those satisfying

Lna = 0, ∀n > 0.

Conformal covariance of correlation functions for full CFT has a similar formulation, for

which we refer to [29, section 6.1] and references therein for more details.

1.3.5 Unitary Virasoro VOAs

Unitary minimal models (UMMs) M(k+ 2, k+ 1) at level k ≥ 2, form a special class

of unitary VOAs with central charge c < 1. They are completely characterized by their

central charge, which form a discrete series c = 1− 6
(k+1)(k+2)

for k ≥ 2.

Following [15, section 6.1] and [33, section 7], we construct the more general class of

Virasoro VOAs.

Remark 1.3.9 Unitary Virasoro VOA is a unitary VOA among Virasoro VOAs Vc,0

defined below for c > 0, and UMMs specifically refer to the discrete series c < 1, which

are the only unitary Virasoro VOAs when c < 1.

To define the Virasoro VOA, let us define the Virasoro module

Lc,0 = U(L)⊗U(L≤1) C.c1, (1.22)

where U(L) is the universal enveloping algebra of the Virasoro Lie algebra L, and L≤1 =
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(⊕n≥−1CLn)
⊕

C.c1 is the holomorphic part of L with the central element (note the

holomorphic map correspondence described in 1.3.4 for L≤1). This has basis

L−nl . . . L−n11, 2 ≤ n1 ≤ . . . ≤ nl. (1.23)

This Virasoro module has a VOA structure. We can take 1 in U(L) to represent the

vacuum state Ω. The grading is given by (Lc,0)n = {L−nl . . . L−n1Ω|
∑l

i=1 ni = n}. The

first three weight spaces are (Lc,0)0
∼= CΩ, (Lc,0)1

∼= ∅, (Lc,0)2
∼= Cω = CL−2Ω.

Remark 1.3.10 Any VOA with central charge c includes the above states, as the descen-

dants of the vacuum exist in any VOA. This is the motivation behind “minimal” VOA

models, meaning they are generated by the vacuum and ω.

Lc,0 is not necessarily an irreducible VOA. In fact, there is a maximal proper submodule

Mc,0, which after taking the quotient of, gives the (irreducible) Virasoro VOA Vc,0 =

Lc,0/Mc,0.

Vc,0 is unitary, rational and C2−co-finite for the previously mentioned discrete series

M(k + 2, k + 1) when c < 1. Unitarity for the discrete series and all c ≥ 1 is shown

[33] by constructing a hermitian form (·, ·), which is defined on Vc,0 × Vc,0 and satisfies

L†n = L−n.

Let us describe the UMMs M(k + 2, k + 1) with c = 1− 6
(k+1)(k+2)

. Their irreducible

modules Vc,h are determined by their conformal weights

hr,s =
((k + 1)r − (k + 2)s)2 − 1

4(k + 1)(k + 2)
, 1 ≤ r ≤ k + 1, 1 ≤ s ≤ k.

Due to the symmetry hk+2−r,k+1−s = hr,s, there are k(k+1)
2

many irreducible modules.

Remark 1.3.11 Vc,h is obtained from a similarly defined Lc,h in (1.22), with a VOA

structure in which L0 acts by a scalar h on the lowest energy state. For c ≥ 1, the
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irreducible modules Vc,h are classified by a parameter h ≥ 0. As all conformal weights in

[0,∞) are allowed, the VOA Vc,0 is not rational.

1.3.6 Ising CFT

The chiral Ising CFT is the UMM M(4, 3). It has with three irreducible modules with

conformal weights h1,1 = 0 (the VOA χ
0 itself), h2,1 = 1

2
(the module χ 1

2
corresponding

to the free fermionic field ψ), h3,1 = 1
16

(the module χ 1
16

corresponding to the spin field

σ). With this notation, the MTC given by Ising CFT is the Ising MTC introduced in

1.2.3. Thus, the nontrivial fusion rules are as follows:

χ 1
2
⊗ χ 1

2
= χ

0,

χ 1
16
⊗ χ 1

16
= χ 1

2
⊕ χ0,

χ 1
2
⊗ χ 1

16
= χ 1

16
.

The fermionic algebra is used to generate the Hilbert spaces χi. The Hilbert spaces

χ
0, χ 1

2
are generated by the fermionic modes {Ψn− 1

2
}n∈Z satisfying the anticommutative

canonical relations (ACR) {Ψk,Ψk′} = δk+k′,0.

The third Hilbert space χ 1
16

is generated by {Ψn}n∈Z which is another version of the

fermionic algebra where the modes are indexed by integers and they satisfy the same

properties: {Ψk,Ψk′} = δk+k′,0.

The first algebra generates χ0 and χ 1
2

by acting on the vacuum Ω. The vectors

{Ψ−kr . . .Ψ−k1Ω| k1 < . . . < kr, ki ∈ N− 1

2
},
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with weight
∑
ki, give an orthonormal basis for χ0 ⊕ χ 1

2
. As a result, the character is

q−
c
24

∞∏
n=1

(1 + qn−
1
2 ). (1.24)

As a matter of convenience, the factor q−
c
24 = q−

1
48 will sometimes get dropped. Obvi-

ously, the part of the series with powers of q in N − 1
2

corresponds to χ 1
2

and the rest

with powers in N0 corresponds to χ0.

The second algebra {Ψn}n∈Z generates χ 1
16

in a similar way, with orthonormal basis

{Ψ−kr . . .Ψ−k1 |
1

16
〉 | 0 < k1 < . . . < kr, ki ∈ N}, (1.25)

where | 1
16
〉 is the vector at the top level satisfying L0 | 1

16
〉 = 1

16
| 1
16
〉. Notice that | 1

16
〉 is

sent to a scalar multiple of itself by Ψ0. The character is

char(χ 1
16

) = q
1
16
− 1

48

∞∏
n=0

(1 + qn).

The hermitian form on this UMM implies the conjugacy relation Ψk = Ψ†−k. The formulae

for Lns are well-known [34] and will be derived in section 2.4.

Remark 1.3.12 The conformal vector is simply ω = 1
2
Ψ− 3

2
Ψ− 1

2
Ω.

With regards to the intertwiners of the theory, the fusion rules for the Ising model
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correspond to three different free fermionic fields

ψ0
1
2
(z) =

∑
n∈Z

z−(n−1)Ψn− 1
2

(1.26)

ψ0
1
2
(z)† = ψ

1
2
0 (z) =

∑
n∈Z

z−nΨn− 1
2

(1.27)

ψ
1
16
1
16

(z) =
∑
n∈Z

z−nΨn, (1.28)

where ψji : χi → χ
j.

As a final note, the Ising full CFT is

H = χ
0
χ

0 + χ 1
2

χ 1
2

+ χ 1
16

χ 1
16
,

with the corresponding Virasoro operators Ln, derived using the formulae for Lns. We

refer to [33] for more on minimal models, and [33] and particularly the notes [34] for the

Ising CFT.

1.3.7 Wess-Zumino-Witten (WZW) models

There are CFTs that have a local symmetry given by the action of a compact Lie

group G. To study this infinitesimally, one needs to study VOAs with symmetry from a

complex simple Lie algebra g.

Such a Lie algebra has a normalized Killing form (·, ·) : g⊗g→ C, meaning (θ, θ) = 2

for θ maximal root of g. Further, it has an affinization ĝ = g ⊗ C[t, t−1] ⊕ kC with k a

central element and bracket relations:

[a⊗ tn, b⊗ tm] = [a, b]⊗ tn+m + δn+m,0n(a, b)k (1.29)
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We decompose ĝ into subalgebras:

ĝ = ĝ+ ⊕ ĝ− ⊕ g⊕ kC , ĝ+ = g⊗ C[t]t, ĝ− = g⊗ C[t−1]t−1. (1.30)

Next, we take the universal enveloping algebra U(ĝ) and quotient by {ĝ+,k− k1} where

1 is the identity in U(ĝ) and k ∈ N. Taking this identity as the vacuum state Ω, and

denoting (a)n = a⊗ tn, this gives a module isomorphic to U(ĝ−) with elements

(a(l))−nl . . . (a
(1))−n1Ω , (a(i))−ni ∈ ĝ−. (1.31)

Note that (a)nΩ = 0 when n > 0 (annihilation modes). This module has a maximal

proper submodule which taking the quotient of, gives a new ĝ−module.

This new module has a unitary rational C2−co-finite VOA structure as long as k 6=

−g, where g is the dual Coxeter number of g [35]. This VOA is called the WZW model

of g at level k, also denoted by gk.

The grading of the VOA is given by

wt((a(l))−nl . . . (a
(1))−n1Ω) =

l∑
i=1

ni.

The first two weight spaces are (gk)0
∼= CΩ, (gk)1

∼= g. The vertex operator on (gk)1

defines the so-called currents

Y (a, z) =
∑
n∈Z

(a)nz
−n−1.

Further, unitarity is ensured by using (1.29) with the help of the Chevalley involution ηg.

For example ((a)−nΩ, (b)−mΩ) = (Ω, (ηg(a))n(b)−mΩ) and the rest is calculated by using

(1.29). The central charge of the theory is given by k dim g
k+g

.
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To construct modules of this VOA, let V be an irreducible representation of g with

highest weight λV . Similar to the definition of gk, instead of acting on the vacuum Ω, we

let the modes act on the module. This means the elements of irreducible modules of gk

are of the form:

(a(l))−nl . . . (a
(1))−n1v , (a(i))−ni ∈ ĝ−, v ∈ V. (1.32)

The grading is similar with weighting given by

wt((a(l))−nl . . . (a
(1))−n1v) = hV +

l∑
i=1

ni.

Note the top-level of this module gk,V is isomorphic to V . The trivial one-dimensional

representation V = CΩ gives the VOA gk itself. The conformal weight hV is given by

〈λV ,λV +ρ〉
k+g

, where ρ is the Weyl vector of g. Not all maximal roots give irreducible modules

for gk; more precisely, only those with integrable weights λV satisfying λV (θ) ≤ k do so

[35].

Remark 1.3.13 Let g = su(2). Then M(k + 2, k + 1) can be constructed as cosets

su(2)k−1×su(2)1
su(2)k

. The coset construction is detailed in [15] and is essentially the process of

taking the centralizer of the embedding of su(2)k in V = su(2)k−1×su(2)1; i.e. all fields

Y (a, z) for a ∈ V that commute with all fields Y (b, z) for b ∈ su(2)k.

Remark 1.3.14 In gk, the conformal vector is given by ω = 1
2(k+g)

∑dim g
i=1 (ui)−1(ui)−1Ω

(Segal-Sugawara construction), where the sum is over an orthonormal basis {ui}dim g
i=1 with

respect to the Killing form of g ∼= (gk)1, the space of all nontrivial primary fields.
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1.4 Smeared field or Wightman’s observable

In addition to VOA, observables coming from Wightman’s axioms will also be used.

One of the objectives of this work is to obtain the fields in the scaling limit and prove

that products of fields are also in the scaling limit, hence obtaining a “scaling limit of

algebras”. We define the observables (or fields) in each framework. As we shall see,

observables are related to the fields Y (a, z) that have been used so far. For this section,

the definitions and facts follow those of [25].

So far, the observables or fields that are point-like have been described; the insertion

of the field is exactly at a point. Smeared field operators or Wightman’s observables

are insertions of a field where the position of the particle is smeared using a smooth

complex-valued smearing function f ∈ C∞C (S1). Formally

Y (a, f) :=

∮
Y (a, z)f(z)zwt a dz

2πiz
=
∑
n∈Z

f̂n(a)n, (1.33)

where f̂ns are the Fourier coefficients of f . As f is smooth, its Fourier coefficients will

be rapidly decreasing:

∀k,∃Nk such that ∀|n| ≥ Nk =⇒ |f̂n| ≤
1

nk
. (1.34)

In order to have Y (a, f) defined on V (before taking its completion), an energy bound on

the mode operators is needed

||(a)nb|| ≤ Ca(|n|+ 1)ra||(L0 + 1)sab||, ∀b ∈ V , (1.35)

where the constants Ca, ra, sa > 0 depend on a, and the norm is given by the unitary
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structure. By summing up the above inequalities,

||Y (a, f)b|| ≤ Ca||f ||ra||(L0 + 1)sab||, (1.36)

where the ra-norm of f is defined as

||f ||ra =
∑
n

|f̂n|(|n|+ 1)ra .

Similarly, we define the s−th norm of a state ||b||s := ||(L0 + 1)sb|| for any s ≥ 0. These

notations will be useful in the next chapters.

The exact same concepts apply for smeared intertwiners Y(a, f). The domain on

which the smeared intertwiners can act are called smooth vectors (or states).

Definition 1.4.1 For any module A of V, define the set of smooth states A(∞) ⊂ A as

the set of states a ∈ A for which ||a||s <∞ for all s ≥ 0.

As they are defined on V(∞), one can take their product

n∏
i=1

Y (a(i), fi) : V(∞) → V(∞), (1.37)

and define the smeared correlator (u,
∏n

i=1 Y (a(i), fi)v) on V(∞) × V(∞).

Remark 1.4.1 All intertwiners of unitary Virasoro VOAs, thus including UMMs, and

WZW models are energy-bounded [25, see e.g.].

The conformal smeared field Y (ω, f) will be denoted by

L(f) =
∑
n∈Z

f̂nLn. (1.38)
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From the previous remark, for all unitary VOAs, it can be shown that Ln satisfies the

energy bound

||Lnb|| ≤
√
c

2
(|n|+ 1)

3
2 ||(L0 + 1)b||, (1.39)

implying

||L(f)b|| ≤
√
c

2
||f || 3

2
||(L0 + 1)b||. (1.40)

1.5 Local Conformal Net (LCN)

The next observables are the ones coming from the chiral local conformal net (LCN)

picture of chiral CFT. In this writing, LCN will always refer to chiral LCN, unless explic-

itly mentioned otherwise, as in full LCN or boundary LCN introduced later. We follow

the definition of LCN in [25].

Recall a von Neumann algebra is a self-adjoint algebra of bounded operators on a

Hilbert space containing identity and closed with respect to weak (equivalently strong)

operator topology. The adjoint of O is denoted by O† as usual. We will axiomatize a

family of von Neumann on S1. Let I be the family of open, connected, non-empty and

non-dense subsets (intervals) of S1 and B(H) the algebra of bounded linear operators on

Hilbert space H.

Definition 1.5.1 A local Möbius covariant net A on S1 is a family of von Neumann

algebras A(I) ⊂ B(H) on Hilbert space H satisfying

• Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2).

• Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}.
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• Möbius covariance. There exists a strongly continuous unitary representation

U of PSL(2,R) (Möbius transformations of S1) on H such that

U(γ)A(I)U(γ)† = A(γI), ∀γ ∈ PSL(2,R),∀I ∈ I.

• Positivity of the energy. The generator of the one-parameter rotation subgroup

of U (the CFT Hamiltonian L0) is positive.

• Existence of the vacuum. There exists a unit Möbius-invariant vector Ω ∈

H called the vacuum which is cyclic for
∨
I∈I A(I), the von Neumann algebra

generated by all A(I)s.

These axioms imply the Haag duality,

A(I)′ = A(I ′), ∀I ∈ I, (1.41)

where I ′ is the interior of S1\I. Next, let Diff+(S1) be the Lie group of orientation-

preserving diffeomorphisms of S1, which contains the Möbius transformations PSL(2,R)

as they restrict to diffeomorphisms on the circle.

Definition 1.5.2 A local conformal net A is a local Möbius covariant net with the

additional conformal covariance property.

• conformal covariance. There exists a strongly continuous projective unitary

representation U of Diff+(S1) on H, extending the PSL(2,R) represenatation, such

that ∀I ∈ I

U(γ)A(I)U(γ)† = A(γI), ∀γ ∈ Diff+(S1), (1.42)

U(γ)OU(γ)† = O, ∀O ∈ A(I), ∀γ ∈ Diff+(I ′), (1.43)
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where Diff+(I) is the group of orientation preserving diffeomorphisms γ of S1 sat-

isfying γ(z) = z,∀z ∈ I ′.

Remark 1.5.1 It is an ongoing research to identify LCN with VOAs. With regards to

well-known CFTs like UMMs or WZW models, their LCN and VOA correspondence has

been fully established in [25]. Thus the notion of UMM or WZW CFT is unambiguous

whether we are using the mathematical framework of LCN or VOA to describe the CFT.

Consequently, all notions (like that of representation category) in one context have analogs

in the other. For example, irreducible modules of VOA correspond to irreducible sectors

of the local conformal net [36, see e.g. for a definition] and they form the same MTC

under similar conditions for the LCN. Hence, we will sometimes use the terminology

“irreducible sector” to refer to irreducible modules of the VOA.

Remark 1.5.2 Full local conformal net is defined for full CFTs on a two-dimensional

Minkowski space, where instead of intervals, one considers open subsets O = I × J ⊂M

of the Minkowski plane formed by intervals I, J on the light rays t− x and t+ x. These

have associated algebras that are sent to each other by conformal maps on the plane,

similar to (1.42). It turns out [36, section 5.1 and references therein] that a full LCN is

essentially determined by a left AL(I) and right AR(I) LCN and a modular invariant Z

such that SLZ = ZSR, TLZ = ZTR for the modular data S, T of the MTC formed by the

irreducible sectors of the LCNs AL and AR.

Remark 1.5.3 (Unitary Virasoro LCN) For unitary Virasoro VOAs, there is a cor-

responding unitary Virasoro LCN Avir where

Avir(I) = {eiL(f)| f ∈ C∞R (S1), supp(f) ⊂ I}′′ (see [37]). (1.44)

Avir is dependent on the choice of the central charge which will be clear from the context.
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It is defined as the double-commutant of the algebra generated by unitaries U(exp(f)) =

eiL(f) associated to real-valued smooth functions with support inside I. Note the double-

commutant theorem implies that the strong (or weak limit) of the algebra generated by

eiL(f)s is Avir(I). In other words, the von Neumann algebra they generate is Avir(I).

1.5.1 Boundary net

This section will be important in our characterization of the scaling limit of anyonic

chains with boundary conditions in section 2.6.2.

We study boundary CFT on the half-plane M+ = {(t, x) : x > 0}. Note the

stress-energy tensor T =

T00 T01

T10 T11

 has to satisfy a boundary condition at x = 0.

Conservation and vanishing of the trace imply that the left and right moving compo-

nents TL = 1
2
(T00 + T01) and TR = 1

2
(T00 − T01) are chiral fields and TL = TL(t + x),

TR = TR(t − x). The boundary condition means the absence of energy flow across the

boundary,

T01(t, x = 0) = 0 ⇔ TL = TR ≡ T. (1.45)

This means the left and right chiral Virasoro fields are identified. The mathematical

model must describe what net of algebras the additional non-chiral fields generate.

Remark 1.5.4 An anyonic chain with boundary conditions exhibits the same behavior

in the scaling limit. They contain only one chiral algebra with identification between left

and right movers. As a result, the Hilbert space in the scaling limit is a representation

that is a direct sum of representations of the chiral algebra, and not a sum of tensor

products of representations of two chiral algebras like in a full CFT for periodic chains.

We now define the boundary net following [36, section 5.2]. This will be the first step
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in modeling boundary CFT. Let K+ be the set of double cones O whose closures are

contained in M+. A double cone is O = I × J where I, J ⊂ {x = 0} ∼= R are bounded

intervals on t-axis with I > J (meaning inf I > sup J), and I ×J is defined as the region

{(t, x)|t + x ∈ I, t − x ∈ J}. Consider a completely rational local conformal net A(I)

restricted to a net on R by removing the point ∞. Then the universal cover ˜PSL(2,R)

acts globally on the universal cover of S1. The product action on the chiral lines t+x and

t−x ofM gives a local action of ˜PSL(2,R)× ˜PSL(2,R) onM. To pass to the boundary

CFT, we consider the local action of PSL(2,R) obtained by restricting the local action of

PSL(2,R)×PSL(2,R) to the diagonal. This action restricts to local actions of PSL(2,R)

on M+ and its boundary, the time axis.

Definition 1.5.3 (Definition 5.6, [36]) An assignment B+ of a von Neumann algebra

B+(O) on a fixed Hilbert space HB to each double cone O ∈ K+ is called a boundary

net if it satisfies the following.

• Isotony. O1 ⊂ O2 =⇒ B+(O1) ⊂ B+(O2).

• Locality. If O1,O2 are spacelike separated, then [B+(O1),B+(O2)] = 0.

• Möbius covariance. There exists a unitary representation U of ˜PSL(2,R) on

the Hilbert space HB such that U(g)B+(O)U(g)† = B+(gO) for every O ∈ K+ with

g ∈ ˜PSL(2,R) having a path of elements gs ∈ ˜PSL(2,R) connecting the identity of

˜PSL(2,R) and g satisfying gsO ∈ K+ for all s.

• Positive energy condition. The generator of the translation one-parameter

subgroup of U (the CFT Hamiltonian) is positive.

• Existence of the vacuum vector. There exists a unit vacuum state Ω ∈ HB

such that CΩ are the U−invariant vectors and cyclicity holds B+(O)Ω = HB for

each O ∈ K+.
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The non-chiral fields of a boundary CFT generate a boundary net of algebras B+(O) on

M+ which contains the boundary net generated from a chiral net A(I). Let us define

A+(O) = A(I) ∨A(J) for O = I × J . A boundary net associated to a chiral net defines

the model for boundary CFT and we will use both terms boundary net and boundary

CFT interchangeably.

Definition 1.5.4 (Definition 5.7, [36]) A boundary net B+(O) associated with A(I)

is a boundary net B+(O) satisfying the following.

• Joint irreducibility. There is a representation π of A(I) on HB such that

π(A+(O)) ⊂ B+(O) and U(g)π(A+(O))U(g)† = π(A+(gO)) for doubles cones

O, gO ∈ K+.

• For each double cone O, the von Neumann algebra generated by B+(O) and all

algebras π(A(I)) is B(HB).

Remark 1.5.5 An important example of a boundary net associated to the chiral net Avir

(1.44) for Ising model is B+(O) = (CAR(I) ⊗ CAR(J))even [38, Examples in p.20, 47]

for O = I × J , generated as a von Neumann algebra by the monomials of Dirac modes

(with even many terms) in {Ψ(f)Ψ(g)|supp(f) ⊂ I, supp(g) ⊂ J}, and acting on the

Hilbert space HB = χ
0 ⊕ χ 1

2
.

Boundary nets can be characterized using the notion of chiral extension of chiral theories.

Every maximal local boundary CFT B+ can be recovered from its “restriction to the

boundary”. The latter is some (possibly non-local) chiral extension B of a chiral LCN A

defined on the same Hilbert space HB as B+. We refer to [38, 36] for the (re)construction

of the boundary CFT from a (non-local) chiral theory and classification of the latter.
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1.6 Anyonic Chain (AC)

Although anyonic chains (AC) are closely related to and inspired by spin chains, there

are some fundamental differences between them. The most salient difference touches on

the trade-off between explicit locality and unitarity in QFTs. Spin chains implement

locality explicitly by attaching local state spaces to each site, while the Hilbert spaces

of ACs do not have such explicit tensor product decomposition. In general, it is harder

to obtain unitary interacting exactly solvable spin chains with CFT scaling limits, while

such examples of ACs are ubiquitous [9]. This phenomenon is related to the localization

of braid group representations, where finite order unitary R−matrices are very rare [39].

This section follows the exposition of anyonic chains in [40, 9]. An anyonic chain is

a periodic or open (with boundary condition) chain, along which pairwise interactions

occur between quasi-particles (the anyons), e.g. the generalized spin j anyons of su(2)k.

Remark 1.6.1 Our anyonic chains will be based on su(2)k and it should not be confused

with anyonic chains based on JTLk, like the Fibonacci golden chain in [9] (see Remark

1.6.2 for more on this issue).

The chain is usually presented along a straight path if it is not periodic and as a loop

if it is periodic. We will also put the nonperiodic chain along the upper half-circle S1
+

(Figure 1.17) as this picture will be used in section 2.5.2 to relate the AC to LCN.

j j j j j j

x0 x1 . . . xL−2 xL−1

j

j
jj

j

j x0

x1

. . .

xL−2

xL−1

Figure 1.17: Anyonic chain on a straight path and on a half-circle.

A boundary condition (a, b) means x0 = a and xL−1 = b. The channel between each
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two anyons provides the means for fusion. Each admissible fusion path has to satisfy

the fusion rules of su(2)k in (1.1). All admissible fusion paths form an orthogonal basis

of the Hilbert space Hom(x0 ⊗ xL−1, j
⊗(L−1)) where the inner-product comes from the

diagram calculus of the unitary MTC su(2)k (section 1.2.1). Generally for all j and k,

the resulting Hilbert spaces do not have a tensorial structure, though the case of k = 2

does have one.

xi+1

xi−1 j j

xi =
∑̃
xi

(
F
xi−1jj
xi+1

)x̃i
xi

xi+1

xi−1 j j

x̃i

Figure 1.18: The F−move applied on the anyonic chain.

We specialize to the case j = 1
2
, and define a Hamiltonian. The motivation of all

these settings could be seen as a generalization of the Heisenberg model [40]. In that

model, there exists a spin-spin nearest neighbor interaction given by the term

~Si.~Si+1 = P 1
i −

3

4
Ii = −P 0

i +
1

4
Ii,

where P s
i is the projection onto the total spin s channel of two spins ~Si and ~Si+1. This

leads to the following Hamiltonian

H = J
∑
j

P 0
j ,

where J determines if the chain is antiferromagnetic (J = −1) or ferromagnetic (J = 1).

To generalize, we first need to define the projection onto the total spin using the so-called

F−move in Figure 1.18.

The next step would be to project onto the desired fusion which is 0 (the vacuum)
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and go back to the previous basis of fusion path by applying the inverse of the F−move:

H = −
L−2∑
i=1

F−1
i P 0

i Fi,

where the antiferromagnetic coupling J = −1 has been chosen in order to obtain UMMs

in the scaling limit. In the case of spin−1
2

chain, letting d = 2 cos( π
k+2

), the quantum

dimension of 1
2
,

F−1
i P 0

i Fi =
1

d
Xi =⇒ H = −1

d

L−2∑
i=1

Xi.

The operators Xi satisfy the following relations [9, eq. (3)]:

X2
i = dXi, XiXi±1Xi = Xi, [Xi, Xj] = 0, for |i− j| > 1.

These are the same operators ei of the Temperley-Lieb (TL) algebra (section 1.2.2).

Thus,

H = −1

d

L−2∑
i=1

ei.

For the nonperiodic su(2)2 AC, there are several possibilities (a, b) for the boundaries as

a, b ∈ {0, 1
2
, 1}. For example, the chain (1

2
, 1

2
) has odd length L = 2n+1 due to the fusion

rules and the Hamiltonian is H = −1√
2

∑2n−1
i=1 ei. However, the periodic chain has always

even length 2n.

Going back to the general case, recall the operator ei acts nontrivially on the i−th

particle according to its neighbor particles (1.3). From the MTC point of view, one can

think of the (open) AC as a diagram inside Hom(x0 ⊗ xL−1, (
1
2
)⊗(L−1)) on which ej with

the above entries act, by stacking up above xj.

Numerical experiments suggest that the scaling limit of the ACs of su(2)k can be

described by chiral CFTs data or full CFT (for open boundary condition or periodic
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1
2

1
2

1
2

1
2

1
2

1
2

x0

x1 . . . xL−2

xL−1

Figure 1.19: AC with j = 1
2 as an element inside Hom(x0 ⊗ xL−1, (

1
2)⊗(L−1)).

chains, respectively). These results are outlined in [40, 9], showing that depending on

the boundary condition, we obtain different irreducible modules of UMMs with central

charge c = 1− 6
(k+1)(k+2)

. This happens for the antiferromagnetic chain, and it is expected

that one obtains the parafermion CFT with central charge c = 2(k−1)
k+2

for the ferromagnetic

chain.

For periodic chains, exact diagonalization numerically solves the anyonic chain model

by finding the excitation spectra [9]. For example, conformal dimensions of the scaling

limit CFT are extracted from the energy levels for a length L periodic chain given by

E = E1L+
2πv

L
(− c

12
+ hL + hR) +O(

1

L2
),

with hL, hR the conformal weights of left and right sector. The scaling limit CFT is

stable under symmetry-preserving perturbation; more precisely, the topological symmetry

that the periodic chain has [40, Fig. 3]. One can imagine a loop inside the chain and

repeatedly use the F−move until it gets removed. As demonstrated in [9, 40], any

perturbation preserving such symmetry will not change the scaling limit .

Remark 1.6.2 Due to the similarities between JTLk and su(2)k for the particular case

of k = 2 (Remark 1.2.2), what would be referred to as the Ising AC can be constructed

with either of JTL2 or su(2)2 as the scaling limit results would apply to both cases. This is

consistent with physics terminology where the Ising chain means a spin−1
2

chain (C2)⊗n
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with the Hamiltonian

H = −
n∑
j=1

σxj −
n−1∑
j=1

σzjσ
z
j+1

given by Pauli operators σx, σz. As shown in section 2.4, this Hamiltonian is the same

as the one constructed earlier. However, the general relation (for k > 2) between the

two types of JTLk and su(2)k anyonic chains is likely to be complicated. See [9] for an

attempt for k = 3, where the golden Fibonacci chain based on JTL3 is mapped to an

su(2)3 AC.

As a final note, an important connection between AC model and the Restricted Solid-

On-Solid (RSOS) lattice model provides further physical proof that the scaling limits

of ACs are CFTs. One can show that the Hamiltonian derived from the logarithmic

derivative of the transfer matrix, coincides with the AC Hamiltonian [9]. This lattice

model has been studied for a long time and the literature has similar numerical results

for this model (see [41], [42], and the references in [9]). While there is no doubt that

the two approaches are equivalent in the end, mathematically it seems easier to obtain

observable algebras of CFTs as scaling limits in the AC approach as illustrated in section

2.5.
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Chapter 2

CFT as Scaling Limit of Anyonic

Chains

2.1 Outline of main results

We provide a mathematical definition of a low energy scaling limit of a sequence of

quantum theories in any dimension, and apply our formalism to ACs. The formulation is

non-relativistic and there will be no treatment of spacetime. Instead, most of our focus

will be on the scaling limit of the algebra of observables. Of utmost importance to our

applications are the recovery of all algebras of local observables in the scaling limit and

the rate of convergence to the scaling limit. Similar ideas for defining related scaling

limits for lattice models and spin chains have appeared in the physics and mathematics

literature which will be reviewed in 2.2. We show our results for the scaling limits of

the Ising ACs and pin the conditions necessary for them to generalize to higher minimal

models.

In section 2.3, we define the scaling limit of quantum theories and address the issues

that come up with scaling limit Definition 2.3.2. Quantum theories are Hilbert spaces
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Wn with Hamiltonians Hn and algebras of observables An. The scaling limit is a Hilbert

space which is a completion of a graded vector space V with Hamiltonian H. It is built

by stacking up the low energy spectrum of Wns using the embeddings called connecting

maps φMn : WM
n ↪→ WM

n+1, where M is an energy cut-off. The connecting maps satisfy

some compatibility axioms and are assumed to exist only for large enough n given a

fixed M . If such embeddings are defined for all M and n, i.e. φn : Wn ↪→ Wn+1,

we have a strong scaling limit, a scenario conjectured to hold for UMMs and proved

for Ising. The grading of V = ⊕∞i=0Vi represents the λ(i)−energy eigenspaces on which

H|Vi = λ(i)1. Next, Definition 2.3.4 defines the scaling limit of observables On
SL−→ O

where On’s low energy behavior, defined as expectation values (un, Onvn), converges to

that of O, i.e. (u,Ov). Note this applies to the Hamiltonians Hn as well, with scaling

limit H. The observables O defined on V generate the vector space A of observables

(Definition 2.3.5). These observables are almost linear (but not necessarily linear), where

Ou =
∑

i ui is a formal sum with the grading ui ∈ Vi. This reminds one of point-like

fields Y (a, z)u =
∑
a(n)uz

−n−1 which expectation values are defined but are not linear

operators (Remark 1.3.6). If the sum
∑

i ui is always finite, then O is linear on V .

In section 2.3.3, we propose a definition of locality with respect to both space and

energy, called space locality and energy locality. Intuitively, energy-local observables are

those that do not shift the energy level by more than a constant Λ, i.e. they are zero when

viewed as a map Vi → Vj for |i − j| > Λ (Definition 2.3.9). This definition is intrinsic

but too flexible and should not be confused with the later definition of locality in the

next chapter, which is needed to characterize local operators in a quantum computer

simulation of CFT. The locality definition for simulation requires a detailed knowledge

of the energy (or space) local degrees of freedom, which may not have a canonical form

and is only known in the case of free models like Ising. Still, the concept of energy

locality provides the minimal restriction needed for some of our theorems, where we try
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to distinguish the smeared Virasoro field Y (ω, f) in the scaling limit. We explore the

energy-local operators in section 2.5 in greater details; Specifically, Theorem 2.5.1 and

Theorem 2.5.2, where it is shown that

Y (ω, f) =
Λ∑

n=−Λ

f̂nLn, with f =
Λ∑

n=−Λ

f̂ne
inθ ∈ C∞R (S1)

form the energy-local operators as scaling limit of hermitian linear combinations of

Temperley-Lieb operators ej and their commutators i[ej, ej+1].

Even though there is no treatment of spacetime, we propose a definition of space

locality on lattice-based models (Remark 2.3.1 and Definition 2.3.10), which is stronger

than the usual notion of locality in quantum computation (QC-locality). This is possible

due to the obvious presence of space local degrees of freedom on a lattice model. We

point out whenever possible how one could obtain operators of interests such as smeared

Virasoro field Y (ω, f) (or more generally any smeared field Y (a, f)) from a sequence of

space (or QC-local operators), in Theorem 2.5.2 and Remark 2.5.9.

Previous works have mostly analyzed convergence of Virasoro modes Lm in the scaling

limit without taking into account the algebra of observables they generate, a crucial

characteristic of any quantum theory. There are three important types of observables in

the mathematical frameworks of CFT:

(a) (Wightman’s) Smeared fields Y (a, f),

(b) (Haag-Kastler or) LCN bounded observables O ∈ Alcn(I),

(c) VOA point-like fields Y (a, z).

Given that they are all supposed to describe the same theory, and are also considered

to be physical (computable), our goal is to show that the scaling limit vector space

of observables A contains all three as a scaling limit algebra (SL-algebra). Using our
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definition of scaling limit of observables, the notion of SL-algebra can be naturally defined

as a collection of observables in A which generate an algebra in A, hence their product

has to be a scaling limit of a sequence of observables (Definition 2.3.7). If that sequence is

the product of associated sequences (O
(i)
n )n to the observables in a generating set {O(i)},

then it is called strong SL-algebra (Definition 2.3.8). This is the ideal scenario where

O
(i)
n

SL−→ O(i) and scaling limit commutes with taking products of O
(i)
n s.

However, before we can move forward to show the convergence as an algebra, we need

to obtain the Virasoro modes Lm. We further need to analyze the rate of convergence,

which would be important to prove convergence of their product. In section 2.4, we

obtain the scaling limits of Ising ACs for all boundary conditions. Proving the limits is a

computationally involved procedure, where the same technique ([43]) is applied to each

case. The proofs for some of the cases can also be found in the physics literature with

different or similar approaches [1]. Yet, no mathematically rigorous proof for all Ising

ACs using one consistent method and with explicit estimate of the convergence rate for

the limits could be found in the literature. Therefore, we prove the Theorem 2.4.1 which

is partially recited below.

Theorem 2.4.1 1- The following strong scaling limits hold, up to some scalings

(explained further below) of the Hamiltonians

(a) Wn = (1
2
, 1

2
), Hn = −

∑2n−1
j=1 ej. Then (Wn, Hn)

SL−→ (χ0 + χ 1
2
, L0).

(b) (Wn = (0, 0) or (1, 1), Hn)
SL−→ (χ0, L0).

(c) (Wn = (0, 1) or (1, 0), Hn)
SL−→ (χ 1

2
, L0).

(d) (Wn = (1
2
, 1) or (1

2
, 0), Hn)

SL−→ (χ 1
16
, L0).
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(e) Wn the periodic chain of size 2n, and Hn = −
∑2n

j=1 ej. Then

(Wn, Hn)
SL−→ (χ0

χ
0 + χ 1

2

χ 1
2

+ χ 1
16

χ 1
16
, L0 + L0)

if n is even.

Furthermore, restricting energies up to O( 3
√
n) gives the rate of convergence O( 1

n
).

2- For the corresponding higher Virasoro generators, with the same rate of convergence

as above, given a fixed m 6= 0, we have (up to some scalings)

(a) Oc
n,m = −

∑2n−1
j=1 cos(

m(j+ 1
2

)π

2n+1
)ej

SL−→ Lm + L−m,

Os
n,m = i

∑2n−2
j=1 sin(m(j+1)π

2n+1
)[ej, ej+1]

SL−→ i(Lm − L−m)

If m ≤ 4
√
n, we have a rate of convergence of O( 1

n
) for energies up to 4

√
n.

It turns out one can define operators L̃c±m, L̃
s
±m

SL−→ L±m satisfying the properties men-

tioned above, being some scalings of Oc
n,m, O

s
n,m,

L̃cm + L̃c−m
2

= αcnO
c
n,m + βcn,m1

SL−→ Lm + L−m
2

,

i(L̃sm − L̃s−m)

2
= αsnO

s
n,m + βsn,m1

SL−→ i(Lm − L−m)

2
,

where αcn, α
s
n, β

c
n,m, and βsn,m are suitable scaling factors. An operator L̃m is desired which

has scaling limit Lm so that expressions like L̃(f) :=
∑
f̂mL̃m

SL−→ L(f) =
∑
f̂mLm can

be used where f̂m = am + ibm ∈ C are Fourier coefficients of f ∈ C∞C (S1). Let

L̃m :=
( L̃cm + L̃sm

2
+
L̃c−m − L̃s−m

2

)
∀m 6= 0, L̃0 = L̃c0.

The above satisfies L̃m
SL−→ Lm and inherits the same rate of convergence from L̃cm and

L̃sm (Remark 2.5.1) and will be used in our next results.
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In 2.4.4, we compare our Koo-Saleur formula to the earlier one in the literature [1], and

show why ours is a better choice with regards to algebra convergence which is addressed

below. The important distinction lies in the energy locality of our formula, while the one

in [1] mixes high and low energy spaces.

Going back to proving convergence as an SL-algebra, it is not hard to show that the

three important types of CFT observables mentioned previously live in A as a vector

space, i.e. all in a single framework. This fact tells us two things we expect. First, they

are all physical as they describe some computable convergent sequence. Second, although

all three sets are related (see [25]), and each believed to store all the CFT information,

they have to be in our set of observables simultaneously.

(a) Smeared fields Y (a, f): In section 2.5.1, using the previous results for Ising,

the smeared fields Y (a, f) are recovered as an SL-algebra. The steps to show this are

outlined. The VOA is generated by Lns applied to the primary fields, therefore realizing

the Lns or the smeared conformal field Y (ω, f) should be the top priority. We illustrate

intuitively the idea behind the equations above defining L̃n. Consider a nonperiodic Ising

chain placed on the upper half-circle S1
+ (Figure 1.17). We ask for the “finite version” ω̃

of ω. Informally, the answer is ω̃ = e (the TL operator). For example, for any function

f with f(z) = f(z), with Fourier coefficients of sin(nθ)s being zero, we have (informally)

∫
S1
+

f(ei
πj
n )ej

SL−→ Y (ω, f) =

∮
Y (ω, z)f(z)z2 dz

2πiz
,

where the integral on the left is an integral over a “finite” space, in other words, a

summation. Hence, as ω can be regarded either as a state or a field, so does ej, which

can be seen as a vector (with a diagram presentation) or as an operator (stacking up

diagrams). Here, Y (the vertex operator) is the analog of the stacking at infinity.

For the opposite situation, i.e. f(z) = −f(z), where the Fourier coefficients of
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cos(nθ)s are zero, it can be viewed as a derivative of the previous case. However,

d
dz
Y (ω, z) = Y (L−1ω, z). So it is necessary to find the finite version of L−1ω, which

should be the derivative (as it is the interpretation of L−1) of ej. The first candidate

that comes to mind is [ej, ej+1] and we have

i

∫
S1
+

f(ei
πj
n )[ej, ej+1]

SL−→ Y (ω, f) =

∮
Y (ω, z)f(z)z2 dz

2πiz
.

For general smooth functions f , a linear combination of ej and [ej, ej+1] is required to

obtain Y (ω, f). Once this is achieved, convergence as a strong SL-algebra is proved.

Theorem 2.5.6 {L(f) | f ∈ C∞C (S1)} generates a strong SL-algebra with corresponding

sequence L̃(f) to each L(f).

As mentioned previously, for a general VOA, one would need to recover the smeared

primary fields along with the conformal field. For UMMs, and more generally unitary

Virasoro VOAs, the VOA is generated from only the conformal field acting on the vacuum,

the only (trivial) primary field {L−nk . . . L−n1Ω} = V . Borcherds identity (1.13) allows

us to compute a descendant field based on its parents and the conformal field. Using an

inductive approach, we obtain all Y (a, f) for all fields a living in an SL-algebra:

Theorem 2.5.8 The set of operators {Y (a, f)| a ∈ V , f ∈ C∞C (S1)} ⊂ A generate an

SL-algebra, with Y (a, f) recovered from a QC-local sequence.

In Remark 2.5.10, we outline the technical reasons why our proof does not recover the

algebra as a strong space-local SL-algebra and Conjecture 2.5.9 is made along this

direction.

The scaling limit Theorem 2.4.1 for Ising and the rate of convergence required for the

past theorems on SL-algebras, motivate the formulation of Conjecture 2.5.3 on conditions
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when a unitary CFT would arise as such a limit and on the analytical requirements for

the above theorems on SL-algebras to hold for higher minimal models.

Conjecture 2.5.3 For any unitary minimal model V = Vc,0 and a sector Vc,h, there is

a sequence of (AC or lattice-based) quantum theories (Wn, Hn,An) with strong scaling

limit (Vc,h, L0) such that for each Virasoro generator Lm, there is a sequence L̃m ∈ An

(dependence on n implicit) with the following properties:

• L̃m is a space-local observable such that L̃†m = L̃−m and aL̃m + aL̃−m ∈ AHn for

any complex number a, where AHn is the (generating) subset of An consisting of

hermitian observables.

• L̃m shifts the energy no more than |m|.

• There exist constants dω, gω, eω > 0 such that when L̃m is restricted to energy at

most ndω , it has an approximation by Lm|ndω with error O( 1
ngω

):

L̃m|ndω = Lm|ndω +O(
1

ngω
),

and the operator norm ||L̃m|| is bounded by O(neω).

Assuming the above conjecture for UMMs, most theorems in section 2.5 notably Theorem

2.5.8 mentioned above, hold for all UMMs as well (Remark 2.5.6 and 2.5.7 clarify which

results generalize).

(b) Local conformal net observables: The algebra of observables in LCN is

recovered in section 2.5.2. Finite versions of LCN are defined in the obvious way by

considering intervals I in the interval set I+ of the upper-half circle S1
+ (Figure 1.17),

and algebra of observables on interval I is generated by ejs where [ jπ
2n+1

, (j+1)π
2n+1

] ⊂ I.

We denote these by An(I) and obtain a local net of strong SL-algebra of bounded
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observables Ab(I) in the scaling limit (Definition 2.5.3 and Corollary 2.5.9). We solely

focus on characterizing the algebras Ab(I), however as space is part of the data describing

the net, studying the net thoroughly should also allow a treatment of space in the scaling

limit process.

We would like to compare this net to that of Avir(I) (1.44). This may seem to be not

a like-to-like comparison at first. Indeed, as explained in section 2.6.3, it is not accurate

to call the scaling limit a chiral UMM as there is no preferred direction for chirality to

emerge. However, it is completely described by chiral data like all other versions of CFT.

This comparison helps to understand how the theory is built from chiral data.

Applying Theorem 2.5.6, one gets eiL̃(f) SL−→ eiL(f) as a corollary. Let j(I) be I’s

reflection in the lower half-circle. For supp(f) ⊂ I ∪ j(I), we know eiL̃(f) ∈ An(I),

implying for their scaling limit eiL(f) ∈ Ab(I). On the other hand, Avir(I) is generated

as a von Neumann algebra by {eiL(f)|supp(f) ⊂ I}, thus Avir(I ∪ j(I)) ⊂ Ab(I). Once

an inclusion like the latter is obtained between two nets, where one (Avir) satisfies Haag

duality (1.41) and the other (Ab) locality (1.5.1), it is a common trick to form a sequence

of inclusions to show their equality. We can do this when |I ∩ ∂S1
+| = 1, where for J the

complement of I in S1
+:

Ab(J) ⊂︸︷︷︸
locality

Ab(I)′ ⊂ Avir(I ∪ j(I))′ =︸︷︷︸
Haag duality

Avir(J ∪ j(J)) ⊂ Ab(J).

Theorem 2.5.13 Ab(I) = Avir(I ∪ j(I)) for I ∈ I+ with |I ∩ ∂S1
+| = 1, where j(I) is

I’s reflection in the lower half-circle.

Let us suppose that I does not satisfy |I ∩ ∂S1
+| = 1. Then

Avir(I) ∨ Avir(j(I)) ⊂ Ab(I) ⊂ (Avir(J1) ∨ Avir(J2))′,
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where J1 and J2 are the two intervals obtained by removing I and j(I) from the circle.

The difference between Avir(I) ∨ Avir(j(I)) and (Avir(J1) ∨ Avir(J2))′ is given by the

charge transporters. In particular, we observe that Ab(I) includes the algebra (CAR(I)⊗

CAR(j(I)))even (Remark 1.5.5). This is a case of charge transporters for χ 1
2
. In section

2.6.2, we speculate about the boundary CFT (Definition 1.5.4) that corresponds to Ab(I).

More generally, if the scaling limit contains irreducible sectors χi, it is conjectured that

charge transporters ρiρi corresponding to χ
i exist in Ab(I). Even for the Ising model,

the exact description of Ab(I) is not clear yet, showing much is yet to be done.

To generalize Theorem 2.5.13 to higher minimal models, we need a space-local rela-

tion between Temperley-Lieb generators and finite versions of Virasoro generators. In

Conjecture 2.6.4, it is claimed that the trivial generalization of Oc
n,m, O

s
n,m in Theorem

2.4.1 should give operators L̃±m satisfying the properties in Conjecture 2.5.3. We will

discuss in 2.6.3, using numerical arguments from [1], why this generalization to su(2)k

ACs may not satisfy all properties in Conjecture 2.5.3. We will also speculate on the

possible fixes, including adding higher commutators like [ej, [ej+1, ej+2]] to deal with the

finite-size effects and changing the framework from su(2)k to the Jones-Temperley-Lieb

JTLk MTC to ensure space-locality.

(c) Point-like fields Y (a, z): It is not hard to recover the point-like fields simply as

an almost linear operator.

Theorem 2.5.14 Y (a, z) ∈ A as an almost linear operator.

However, we are unable to show that they form an algebra in the scaling limit. Intuitively,

one would expect “eθ
SL−→ Y (ω, eiθ)” where eθ is the TL operator acting nontrivially on the

part of the chain closest to angle θ. This means one can obtain the point-like field as an

ultra space-local operator (acting on constantly many adjacent anyons). It is because of

the high non-locality of energy (a result of being highly space-local) that the scaling limit
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does not hold. The precise statement is as follows, where a scaling of ej and i[ej, ej+1]

are supposed to produce the even and odd part (cos(), sin()) of the point-like field.

Theorem 2.5.15 We do not have

On = αcn||ṽcx||2ex + iαsn||ṽsx||2[ex, ex+1] + (βcn.ṽ
c
x + βsn.ṽ

s
x)1

SL−→ Y (ω, z)z2,

where z = eiθ and we pick the unique 1 ≤ x ≤ 2n− 1 such that θ ∈ [ xπ
2n+1

, (x+1)π
2n+1

].

In Remark 2.5.12, it is shown that one could build a sequence of space ultra-local op-

erators (acting on O(log(n)) adjacent anyons on the AC) converging to Y (ω, eiθ). This

is done by comparing the number of variables and the number of equations needed to

cancel the energy non-locality. Yet, that sequence of operators may not be the one that

could yield an SL-algebra.

Finally, in section 2.6, we go through a list of conceptual and technical gaps in our

understanding of the scaling limit, providing directions for future works (some of which

are mentioned above).

2.2 Previous works

We discuss prior works in the literature on the mathematically rigorous definition of a

scaling limit in the quantum mechanics approach, and the recovery of algebras of observ-

ables. There is a vast literature on the subject of scaling limits in statistical mechanics

[41], and substantial progress has been made in the case of Ising model proving the corre-

lation functions in the limit are conformal invariant (see [44, 45] and references therein).

Statistical mechanics approach could also provide techniques with which one could com-

pute the conformal weights present at the scaling limit without actually diagonalizing

the Hamiltonian [46].
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A recent program to construct CFTs from subfactors is in [47, 48, 49], where the

inductive limit of Hilbert spaces is clearly discussed based on planar algebras, which

have the same Hilbert spaces of states as ACs (spin chains in these papers are better

interpreted as generalized spin chains as in [42]). Our work focuses on the quantum

mechanics approach to scaling limits of ACs enriching the inductive limits [48] with

explicit Hamiltonians and algebras of local observables.

A scaling limit of spin chains close to our Ising AC was analyzed earlier in [1] starting

with the idea of how to take the scaling limit of the Hamiltonians of the chains and also

obtain the Virasoro modes Ln from Fourier transforms of the TL generators ei. More

recently, in the first paper of the series [50, 51, 52] on the gl(1|1) (free) model, the authors

proposed a potentially rigorous definition for the scaling limit [50, section 4.3], obtained

operators like our L̃ms and computed their commutators to check their convergence to

the commutators of the Virasoro modes. Such computations are commonly pursued after

one obtains some operators L̃m
SL−→ Lm and have been done in different models both

rigorously and numerically ([53],[54, p.19 and references therein]). We go beyond the

convergence of commutators and further pin down the conditions necessary (Conjecture

2.5.3) to prove the same theorems for higher level UMMs.

In the third paper of the series ([52]), the authors gave a rigorous definition of scaling

limit while working on the scaling limit of JTL algebra (with d = 0 =⇒ e2
i = 0) as it

acts on a gl(1|1) periodic spin-chain model (the scaling limit is the c = −2 Logarithmic

CFT—symplectic fermions theory). Even though the context and the type of the model

(Logarithmic CFTs) are quite different from ours (unitary CFTs), our definitions closely

mirror theirs. But there are some differences due to our different motivation, emphasis

and applications.

As defined in [52, Appendix C], our scaling limit is also dictated by the low energy

behavior of Hamiltonians, Hilbert spaces, and observables. In [52], the primary focus
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is on the algebraic scaling limit of TL operators. However, we focus on the analytic

side of scaling limits motivated by our goal of simulating CFTs as we need to know

how computations in the finite stages converge. Especially, the unitary evolution and

correlation functions involve unbounded operators for which we desire a clear description

on how they are obtained in the scaling limit. In fact, even when restricted to the bounded

observables, not all bounded operators can be obtained through the algebraic approach

(for example the unitary operators eiL(f)). Related to this, the analytic approach provides

a more direct picture on how the LCN emerges (section 2.5.2) since we still keep the TL

operators ei as our operators of interests and (mostly) do not switch to fermionic fields.

This enables us to obtain theorems with proofs general enough for higher UMMs assuming

Conjecture 2.5.3.

The algebraic approach, and algebraic-numerical techniques [55, 56], have been used

to obtain more information about the algebraic structure of the Hilbert space and the

algebra of observables in the scaling but to our knowledge, a mathematically rigorous

procedure has been applied mainly for free models like gl(1|1). We believe our analytical

approach should also apply to such free models.

Recently, emergence of conformal symmetry has been numerically investigated using

the Koo-Saleur generators (KSGs) [57, 1]. To compare our version of KSGs with those of

[57], first recall our notation Ln = Ln +Ln. Our counterparts of the KSGs are operators

L̃n ± L̃−n on the ACs that give us Ln ±L−n in the scaling limit ([4, Appendix]). On the

other hand, using a different diagonalization of the Hamiltonian in [57] (same as that in

[1]), the authors found their KSG operators, different from ours, in the AC notation to be

H̃n = −N
2π

∑2N
j=1 e

2n(j+1)πi
2N ej, which converge to Ln+L−n. Taking the sum and difference of

H̃n and H̃−n respectively, we obtain Ln+L−n from the sum and (Ln−L−n)− (Ln−L−n)

from the difference, which does not have a counterpart in our version.

The difference stems from different diagonalizations of the same Hamiltonian, which
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illustrates the potential importance of connecting maps in our definition of scaling limit

in the next section. In [1], the diagonalization of the Hamiltonian is accomplished by

constructing creation and annihilation operators from the usual Fourier transform of the

Majorana operators. While in our version, the Dirac operators are obtained as cos() and

sin() transforms for the left and right moving sectors, respectively, which implies that

going from one diagonalization to the other requires a mixing of the left and right moving

sectors of the full CFT.

It follows that the scaling limit of H̃n from our diagonalization will have an interchiral

part which mixes left and right moving sectors, thus clearly different from Hn = Ln+L−n.

The method in [57] works well numerically, and for the Neveu-Schwarz sector χ0
χ

0+χ 1
2

χ 1
2
,

the resulting scaling limit (see e.g. [1] for a proof) gives rise to a full CFT isomorphic

to ours by a not necessarily local isomorphism that connects the two different sets of

creation and annihilation operators.

Finally, while not directly related, the paper [29] serves as a conceptual inspiration

for our work and the techniques introduced there address analytic problems of similar

nature to ours.

2.3 Scaling limit of quantum theories

It is commonly believed that QFTs are low energy effective theories such as WCS

TQFTs are the low energy effective theories for two dimensional fractional quantum Hall

liquids. In this section, we define mathematically a low energy limit of a sequence of

quantum theories. Our formalism is closely related to the definition of topological phases

in [58] and ideas in [50].

We start with the definition of quantum theories by imagining quantum theories

that describe a collection of interacting quantum particles. The theories considered have
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a discrete energy spectrum in the scaling limit like all CFTs. Notice this is different

than the energy spectrum given by the primary fields. In the context of CFTs, there

are non-unitary Virasoro representations with continuous spectrum of primary fields,

while still having a discrete energy spectrum in each sector. The definition below is for a

finite dimensional theory, with the next definitions defining what the infinite dimensional

scaling limit is.

Definition 2.3.1 ([4], Def. 2) A quantum theory is a 3-tuple (W , H,A) where

• W is the Hilbert space of states,

• H is the Hamiltonian and hermitian,

• A is a von Neumann algebra of observables.

Remark 2.3.1 We can also add a number of notions to the definition above. For ex-

ample, the space information of the system can be thought of a graph G, which is usually

the 1−skeleton of a triangulation of the space. In the following text, G is always a chain.

There are also different notions of locality based on the basis we choose. As an example,

considering the space information given the graph G, the Hamiltonian H is r−space-local

for some constant r > 0 if H =
∑p

i=1 Hi such that each local hermitian term Hi is trivial

outside the ball Br(vi) of distance r at some vertex vi of G. If p = 1, then H is r−space

ultra-local. There will be different notions of locality in this chapter, explained later in

section 2.3.3.

2.3.1 Low energy limit of quantum theories

The first part of a limit theory is a Hilbert space and a Hamiltonian, which are

constructed from the low energy spectra of a sequence of quantum theories (Wn, Hn)
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with strictly increasing dimensions. The scaling limit of observables will be addressed in

the next section.

Assume a sequence of quantum theories (Wn, Hn) with Hn’s eigenvalues being ordered

as λ
(n)
1 ≤ . . . ≤ λ

(n)
d(n), where d(n) = dim(Wn). The Hilbert spaces Wn decompose into

the corresponding one-dimensional eigenspaces

Wn = E
λ
(n)
1
⊕ · · · ⊕ E

λ
(n)
d(n)

.

Denote by WM
n the Hilbert space Wn restricted to energies at most M , i.e. WM

n =⊕
λ
(n)
i ≤M

E
λ
(n)
i

. Assume the following set of properties (P)

• λi = lim
n→∞

λ
(n)
i exists for all i ∈ N with the convention λ

(n)
i = 0 for i > d(n), and

lim
i→∞

λi =∞,

• (connecting maps) for all M > λ1 where M 6= λj for all j, there exist connecting

unitary maps φMn :WM
n →WM

n+1 for all n > NM for some NM depending on M ,

• (extension) φMn is an extension of φM
′

n when M ≥M ′, i.e. φMn |WM′
n

= φM
′

n .

The reason for M 6= λj for all j in the first property is that energies oscillating around

their limit points would make the stabilization of the low energy spectrum impossible for

a cut-off M = λj. From now on, any cut-off will be implicitly assumed to be not equal

to any λj. Consider the sequence (WM
n , φ

M
n ) with M > λ1 and M 6= λj. Note that this

sequence eventually stabilizes due to the existence of unitary maps for large enough n.

Taking the colimit of the sequence (WM
n , φ

M
n ) gives a finite dimensional vector space,

called VM , along with the unitary maps ρMn : WM
n → VM . It follows that VM has

a natural Hilbert space structure. Further, for all M,M ′ ∈ (λj, λj+1), VM = VM ′ as

WM
n = WM ′

n for n > max(NM , NM ′) due to the first property. As such the space VM

for M ∈ (λj, λj+1) can be conveniently called Vλj . So there are only countably many
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different VMs. Next we add the following property to P on the convergence of HM
n , the

restriction of Hn to WM
n :

• (convergence) The push-forward of HM
n on VM given by ρMn converges to some

operator HM :

ρMn H
M
n (ρMn )−1 → HM .

Obviously, HM will be hermitian. Furthermore, the above property is equivalent to

the following diagram “commuting up to εMn in the norm operator”, which goes to zero

as n→∞:

WM
n VM

WM
n VM

ρMn

HM
n HM

ρMn

.

The construction of the scaling limit (V , H) of the sequence is not hard from here.

Properties of the colimit imply that the set {(VM , HM)} is unique up to unique

isomorphism. Using the extension property of the connecting maps, and some formal

diagram chasing involving the colimit construction, one can build {(VM , HM)} as re-

strictions of a single Hilbert space and its Hamiltonian (V , H) [4].

In other words, one can ensure that the embedding VM → V is by identity and V is

a union (and colimit) of all VMs, which have a nested structure. The following diagram

will also commute:
VM V

VM V

HM H .

Since two colimits are taken to obtain the scaling limit (similar to the construction in

[50, section 4.3]), the above process is called the double colimit construction, allowing the

following definition
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Definition 2.3.2 ([4], Def. 3) Given a sequence of quantum theories

{(Wn, Hn)}∞n=1

with connecting maps φMn satisfying properties (P), the scaling limit (V , H) is the result

of the double colimit construction. This limit will be written as (Wn, Hn)
SL−→ (V , H).

Note also the grading

V = ⊕∞i=1Vi

for V , where Vi is the i−th eigenspace of H by strictly increasing order of energy. This

means H|Vi = λj1 for some j ≥ i; note that although limλi = ∞, λis are not strictly

increasing.

We emphasize that as long as the connecting maps are specified the scaling limit

process is unique up to unique isomorphism due to the nature of colimit. From now on,

whenever a sequence of quantum theories is given with a scaling limit, implicitly, there

is a given set of connecting maps. We do not discuss the issue of uniqueness any further

and for a relevant example, we refer to the previous discussion in section 2.2 on different

diagonalization in the case of the Ising full CFT.

Notice that V is separable but not complete, i.e. not a Hilbert space. The completion

of V will be denoted by V . For notational easiness, The scaling limit will be written as

(V , H) with the understanding that one needs to take a completion whenever the context

requires so.

We would like to think of the scaling limit as the result of stacking up the low energy

spectra of Hns, and the double colimit construction fulfills this expectation. For example,

let Eλ1 be the eigenspace of the limit Hamiltonian H corresponding to λ1, and k be the

smallest integer such that λk > λ1, i.e. the first larger eigenvalue of H. Choose some M
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such that λ1 < M < λk, then the above construction builds a space Eλ1 from WM
n s with

large enough n. These are the eigenvectors of Hn which energies converge to λ1 in the

limit. Note that our notation for the grading of V implies V1 = Eλ1 and V2 = Eλk .

Although our definition does not assume an embedding of the whole space Wn into

Wn+1, we expect this to be the case for all physical models, like in the case of Ising and

other free models [52]. Our discussions in section 2.5 will be based on this assumption:

Definition 2.3.3 ([4], Def. 4) A sequence of quantum theories {(Wn, Hn)}∞n=1 gives a

strong scaling limit (V , H) if in addition to properties P, for all n and M , the connecting

maps φMn are the restriction up to energy M of an isometry

φn :Wn ↪→Wn+1

for large enough n.

Given the above, the colimit of the sequence of embeddings Wn ↪→Wn+1 gives V .

Usually, the chosen basis for Wn closely relates to a notion of space, and locality in

this space basis is supposed to represent locality in space. Finding the embedding φn

is not trivial based on this basis. In the scaling limit, the space embedding is not the

“trivial” embedding, in contrast to the thermodynamical limit [59, Appendix A]. Indeed,

the energy embedding is the trivial one as shown in the definition. As a result of this

trivial energy embedding, the space-local operators inWn (as defined later in 2.3.10) like

eis in ACs, are generally space non-local when their actions are pushed forward. This

will become clearer in next few sections.
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2.3.2 Scaling limit of observables

Assume a sequence of quantum theories {(Wn, Hn,An)}∞n=1 with the scaling limit

(V , H). As ∀O ∈ An, O + O† and i(O − O†) are hermitian observables, An is generated

by an underlying real vector space of hermitian observables called AHn , and Hn ∈ AHn . In

the examples of ACs, the space AHn is given by hermitian observables generated by ejs,

a subset of which {ej, i[ej, ej+1]} will be our focus. This choice is motivated on one hand

from including the local terms of interaction of the system, and on the other hand to

recover the Virasoro algebra in the scaling limit (see Theorem 2.5.2 and Remark 2.5.11).

To build the observables of V from the observables of Wn, the low energy behavior

of the observables has to be taken into account.

Definition 2.3.4 ([4], Def. 5) Let On ∈ An be any sequence of observables. For a

given M and u, v ∈ VM , denote by un, vn ∈ WM
n the vectors (ρMn )−1u, (ρMn )−1v, which are

defined for sufficiently large n. The scaling limit of On is a partially-defined (defined on

a subset of V × V) sesquilinear form O(·, ·), where O(u, v) is defined as lim
n→∞

(un, Onvn)

when it exists. We will denote the scaling limit by On
SL−→ O.

Notice O exactly stores the information in the limit for the expectation values of On. If

O can be represented by a linear operator as O(u, v) = (u,Ov), then O will also denote

the linear operator.

Definition 2.3.5 ([4], Def. 6) We define the following sets from the set of sesquilinear

forms in Definition 2.3.4:

• A: the set of observables in Definition 2.3.4,

• A: the vector space of sesquilinear forms in A defined on V × V,

• AH : the real vector space of sesquilinear forms represented by hermitian operators

which are scaling limit of hermitian observables in AHn and defined on V.
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Another difficulty with understanding the scaling limit is the difference in the descrip-

tion of observables at finite stages and at the scaling limit. The chosen basis for Wn is

usually closely related to the notion of space and not energy. In the case of ACs, the eis

are space ultra-local operators. On the other hand in CFTs, a “space-based” description

of the operators for computational purposes is hard to find. Among the different frame-

works, VOA is the only one suitable for actual calculations. Even though the Y (a, z)s

are thought to be space ultra-local observables in the continuous spacetime, yet their

description is a Fourier-like series of mode operators
∑
a(n)z

−n−1. The mode operators

are energy shifting operators while their space action is obscure. Therefore, having a

general definition of a Fourier transform on the eis is essential to understand the relation

between TL and Virasoro algebra (see Conjecture 2.6.4 for an attempt). Alternatively,

one has to find some space description of Y (a, z).

Remark 2.3.2 A is closed under the obvious weak limit. In fact, we can consider the

semi-norms || · ||n on A which are defined by ||O||n = ||P nOP n||. Here, P n is the

restriction up to energy λn, and P nOP n should be read as the linear operator that the

sesquilinear form O gives once restricted to the finite-dimensional space Vλn. Then, one

can consider the usual operator norm ||P nOP n|| of this linear map. By some standard

analysis argument [4, Remark 3], it can be shown that A is a Fréchet space with respect to

these (separated) countably many semi-norms, thus providing the scaling limit metric

dSL.

Adding to the above remark, consider the case of a strong scaling limit with connecting

maps φn, and assume there also exist embeddings τn : An ↪→ An+1 compatible with φn:

φn ◦On = τn(On)|φn(Wn), ∀On ∈ An.

Then scaling limit becomes equivalent to convergence in the metric dSL. Let us call
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the colimit of the sequence of embeddings An ↪→ An+1 the algebraic scaling limit. The

closure with respect to dSL of the algebraic scaling limit is precisely A, which we can call

the analytic scaling limit. As τn is compatible with φn, by the scaling limit construction,

the algebraic scaling limit contains a copy of each On defined on V . The embeddings τn

exist in the case of gl(1|1) studied in [52, Theorem 4.4]. For Ising ACs, the algebra An

for Wn is the even algebra generated by Dirac operators (basis given by even products

{Ψi1 . . .Ψi2k | − n ≤ ij ≤ n}), and the embeddings τn are obvious. We conjecture that

such embeddings exist for higher level anyonic chains.

Remark 2.3.3 One can ask whether A “generates” A? This is true for any model with

an algebraic scaling limit. As the algebraic scaling limit contains a copy of any On ∈ An

in A, any observable On
SL−→ O ∈ A can be seen as an operator obtained as scaling limit

of the copies of On inside A, implying that A generates A.

For the set of observables in each framework for unitary CFTs, there is an underlying

generating set of hermitian observables. Indeed the hermitian fields (more strongly,

hermitian quasi-primary fields) generate the VOA [25]. As for LCN, since the algebra

corresponding to an interval I is a von Neumann algebra, it is trivially true that it can

be generated by hermitian observables. In the general scaling limit, we do not know

whether AH generates A.

We wish to identify some subsets of A that may be algebras. Since operators may

not be linear, it is not clear how one can have an algebraic structure. In general, there

might not be a linear operator which gives the sesquilinear form O.

Sometimes these operators can be almost linear, as is the case of point-like fields

Y (a, z) or any O ∈ A. They are almost linear since one can formally set Ov =
∑

i vi

where vi is the vector which dual (−, vi) represents the functional O(−, v) on Vi, i.e. for

any u ∈ Vi, we have O(u, v) = (u, vi). If the formal sum is always finite, then O is a linear
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operator. For this reason, A is also called the vector space of almost linear observables.

The definition for the product of such operators is exactly in the same spirit of the

correlation function (u, Y (a(1), z1) . . . Y (a(k), zk)v) in (1.18).

Definition 2.3.6 ([4], Def. 7) Given O(1), . . . , O(k) ∈ A, the product O(1) . . . O(k) as a

partially-defined sesquilinear form F (u, v) is well-defined at (u, v) ∈ V×V if the following

is absolutely convergent:

∑
m1,...,mk

(u, Pm1O(1) . . . PmkO(k)v),

where Pmi projects onto Vmi.

One basic obstacle to get an algebraic structure is when observables On have a significant

mix of the low and high energy states (energy non-local). For example, define the two

sequences below where v
(i)
n ∈ Eλ(n)i

are pull-back of some v(i) ∈ Eλi :

• On,1 = v
(1)
n (v

d(n)
n )† + v

d(n)
n (v

(1)
n )†,

• On,2 = 0,

where recall d(n) = dimWn. Both sequences converge to the zero operator O = 0, while

being quite different. The significant (non-decaying) mix of low-high energy states in the

On,1s manifests itself not in the expectation values of the observables at low energies,

but the higher powers of the observables. Indeed, looking at the expectation values of

powers, while Ok
n,2

SL−→ Ok = 0 for any k, one has O2
n,1

SL−→ v(1)(v(1))† 6= 0. Next example

shows that the rate of decay of this low-high energy mix is important:

• On,1 = v
(1)
n (v

(1)
n )† + 2d(n)v

d(n)
n (v

d(n)
n )†,

• On,2 = v
(1)
n (v

(1)
n )† +

∑d(n)
i=1

1
i2

(
v

(i)
n (v

(1)
n )† + v

(1)
n (v

(i)
n )†

)
.
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It is not hard to check that

Ok
n,1

SL−→ Ok
1 , where O1 = v(1)(v(1))†,

and

Ok
n,2

SL−→ Ok
2 , where O2 = v(1)(v(1))† +

∞∑
i=1

1

i2

(
v(i)(v(1))† + v(1)(v(i))†

)
.

The first sequence has a significant high-high energy mix while the second has a decaying

low-high energy mix. One can check that ||On,1On,2v
(1)
n || 6→ ||O1O2v

(1)||, i.e.

(v(1)
n , On,2On,1On,1On,2v

(1)
n ) 6→ (v(1), O2O1O1O2v

(1)).

So On,2On,1On,1On,2 does not have O2O1O1O2 as a scaling limit. The reason behind this

is an imbalance between the low-high energy mix decay rate and the rate of high-high

energy mix. We note that it is possible to have a collection of observables with high-high

energy mix, which is even increasing, and yet have an algebra, as will be shown in the

case of Virasoro operators L̃n
SL−→ Ln. Generally speaking, energy non-locality should

be avoided in order to get an algebra. For the discussion of algebras in scaling limit, a

natural definition is

Definition 2.3.7 ([4], Def. 8) Given a set of almost linear observables {O(i)}i∈I , and

the algebra of operators generated by this set. If this algebra is inside A, it is called a

scaling limit algebra (SL-algebra).

Some of these SL-algebras are special, in the sense that each observable has a nice

associated sequence:

Definition 2.3.8 ([4], Def. 9) Given an SL-algebra as in Definition 2.3.7, let each O(i)
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have an associated sequence O
(i)
n such that for any i1, i2, . . . , ik,

lim
n→∞

(u,O(i1)
n · · ·O(ik)

n v) = (u,O(i1) · · ·O(ik)v), ∀u, v ∈ V .

Then the algebra generated by {O(i)}i∈I is called a strong SL-algebra.

For example, {L(f)|f ∈ C∞C (S1)} gives a strong SL-algebra in the case of Ising. The

above definition assumes a strong property which is sometimes not easy to show; in

section 2.5, we can only show that {Y (a, f)|f ∈ C∞C (S1)} is an SL-algebra.

2.3.3 Locality in scaling limit

We review the conventions/terminology around local observables. In LCN (or more

generally for QFTs in Haag Kastler’s framework), the adjective local for a local net

A of von Neumann algebras refers to the locality axiom: If I1 and I2 are spacelike

separated, then observables in A(I1) and A(I2) commute. Further, elements inside the

local observables algebra A(I) are also called local observables [60, 25].

For VOA or more generally in the Wightman’s framework for QFT, observables are

described as (primary) fields, or distribution of operators Φ, or limits of observables

localized at a point x [61]. In addition, there are local smeared fields Φ(f) with functions

f having support in some region O [60, II.4.1] (if f is a so-called test function, then

Φ(f) is “almost local”). We also have a similar locality axiom: Let Φ1 and Φ2 be

two observables and functions f1 and f2 be spacelike separated in their supports, then

[Φ1(f1),Φ2(f2)] = 0.

The conclusion is that “local” is used in all frameworks to describe the observables

in sets satisfying some locality axiom. Our definition of locality (in space and in energy)

turns out to be more restrictive.
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Energy-local observables

Finding the “energy basis” requires an understanding of the energy local degrees

of freedom (EL-DOFs), which comes from an exact diagonalization of the Hamiltonian.

Even numerical exact diagonalization is very limited for interacting models. For the Ising

AC, exact diagonalization analytically gives us the creation and annihilation operators,

which are the EL-DOFs. This, in turn, provides us the energy basis, which allows us

to construct the scaling limit at each energy eigenspace. For all the models with known

CFT limits, only free theories have mathematical descriptions of their EL-DOFs so far

(see [43, 52, 53] for some recent examples). Without a clear knowledge of EL-DOFs, it is

hard to make an accurate definition of energy-local operators. Thus our definition later

(Definition 2.3.9) will have to be flexible to certainly include those operators that are

actually energy-local. Of course, the downside is that our definition also allows operators

that should not be called energy-local.

Another goal of the following definition is to find out constraints on observables in

the scaling limit that will force them to be of a specific type. Locality is one of these

fundamental constraints.

We propose a definition of energy-local operators without using any explicit knowledge

of the EL-DOFs. Therefore, it is likely not the most refined definition and should not

be used to define local operators in a quantum simulation problem. Still, our intrinsic

notion of energy locality together with space locality, put enough constraints on operators

so that they are easier to work with (Theorem 2.5.1).

All smeared operators Y (a, f) where f has finite Fourier series do not shift the energy

of any eigenvector by more than a constant. This is a motivation for the definition of

energy locality.

Definition 2.3.9 ([4], Def. 10) Given a scaling limit as in Definition 2.3.2, the se-
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quence (On)n is Λ−energy-local for Λ ∈ N, if for any n,M and for all u ∈ Vi, v ∈ Vj

with |i− j| > Λ,

((ρMn )−1(u), On(ρMn )−1(v)) = 0,

where (ρMn )−1(u) := 0 if u 6∈ ρMn (WM
n ). An observable O ∈ A which is the scaling limit

of such a sequence is called a Λ−energy-local observable.

Any Λ−energy-local is a linear operator, as the formal sum Ov is a finite sum with

no more than 2Λ terms. Moreover,

Theorem 2.3.1 ([4], Thm. 2.1) Λ−energy-local observables for all Λ ∈ N form a

strong SL-algebra.

Proof: Consider Λi−energy-local observables O(i), 1 ≤ i ≤ k and corresponding

sequences (O
(i)
n )n. Note (u,O(k) . . . O(1)v) is well-defined; if v ∈ Vt for some t, then every

multiplication by some O(i) makes a vector in a space enlarged by adding/subtracting the

energy level by Λi. This means taking projections onto S =
⊕t+

∑
Λi

i=t−
∑

Λi
Vi called PS , all

operators O(i) in the product can be replaced with the linear operator PSO
(i)PS without

changing the result.

Similarly for the expectation values ((ρMn )−1(u), O
(k)
n . . . O

(1)
n (ρMn )−1(v)), everything is

also happening in a finite dimensional Hilbert space. Let λ(i) be the energy correspond-

ing to Vi. The limit can be taken with restriction to WM
n \WM ′

n , with λ(t+
∑

Λj) < M <

λ(1+t+
∑

Λj) and λ(t−1−
∑

Λj) < M ′ < λ(t−
∑

Λj), which is a finite dimensional Hilbert space

stabilizing for large enough n and becoming isometric to S. This means for large enough

n, we might as well assume that all operators O
(i)
n are acting on S, by using the con-

necting maps followed by the projection PS like the previous case. In this setting, we

have a sequence of operators weakly convergent, but all acting on a finite dimensional

Hilbert space. This implies norm convergence and the convergence of their product as a

(
∑

Λj)−energy-local operator.

75



CFT as Scaling Limit of Anyonic Chains Chapter 2

This is our first example of an algebra which is preserved under the scaling limit. We

have required a constant Λ to define energy locality. One might think of the possibility

to enlarge the set of all Λ−energy-local observables to include those operators that are

scaling limits of Λ(n)−energy-local observables where Λ(n) is a function of n.

The motivation for this modification comes from the smeared operators Y (a, f) where

f has infinite Fourier series. Any product of these operators is defined on the VOA

(1.37), so it is possible that they form a strong SL-algebra. They are not energy-local by

themselves, but it is important to recall that the higher shift of energies happens with a

magnitude |f̂n| which is rapidly decaying, faster than inverse of any polynomial (1.34).

Another motivation is from quantum computation, where a local operator is defined

to be a sum of operators, each acting on no more than O(log(n)) particles for a system

with n particles. This is a discrete way of characterizing locality which is equivalent to

defining locality as an action that has exponential decay away from a specific particle.

A similar story could apply to energy locality.

Space-local observables

To have a notion of space, some notion of adjacency for particles in Wn is required.

Definition 2.3.10 ([4], Def. 11) The r−space-local operators in ACs are a sequence

of operators On ∈ An that are the sum of r−space ultra-local operators. An r−space

ultra-local operator acts on r many of adjacent particles.

Remark 2.3.4 The TL operator ei is 3−space ultra-local. Notice the difference between

space-locality in our sense and locality in quantum computation (QC-locality). A sequence

of observables like On = e1ebn
2
c ∈ An is considered to be QC-local, while it is not space-

local. On the other hand, space-locality clearly implies QC-locality.
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More generally, we note that locality in quantum computation applies on sequences On

where On is the sum of operators acting nontrivially on O(log(n)) many particles. Thus

we have the following definition as well:

Definition 2.3.11 A sequence of space ultra-local operators is a sequence of O(log(n))-

space ultra-local operators. On is a space-local sequence if it is the sum of O(log(n))-space

ultra-local operators.

The picture we hope to obtain for Y (a, f) in finite settings is that of a quantum

system with a large number of equidistant particles and some space ultra-local operator

ã (the finite version of a), applied with weight f on each particle and constantly many

of its close neighbors. Informally,

∑
j

f(ei
2πj
n )ãj

SL−→ Y (a, f).

This will be explored further in section 2.5.

2.4 Scaling limit of Ising anyonic chains

The main theorem of the section will be written in its entirety as a reference. We

will give an outline of the proof in the most important cases and discuss differences of

our formulae with those found in the literature. We refer to [4, appendix] for the details.

Recall (a, b) is used to denote the Hilbert space given by the anyonic chain with the two

ends of the chain being a and b.

Theorem 2.4.1 ([4], Thm. 3.1) 1- The following strong scaling limits hold, up to

some scalings of the Hamiltonians

(a) Wn = (1
2
, 1

2
), Hn = −

∑2n−1
j=1 ej. Then (Wn, Hn)

SL−→ (χ0 + χ 1
2
, L0).

77



CFT as Scaling Limit of Anyonic Chains Chapter 2

(b) Wn = (0, 0) or (1, 1), Hn = −
∑2n−2

j=2 ej. Then (Wn, Hn)
SL−→ (χ0, L0).

(c) Wn = (0, 1) or (1, 0), Hn = −
∑2n−2

j=2 ej. Then (Wn, Hn)
SL−→ (χ 1

2
, L0).

(d) Wn = (1
2
, 1) or (1

2
, 0), Hn = −

∑2n−2
j=1 ej. Then (Wn, Hn)

SL−→ (χ 1
16
, L0).

(e) Let Wn be the periodic chain of size 2n, and Hn = −
∑2n

j=1 ej. Then

(Wn, Hn)
SL−→ (χ0

χ
0 + χ 1

2

χ 1
2

+ χ 1
16

χ 1
16
, L0 + L0)

if n is even.

Furthermore, restricting energies up to O( 3
√
n) gives the rate of convergence O( 1

n
).

2- For the corresponding higher Virasoro generators action, given a fixed m 6= 0, we

have (up to some scalings)

(a) −
∑2n−1

j=1 cos(
m(j+ 1

2
)π

2n+1
)ej

SL−→ Lm + L−m,

i
∑2n−2

j=1 sin(m(j+1)π
2n+1

)[ej, ej+1]
SL−→ i(Lm − L−m)

(b) −
∑2n−2

j=2 cos(
m(j+ 1

2
)π

2n−1
)ej

SL−→ Lm + L−m,

i
∑2n−3

j=2 sin(m(j+1)π
2n−1

)[ej, ej+1]
SL−→ i(Lm − L−m)

(c) −
∑2n−2

j=2 cos(
m(j+ 1

2
)π

2n−1
)ej

SL−→ Lm + L−m,

i
∑2n−3

j=2 sin(m(j+1)π
2n−1

)[ej, ej+1]
SL−→ i(Lm − L−m)

(d) −
∑2n−2

j=1 cos(
m(j+ 1

2
)π

2n
)ej

SL−→ Lm + L−m,

i
∑2n−3

j=1 sin(m(j+1)π
2n

)[ej, ej+1]
SL−→ i(Lm − L−m)

(e) −
∑2n

j=1 cos(
2m(j+ 1

2
)π

2n
)ej

SL−→ Lm + L−m

i
∑2n

j=1 sin(2m(j+1)π
2n

)[ej, ej+1]
SL−→ i(Lm − L−m)

If m ≤ 4
√
n, we have a rate of convergence of O( 1

n
) for energies up to 4

√
n.
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We will give an outline of the proof by going through the first case of the boundary

conditions 1(a) and 2 (a), and briefly mention the full periodic case. We will also give

a comparison of our formulae to those in [1] and how ours are better suited to obtain

convergence of algebras. We refer to [4, Appendix] for more details.

2.4.1 Boundary condition (1
2 ,

1
2)

We will follow closely the method used in [43] to obtain all the Virasoro modes. It

is therefore necessary to review the general procedure described for the Hamiltonian

diagonalization of 1(a) in [43].

Proving Hn
SL−→ L0

Consider the operator −
∑2n−1

j=1 tjej, which due to the identities

e2j =
1√
2

(1 + σzjσ
z
j+1), e2j−1 =

1√
2

(1 + σxj ), where σx, σz, σy are Pauli operators,

after a suitable scaling becomes

H = −
n∑
j=1

t2j−1σ
x
j −

n−1∑
j=1

t2jσ
z
jσ

z
j+1,

where the coefficients tj are fixed. Written this way, we see the famous Z2 symmetry by

the spin-flip operator

(−1)F :=
2n∏
j=1

σxj .

As detailed in [43], to diagonalize this Hamiltonian, the Majorana operators should be

defined as

ψ2j−1 =
( j−1∏
k=1

σxk

)
σzj , ψ2j = i

( j∏
k=1

σxk

)
σzj
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which satisfy the ACR (Anticommutative Canonical Relations):

{ψa, ψb} = 2δab, ∀a, b = 1, . . . , 2n.

It is a well-known fact that these operators and their monomials are linearly independent

and this representation of the Clifford algebra is faithful. Using

ea =
1√
2

(1 + iψaψa+1),

we rewrite the Hamiltonian

H = i
2n−1∑
a=1

taψa+1ψa.

Next, the raising (creation) and lowering (annihilation) Dirac operators are introduced,

satisfying

[H,Ψ] = 2εΨ.

For any operator linear in the Majorana operators, the commutator with H is also linear

in the Majorana operators. Thus, let us choose the following form for Ψ

Ψ =
∑
b

ibµbψb,

where µb are numbers that will turn out to be real. The ib’s factor will ensure that the

matrix in (2.1) is hermitian and not skew-hermitian, making the computations easier.

Computing µ′as,

Ψ′ = [H,Ψ] =
∑
a

iaµ′aψa,
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is same as the following matrix equation



µ′1

µ′2
...

µ′2n


= 2



0 1 0 . . .

1 0 1

0 1 0

... 1

1 0





µ1

µ2

...

µ2n


. (2.1)

This hermitian matrix has determinant (−1)n
∏n

j=1 t
2
2j−1. The eigenvectors of this matrix

give the Dirac operators and each corresponding eigenvalue is the energy that is raised

or lowered. Specializing the values of tjs will give the different boundary conditions.

(1
2
, 1

2
) corresponds to tj = 1 for all j, thus our matrix is (2.1) assuming tj = 1. For

other boundary conditions (0, 0), (1, 0), (0, 1), (1, 1) : t1 = t2n−1 = 0, and (1
2
, 0), (0, 1

2
) :

t2n−1 = 0.

Notation. For n ∈ N, set [n] := {1, . . . , n}. We can subtract sets [2n] − [n] =

{n+ 1, . . . , 2n}. Similarly define [−n] := {−1, . . . ,−n}.

The Dirac operators Ψk for k ∈ [2n], are given by the eigenvectors µa,k = sin( akπ
2n+1

)

with corresponding energy εk = 4 cos( kπ
2n+1

), satisfying

[H,Ψ±k] = 2ε±kΨ±k, {Ψ±k,Ψ±k′} = 0, {Ψ±k,Ψ∓k′} = Nkδk,k′1, (2.2)

where Ψ−k := Ψ2n+1−k, and Nk = 2
∑

a |µa,k|
2. The relations are obtained using the

identities

{Ψ, χ} =
∑
a,b

ia+bµaνb{ψa, ψb} = 2
∑
a

(−1)aµaνa,

for any two linear Majorana forms Ψ =
∑

b i
bµbψb, χ =

∑
b i
bνbψb. The hermitian matrix

has orthogonal eigenvectors, and for any eigenvector (µa,k)a giving eigenvalue εk, there is
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a corresponding eigenvector ((−1)a+1µa,k)a giving eigenvalue ε−k := −εk. Thus we obtain

Ψ†k = Ψ−k and the equations (2.2).

We will always work with the normalization of Ψk by
√
Nk, hence {Ψ±k,Ψ∓k′} =

δk,k′1. The Dirac operators Ψk for k ∈ [n] are called the raising or creation operators and

the Dirac operators Ψk for k ∈ [2n]−[n] are the lowering or annihilation operators. There

will be a renumbering of the operators indices which will make the creation operators

have negative index while the annihilation operators will have positive index.

Ψks satisfy the ACR while the dimension ofWn (the Hilbert space) is 2n. This implies

the existence of an orthonormal basis of Wn given by

∏
i∈S

ΨiΩn, ∀S ⊂ [n],

all of which turn out to be eigenvectors of H, where Ωn is the vacuum or ground state

annihilated by the annihilation operators. This is due to the energy symmetry of H and

well-known properties of the representations of the algebra generated by the Ψks [43].

We recall some easy-to-prove facts on the representations of Dirac operators.

Notation. Denote by Fn the algebra generated by the Ψks and F+
n the sub-algebra

generated by the creation operators. Similarly define F−n . We will use S as any subset

of the indices of creation operators.

Fact 2.4.1 Let W be a representation of Fn which is a Hilbert space with dimW = 2s

where s ≥ n and Ψ†k = Ψ−k with respect to the inner product of W. Consider the image

W0 of the product of all annihilation operators. Taking a unit “vacuum” vector v ∈ W0,

by definition of W0 and ACR relations (in particular Ψ2
k = 0), we get F−n (v) = {0}.

Further, the space Wv = F+
n (v) generated by the creation operators acting on v has

dimension 2n with an orthonormal basis {
∏
i∈S

Ψiv| ∀S}.
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Fact 2.4.2 With the same settings of Fact 2.4.1, let D be a matrix satisfying [D,Ψk] = 0

for all Ψk ∈ Fn. Then D preserves W0 and it is uniquely determined based on how

it acts on W0. In particular, if there is a decomposition of W into 2s−n irreducible

representations where D preserves the corresponding “vacuums”, then D acts as a scalar

on each one of them. This will be the case here.

Fact 2.4.3 In addition to the spin-flip symmetry (−1)F , the matrix H has charge conju-

gation symmetry (also called energy symmetry) provided by C =
∏

i σ
z
i

∏
i(σ

x
i )i satisfying

CH = −HC. This implies each energy has one corresponding opposite energy. This is

a necessary property which helps us to show that some nonzero scalar shift breaking this

symmetry for H can not happen.

From Fact 2.4.1, (Wn)0 is one dimensional from which a unit vector Ωn is chosen. Define

H ′ :=
∑
k∈[n]

εk(Ψ+kΨ−k −Ψ−kΨ+k).

H ′s eigenvectors are {
∏

i∈S ΨiΩn| ∀S}, each with the corresponding eigenvalue
∑

i∈S εi−∑
j 6∈S εj. So H ′ has C−symmetry. Further [H ′,Ψk] = 2εkΨk and so, for D = H−H ′ =⇒

[D,Ψk] = 0. As (Wn)0 is one dimensional, D = α1. But H ′ shifted by any α does

not satisfy the energy symmetry. Therefore, α = 0 and H ′ = H. Taking the shift

H → H +
∑
εk and using {Ψ+k,Ψ−k} = 1,

H =
∑
k∈[n]

2εkΨ+kΨ−k.

The final change to H is H → 2n+1
8π

H and the desired Hamiltonian L̃c0 is given by:

L̃c0 =
2n+ 1

π

∑
k∈[n]

cos(
kπ

2n+ 1
)Ψ+kΨ−k. (2.3)
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Defining the scaling limit requires defining the connecting maps. Before doing so, a

renumbering k → k − 1
2
− n is performed to get the creation operators indices as

{−1
2
, . . . ,−(n− 1

2
)}.

Notation. [(n− 1
2
)] := {1

2
, . . . , (n− 1

2
)} and [−(n− 1

2
)] := {−1

2
, . . . ,−(n− 1

2
)}.

This will change the coefficients from cos( kπ
2n+1

) = − sin(
(k− 1

2
−n)π

2n+1
) to sin( −kπ

2n+1
), giving

L̃c0 =
2n+ 1

π

∑
k∈[(n− 1

2
)]

sin(
kπ

2n+ 1
)Ψ−kΨk.

Next, define

φn :Wn ↪→Wn+1, where ∀S : φn(
∏
i∈S

ΨiΩn) =
∏
i∈S

ΨiΩn+1.

This is consistent with the trivial embedding τn : Fn ↪→ Fn+1 where τn(Ψi) = Ψi,

giving us in the limit the algebra of Dirac fermion operators F . We can show that

there is a strong scaling limit (Definition 2.3.3), where the scaling limit space V can be

constructed as the algebraic colimit of the sequence coming with the natural embedding

maps ρn : Wn ↪→ V . The connecting maps will turn out to be the restriction of ρn to

energy M as it is required in Definition 2.3.3. The natural orthonormal spanning set is

{
∏
i∈S

ΨiΩ| ∀S ⊂ Z<0 +
1

2
}

for V , where Ω = ρn(Ωn) is the vacuum vector. We need to make sure that this is consis-

tent with the definition of scaling limit obtained through the double colimit construction

in Definition 2.3.2.

Restricting to energy at most M , one has to check that φMn :WM
n →WM

n+1 is unitary
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for large enough n. Any eigenvector
∏
−k∈S Ψ−kΩn with energy

(2n+ 1)

π
(
∑
−k∈S

sin(
kπ

2n+ 1
)) < M

has the energy (2n+3)
π

(
∑
−k∈S sin( kπ

2n+3
)) given by Hn+1 also smaller than M for large

enough n. Indeed, by using the Taylor expansion we obtain

(2n+ 1)

π
(
∑
−k∈S

sin(
kπ

2n+ 1
)) =

∑
−k∈S

k −
∑
−k∈S

k3π2

6(2n+ 1)2
+ . . . =

∑
−k∈S

k +O(
1

n
). (2.4)

Further, by taking the limit, the above shows the energy of
∏
−k∈S Ψ−kΩ is

∑
−k∈S k.

Hence, L̃c0
SL−→ L0, where

L0 =
∑

k∈N− 1
2

kΨ−kΨk.

This gives the character
∞∏
k=1

(1 + qk−
1
2 )

which agrees with the character of χ0 + χ 1
2

(1.24).

Rate of convergence

Consider the natural action of L̃c0 on V obtained through the embedding Fn ↪→ F .

We could alternatively take the “less” natural action by extending L̃c0 by zero on the

orthogonal complement ofWn in V and this will not impact the convergence rate. Either

way, the restriction of L̃c0 and L0 to subspace with energy at most 3
√
n, denoted by L̃c0| 3√n

and L0| 3√n, can be compared. To finish the proof of 1(a), one needs to show

L̃c0| 3√n = L0| 3√n +O(
1

n
).
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This is a stronger result than restriction to some finite energy M . This equation demands

M to be changing according to n and yet have a convergence. We shall show that L̃c0| 3√n

gives the same energy as L0| 3√n on its eigenvectors up to an error of O( 1
n
). This would

imply that the difference has operator norm at most O( 1
n
) as L̃c0| 3√n and L0| 3√n share the

same eigenvectors in V . We estimate the difference

|(2n+ 1)

π
(
∑
−k∈S

sin(
kπ

2n+ 1
))−

∑
−k∈S

k|,

assuming
∑
−k∈S k <

3
√
n. According to (2.4),

= | −
∑
−k∈S

k3π2

6(2n+ 1)2
+ h.o.t| ≤ |

∑
−k∈S

k3π2

6(2n+ 1)2
|+ |h.o.t|.

In general, if the sum
∑

k xk = t of nonnegative numbers xk is a fixed value t, then∑
k x

j
k ≤ tj with equality if and only if one of the numbers is t and the others are zero.

This implies that the maximum above happens when S = {−b 3
√
nc+ 1

2
}. The h.o.t is at

most O( 1
n2 ) and the first term is O( 1

n
). This finishes the proof of 1(a).

2.4.2 The higher Virasoro modes Lms

Changing the coefficients tj to a cos() and sin() transform of the ejs is necessary to

obtain the higher Virasoro modes Lms. We will prove the case 2(a) (χ0 +χ 1
2
) in Theorem

2.4.1. The proof for the convergence rate is similar to above and we refer to [4] for more

details.
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The cos() transform and L̃cm + L̃c−m

The operator Lm + L−m that we want to obtain in the scaling limit is given by (see

e.g. [33])

∑
k≥m+1

2
,k∈Z+ 1

2

(k − m

2
)Ψ−k+mΨk +

∑
k≥−m+1

2
,k∈Z+ 1

2

(k +
m

2
)Ψ−k−mΨk. (2.5)

To understand what the observable O = i
∑
tj(m)ψj+1ψj will be in terms of Ψk’s, one

has to use the matrix equation (2.1). Similar to how we built H ′ previously, we build an

observable O′ using Ψk’s which has scaling limit Lm+L−m, and satisfies [O−O′,Ψk] = 0.

Then, going through the usual arguments like the previous case where we showed H ′ = H,

after some suitable scaling, one has O′ = O
SL−→ Lm + L−m.

Notice that [Lm + L−m,Ψk] is the sum of exactly two Dirac operators with indices

differing by m from k. tj(m) should be such that the same result for [O,Ψk] happens,

with coefficients going to k± m
2

in the scaling limit. Using the indices before the renum-

bering (k ∈ [2n]), a natural candidate for the coefficients would be cos(
(k∓m

2
)π

2n+1
). Hence,

computing [O,Ψk] using (2.1), the following must hold

tj(m)µk,j+1 + tj−1(m)µk,j−1 = (2.6)

cos
((k + m

2
)π

2n+ 1

)
µk+m,j + cos

((k − m
2

)π

2n+ 1

)
µk−m,j.

From simple trigonometric identities, the right side is equal to

cos
((k + m

2
)π

2n+ 1

)
sin
((k +m)jπ

2n+ 1

)
+ cos

((k − m
2

)π

2n+ 1

)
sin
((k −m)jπ

2n+ 1

)
(2.7)

= cos(
m(j + 1

2
)π

2n+ 1
) sin

(k(j + 1)π

2n+ 1

)
+ cos(

m(j − 1
2
)π

2n+ 1
) sin

(k(j − 1)π

2n+ 1

)
,
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which is in fact

cos(
m(j + 1

2
)π

2n+ 1
)µk,j+1 + cos(

m(j − 1
2
)π

2n+ 1
)µk,j−1.

Thus tj(m) are forced to be cos(
m(j+ 1

2
)π

2n+1
).

Remark 2.4.1 The coefficients cos(mjπ
2n

), as used in the conjecture [1, (7.5)], do not

satisfy the identity (2.6). This is the important difference of our Koo-Saleur formula

with the ones in [1, 57]. The implications will be discussed more in the future.

We change O to O/2 to cancel the factor two present in the identity for the matrix

(2.1). Although the identities above determine what O′ should be, what happens at the

boundaries when k + m > 2n or k −m < 1 must be examined more carefully. In these

cases, one has to consider sin( (k+m)jπ
2n+1

) = − sin( (2(2n+1)−k−m)jπ
2n+1

) = −µ2(2n+1)−(k+m),j if

k + m > 2n and sin( (k−m)jπ
2n+1

) = − sin( (m−k)jπ
2n+1

) = −µm−k,j if k −m < 1. Therefore, O′ is

defined as

( ∑
k+m≤2n

cos
((k + m

2
)π

2n+ 1

)
Ψk+mΨ†k −

∑
k+m>2n

cos
((k + m

2
)π

2n+ 1

)
Ψ2(2n+1)−k−mΨ†k

)
(2.8)

+
( ∑
k−m≥1

cos
((k − m

2
)π

2n+ 1

)
Ψk−mΨ†k −

∑
k−m<1

cos
((k − m

2
)π

2n+ 1

)
Ψm−kΨ

†
k

)
.

Finally we define the finite version of the Virasoro modes for the cos() transform as:

L̃cm + L̃c−m =
2n+ 1

2π
O′, (2.9)

where L̃cm is the first and L̃c−m is the second parenthesis in (2.8). Using the Taylor

expansion, we can prove L̃c±m
SL−→ L±m, and through a similar argument to H = H ′, we

can prove O = O′. We refer to [4] for further details.

88



CFT as Scaling Limit of Anyonic Chains Chapter 2

The sin() transform and i(L̃sm − L̃s−m)

To recover i(Lm − L−m), the exact same procedure applies, this time to

O = −i
2n−2∑
j=1

tj(n)[ej, ej+1] ∝ i
∑
j

tj(n)ψjψj+2.

The corresponding matrix for [O,Ψ] where Ψ =
∑
ibµbψb can be found as follows:

[O,Ψ] = Ψ′ = i(
∑
b

ibµ′bψb)

where we have

µ′b = 2(tb(m)µb+2 − tb−2(m)µb−2)

except at the boundaries where the formula will be different. In the case of the nonperi-

odic chain (1
2
, 1

2
), this can be turned into the corresponding matrix



0 0 t1(m) 0

0 0 0 t2(m)

−t1(m) 0 0
. . .

−t2(m)

. . . 0 0 t2n−2(m)

0 0 0

0 −t2n−2(m) 0 0



. (2.10)

Similar to the previous procedure, we need the tj(m) to satisfy the following identity

tj(m)µk,j+2 − tj−2(m)µk,j−2 =
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sin
((2k +m)π

2n+ 1

)
sin
((k +m)jπ

2n+ 1

)
− sin

((2k −m)π

2n+ 1

)
sin
((k −m)jπ

2n+ 1

)
.

The above equals

sin
(m(j + 1)π

2n+ 1

)
sin
(k(j + 2)π

2n+ 1

)
− sin

(m(j − 1)π

2n+ 1

)
sin
(k(j − 2)π

2n+ 1

)
, (2.11)

which suggests the right candidate for tj(m) is sin
(
m(j+1)π

2n+1

)
. On the other hand, the

candidate for our observable is −iO′ =

( ∑
k+m≤2n

sin
((2k +m)π

2n+ 1

)
Ψk+mΨ†k −

∑
k+m>2n

sin
((2k +m)π

2n+ 1

)
Ψ2(2n+1)−k−mΨ†k

)
(2.12)

−
( ∑
k−m≥1

sin
((2k −m)π

2n+ 1

)
Ψk−mΨ†k −

∑
k−m<1

sin
((2k −m)π

2n+ 1

)
Ψm−kΨ

†
k

)
.

Let us define

i(L̃sm − L̃s−m) =
2n+ 1

2π
O′, (2.13)

where L̃sm is the first and L̃s−m corresponds to the second parenthesis in (2.12). Using

the Taylor expansion, we conclude L̃s±m
SL−→ L±m. Finally, after some suitable scaling,

we find O′ = O
SL−→ i(Lm − L−m).
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2.4.3 Periodic case

If n is even, the scaling limit is the diagonal full CFT χ
0
χ

0 + χ 1
2

χ 1
2

+ χ 1
16

χ 1
16

and if

n is odd, it is χ0
χ 1

2
+ χ 1

2

χ
0 + χ 1

16

χ 1
16

. Similar to how (2.1) was derived, the matrix is



µ′1

µ′2
...

µ′2n


= 2



0 t1 0 . . . (−1)F+(n+1)t2n

t1 0 t2

0 t2 0

... t2n−1

(−1)F+(n+1)t2n t2n−1 0





µ1

µ2

...

µ2n


, (2.14)

where by (−1)F in the entries, the sign of the operator (−1)F when restricted to ±1

sector is considered. We specialize to tj = 1 for all j. There are four cases based on the

parity of n and the ±1 sector. For n even, the scaling limit yields χ0
χ

0 +χ 1
2

χ 1
2

for the +1

sector and χ 1
16

χ 1
16

for the −1 sector. The analysis is a more involved version of previous

nonperiodic cases [4].

On the other hand, if n is odd, the +1 sector gives χ 1
16

χ 1
16

and the −1 sector gives

χ
0
χ 1

2
+χ 1

2

χ
0. The reason the −1 sector is not diagonal is the fact that odd (even) number

of left-moving operators have to act with even (odd) number of right-moving operators

to take the vacuum living in the +1 sector to −1 sector, where the lowest energy is 1.

This is not a full CFT as the character is not modular invariant.

2.4.4 Comparison of Koo-Saleur formulae

The conjecture [1, (7.5)] asserts that lm + l−m
SL−→ Lm +L−m where lm + l−m is some

scaling of
∑

j cos(mjπ
2n

)ej. The difference with Conjecture 2.6.4 is the factor j instead of

(j+ 1
2
) and the denominator 2n instead of 2n+1. Recall that the point

(j+ 1
2

)π

2n+1
is interpreted

as the “center” of the action of ej in the half-circle in Figure 1.17. Also, the identity (2.6)
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forced the coefficient cos(
m(j+ 1

2
)π

2n+1
), therefore any other coefficient (including cos(mjπ

2n
))

should have some undesirable effect, although these effects could vanish in the scaling

limit. We can compute the coefficient of a term ΨxΨ−y in O′s = i
∑2n−1

j=1 cos(mjπ
2n

)ψj+1ψj

for any 1 ≤ x, y ≤ n:

1

NxNy

2n−1∑
j=1

cos(
mjπ

2n
)
(

sin(
jxπ

2n+ 1
) sin(

(j + 1)yπ

2n+ 1
) + sin(

(j + 1)xπ

2n+ 1
) sin(

jyπ

2n+ 1
)
)
.

This is coefficient is zero if and only if m + x + y 6≡ 0 (mod 2). As an example, for

m = 9, x = 14, n = 52, y = 49 = n − 3, the above gives approximately −0.0256625 6= 0.

Of course, these terms should vanish at the scaling limit, along with all terms with

nonzero coefficient giving energy shift other than m. A numerical simulation shows that

happening but with a slower rate (as in [1, table 19]). Hence, the rate of convergence

can be a reason to consider the operators in Conjecture 2.6.4 for obtaining the higher

Virasoro modes.

More important is the mixing of low-high energy that suggests the conjecture [1, (7.5)]

does not provide the right candidates if a strong SL-algebra is desired. These terms could

make even the convergence of simple products such as the convergence of commutators

to the commutators of scaling limit impossible. Similar results hold for i(lm− l−m), which

is some scaling of i
∑

j sin(mjπ
2n

)[ej, ej+1].

2.4.5 Notations for future sections

We set some notations for studying scaling limit of algebras. For the Hamiltonians,

we recall the notation L̃c0 in (2.3) as a scaling of Hn which has scaling limit L0. The

notations and scalings for the case 1(a) in Theorem 2.4.1, i.e. χ0 + χ 1
2
, are

L̃c0 = αcnHn + βcn,01
SL−→ L0,
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where αcn = (2n+1)
√

2
8π

and βcn,0 ∈ R. For the higher Virasoro generators in Theorem 2.4.1,

let Oc
n,ms, O

s
n,m denote the first and second operator (superscript c, s refer to cos, sin).

Then similar notations are defined:

L̃cm + L̃c−m
2

= αcnO
c
n,m + βcn,m1

SL−→ Lm + L−m
2

,

i(L̃sm − L̃s−m)

2
= αsnO

s
n,m + βsn,m1

SL−→ i(Lm − L−m)

2
.

Here, αsn =
(n+ 1

2
)(
√

2)2

8π
= αcn and βcn,m, β

s
n,m ∈ R. Similarly for the full CFT, L̃cm + L̃c−m

and i(L̃sm − L̃s−m) can be defined using some scaling of:

−
2n∑
j=1

cos(
m(j + 1

2
)2π

2n
)ej, (2.15)

i
2n∑
j=1

sin(
m(j + 1)2π

2n
)[ej, ej+1] (2.16)

Recall the splitting L̃c±m and L̃s±m is such that each have scaling limit L±m. In our

notation L̃cm and L̃sm, there is no explicit mention of n, though they depend on the size

of the chain that should be clear from the context.

One can easily recover the scaling factors by following the proof in 2.4.2. We will only

need the rate of growth of these scaling factors which will be at most O(n2) and αsn, α
c
n

do not depend on m while βcn,m and βcn,m do.

2.5 Scaling limit algebras in A

Our goal is to obtain the observables of each of these three types and prove they form

an SL-algebra:

(a) smeared fields Y (a, f),
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(b) LCN observables O ∈ A(I),

(c) point-like fields Y (a, z).

It is not hard to show that they live in A as a vector space, i.e. all in a single framework.

This means they are all physical as they describe some computable convergent sequence.

Further, although each of the three sets are believed to store all the information of the

CFT, they have to be in our set of observables simultaneously.

We will first obtain (a), and use it to recover the observables (b), and lastly, some

comments will be made on (c). Only the case V = χ
0 + χ 1

2
will be analyzed, and all

theorems can be similarly stated for other boundary conditions.

2.5.1 Wightman’s observables

We will try to identify when sequence of space-local hermitian observables linearly

generated by ej, i[ej, ej+1] are energy-local.

Theorem 2.5.1 ([4], Thm. 4.1) (On)n is a Λ−energy-local observable made from a

linear combination of ej and [ej, ej+1]s and the identity

ηn1 +
∑
j

t
(n)
j ej & ηn1 + i

∑
j

t
(n)
j [ej, ej+1]

if and only if it is of the form

On = γn1 + a
(n)
0 L̃0 +

Λ∑
m=1

(
a(n)
m L̃cm + ib(n)

m L̃sm

)
+

Λ∑
m=1

(
a(n)
m L̃c−m − ib(n)

m L̃s−m

)
,

where a
(n)
m , b

(n)
m ∈ R.

Proof: [Proof sketch] A trigonometric interpolation of the t
(n)
j s with cos(

m(j+ 1
2

)π

2n+1
)

or sin(m(j+1)π
2n+1

) can be performed. For the observable On = ηn1 +
∑2n−1

j=1 t
(n)
j ej, such an
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interpolation gives

t
(n)
j = αcn

2n−2∑
m=0

a(n)
m cos(

m(j + 1
2
)π

2n+ 1
)

=⇒ On = γn1 + a
(n)
0 L̃c0 +

2n−2∑
m=1

a(n)
m

L̃cm + L̃c−m
2

,

where γn is some multiple of identity. Next, suppose On does not shift the energy level

in V more than some given Λ. Then since L̃cm shifts the energy by at most |m| (see

(2.8)), we can inductively prove that the higher modes coefficients a
(n)
2n−2, a

(n)
2n−1, . . . are all

zero up to a
(n)
Λ . A similar argument applies to ηn1 + i

∑
j t

(n)
j [ej, ej+1]. Adding up cases

(L̃cm + L̃c−m) and i(L̃sm − L̃s−m) proves the statement.

Remark 2.5.1 Dealing with amL̃
c
m+ibmL̃

s
m every time can be cumbersome. An operator

L̃m is desired which has scaling limit Lm so that expressions like
∑
f̂mL̃m

SL−→
∑
f̂mLm

can be used where f̂m = am + ibm ∈ C. The choice below resolves this issue

L̃m :=
( L̃cm + L̃sm

2
+
L̃c−m − L̃s−m

2

)
∀m 6= 0, L̃0 = L̃c0.

The above is a definition for an operator satisfying L̃m
SL−→ Lm and inheriting the same

rate of convergence from L̃cm and L̃sm. Indeed, by Theorem 2.4.1, restricting
L̃c−m−L̃s−m

2
to

subspace with energy at most 4
√
n, will give an operator with a norm at most O( 1

n
) which

becomes part of the error of the approximation of Lm by L̃m. The rest of the operator

acting on energy higher than 4
√
n will join that of L̃cm+L̃sm

2
.

Convention. Given a scalar E ≥ 0, let PE denote the projection to subspace with

energy at most E. Then define O|E = OPE and O|>E := O(1− PE).

Notation. From now on, n will be used for the sequence index which will be related
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to the size of the chain (2n+ 1 for boundary condition (1
2
, 1

2
)). For example

L̃m = Lm| 4√n +O(
1

m
) +Rm,n,

where Rm,n = L̃m|> 4√n. We can now state our first result for the scaling limit of observ-

ables.

Theorem 2.5.2 ([4], Thm. 4.2) The set of energy-local observables which have an as-

sociated hermitian energy-local sequence in the real vector space spanned by ej, i[ej, ej+1]

and the identity, form the real vector space

{L(f) + γ1 | f ∈ C∞R (S1) has finite Fourier series, γ ∈ R}.

Proof: Assume a sequence of Λ−energy-local operators

On = γn1 +
Λ∑

j=−Λ

f̂nj L̃j,

where f̂n−j = f̂nj and On
SL−→ O. To show that O = L(f) + γ1 for some function f with

finite Fourier series, restrict On to some energy M > 2Λ,

On|M = γn1 +
Λ∑

j=−Λ

f̂nj L̃j|M .

According to the properties of L̃js, for large enough n,

On|M = γn1 +
Λ∑

j=−Λ

f̂nj Lj|M + f̂nj O(
1

n
).

Since On|M has a limit in the operator norm to O|M , f̂nj s must have a limit. To prove
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that, we compute

(L−Λ|MΩ, On|MΩ) = fn−Λ ||L−ΛΩ||+ (L−ΛΩ, (
∑
j

f̂nj O(
1

n
))Ω)→ (L−Λ|MΩ, OΩ),

where |M is dropped as it is no longer needed. Notice all the errors O( 1
n
) corresponding

to L̃j give at most |j| energy shift. This means the only nonzero term is

fn−Λ ||L−ΛΩ||+ (L−ΛΩ, (fnΛO(
1

n
) + fn−ΛO(

1

n
))Ω).

fn−Λ ||L−ΛΩ|| can be exactly computed and is of order fn−ΛΛ
3
2 . The rest can have norm

at most O( 1
n
)|fn−Λ| as fnΛ = fn−Λ. It follows that fn−Λ must have a limit, say f−Λ.

Next step is to subtract fnΛL̃Λ + fnΛL̃−Λ from On and repeat the procedure. For the

special case of j = 0, γn1 + fn0 L̃0 can be seen to give the same conclusion. Denoting

limn→∞ f̂
n
j = f̂j, limn→∞ γn = γ, we have O = γ1 +

∑Λ
j=−Λ f̂jLj.

Remark 2.5.2 By Theorem 2.3.1, we have a strong SL-algebra. Note the operators

On = γn1 +
∑Λ

j=−Λ f̂
n
j L̃j used for obtaining L(f) are also space-local.

For UMMs, higher level ACs are conjectured to give the same results as in Theorem 2.4.1,

implying the above theorem for UMMs. A relaxed version of 2.4.1 for UMMs would still

ensure the next results in this section hold for all UMMs:

Conjecture 2.5.3 For any UMM VOA V = Vc,0 and a sector Vc,h, there is a sequence

of (AC or lattice-based) quantum theories with strong scaling limit (Vc,h, L0) such that

for each Lm, we have a sequence L̃m ∈ An with the following properties:

• It is a space-local observable with hermitian operators aL̃m + aL̃−m ∈ AHn ,∀a ∈ C.

• It shifts the energy no more than |m|.
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• Restricted to energy at most ndω it has an O( 1
ngω

) approximation by Lm|ndω :

L̃m = Lm|ndω +O(
1

ngω
) +Rm,n,

where dω, gω are positive constants and Rm,n = L̃m|>ndω .

• ||L̃m|| is bounded by O(neω) for some constant eω.

Remark 2.5.3 Two important observations about the first and third item above:

• For space-locality to be meaningful, we need an AC or lattice-based model as Defi-

nition 2.3.10 of space-locality applies to these contexts.

• Note that Rm,n = L̃m(1−P ndω ) and thus the norm of the remainder is also bounded

by O(neω).

Remark 2.5.4 The second and third item above have a meaning after the push-forward

of the map L̃m acting on Vc,h is assumed. This is done by the embedding ρn :Wn ↪→ Vc,h

from the strong scaling limit; the map ρnL̃m(ρn)−1 acts on the copy of Wn inside Vc,h

and is extended by zero on the orthogonal complement. This push-forward will be

implicitly assumed whenever it is necessary. Note that in an algebraic scaling

limit (like for the Ising model), there is a copy of each O ∈ An inside A, and it is equal

to our push-forward copy restricted to ρn(Wn), which is what will be important in our

analysis.

Remark 2.5.5 The last item applies to the Ising chain as L̃cm and L̃sm are a sum of 2n

terms of ejs which have constant norm. Taking the norm of the scaling factors αcn and

βcn,m, β
s
n,m into account, one has ||L̃m|| ≤ O(n2).
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Remark 2.5.6 Assuming the above conjecture, except for Theorem 2.5.1, 2.5.2 and

2.5.15, all other theorems in sections 2.5.1 and 2.5.3 hold for all UMMs. In fact, even

Theorem 2.5.2 would be true for all UMMs if the statement is changed to: the energy-local

scaling limit contains {L(f)| f ∈ C∞R (S1) has finite Fourier series}. For all theorems in

section 2.5.2, the stronger Conjecture 2.6.4 on how to recover the higher Virasoro modes

for UMMs has to be assumed. Therefore, even though theorems below will be proved us-

ing the Ising AC, by replacing some of the powers by appropriate constants (dω, etc), the

results hold for UMMs assuming the above conjecture.

Remark 2.5.7 It is conjectured that all nice VOAs as described in section 1.3.2 (uni-

tary, C2−co-finite, rational, etc) satisfy energy boundedness [25, Conjecture 8.18]. A

generalization of the Conjecture 2.5.3 to all CFTs which satisfy energy boundedness is

possible. Sequences in the same fashion of the Virasoro modes have to exist for all ele-

ments inside a minimal quasi-primary hermitian field generator set of the VOA. Then,

all theorems in sections 2.5.1 and 2.5.3, with the exception of Theorem 2.5.1, 2.5.2 and

2.5.15, can be recovered. In UMMs, the generator is only ω and in WZW models, the

currents corresponding to the Lie algebra g (see [62] for a numerical demonstration on

obtaining the gk currents in the scaling limit and [53] for W−algebra currents).

Notation. Set L(f)≤m =
∑
|j|≤m f̂jLj and similarly for L̃(f). Define L(f)>m =

L(f)− L(f)≤m and similarly L̃(f)>m. Also set

||f ||≤Es =
∑
|i|≤E

|f̂i|(|i|+ 1)s,

and

|f |≤m :=
∑
|i|≤m

|f̂i|, |f | :=
∑
i

|f̂i|.
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We wish to show that the choice of the “natural” sequence corresponding to L(f) gives

a strong SL-algebra. Some lemmas are needed.

Lemma 2.5.4 ([4], Lem. 4.4) We have

L̃(f) =
∞∑

j=−∞

f̂jL̃j ∈ AHn , for all f ∈ C∞R (S1)

Proof: Note that f̂js are rapidly decreasing. Also, from Remark 2.5.5,

||L̃j|| ≤ O(n2). (2.17)

The estimation does not depend on j. This gives an absolute convergence to an operator

with norm bounded by |f |O(n2). On the other hand, for each j, we have f̂jL̃j + f̂−jL̃−j ∈

AHn implying L̃(f) ∈ AHn .

Lemma 2.5.5 ([4], Lem. 4. 5) L̃(f)
SL−→ L(f).

Proof: The result and techniques shown here on the convergence behavior of L̃(f)

will be useful in the next theorems. Take any k ∈ N and note that ∃Nf,(10k)3+1 ∈ N :

|f̂j| < 1

j(10k)
3+1
,∀j > Nf,(10k)3+1. The coefficient 10 is just for convenience and any high

enough coefficient will be sufficient. For n large enough such that 10k
√
n > Nf,(10k)3+1,

||L̃(f)> 10k√n|| = ||
∑

|j|> 10k√n

f̂jL̃j|| ≤ O(n2)
∑

|j|> 10k√n

|f̂j| (2.18)

≤ O(n2)

∫ ∞
10k√n

1

x(10k)3+1
dx < O(n2)

(10k)3 + 1

n(10k)2
= O(n−(10k)2+2),

where (2.17) is used in the first inequality. The next step is an estimate for L(f)> 10k√n
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via energy bounds (1.39):

||f ||>
10k√n

3
2

< 2
∞∑

j> 10k√n

(j + 1)
3
2

j(10k)3+1
<

∫ ∞
10k√n

1

x(10k)3−10k+1
= O(n−(10k)2+1),

therefore

||L(f)> 10k√nv|| < O(n−(10k)2+1)||(L0 + 1)v||. (2.19)

Next, given a vector v ∈ V and the embedding Wn ↪→ V ,

(L̃(f)− L(f))v = (L̃(f)≤ 10k√n − L(f)≤ 10k√n)v + (L̃(f)> 10k√n − L(f)> 10k√n)v

The two estimations above imply that the second part vanishes. For the first part,

L̃(f)≤ 10k√n = L(f)≤ 10k√n| 4√n +O
( |f |j≤ 10k√n

n

)
+R(f)k,n, (2.20)

where R(f)k,n = L̃(f)≤ 10k√n|> 4√n. Since v ∈ VM for some large enough M , for large

enough n with 4
√
n > M , R(f)k,nv = 0 and L(f)≤ 10k√n| 4√nv = L(f)≤ 10k√nv. This implies

||(L̃(f)− L(f))v|| → 0, which is stronger than L̃(f)
SL−→ L(f).

Remark 2.5.8 Note that we proved for every v ∈ V, for large enough n, there exists

vn = ρ−1
n (v) ∈ Wn, such that ρn(L̃(f)vn)→ L(f)v. This stronger result will be useful in

the next section. Furthermore, even though we assumed f ∈ C∞R (S1), it is clear that one

can generalize to C∞C (S1).

Theorem 2.5.6 ([4], Thm. 4.6) {L(f) | f ∈ C∞C (S1)} generates a strong SL-algebra

with corresponding sequence L̃(f) to each L(f).
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Proof: [Proof sketch] Let Ωn = (ρn)−1Ω. We need to show

(Ωn,

k∏
j=1

L̃(f (j))Ωn)→ (Ω,
k∏
j=1

L(f (j))Ω).

Proving the above for any two vectors u, v ∈ V instead of Ω will be similar.

We can prove it by using triangle inequality after estimating the intermediate terms

|(Ω,
t−1∏
j=1

L(f (j))(L(f (t))− L̃(f (t)))
k∏

j=t+1

L̃(f (j))Ω)|, 1 ≤ t ≤ k,

where the embedding ρn is used implicitly. For each 1 ≤ j ≤ t, write L̃(f (j)) =

L̃(f (j))≤ 10k√n + L̃(f (j))> 10k√n. Denote yt =
∏k

j=t+1 L̃(f (j))Ω and let yt = y1
t + y2

t , where

y1
t =

k∏
j=t+1

L̃(f (j))≤ 10k√n Ω, y2
t := yt − y1

t .

Note y1
t lives inside V(k−t) 10k√n ⊂ Vk 10k√n of vectors with energies at most k 10k

√
n. This

decomposition of yt is made in order to separate the lower energy component of the vector

with high norm from the rest (y2
t ). Using equations (2.18) and (2.20), we get

||L̃(f (j))≤ 10k√n|| ≤ O( 10k
√
n).

Recall ||L̃(f (j))> 10k√n|| ≤ O(n−(10k)2+2) and ||L̃(f (j))|| ≤ O(n2). Thus, we can establish

the following upper bounds for ||y1
t || and ||y2

t ||:

||y1
t || ≤ O(( 10k

√
n)k−t) < O( 10

√
n), (2.21)
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||y2
t || < (2k−t − 1)O(n−(10k)2+2)O((n2)k−t)) ≤ O(n−(10k)2+2k+2), (2.22)

which imply

||yt|| < 2||y1
t || < O( 10

√
n). (2.23)

Let xt := Ω†
∏t−1

j=1 L(f (j)), p := max
t=1,...,k

||xt||, and q := max
t=1,...,k

||(L0 +1)x†t ||. It can be shown

that p ≤ r||(Lk0 + 1)Ω||, and that the parameters r, p, q do not depend on n ([63, Lemma

3.2.1]). Our task is to approximate

|xt(L̃(f (t))− L(f (t)))(y1
t + y2

t )|.

by using the same decomposition of (L̃(f (t))− L(f (t))) in Lemma 2.5.5:

(L̃(f (t))≤ 10k√n − L(f (t))≤ 10k√n) + (L̃(f (t))> 10k√n − L(f (t))> 10k√n).

For the second part, using the estimates (2.21-2.23) for ||yt||, (2.18) for ||L̃(f (t))> 10k√n||,

and finally (2.19), we can show |xt(L̃(f (t))> 10k√n − L(f (t))> 10k√n)yt|
n→∞−−−→ 0. For the first

part, using the approximation of L̃s for energies up to k 10k
√
n,

L̃(f (t))≤ 10k√n − L(f (t))≤ 10k√n = −L(f (t))≤ 10k√n

∣∣∣
>k 10k√n

+O
( |f (t)|≤ 10k√n

n

)
+R(f (t))k,n.

(2.24)

Each of the three terms above leads to a vanishing term. For example, the second term,

which is the only term where our approximation gets somewhat tight, when acting on

yt, the estimation (2.21) gives a bound of O(
10√n
n

) on the result which goes to zero. The

relatively small bound on ||y2
t || shows other terms vanish as well.
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AH contains more than just the strong SL-algebra above when f ∈ C∞R (S1):

Theorem 2.5.7 ([4], Thm. 4.7) We have {L(f) | ||f || 3
2
< ∞} ⊂ AH which contains

{L(f)|f ∈ C∞R (S1)} as a maximal strong SL-algebra.

Proof: [Proof sketch] For the maximality part, one can estimate the norm of Lk0L(f)Ω

for any k ∈ N, and conclude that the Fourier series of f must be rapidly decreasing,

and L(f) hermitian, hence f ∈ C∞R (S1). To show L(f) ∈ AH for ||f || 3
2
< ∞, take

On = L̃(f)≤log(n)
SL−→ L(f).

We try to generalize Theorem 2.5.6 to all fields. We recall three facts ([25])

• In a UMM, the descendants of ω span the VOA.

• Due to the Virasoro algebra identities, all descendants of ω can be obtained only

by applying operators Ln(n ≥ −2).

• In a UMM, all fields are energy bounded:

||Y (a, f)v|| ≤ Ca||f ||ra ||(L0 + 1)sav||.

Theorem 2.5.8 ([4], Thm. 4.8) {Y (a, f)| a ∈ V , f ∈ C∞C (S1)} ⊂ A generates an

SL-algebra.

Remark 2.5.9 It can be shown that Y (a, f) can be obtained by sequences that are local

but in the quantum computation sense of locality (QC-locality) (see Remark 2.3.4).

Proof: [Proof sketch] The proof works by induction using the Borcherds identity as a

recursive identity to obtain the descendant fields from the Virasoro field. Choose a basis

with descendants of ω. For the field Lir . . . Li1ω = a with ij ≥ −2, we want to obtain

operators (ãE)m for energy E and mode m with the hypotheses below for the induction

on r. The hypotheses are relaxed version of the ones in Conjecture 2.5.3:
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There exists da such that for all E ≤ nda there are operators (ãE)m ∈ An where

• ∃va < da such that for any m and nva ≥ |m|, (ãE)m|E provides an energy shift at

most Ka(E + |m|) for some constant Ka ≥ 1. This is a more relaxed version of L̃m

shifting energy by at most |m|. It is also the obstacle to get a strong SL-algebra.

• (ãE)m has norm at most nea where ea only depends on a.

• There exists a constant ga > 0 such that

(ãE)m = (a)m|E +O(
1

nga
) +Ra,m

E,n, for nva ≥ |m| (2.25)

where (a)m|E is the restriction of (a)m in the VOA to energy at most E. O( 1
nga

)

should be regarded as the error in the approximation of (ãE)m|E by (a)m|E, and it

has norm at most O( 1
nga

). Finally, the last term is Ra,m
E,n = (ãE)m(1− PE).

Notice the last hypothesis implies the same for restriction of energy to any E ′ ≤ E

since projection to energy E ′ has norm at most 1 and the rest will mix with Ra,m
E,n.

Further, the base of induction ω is essentially done. For E ≤ n
1
4 and any 4

√
n ≥ |m|,

(ω̃E)m = L̃m provides an energy shift of at most |m| for any mode m, in other words, at

most 1× (E + |m|).

The induction works by assuming hypotheses have been shown to hold for the field

b, and then prove the same for a = L−2b; the Borcherds identity shows that this is the

hardest case and Lkb for k ≥ −1 are easier. In Borcherds identity (1.13), putting p = 0

and q = −1, and some index shifting gives

(a)m = (L−2b)m =
∞∑
j=0

(L−2−j(b)m+j+2 + (b)m−j+1Lj−1),

which is an infinite sum. Note that had we chosen a = Lkb for k ≥ −1, the Borcherds
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identity would have given a finite sum, which can be handled similarly to what comes

next.

When restricted to energy E ≤ nda , where da will be determined, the summation

above will be finite. Indeed, as shown in [25],

(a)m|E =

E−max{−1,m+2}∑
j=0

(L−2−j(b)m+j+2P
E + (b)m−j+1Lj−1P

E).

Putting redundant projections in the middle of the operators leads to (a)m|E =

E−max{−1,m+2}∑
j=0

(L−2−j|E+Kb(E+|m+j+2|)(b)m+j+2|E + (b)m−j+1|E+|j−1|Lj−1|E). (2.26)

This will be important as the last induction hypothesis for ω and b will be applied

separately. Based on the above identities, our choice for (ãE)m will be

(ãE)m =

E−max{−1,m+2}∑
j=0

(L̃−2−j(b̃E)m+j+2 + ( ˜bE+|j−1|)m−j+1L̃j−1) (2.27)

where we recall that (ω̃E)j = L̃j for all E. Each hypothesis can be checked in a straight-

forward way by simply applying the hypothesis for b and ω.

It remains to show that {Y (a, f)|a ∈ V , f ∈ C∞C (S1)} generates an SL-algebra. Us-

ing the properties in the induction hypotheses, the proof is a more involved version of

Theorem 2.5.6. To get the product
∏k

j=1 Y (a(j), f (j)) in the scaling limit, the operators

ỸEj(a
(j), f (j)) =

∑
m

f̂ (j)
m (ã

(j)
Ej

)m ∈ An

have to be chosen where Ejs need to be determined carefully by taking into account the

constants in the energy bound inequalities for all ajs, and also all other constants, notably
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dajs and gajs, so that we can use the approximation provided by the last hypothesis. The

choice of Ejs will not be universal and depends on the product which is why there is no

single associated sequence and we can not claim a strong SL-algebra.

Remark 2.5.10 As mentioned during the proof, the reason we could not obtain a strong

SL-algebra generating set is the dependence of the energy shift on the energy itself. If

somehow all vectors were obtained by only applying Lr, r ≥ −1 (which is unlikely) or if

we knew that the base of induction L̃m shifts the energy exactly by m (not true even in

the case of Ising), this issue would not be present. Still, we believe this to be a technicality

that can be resolved.

Remark 2.5.11 One would wish to get the hermitian fields, which give self-adjoint

Y (a, f)s, as a scaling limit of hermitian observables generated by the eis. This was not

the case in the construction above. Still, as [25] demonstrates, quasi-primary hermitian

fields generate (see Remark 1.3.3) any unitary VOA. For UMMs, that generating set is

{ω}, for which there is a corresponding hermitian sequence from AHn .

2.5.2 Local conformal net observables

Recall that for UMMs, the observables algebra on an interval I is given by {eiL(f)| f ∈

C∞R (S1) and supp(f) ⊂ I}′′ (1.44). From results of the previous section, the following is

immediate

Corollary 2.5.9 ([4], Cor. 4.9) The sequence of observables below give a strong SL-

algebra:

eiL̃(f) SL−→ eiL(f), ∀f ∈ C∞R (S1).

Proof: [Proof sketch] The convergence is a direct application of the Trotter-Kato

approximation theorem (see e.g. [64, p. 141]) on the sequence iL̃(f) and its scaling
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limit iL(f) (see also Remark 2.5.8). The scaling limit is a strong SL-algebra due to the

uniform boundedness of the operators involved, all being unitary.

Corollary 2.5.10 ([4], Cor. 4.10) {eiL(f)}′′ ⊂ A as a strong SL-algebra.

Proof: [Proof sketch] We will be using Kaplansky’s density theorem multiple times.

This theorem allows us to obtain self-adjoint bounded observables as the scaling limit of

uniformly norm bounded self-adjoint observables. Restricting to self-adjoint operators

is without loss of generality, as it is a fact that observable algebras are generated by

self-adjoint operators.

Let O ∈ {eiL(f)}′′ be a bounded self-adjoint operator which we aim to show that it is

in the scaling limit. As O ∈ {eiL(f)}′′, consider a sequence of self-adjoint operators O(i) in

the algebra generated by eiL(f)s with a strong limit to O. Each O(i) has a corresponding

sequence of self-adjoint (O
(i)
n )n with scaling limit O(i) which can be thought of replacing

any eiL(f) in O(i)’s expression by eiL̃(f). By this construction, this sequence (O
(i)
n )n is

uniformly norm bounded. To make it bounded by ||O(i)||, we apply Kaplansky’s density

theorem. Thus, new sequences (O
(i)
n )n are found, norm bounded by ||O(i)||. From these

sequences, by a diagonal selection, we would like to get a uniformly bounded sequence

On with scaling limit O which would give a strong SL-algebra as in the previous theorem.

As long as O(i)s are uniformly norm bounded, that sequence can easily be built. This

includes the case where O is in the norm-operator closure of the algebra generated

by {eiL(f)}, implying ||O(i)|| → ||O||. So the C∗−algebra generated by {eiL(f)} can be

recovered. If O is not in the C∗−algebra, applying again Kaplansky’s density theorem

on the sequence O(i), gives a new uniformly norm bounded (by ||O||) sequence (O(i))i

in the C∗−algebra. Having previously proven that O(i) can be obtained by a uniformly

norm bounded (by ||O(i)||) sequence (O
(i)
n )n, this gives the same settings as the easy case

at the beginning of this paragraph.
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Hence, all observables in LCN form a strong SL-algebra. The next question is whether

there exists some definition of the finite-size local observables net An(I) and how the

bounded scaling limit would compare to the LCN, called Avir(I). As we shall see, the

anyons must be on the upper half-circle as in Figure 1.17.

Definition 2.5.1 ([4], Def. 12) Consider the upper half-circle S1
+ with its two points

on the boundary. The set of intervals I+ are the connected sets in one of the following

forms:

• Open intervals I inside S1
+ for which ∂I ∩ ∂S1

+ = ∅,

• Closed-open intervals I where |I ∩ ∂S1
+| = |∂I ∩ ∂S1

+| = 1,

• S1
+.

On these sets, the following nets of observables are defined

Definition 2.5.2 ([4], Def. 13) Given I ∈ I+, An(I) is generated by the identity and

the ejs where [ jπ
2n+1

, (j+1)π
2n+1

] ∈ I.

The definition implies locality, i.e. [An(I1),An(I2)] = {0} for I1∩ I2 = ∅, and isotony,

i.e. I1 ⊂ I2 =⇒ An(I1) ⊂ An(I2).

Definition 2.5.3 ([4], Def. 14) Consider the set of self-adjoint bounded linear opera-

tors O in the scaling limit of the algebra of observables An(I) such that there exists a

self-adjoint sequence On ∈ An(I) with bounded norm and

ρn(On(ρn)−1(u))→ Ou, ∀u ∈ V ,

where (ρn)−1(u) = 0 if u 6∈ ρn(Wn). This means there is sequence with “strong SL

convergence” to O or the strong-operator convergence in V. Define Ab(I) as the von

Neumann algebra generated by this set.
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Locality is the reason behind the above definition. Consider two sequences of operators

xn
SL−→ x and yn

SL−→ y which are self-adjoint and commuting. In order to ensure [x, y] = 0,

it can be easily observed that the weak-limit offered by scaling limit is not enough and

we need at least a strong type of that limit (which is the above definition). However,

that may not be enough as xnynξ → xyξ for ξ ∈ V does not necessarily hold. Let us

rewrite:

(xnyn − xy)ξ = xn(yn − y)ξ + (xn − x)yξ.

The first and second term are not guaranteed to go to zero unless xns are uniformly

bounded and xn → x in the strong-operator topology (of V as yξ ∈ V). It turns out

that the strong SL convergence (which is strong-operator convergence in V) and norm

boundedness are equivalent to convergence in the strong-operator topology in V . One

direction is clear and the other is the application of Kaplansky’s density theorem to get

such a sequence with norms uniformly bounded. The definition above imposes these

properties and as a result, Ab(I) satisfies locality and isotony. Further, similar to the

procedure carried out in Corollary 2.5.10, there is a sequence associated to any of its

elements which are norm bounded and converge strongly to that element. Therefore, it

is a strong SL-algebra.

How does this “net” compare to Avir(I)? Denote by j(I) the reflection of the interval

I with respect to the x−axis where j : z → z̄.

Theorem 2.5.11 ([4], Thm. 4.11) Given a function f =
∑
f̂me

imθ ∈ C∞C (S1) with

supp(f) ⊂ I ∪ j(I), and f̂m = am + ibm, define ẽ(f) =

αcn

2n−1∑
j=1

fc

(
ei
π(j+1

2 )

2n+1

)
ej + iαsn

2n−2∑
j=1

fs

(
ei
π(j+1)
2n+1

)
[ej, ej+1] + (

∞∑
m=−∞

amβ
c
n,m + bmβ

s
n,m)1,

(2.28)
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which is inside An(I) (for large enough n), and

fc(z) =
f(z) + f(j(z))

2
∈ C∞C (S1

+), ∀z ∈ S1
+,

fs(z) =
f(z)− f(j(z))

2
∈ C∞C (S1

+), ∀z ∈ S1
+.

we have ẽ(f)
SL−→ L(f).

Proof: [Proof sketch] By direct calculation, ẽ(f) = L̃(f) and the rest is Theorem

2.5.6.

Taking real-valued functions f ∈ C∞R (S1),

Corollary 2.5.12 ([4], Cor. 4.12) {eiL(f)}′′ ⊂ Ab(I) for supp(f) ⊂ I ∪ j(I).

This hints to the relation between Ab(I) and Avir. Assume I touches the boundary of

S1
+. Then, I ∪ j(I) is some connected interval in the circle and so {eiL(f)|supp(f) ⊂

I ∪ j(I)}′′ = Avir(I ∪ j(I)). By the corollary above,

Avir(I ∪ j(I)) ⊂ Ab(I).

On the other hand, due to Haag duality for the conformal net Avir and locality for Ab,

for J the complement of I in S1
+,

Ab(J) ⊂ Ab(I)′ ⊂ Avir(I ∪ j(I))′ = Avir(J ∪ j(J)) ⊂ Ab(J).

Therefore, one recovers exactly the LCN by taking the bounded scaling limit.

Theorem 2.5.13 ([4], Thm. 4.13) Ab(I) = Avir(I∪j(I)) for I ∈ I+ with |I∩∂S1
+| =

1.

The above is true for all UMMs assuming Conjecture 2.5.3.
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2.5.3 Vertex operators Y (a, z)

In Theorem 2.5.8, (a)m was found to be in the scaling limit using QC-local operators.

We know Y (a, z) is the weak limit of a sequence Y (a, f) where f shrinks to the δ Dirac

function, implying Y (a, z) ∈ A (Remark 2.3.2). Alternatively, one can directly construct

a sequence to show this.

Theorem 2.5.14 ([4], Thm. 4.14) Y (a, z) ∈ A as an almost linear operator.

Proof: [Proof sketch] Choose On =
∑
|m|< ga log(n)

2 log(|z|)
(ãlog(n))mz

−m−wt a. Using the prop-

erties of (ãlog(n))m as outlined in Theorem 2.5.8 one can prove On
SL−→ Y (a, z).

In 2.1, we discussed the thinking behind the construction of finite stages of the

smeared Virasoro field

∫
f(ei

πj
n )ej

SL−→ Y (ω, f) =

∮
Y (ω, z)f(z)z2 dz

2πiz
.

Informally, let us take this smooth function f to converge to the δ Dirac function at some

point corresponding to angle θ. One would expect

ex
SL−→ Y (ω, eiθ).

where x, implicitly depending on n, is chosen such that θ ∈ [ xπ
2n+1

, (x+1)π
2n+1

]. Of course,

from our Koo-Saleur formulae, with ejs, the cos() part of Y (ω, eiθ) appears in the scaling

limit. For the imaginary part, the bracket [ex, ex+1] must be used.

Finding some space ultra-local operator in An giving us the field operator in the

scaling limit would be a “proof” that the field operator Y (w, z) should not only be

thought of the analog of a space-local observable in the continuum, but of a space ultra-

local observable. Unfortunately, the easy guess does not work, as shown below.
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Notations. Define βcn and βsn inside RN0 with entries βcn,m and βsn,m for all m ≥ 0, re-

spectively. Define the vectors ṽcx = (cos(
m(x+ 1

2
)π

2n+1
))0≤m≤2n and ṽsx = (sin(m(x+1)π

2n+1
))1≤m≤2n,

and extend them by zeros so they also become elements of RN0 .

Theorem 2.5.15 ([4], Thm 4.15) We do not have

On = αcn||ṽcx||2ex + iαsn||ṽsx||2[ex, ex+1] + (βcn.ṽ
c
x + βsn.ṽ

s
x)1

SL−→ Y (ω, z)z2,

where z = eiθ and we pick the unique 1 ≤ x ≤ 2n− 1 such that θ ∈ [ xπ
2n+1

, (x+1)π
2n+1

].

Notice x can only exist for large enough n if θ is close to the boundaries.

Proof: [Proof sketch] The choice for the coefficients involved in On becomes clear

once we rewrite On as

On =
2n∑

m=−2n

(
cos(

m(x+ 1
2
)π

2n+ 1
) + i sin(

m(x+ 1)π

2n+ 1
)
)
L̃m.

This is the “ideal” candidate expression that one would expect to converge to Y (ω, z)z2

in the scaling limit. It is clear that any finite sum up to some |m| ≤ M for On goes

to
∑
|m|≤M eimθLm. However, restricting to some finite energy M from right and left

PMOnP
M does not necessarily give

∑
|m|≤M eimθLm.

What makes this convergence impossible are the finite-size effects which implies that

L̃m with high |m|, more precisely 2n+ 1− 2M ≤ |m| ≤ 2n, have low-low energy mixing

terms. Therefore after the restriction to energy up to M , we have (unwanted) terms

other than those from L̃m with |m| ≤ M in our summation. Their coefficients can be

computed from formulae in equations (2.8) and (2.9) and are divergent, hence the scaling

limit does not hold.

Remark 2.5.12 As all problems emerge from the |m| being close to 2n, the observable

113



CFT as Scaling Limit of Anyonic Chains Chapter 2

On as follows has the desired scaling limit

2n−blog(n)c∑
m=−2n+blog(n)c

(
cos(

m(x+ 1
2
)π

2n+ 1
) + i sin(

m(x+ 1)π

2n+ 1
)
)
L̃m

SL−→
∑

eimθLm.

In fact, any function f(n) instead of log(n), with sublinear growth (and f(n)
n→∞−−−→ ∞)

would work. Unfortunately, this does not translate to the nice ultra-local expression in

terms of just ex and [ex, ex+1] we desired for On.

A space ultra-local sequence for Y (ω, z)

One can construct a space ultra-local sequence in terms of ex and O(log(n)) many of

its neighbor TL operators with the desired scaling limit (Definition 2.3.11). On will be a

linear combination of:

b8 log(n)c∑
y=−b8 log(n)c

tyex+y, i

b8 log(n)c∑
y=−b8 log(n)c

ty[ex+y, ex+y+1] and 1. (2.29)

The idea is to select the ty’s such that On becomes of the form:

blog(n)c∑
m=−blog(n)c

(
cos(

m(x+ 1
2
)π

2n+ 1
) + i sin(

m(x+ 1)π

2n+ 1
)
)
L̃m +

2n−blog(n)c∑
m=−2n+blog(n)c,

m6∈[−blog(n)c,blog(n)c]

c̃mL̃m, (2.30)

where we need specific coefficients for m ∈ [−blog(n)c, blog(n)c], more precisely

(
cos(

m(x+ 1
2
)π

2n+ 1
) + i sin(

m(x+ 1)π

2n+ 1
)
)
,

and zero for m < −2n+blog(n)c or m > 2n−blog(n)c. This means that there are in total

4blog(n)c many equations for each of the cos() and sin() part, thus 8blog(n)c in total.

On the other hand, there are 2b8 log(n)c variables tys. As the matrix involved in these
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linear equations is the one used in Theorem 2.5.1 for the trigonometric interpolation, this

system has infinitely many solutions. Next, it is not hard to see that observables like

(2.30) provide the desired scaling limit. Indeed, the finite-size effect are no longer present

as for |m| close to 2n, the coefficients of L̃m are zero. Further, restricting to energy up

to M , PMOnP
M for large enough n equals:

PM
( blog(n)c∑
m=−blog(n)c

(
cos(

m(x+ 1
2
)π

2n+ 1
) + i sin(

m(x+ 1)π

2n+ 1
)
)
L̃m

)
PM (2.31)

which converges to PMY (ω, eiθ)e2iθPM .

It is still unknown if this sequence can give rise to a strong SL-algebra. The question

likely boils down to the following analysis problem: Is there a sequence of functions that

have a support of width O(log(n)), with their Fourier series having specific coefficients

at both ends m < −2n + blog(n)c and m > 2n − blog(n)c, and around the zero mode

m ∈ [−blog(n)c, blog(n)c], and also having coefficients c̃m at all other modes with fast

enough decay rate (with respect to n).

2.6 Conjectures and future directions

In this section, we provide a list of problems that need to be addressed for a clearer

picture of the structures in the scaling limit.

2.6.1 SL-algebras in the scaling limit

The smeared fields Y (a, f) were obtained as QC-local operators.

Conjecture 2.6.1 ([4], Conjecture 5.2) There is a spanning set S = {a}a∈V of the

VOA such that for any a ∈ S, the smeared field Y (a, f) is a scaling limit of a space-local

sequence.
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One obstacle to space locality is the absence of commutators in the Borcherds identity.

Otherwise, the terms involving product of far apart ejs would disappear. For example, if

Y (a, f) can be expressed in terms of commutators of Y (ω, f) with the Virasoro generators,

the above conjecture can be proved.

Closely related to conformal invariance, is the scaling limit of the product of unitaries

eiL̃(f) and the smeared field operators L̃(f).

Conjecture 2.6.2 ([4], Conjecture 5.3) Prove that the algebras in Corollary 2.5.10

and Theorem 2.5.6 together generate a (strong) SL-algebra.

As a remark on the emergence of conformal invariance in the scaling limit, notice that

due to Corollary 2.5.9 , for eiL(g) ∈ Avir(I), we have

eiL̃(f)eiL̃(g)e−iL̃(f) SL−→ eiL(f)eiL(g)e−iL(f).

Further, the scaling limit above is itself in Avir(exp (f)(I)). This is the conformal covari-

ance axiom (1.42) for the LCN:

U(γ)Avir(I)U(γ)† = Avir(γ(I)), γ ∈ Diff+(S1).

Similar to how A(I) is generated by eiL(f)s, it is easy to show that An(I) can also

be generated by eiL̃(f)s. Due to Corollary 2.5.9 and Theorem 2.5.13, this implies that,

loosely speaking, the two sets eiL̃(f)An(I)e−iL̃(f) and An(exp (f)(I)) become the same

in the scaling limit (at least for I and exp (f)(I) satisfying the condition in Theorem

2.5.13). Therefore, conformal invariance emerges in the scaling limit. This may not be

satisfying as it is not clear what the group of operators eiL̃(f) really is, and whether it

is “the natural finite” version of Diff+(S1) that should recover its action in the scaling

limit (see [49] for a different candidate, the Thompson’s group).
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We could not get all types of observables as an SL-algebra. Specifically, we believe

Conjecture 2.6.3 ([4], Conjecture 5.4) Field operators Y (a, z) form a strong SL-

algebra, with space ultra-local observables associated sequence to each field.

The techniques and analysis used in [29], involving the convergence of the truncated

versions of the field operators to the correlation function, may be found to be useful.

It is known that the product of QC ultra-local hermitian operators can be simulated

efficiently [65, Claim 6.2] on a quantum computer. If one can show an efficient con-

vergence of algebras of space ultra-local (thus QC ultra-local) hermitian observables to

hermitian point-like fields, an efficient quantum computer simulation of the correlation

functions becomes feasible.

2.6.2 LCN and boundary CFT in the scaling limit

Theorem 2.5.13 only shows the scaling limit of bounded nets for intervals I touching

the boundary of the half-circle. Let us suppose that I does not have this property. Then

it gives an observable algebra between:

Avir(I) ∨ Avir(j(I)) ⊂ Ab(I) ⊂ (Avir(J1) ∨ Avir(J2))′

where J1 and J2 are the two intervals obtained by removing I and j(I) from the circle,

implying J1 ∪ J2 ∪ I ∪ j(I) = S1 − {four points}.

It is a fact in local conformal net that the difference between Avir(I) ∨ Avir(j(I))

and (Avir(J1) ∨ Avir(J2))′ is given by the charge transporters. In the case of Ising, this

means the smeared fermionic fields Ψ(f)Ψ(g) with supp(f) ⊂ I, supp(g) ⊂ j(I), and

the smeared fields a(f)a(g). Here, a : χ0 → χ 1
16

is the intertwiner given by Y(σ, z) where

σ = | 1
16
〉 ∈ χ 1

16
is the spin state (1.25) and we use the smeared version of this intertwiner
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sending the vacuum sector to the spin sector. As the Ising anyonic chain with boundary

condition (1
2
, 1

2
) gives χ0 + χ 1

2
, we can only expect for charge transporters of the type

Ψ(f)Ψ(g). Indeed, it can be easily shown that Ψ(f)Ψ(g) ∈ Ab(I). More precisely,

the subalgebra of the Dirac algebra CAR(I) ⊗ CAR(j(I)) generated by basis elements

with even many Dirac operators is inside Ab(I), where CAR(I) = {Ψ(f)|supp(f) ⊂ I}.

Note the finite algebra An is the even subalgebra of the Majorana operators ψj which is

isomorphic to the even subalgebra of Fn = {Ψ−n+ 1
2
, . . . ,Ψn− 1

2
}.

On the other hand, we recall the boundary CFT (BCFT) in Remark 1.5.5 given by

B+(O) = (CAR(I) ⊗ CAR(J))even for O = I × J . Our results on the scaling limit of

the Ising anyonic chain with boundary condition (1
2
, 1

2
), strongly suggest that the scaling

limit theory is related to the restriction of the mentioned BCFT to spacetime regions

“I × j(I)”.

The story for higher level anyonic chains should be similar: If an anyonic chain with

boundary condition (x0, xL−1) gives the Hilbert space
∑

i
χ
i, the corresponding net to

this is conjectured to include all charge transporters for the irreducible modules, denoted

usually by ρiρ̄i where ρi is the irreducible sector corresponding to χi. This is also what

happens in the case of TQFT, where string operators on the lattice converge to charge

transporters in the limit [66].

The framework of nets of observables could also allow a precise treatment of spacetime

in the scaling limit process, as the local finite nets An(I), encode spacetime information

by how they are relative to each other.

2.6.3 Higher minimal models

Due to the numerical results on higher level ACs, it was conjectured in 2.5.3 that the

theorems in section 2.5 are true for higher level UMMs. Here, we propose exact identities
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giving us the Virasoro algebra.

Conjecture 2.6.4 [4, Conjecture 5.5] The Hilbert space and the Virasoro algebra action

of every chiral UMM with central charge c = 1 − 6
(k+1)(k+2)

can be obtained as a scaling

limit of some su(2)k AC. More precisely, from the operators

Oc
n,m = −

2n−1∑
j=1

cos(
m(j + 1

2
)π

2n+ 1
)ej, Os

n,m = i
2n−2∑
j=1

sin(
m(j + 1)π

2n+ 1
)[ej, ej+1],

we get operators L̃c±m, L̃
s
±m

SL−→ L±m where

L̃cm + L̃c−m
2

= αcnO
c
n,m + βcn,m1

SL−→ Lm + L−m
2

,

i(L̃sm − L̃s−m)

2
= αsnO

c
n,m + βsn,m1

SL−→ i(Lm − L−m)

2
,

satisfying the properties in Conjecture 2.5.3 for αcn, α
s
n, β

c
n,m, and βsn,m being suitable scal-

ing factors.

Remark 2.6.1 The size of the chain was assumed to be 2n− 1. In general, this depends

on the boundary condition which needs to be adjusted accordingly.

A correction should be made to the above conjecture. It is not accurate to call

the scaling limit a chiral UMM, though it is completely described by chiral data. It

is clear that there does not exist a preferred direction for chirality to emerge; indeed,

chirality only emerges in the boundary of a system and the anyonic chain as defined is

not a boundary component of some (2 + 1)−d QFT. Furthermore, the Hamiltonian is

obviously symmetric with respect to flipping the chain.

The situation is likely similar to boundary CFTs in statistical mechanics (RSOS)

models [1, section 7] as the transfer matrix-Hamiltonian correspondence demonstrates.
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As discussed in the previous section, the anyonic chain scaling limit as an algebraic QFT

is likely related to what is called in the literature a “non-diagonal” BCFT [38, section 7].

The precise correspondence is a topic of current research.

Yet, the most important criticism towards the above conjecture is about the identities

for the higher Virasoro modes.

Following a numerical argument made in [1, eq. (3.31-3.43)], using the known ex-

pression of the free energy of the vertex model (or the continuous Potts model) in the

thermodynamic limit [41], one can see whether the above identities deliver at least the

correct central charge. Estimating (Ωn, [L̃2, L̃2]Ωn), assuming the conjecture, should give

(Ω, [L2, L−2]Ω) = c
2

in the limit (Remark 1.3.5). The above identities work exactly for

the case of Ising, but give only an approximation of the central charge for higher levels.

We still believe that a space-local Koo-Saleur formula should exist that gives a strong

SL-algebra in the scaling limit. It is a subject of current research on how to include

higher commutators of ejs in the identities above (while preserving the space-locality of

the formulae) in order to correct the error.

One option is to use the closely related Jones-Temperley-Lieb JTLk MTC instead of

su(2)k. As introduced in section 1.2.3, JTLk is obtained by taking the quotient of the

TL algebra by Jones-Wenzl projectors pk+1, k ≥ 0. The expression pk+1 = 0 imposes a

recursive relation on commutators. Thus higher commutators can always be written in

terms of lower (up to [ei, [. . . , [ei+k−1, ei+k] . . .]]) commutators ensuring space-locality.
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Chapter 3

Efficient Quantum Simulation of

CFT

3.1 Outline of main results

The original motivation behind the work in the previous chapter was an efficient

quantum simulation of CFT. In each simulation problem, there will be local observables

for which their expectation values is to be efficiently computed in polynomial time with

respect to the inputs.

To define local observables, consider the problem of simulation of unitary evolution

[67] of a quantum many-body system. There, the (k−)local Hamiltonians are a sum

of polynomially many (k−)ultra-local operators. Quantum computation gives a precise

definition of locality. A fundamental aspect of this definition is the explicit or implicit

assumption of a sequence of operators On, which are the sum of ultra-local operators

acting on at most O(log(n)) many particles. So one can distinguish between local and

non-local (sequence of) operators.

Definition 3.1.1 Given (Cd)⊗n, the tensor product of n qudits Cd, for an ultra-local
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sequence of operators (On)n, On acts nontrivially on at most O(log(n)) many qudits. A

local operator is a sum of ultra-local operators.

Locality is a salient feature for any physical QFT. Since TQFTs are low energy

effective theories, their locality is not intrinsic and usually hidden. For example, in the

Witten-Chern-Simons (WCS) modeling of the fractional quantum Hall liquids, the WCS

theory is an effective description for the emergent anyons, it follows that locality of WCS

TQFTs should be derived from that of the underlying electron systems. However, the

simulation of TQFTs in [68] uses a hidden locality given by pairs of pants decomposition of

the space surfaces (|x1 . . . xn−2〉 in Figure 1.13). Similarly, there are no intrinsic (infinite)

local degrees of freedom for a CFT to define locality.

We wish to declare a subset of observables in CFTs to be ultra-local. Depending on

what problem one wants to solve, we need to efficiently simulate the local observables the

subset generates. The argument behind the declaration of those observables as ultra-local

is motivated from discussions in the previous chapter, on space and energy locality (see

e.g. 2.5.3).

Theorems in the previous chapter on convergence of expectation values could also

be helpful. Yet there is no guarantee that using those approximations is the right path

for the problems ahead. In fact, we will also point out the disadvantages of the anyonic

chain approach for each simulation problem.

In this chapter, we will explore the possible definitions for the two problems that

CFT simulation includes. Before discussing the problems, we make a review on related

works on QFT simulation. Next, we try to define each simulation problem, and show our

results after making the attempts on the definitions.

In the first part, we start with defining the unitary evolution simulation problem.

Definition 3.3.1 (CFT UNITARY EVOLUTION) Inputs: Given k and real-valued
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functions f (j) with nj many Fourier coefficients for 1 ≤ j ≤ k, each coefficient ( ˆf (j))m

computable in polynomial time p(m) with respect to m using a classical Turing machine.

Output: An approximation of the following up to an error ε, with complexity mea-

sured with respect to {1
ε
, n1, . . . , nk, k} ∪ {( ˆf (j))m}j,m

|(Ω,
k∏
j=1

eiL(f (j))Ω)|. (3.1)

Using Fock space construction of CFTs along with the trick developed in [3] to ultra-

localize the Dirac fermionic operators, it is shown in 3.5 how to get an approximation of

this expectation value. We can only go so far with this approach and prove the rate of

convergence is efficient under certain conditions.

Theorem 3.5.3 Consider the same setting as above with the condition that

k∑
j=1

||(f (j))′||rω+2

is of order O(log(n1, . . . , nk, k)). Then CFT UNITARY EVOLUTION is in BQP.

This technical condition is due to our inability to accurately estimate some norm of

(1−PN)
∏k

j=1 e
iL(f (j))Ω, which is the higher energy part of the state (see Remark 3.5.2).

We instead opt for an estimate on some norm of the whole state
∏k

j=1 e
iL(f (j))Ω, and yet

obtain the nontrivial result above. Lastly, other alternative approaches will be discussed.

Afterwards, we move to the more complicated correlation function simulation prob-

lem. There are two possible formulations, each corresponding to choosing the space or

energy basis as the computational basis, based on local degrees of freedom of space or

energy.

The energy basis formulation corresponds to the case of smeared correlators, where

space position is given by smearing functions f(eiθ) = eikθ, which represent the Fourier
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transform that takes the space basis to the energy basis. In this scenario, the states

undergoing some unitary operations U are obtained by creation modes acting on the

vacuum Yn(a(n), e−iknθ) . . .Y1(a(1), e−ik1θ)Ω =
∏n

i=1(a(i))−kiΩ. We will argue that U is a

product of unitary gates from a set UV =
⋃

hermitian primary fields

Ua, where Ua is formed by

the following gates

• eiβ(a)†n(a)n ,

• ei(α(a)†n(a)n(a)†m(a)m+α(a)†m(a)m(a)†n(a)n),

• ei(α(a)†n(a)m+α(a)†m(a)n),

• ei(α(a)n(a)m+α(a)†m(a)†n),

for all β ∈ R, α ∈ C.

Definition 3.4.1 (CFT Correlation Function Simulation Problem)

Inputs: Given error rate ε > 0, hermitian primary fields {b(j)}lj=1, {a(i)}ni=1, with corre-

sponding modes mj, ki and intertwiners Yj̃,Yi of type
( C̃j−1

Bj C̃j

)
,
(
Ci−1

Ai Ci

)
where Bj, C̃j, Ai, Ci

are irreps of V satisfying C̃0 = C0 = V and C̃l = Cn, and finally a description of a

unitary U as a product of N unitaries from the set UV with all chosen modes used to

describe the N unitaries forming a set MU .

Output: An approximation of the normalized correlation function below with error

rate ε, with complexity measured with respect to {ml, . . . ,m1, kn, . . . , k1,
1
ε
, N}∪MU where

mj, ki ≥ 0.

|
(
Yl̃(b

(l), e−imlθ) . . .Y1̃(b(1), e−im1θ)Ω, UYn(a(n), e−iknθ) . . .Y1(a(1), e−ik1θ)Ω
)
|

||Yl̃(b(l), e−imlθ) . . .Y1̃(b(1), e−im1θ)Ω||.||Yn(a(n), e−iknθ) . . .Y1(a(1), e−ik1θ)Ω||
. (3.2)

Conjecture 3.4.1 The CFT Correlation Function Simulation Problem is in BQP and

generically BQP-complete.

124



Efficient Quantum Simulation of CFT Chapter 3

It is a corollary of fermionic quantum computation in [3] that for the case of Ising CFT,

the problem is BQP-hard.

For the point-like version, the correlator is the insertion of point-like fields on the

unit circle (space at present time), i.e. |zi| = |wi| = 1:

|
(
Yl̃(b

(l), wl) . . .Y1̃(b(1), w1)Ω, U(γ)Yn(a(n), zn) . . .Y1(a(1), z1)Ω
)
|. (3.3)

Surprisingly, a substantial amount of analysis is necessary (section 3.6) to show the

above is well-defined. The correlator should be interpreted as a probability density

function, but it is not rigorously known how one should integrate it in order to have

a proper normalization like in the smeared case. This is crucial for understanding what

the quantum computer should approximate. Finally, we discuss some ideas on what the

right approach could be for the above problems.

3.2 Previous works

The circuit model of quantum computing is based on quantum mechanics. From

early research on computational complexity of QFTs [2], it was stated explicitly as a

conjecture that QFTs would not provide extra computational power beyond quantum

mechanics (extended quantum polynomial Church thesis), as suggested by the efficient

simulation of (2 + 1)−d TQFTs [68]. An important difference between TQFTs and

CFTs is that while TQFTs are realized as gapped quantum systems, CFTs represent

universality classes of gapless (massless) critical phases. Our program seems to be a first

attempt towards a quantum simulation of gapless QFTs mathematically.

More recently, there has been effort towards simulating scattering amplitudes of mas-

sive QFTs, although some are made with support from numerical and physical arguments.
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For a general survey we refer to [69]. Below we discuss the important results.

The first recent work [70] in this domain was a quantum estimate of relativistic

scattering probabilities in massive scalar φ4 quantum field theories. It has been shown to

be in BQP for four and fewer dimensions. This is among the simplest interacting theories

in fewer than four dimension (where it is believed to be free). This provides an exponential

speedup over previous classical algorithms. The algorithm uses an approximation of the

field by discretization of space via a lattice, and discretization of the field value at each

lattice site. Creating the initial state for the simulation is done by a modified version

of adiabatic state preparation for preparing non-eigenstates such as wavepackets. Given

a list of momenta of incoming particles, the quantum algorithm outputs the probability

distribution of outgoing particles up to a precision of ε efficiently. The algorithm works

by [70, Appendix]

• creating the free vacuum adiabatically,

• exciting the wavepackets afterwards using evolution of some Hamiltonian Hψ,

• turning on the interaction term adiabatically and simulating the Hamiltonian time

evolution,

• and finally adiabatically turning off the interactiong term and measuring the occu-

pation numbers of momentum modes.

This work would support the extended Church thesis if the convergence of lattice models

to the continuum is addressed mathematically. When the coupling constant is sufficiently

small, QFT scattering amplitudes are computed using perturbation theory. Perturbative

analysis helps in the weak coupling regime to find the convergence rate. If the coupling

constant is strong, perturbation theory no longer applies and non-perturbative methods

are used to determine the rate of convergence.
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More recently, in [71], it was shown that the above problem for 2−d spacetime is in

fact BQP-complete even for the weakly coupled regime. To implement a universal gate

set, an external field J(t, x) is chosen so that the scaling limit is a collection of double-

well potentials. The |0〉 and |1〉 states of a qubit can be represented by choosing the

particle occupation (in the ground state) of the left well for |0〉 and the right well for |1〉.

Varying the source term J as a function of time moves the potential wells. Moving the

left and right wells of a single qubit closer together implements single-qubit gates (like

Pauli gates) through tunneling between the wells. Moving the wells of neighboring qubits

closer together implements inter-particle interactions which are generically entangling 2-

qubit gates. There is still a question regarding the mathematical rigor of the methods,

particularly the validity of the perturbative analysis, as also mentioned by the authors

themselves in [71, section 2.4].

There is also a parallel work [72] by the same authors for the massive (1 + 1)−d

fermionic QFT called Gross-Neveu model, a theory with quartic interactions. Unlike

free bosonic operators in the previous settings which commute and have easy-to-realize

spatial localization, the localization of the free anticommuting fermionic operators is

tricky and uses the technique developed by Bravyi and Kitaev [3], which we shall also

use in section 3.5. The algorithm follows the same line of thought, where a free theory

is excited and interaction term is adiabatically turned on and off and measurement is

eventually made.

Note how the use of free field theory in both settings mirrors our use of Fock space

in 3.5 to construct (interacting) CFTs as subtheories. It is difficult to realize interacting

theories directly (but see 3.4.3 in this regard).

127



Efficient Quantum Simulation of CFT Chapter 3

3.3 Unitary evolution simulation problem

Following functorial (n+1)−d QFT, unitary evolution of a system given by a manifold

X of dimension n, is described by unitary maps assigned by the functor to elements

inside the automorphism group of X in (n + 1)−cobordism category Aut(n+1)−cob(X).

In (2 + 1)−d TQFT, it is well-known that the mapping class group of a surface X is

isomorphic to Aut(2+1)−cob(X); the proof is by simply using the cobordism cylinder Xφ

construction for any diffeomorphism φ ∈ Diff(X). Therefore, the unitary evolution is a

representation of the mapping class group which is generated by braids and Dehn twists.

Those are operators for which one can have an ultra-local expression. It is this point of

view that is adopted when simulating the unitary evolution of TQFT and showing its

BQP-completeness in [2], and we seek a similar characterization for unitary evolution in

CFT.

In functorial CFT [73], the unitary evolution is guided by unitary maps called U(γ).

Therefore, our goal is to simulate |(Ω, U(γ)Ω)|, with U(−) a positive-energy projective

unitary representation of Diff+(S1) and γ a diffeomorphism in this Lie group. It is

well-known ([74]) that the representation U corresponds to a unitary positive energy

representation of the Virasoro algebra. Following a result of [74], there exist f (j)s in

C∞R (S1) such that γ = exp (f (1)) ◦ · · · ◦ exp (f (k)), and further U(exp(f)) = eiL(f),∀f ∈

C∞R (S1). Accordingly, the simulation target becomes

|(Ω,
k∏
j=1

eiL(f (j))Ω)|. (3.4)

Therefore, it makes sense to understand the complexity of an evolution infinitesimally, in

terms of its decomposition to a product of eiL(f)s, similar to how local unitary operations

can be defined as (a product of) eiH for local Hamiltonians H.
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Theoretically, given any accuracy, (3.4) is computable as long as functions f (j)s are

computable. However, we can not assume any computable function in our definition of

the problem. This is similar to how the problem of unitary evolution of quantum many-

body systems only assumes local Hamiltonians that are a sum of ultra-local interaction

terms. Thus, the set of local operators should be specified. Let F be the set of local

operators among eiL(f)s that can be considered in (3.4) as part of the inputs of the

simulation problem.

Ideally, this set should be similar to its analog in other settings, where it is generated

by an ultra-local generating set. It is believed that the ultra-local terms are not among

eiL(f)s; this argument is made in the next part on correlation functions (3.4.2) and Remark

3.4.1. Our investigation in this part is on the operators eiL(f)s that should be among the

local operators.

For example, the operator eif0L0 which is the evolution by the CFT Hamiltonian

corresponding to the constant function f ≡ f0 is certainly one of the operators one would

want in F . More generally, ei(f̂mLm+f̂mL−m) corresponding to the real-valued function

f = f̂me
imθ + f̂me

−imθ must be in F as well. Therefore, it is reasonable to ask a finite

combination of these to be simulated efficiently. This means eiL(f) ∈ F for f having finite

Fourier series.

We can wonder which functions with infinite Fourier series can be considered for

the simulation problem. An analogy in quantum computation, would be to think of a

hermitian matrix H that may be non-local, but its non-local effect, by the non-local

interaction terms, is exponentially small. This translates to a unitary operator which is

non-local but has an action exponentially close to a local operator around some “centers”

of action. In general, recall the Fourier coefficients f̂n are rapidly decaying

∀k,∃Nk such that ∀|n| ≥ Nk =⇒ |f̂n| ≤
1

nk
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but what the rate of this decay (or equivalently, the growth rate of Nk) should be is

unclear. Perhaps, an exponentially decaying f̂n (corresponding to analytic functions)

or a polynomial growth for Nk is the answer. Computing the dependence of the rate of

convergence of the scaling limit in Corollary 2.5.10 on Nk could help answer this question.

So far, we can safely assume that the set F has all operators corresponding to func-

tions with finite Fourier series, hence, the following definition for the unitary evolution

simulation problem.

Definition 3.3.1 [CFT UNITARY EVOLUTION] Inputs: Given k and real-

valued functions f (j) with nj many Fourier coefficients for 1 ≤ j ≤ k, each coefficient

( ˆf (j))m computable in polynomial time p(m) with respect to m using a classical Turing

machine.

Output: An approximation of the following up to an error ε, with complexity mea-

sured with respect to {1
ε
, n1, . . . , nk, k} ∪ {( ˆf (j))m}j,m

|(Ω,
k∏
j=1

eiL(f (j))Ω)|. (3.5)

The conjecture in the same spirit of TQFT is

Conjecture 3.3.1 ([4], Conjecture 5.6) CFT UNITARY EVOLUTION is in BQP.

Generically, the problem is BQP-complete.

In TQFT on the sphere, unitary evolution on the vacuum is trivial, as it is a one

dimensional space. In CFT, due to the existence of descendants provided by L−m for

m > 1, we have a nontrivial problem in an infinite dimensional Hilbert space, the unitary

Virasoro VOA Vc,0.

Remark 3.3.1 One can generalize the above to other sectors Vc,h or even replace Ω

with the primary fields other than the vacuum in the VOA. Thus, the generalization of
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Definition 3.3.1 includes the expectation value for any primary state ξ instead of Ω. We

will address this in section 3.5, using the Fock space construction of VOAs.

The AC approach provides some motivation for which operators have to be in F .

Further, it gives a discretized picture of what unitary evolution looks like in a CFT: Take

many particles on a chain where it is allowed to have fusion between nearby particles

with certain penalties for the undesired fusion. The value of the penalties is what gives

the function f . If one lets the system evolve in this setting, the unitary evolution guided

by those constraints is eiL̃(f). If f is the constant function, then the CFT Hamiltonian is

recovered.

But the AC approach may not be the right one. To approximate (3.4) using ACs,

we first need a proof that AC gives the VOA in the scaling limit. Furthermore, a bigger

obstacle could be proving the BQP-completeness, as the expression for approximating

the operators eiL(f) are exponentials of weighted sum of all eis. It is hard to build specific

unitary operators, like a nice universal gate set, without a more detailed understanding

of eiL̃(f)s.

Also note that Lns are considered to be local terms, but Ln = Y (ω, f) is given by the

smearing (position) function f(eiθ) = einθ. Fourier transforms send locality in spacetime

to that of energy-momentum. If one considers Y (ω, z) as (ultra-)local in space basis,

then any of its Fourier modes, like Ln, should be viewed as (ultra-)local in an energy

basis (based on energy local degrees of freedom). We speculate that it is unlikely that

the problem defined above has an algorithm based on a computational basis that uses a

discretization of space(time), like AC (or other statistical 2d lattice models).

Finally, one needs to prepare the vacuum which is also a nontrivial problem (see [75]

for the case of Ising). By using a basis based on energy, this issue is non-existent, as

demonstrated later in section 3.5 using the Fock space construction of VOAs.
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3.3.1 Alternative approach

The first alternative approach is to use a combinatorial realization of the action of

Virasoro generators called path representations, originally developed to compute the

character of VOAs involving counting the dimension of each weight space. Path repre-

sentations of the states of the Hilbert space and how the Virasoro algebra acts on these

paths can be analyzed. We refer to [76] for nonunitary minimal models M(2, q) (with

q odd) where the action of every Virasoro generator is obtained, and [77] for unitary

minimal models, where actions of higher Virasoro generators is not known yet.

Another approach would be to derive an exact expression for |(Ω, U(γ)Ω)|, which

would be easier to think about from a computational perspective. Exact expression can

be obtained for all free models [78, see Theorem 6.2.3 and section 7], but they are not

suitable for computation, and no such closed formula is known for higher (interactive)

minimal models.

3.3.2 Fock space construction of CFTs

A more promising approach is investigated in section 3.5, with results under certain

conditions (Theorem 3.5.3), using large enough tensor power of the Fock space. This

contains many interacting models as subtheories, including all su(2)k WZW models and

all minimal models (see [79, section 4] for a list). The Fock space is a free theory given

by (χ0 + χ 1
2
)(χ0 + χ 1

2
) and can be modelled using an ultra-local realization of the Dirac

operators Ψk,Ψks ([3]).

Let us briefly discuss the idea behind this ultra-localization following [72, section

3.2]. The naive localization attempt of Dirac operators corresponds to the mapping

Ψ−k1 . . .Ψ−klΩ → |0 . . . 1 . . . 1 . . . 0〉 where 0 < k1 < . . . < kl < n and the one states are

used for positions ki+
1
2

only. We call the occupation number for k−th position ok, which
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is 1 if Ψ−k+ 1
2

is among the acting operators on the vacuum and 0 otherwise. To know the

action of any operator Ψ−m, we generally need to know the parity of total occupation

number tm =
∑

i≤m+ 1
2
oi, as the Dirac operators anticommute to put Ψ−m in its place in

the ordered sequence k1 < . . . < kl. Thus, the operator is not ultra-local as its action in

the worst case is dependent on all qubits. Bravyi and Kitaev [3] use the following trick to

compute the parity of tm in O(log(n)) with a clever ordering of the mode indices. First,

represent any mode index ki + 1
2
∈ {1, . . . , n} by its bit string of length s = dlog(n)e.

Then consider the following partial ordering: x = xs . . . x1 � y = ys . . . y1 if for some

r, xi = yi for i > r and yr−1 = yr−2 = . . . = y1 = 1. Now let nj =
∑

r�j+ 1
2
or. Any

total occupation number tm =
∑

r≤m+ 1
2
oj can be computed from the nj quantities in

O(log(n)) time and changing the occupation number of any mode oj requires updating

only O(log(n)) of the nj quantities.

Using the above localization, it can be shown that a local expression for the Vi-

rasoro generators of any unitary subtheory can be derived using the Dirac operators.

By some energy truncation and taking the scaling limit, one should compute the rate

of convergence and show that it is efficient. This could provide a faster convergence

than AC; indeed, CFT has quantized energy but continuous spacetime. Using the Fock

space means using the energy local degrees of freedom as the local basis for quantum

computation, instead of the space local degrees of freedom as in AC.

3.4 Correlation function simulation problem

The second problem is the simulation of the correlation functions of CFT. Similar

to TQFT ([2, 80]), we have insertions of n fields (like a fusion tree in a Temperley-Lieb

diagram) followed by a unitary operator (braiding) and the probability of getting back

to some state (inner product with another fusion tree). Loosely speaking, for any QFT,
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initialize create

anyon pairs

applying circuits braiding anyons

readout fusion

Computation Physics

Topological Quantum Computation

Figure 3.1: Time flows from bottom to top ([58, Figure 3]).

the following two seem to be our target

|(
∏
j∈S′

ρj(wj)Ω, U
∏
i∈S

φi(zi)Ω)|, (3.6)

|(
∏
j∈S′

ρj(gj)Ω, U
∏
i∈S

φi(fi)Ω)|, (3.7)

with U some local unitary operator, φi, ρj some fields from set of sectors S, S ′, and

insertion points or smearing functions zi, wj (fi, gj).

As quantum computation is usually performed in the Schrödinger picture, we pick our

insertion points or smearing functions so that they do not have any explicit parameter of

time. In the case of (1 + 1)−d CFT, this means insertion points are on the unit circle S1

(space at present time in the radial setting) and smearing functions are smooth complex-

valued functions on the unit circle, i.e. inside C∞C (S1). It is only through U that time
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evolution occurs. In the next parts, we will address the following questions:

• Ideally, both quantities above are probability amplitudes between 0 and 1, but they

are not so by default. What is the correct normalization?

• What is the nature of the computational basis in each version?

• What are the set of ultra-local unitary gates used to construct the unitary U?

These issues are discussed for both versions of the correlator for chiral CFT, but all the

definitions and ideas can be readily generalized to full CFT.

3.4.1 Simulation of the point-like correlation function

Throughout this and the next part, we will assume a nice VOA: unitary, CFT-type,

rational (including C2−co-finite), will all intertwiners being energy-bounded. Given our

knowledge so far, our simulation target seem be the following

|
(
Yl̃(b

(l), wl) . . .Y1̃(b(1), w1)Ω, U(γ)Yn(a(n), zn) . . .Y1(a(1), z1)Ω
)
|, (3.8)

where |wj| = |zi| = 1, a(i) ∈ Ai, b(j) ∈ Bj are hermitian primary fields in the irreducible

modules, and Yi,Yj̃ are of type
(

Ci
Ai Ci−1

)
,
( C̃j

Bj C̃j−1

)
with irreducible modules Ci, C̃j. To

have a nonzero result, we need C̃0 = C0 = V and C̃l = Cn.

Even if intuitively the VOA mathematical framework of CFT should easily allow the

computation of such correlation, it involves some analysis (carried out in section 3.6)

to show that (3.8) is well-defined. Note that correlators are generally well-defined only

when insertions are time-ordered, i.e. |z1| < . . . < |zn|, and similarly for |wi|s. Also,

observe that singularities in (3.8) need to be avoided. For example zi 6= zj. This means

(zi)i ∈ Confn(S1) and similarly (wj)j ∈ Confl(S
1), where we recall the configuration

space for X ⊂ C is defined as Confn(X) = {(x1, . . . , xn) ∈ X | xi 6= xj}.
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This correlation function is not a probability amplitude. In QFT, this is interpreted

as an evaluation of some probability density function on the continuous space. Thus one

expects the integral of (3.8) over the space of eligible insertions points (non-singularities)

with some measure to be finite. However, this is not clear even in the case of a simple Ising

fermion correlation function with γ the identity diffeomorphism, where
∫ ∫
| 1
w1−z1 |

2 =∞.

Generally speaking, in QFT, the rigorous mathematical formulation of the probability

density function is not known, even though it is obvious it involves the term (3.8).

Without this, it is not possible to define this version of the simulation problem. Of

course, once the density function is known, it is a valid mathematical question whether

sampling such density function or computing it directly can be simulated efficiently using

a quantum computer.

Assuming a rigorous formulation of the problem, one can speculate on the nature

of the computational basis of the quantum algorithm. Since the ultra-localization is

happening with respect to continuous space, with uncountably many points, the com-

putational basis likely approximates Yn(a(n), zn) . . .Y1(a(1), z1)Ω, with the help of some

lattice and scaling limit.

Approximating CFTs with finite anyonic systems can be done through scaling limit.

However, as demonstrated in the previous chapter, the space embedding in scaling limit is

non-local. Furthermore, it is unclear how to approximate the intertwiners on the anyonic

chains, as our success has been limited to the trivial intertwiner, i.e. the vertex operator

Y () = Y
( V
V V

)
. Even in this case, there is much to be done to ensure a scaling limit

algebra convergence (see section 2.5.3).

In (3.8), the unitary is set as U(γ). It is shown later in Lemma 3.6.14 by using

conformal covariance, that fields inserted at zi essentially move to γ(zi), making our
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target

|
(
Y1†(η1(a(1)), γ(z1)) . . .Yn†(ηn(a(n)), γ(zn))Yl̃(b

(l), wl) . . .Y1̃(b(1), w1)Ω, U(γ)Ω
)
|. (3.9)

Thus, avoiding the singularities also requires γ(zi) 6= wj. Note ηi(a
(i)) = a(i), as the

primary fields are chosen to be hermitian. As alluded to previously, it is believed that

U(γ) are local but not ultra-local unitary operators, implying the possibility of having

unitaries other than U(γ) in (3.8). This is discussed in more details in the next part.

3.4.2 Simulation of the smeared correlation function

A smearing function is interpreted as the probability density function of the position

of the particle. As the formal definition below suggests:

Y(a, f) :=

∮
Y(a, z)f(z)zwt a+τ dz

2πiz
=
∑
n∈Z

f̂n(a)n,

the definition of the smeared correlator should be the probability distribution that comes

from the weighted integration of the probability density functions (point-like insertion)

by the smearing functions over S1. This interpretation is formalized in [31, Proposition

3.12] and Theorem 3.6.12.

Based on (3.7), our simulation target seems to be the following

|
(
Yl̃(b

(l), gl) . . .Y1̃(b(1), g1)Ω, U(γ)Yn(a(n), fn) . . .Y1(a(1), f1)Ω
)
|, (3.10)

with fi, gj ∈ C∞C (S1). For the point-like version, the correlation function had to be shown

that it is well-defined. Here, as all intertwiners are energy-bounded, both vectors involved

in the inner product are smooth vectors inside V(∞), and this is a usual inner product of
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the Hilbert space V . This also allows us to perform the normalization in order to have

an actual probability amplitude

|
(
Yl̃(b

(l), gl) . . .Y1̃(b(1), g1)Ω, U(γ)Yn(a(n), fn) . . .Y1(a(1), f1)Ω
)
|

||Yl̃(b(l), gl) . . .Y1̃(b(1), g1)Ω||.||Yn(a(n), fn) . . .Y1(a(1), f1)Ω||
. (3.11)

In the point-like discussion, we observed that the computational basis should approximate

the continuous space basis. This makes the analysis far more difficult and is not the best

approach given that CFTs naturally arise as the low energy behavior of increasingly

large size quantum theories. Further, unlike space, energy is quantized. As quantum

computation occurs in finite discrete spaces, a computational basis that relates to energy

is more desirable, which is the case for the smeared version. The functions fi, gj are

generated by Fourier modes einθ, and one can think of Y(a, e−inθ)Ω = (a)−nΩ as the

ultra-local insertion of a primary field in the energy basis, where the smearing function

f , i.e. the position probability density function, is e−inθ. Thus the possible values for

fi, gj are the Fourier modes eikθ. For Ising, this means our computational basis are

excitations of the vacuum with Dirac Ψ or spin σ operators depending on the sector, e.g.

Ψ−kn . . .Ψ−k1Ω.

With a judicious choice of the basis, one should be able to prepare these states

quickly, perhaps in constant time, similar to the case of TQFT [7, Chapter 7.2-7.3]. As

an example, using Fock space construction of a CFT, the operators Ψ−k can be ultra-

localized [3] and the computational basis {Ψ−kn . . .Ψ−k1Ω} can be constructed efficiently.

In terms of the unitary evolution, one can rewrite (3.10) as

|
(
Y1†(η1(a(1)), βd

a(1)
(γ)(f1)) . . .Yn†(ηn(a(n)), βd

a(n)
(γ)(fn))Yl̃(b

(l), gl) . . .Y1̃(b(1), g1)Ω, U(γ)Ω
)
|.

(3.12)
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The adjoint action βda(γ) is defined in (3.86) and this rewriting follows from the conformal

covariance of the smeared field. The unitaries U(γ) are all symmetries of the theory and

are products of exponentiation of a smeared quasi -primary field L(f), not a primary

field. This leads us to speculate on whether other physical unitaries could replace U in

(3.7), which generate eiL(f)s.

As mentioned in [3], in a fermionic system with computational basis {Ψ−kn . . .Ψ−k1Ω},

the physical unitary operators involve:

• eiβΨ−jΨj (action by an external potential),

• eiβΨ−jΨjΨ−kΨk (two-particle’s interaction),

• ei(αΨ−jΨk+αΨ−kΨj) (tunneling),

• ei(αΨkΨj+αΨ−jΨ−k) (interaction with a superconductor),

where β ∈ R, α ∈ C. These operators generate a universal gate set. As a result, if one

considers such operators as physical in Ising CFT, the simulation of Ising CFT correlation

function is BQP-hard.

Inspired from this, the following physical unitaries may be what the ultra-local unitary

gates should be. They are the exponentiation of the ultra-local field insertions of some

hermitian primary field a, i.e. Y(a, einθ) = (a)n, and their adjoint:

{eiβ(a)†n(a)n , ei(α(a)†n(a)n(a)†m(a)m+α(a)†m(a)m(a)†n(a)n), ei(α(a)†n(a)m+α(a)†m(a)n), ei(α(a)n(a)m+α(a)†m(a)†n)}.

(3.13)

The intertwiner Y is of type
(
C
A B

)
given the sector B on which the unitary is supposed

to act on. We define UV =
⋃

hermitian primary fields

Ua, where Ua is the set given above for all

β ∈ R, α ∈ C.
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Remark 3.4.1 It is important to note that U(γ) =
∏
eiL(fj) simulation would likely

require the ability to simulate the unitaries above; the Virasoro field L(f) in all UMMs or

WZW models is generated by some other primary fields (we refer to Remarks 1.3.12 and

1.3.14 for the formulae). As a result of the Borcherds identity, the formula for Ln +L−n

is an infinite hermitian sum of terms like (a)†n+m(a)m for all m ∈ Z, as we saw in the

case of Ising when writing Ln + L−n as a sum of Ψ−k−nΨk and their adjoints in eq.

(2.5). Even though this sum is infinite, when restricted to any energy cut-off E, it only

involves poly(E) many terms. Thus, it makes sense to set the unitary gates as proposed

above, and try to solve the simulation problem with these unitaries. Given that, some

analysis similar to section 3.5 for unitary evolution (a generalization of the Trotter-Kato

approach), should follow to approximate eiL(f)s.

Definition 3.4.1 (CFT Correlation Function Simulation Problem)

Inputs: Given error rate ε > 0, hermitian primary fields {b(j)}lj=1, {a(i)}ni=1, with modes

mj, ki and intertwiners Yj̃,Yi of type
( C̃j

Bj C̃j−1

)
,
(

Ci
Ai Ci−1

)
where Bj, C̃j, Ai, Ci are irreps of

V satisfying C̃0 = C0 = V and C̃l = Cn, and finally a unitary U description as a product

of N unitaries UV with all chosen modes used to describe U forming a set MU .

Output: An approximation of the normalized correlation function below with error

rate ε with complexity measured with respect to {ml, . . . ,m1, kn, . . . , k1,
1
ε
, N}∪MU where

ki,mj ≥ 0.

|
(
Yl̃(b

(l), e−imlθ) . . .Y1̃(b(1), e−im1θ)Ω, UYn(a(n), e−iknθ) . . .Y1(a(1), e−ik1θ)Ω
)
|

||Yl̃(b(l), e−imlθ) . . .Y1̃(b(1), e−im1θ)Ω||.||Yn(a(n), e−iknθ) . . .Y1(a(1), e−ik1θ)Ω||
. (3.14)

Conjecture 3.4.1 The CFT Correlation Function Simulation Problem is in BQP and

generically BQP-complete.

Note we did not manage to simulate the spin field σ and its modes for Ising CFT. As
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mentioned previously, it was shown in [3] to be BQP-complete if one only uses the

fermionic field Ψ. Thus the problem above for Ising is known to be BQP-hard.

3.4.3 Alternative approach

CFT in nature arises from finite systems in some limit, and as such, it is always the

case that CFT in the continuum is the approximation of physical reality and not itself.

The mathematical frameworks for this continuum provide many tools to study the large

size finite models in their low energy spectrum, similar to how calculus can be thought

of as a powerful tool to study discrete functions defined at many points. Therefore, one

may ask whether these facts need to be accounted for in the simulation problem. If

so, the strictly physical version of the problem is likely easier as there is no need for a

potentially difficult convergence analysis. Of course, mathematical curiosity requires that

it be formulated also in the continuum, and the convergence rate of discrete to continuum

rigorously be studied.

However, we need a canonical definition of discrete CFT as there is usually a wide

range of lattice models with the same CFT in the scaling limit, otherwise there is no

natural discrete version of the CFT simulation problem. One can speculate that this

discretization is provided by some q−deformation of the symmetry algebra, the Vira-

soro algebra. There are many attempts in this area [12, 81, 82], but none provide the

framework we want to.

This suggests a new approach to the whole CFT and the simulation problem, where

one needs to formulate the q−deformation of the Virasoro algebra and study its repre-

sentation theory as the discrete CFT. This should be followed by a study of the limit

(and convergence rate) when q → 1.
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3.5 Unitary evolution simulation using Fock space

construction

Define the Fock space as H = (χ0 + χ 1
2
)(χ0 + χ 1

2
) with Hamiltonian

L0 = L0 + L0 =
∑

k∈N− 1
2

kΨ−kΨk +
∑

k∈N− 1
2

kΨ−kΨk

and character
∏

k∈N− 1
2

(1 + qk)2. The Ψk,Ψks are the Dirac operators of the left and right

moving sectors. They act as Ψk ⊗ 1 and 1 ⊗ Ψk, respectively. For this reason, they are

relabelled by (commuting operators) ΨL
k ,Ψ

R
k .

3.5.1 Construction of the restrictions of Virasoro modes

The first steps of our approach starts by building this Fock space as a strong scaling

limit of finite spaces. Then, restricting to a desired subtheory gives restrictions of the

Virasoro field to finite subspaces. We can divide this construction into the following

steps:

(a) First, consider the tensor product Hn = HL
n⊗HR

n , where each HL,R
n with dimension

2n is generated by the action of n Dirac operators on their vacuums ΩL,R
n . The n

creation Dirac operators are ΨL,R
−k with k ∈ S = {1

2
, 3

2
, . . . , n− 1

2
} and their adjoints

are the annihilation operators, ΨL,R
k acting on HL,R

n , respectively.

(b) Each HL,R
n is given a special basis ([3]) using qubits (C2)⊗n, so that the Dirac

operators are all ultra-local operators acting nontrivially on O(log(n)) many qubits.

In particular, any bilinear expression in terms of Dirac operators is a local operator.

If hermitian and acting on a finite dimensional Hilbert space, its evolution can

be simulated efficiently on a quantum computer. This will be the case for the
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approximation of the hermitian operator L(f). Moreover, this construction leaves

the vacuum Ωn = ΩL
n ⊗ΩR

n as a basis element |00 . . . 0〉⊗ |00 . . . 0〉, making vacuum

preparation trivial.

(c) Define the Hamiltonian Hn =
∑

k∈S kΨL
−kΨ

L
k +

∑
k∈S kΨR

−kΨ
R
k . We have a strong

scaling limit to (H,L0) in which the vacuum Ωn is sent to the vacuum Ω ∈ H.

More precisely, Hn = L0P
n|Hn where P n is the projection of H onto Hn and thus

Hn can be extended to H (by zero) using L0P
n. Note that P nL0P

n = L0P
n, as L0

does not increase the energy.

(d) The above generalizes. For any operator O formed by bilinear terms of Dirac

operators each of which decreases the energy (like Lm with m > 0), the operators

P nOP n = OP n and P nO†P n = P nO† (like L−m with m > 0) are both local

operators acting onHn with scaling limit O and O†. Indeed, OP n (P nO†) is exactly

given by the bilinear terms of O (O†) that do not include any Dirac operator with

mode higher than n or lower than −n.

(e) By abuse of notation, we will use the same notation P n for the projection onto Hn,p

which is the subspace of H⊗p with elements of total energy smaller than n. This is

strictly contained in H⊗pn ; e.g. for n = 3, p = 2, we have ΨL
− 5

2

Ω3 ⊗ ΨL
− 3

2

Ω3 ∈ H⊗2
3

but it is not in H3,2 since its energy is higher than 3.

(f) The facts mentioned in step (d) hold for tensor powers of H. Indeed, this applies

to Virasoro modes of any subtheory (as mentioned below) of H⊗p.

(g) Many chiral CFTs (including minimal models) are unitary subVOAs of some H⊗p;

see [79, p.42-43]. The tensor power p depends on the subVOA V , thus is a constant

in the simulation problem. V inherits the grading of H⊗p and its conformal vector
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is the projection of that of H⊗p to V ([25, proposition 5.29] and [79]). The confor-

mal vector ω ∈ V2 is inside the weight 2 subspace of H⊗p, which has an explicit

orthonormal basis formed by all creation Dirac operators applied on the vacuum

Ω⊗p Ω⊗p (which is denoted by Ω by abuse of notation):

{vi} = {Ψ(L,R),j
−k Ψ

(L,R),j′

−k′ Ω |k′ = 1

2
, k =

3

2
, 1 ≤ j, j′ ≤ p} (3.15)

with weight −1
2
,−3

2
, coming from the j, j′−th copy in the tensor power and be-

longing to either of the (L,R) sectors. The basis has (2p)2 elements vi. Given the

VOA, for some computable constants µi in constant time, we have

ω =
∑
i

µivi. (3.16)

(h) The restriction of the vertex operator Y (−, z) of H to V is the vertex operator of

the latter, as V is a subVOA of H. Taking this on both sides of the above equation,

we obtain the Virasoro field for V . On the other side, for each vi, Y (vi, z) at each

mode is a bilinear expression of Dirac operators. More precisely, each vi defined

in 3.15 is either a tensor product of Ψ− 1
2
Ω and Ψ− 3

2
Ω (when j 6= j′ or Ψs are

not of the same chirality L or R), or is of the form Ψ− 3
2
Ψ− 1

2
Ω (when j = j′ and

both Ψs are of the same chirality L or R). The vertex operator corresponding to

these are respectively linear (fermionic field Ψ− 1
2
Ω) and linear (derivative of the

fermionic field Ψ− 3
2
Ω), and bilinear (the Ising model Virasoro field 1

2
Ψ− 3

2
Ψ− 1

2
Ω).

Thus the Virasoro mode Lm of V will also be bilinear in Dirac operators. Since V

is a unitary subVOA, its hermitian form is also a restriction of that of H⊗p, and

we are completely familiar with the hermitian form of the latter. Therefore, due

to steps (d-f), for m ≥ 0, The hermitian operator P nL−m + LmP
n acts on Hn,p
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as a local operator. Notice, there is no error O( 1
n
) like in the previous chapter

approximations, as we are directly taking the restriction of Lm to some subspace.

Remark 3.5.1 Unless V = H⊗p, the subspace Hn,p is strictly larger than Vn, the sub-

space of energy at most n, described by the VOA Hamiltonian L0, and does not give V

in the scaling limit. This does not matter for simulation purposes, and is modelled by

what is usually called a junk Jn computational subspace Vn⊕ Jn = Hn,p. The finite local

version of the Virasoro modes LmP
n, P nL−m for m > 0 are converging to Lm, L−m where

their action is extended to H⊗p. Furthermore, LmP
n, P nL−m act on the whole H⊗p by

definition, though they preserve Hn,p. This allows us to compare them directly to L±m

without any artificial push-forward, as was the case in the previous chapter using some

scaling limit construction. Finally, note the vacuum for V is also Ω, which means no

preparation for the vacuum is required for simulation as mentioned in (b). These last

two points are significant advantages that this approach provides over that of AC.

3.5.2 Convergence of unitary evolution on Fock space

With the previous settings V ↪→ H⊗p, and Ω being the vacuum, let us consider a

finite sum of the Virasoro modes L(f) =
∑
|m|≤N f̂mLm where f(eiθ) =

∑
|m|≤N f̂me

imθ ∈

C∞R (S1) has a finite Fourier series.

First, we try a very simple case of Conjecture 3.3.1. We will generalize our method

and mention the obstacles to proving the full version of the conjecture.

Theorem 3.5.1 Given f ∈ C∞R (S1) with finitely many Fourier coefficients, a quantum

computer can approximate the following up to an error ε in polynomially many steps in

1
ε

|(Ω, eiL(f)Ω)|. (3.17)
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In the above, the complexity of the algorithm is only measured with respect to the error.

We do not claim the above can not be exactly computed (see [83] for the similar problem

in TQFT which is #P-hard). But as far as we are aware of the literature, there is a lack

of an exactly computable description of this simplest case of unitary evolution.

We set f̂m = 0 for |m| > N . Define the unitary eiL
n(f) given by the hermitian operator

Ln(f) =
∑
m<0

f̂mP
nLm +

∑
m≥0

f̂mLmP
n (3.18)

acting on the finite dimensional Hilbert space Hn,p. From the construction steps outlined

in 3.5.1, eiL
n(f) can be simulated efficiently on a quantum computer with 2np many

qubits, where p depends on V . Hence, it suffices to prove that for n larger than some

constant C,

||(eiLn(f) − eiL(f))Ω|| < 1

n
, (3.19)

and take n = max(dCe, d1
ε
e+ 1) to finish the proof.

Our arguments will be based on estimations found in [84] regarding the action of

eiL(f). Below, we introduce and recall some notations and the relevant inequalities.

Notations. Let A = L0 + 1 and V(s) for s ≥ 0 be all ξ ∈ V such that the s−th norm

is finite (not to be confused with Vs, the energy s eigenspace):

||ξ||s := ||Asξ|| = ||(L0 + 1)sξ|| <∞ (3.20)

Notice || · ||0 = || · || the norm on V . Let V(∞) = ∩sV(s) to be the set of smooth vectors for

A . As V(s) ⊂ V(s′) for s > s′, clearly V ⊂ V(∞). ||.||s gives two continuous semi-norms on
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skew-adjoint operators X (which will be assumed to be some iL(f))

|X|s+1 = sup
ξ∈V∞

||Xξ||s
||ξ||s+1

, (3.21)

|X|A,s+1 = sup
ξ∈V∞

||[A,X]ξ||s
||ξ||s+1

. (3.22)

Finally, recall the r−th norm for r ≥ 0,

||f ||r :=
∑
m

|f̂m|(|m|+ 1)r. (3.23)

There are two obvious observations that will be used implicitly in our estimates

||f ′||r =
∑
m

|mf̂m|(|m|+ 1)r ≤ ||f ||r+1 , ||(L0 + 1)ξ||s = ||ξ||s+1. (3.24)

Let us prove the above seminorms are finite for smeared Virasoro fields. As the VOA

is unitary, the representation of Virasoro algebra gives an energy bounded conformal field

([25, 84]), i.e.

||L(f)ξ|| ≤ Cω||f ||rω ||ξ||1, (3.25)

for some Cω, rω > 0 depending on V . This follows from the sum of

||Lmξ|| ≤ Cω(|m|+ 1)rω ||ξ||1, ∀m. (3.26)

Further, [A,X] = iL(f ′). Iteratively applying this relation leads to (see also Lemma
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3.6.13)

||Xξ||s ≤Ms||f ||rω+s||ξ||s+1 (where Ms = 2sCω) =⇒ |X|s+1 ≤Ms||f ||rω+s (3.27)

||[A,X]ξ||s = ||L(f ′)ξ||s ≤Ms||f ′||rω+s||ξ||s+1 =⇒ |X|A,s+1 ≤Ms||f ′||rω+s (3.28)

The above also shows why L(f) is a map from V(∞) → V(∞). A stronger statement is true

for the exponentiation where we have eX : V(s) → V(s) as a unitary operator. Moreover

the following estimate holds ([84, proof of Proposition 2.1]):

∀ξ ∈ V(s) : ||eXξ||s ≤ e2s|X|A,s||ξ||s (3.29)

Going back to the problem, let Y = iLn(f). To estimate ||(eX − eY )ξ||, we will proceed

as in the proof of [84, Corollary 2.3]. Take ξ ∈ V(∞) and define F (t) = e−tY etXξ. F (t) is

differentiable and Ḟ (t) = e−tY (X − Y )etXξ, implying

||(eX − eY )ξ|| =

||eY
∫ 1

0

Ḟ (t)dt|| ≤
∫ 1

0

||e(1−t)Y (X − Y )etXξ||dt =

∫ 1

0

||(X − Y )etXξ||dt, (3.30)

where the second equality holds as e(1−t)Y is a unitary. Let ξt = etXξ. Using the definition

of Y in (3.18), the goal is to have an estimate on

||(X − Y )ξt|| = ||(
∑
m<0

f̂m(1− P n)Lm +
∑
m≥0

f̂mLm(1− P n))ξt||. (3.31)

Recall that for |m| > N , the Fourier coefficients are zero. From Remark 3.5.1, we know
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Vn ⊂ Hn,p. Therefore, for −N ≤ m < 0 : Lm : Vn+m → Vn ⊂ Hn,p, which implies

(1 − P n)Lm = (1 − P n)Lm(1 − P n+m) = (1 − P n)Lm(1 − P n−N). If n < N , then

P n−N = 0. By choosing n > N ,

||(X − Y )ξt|| = ||(
∑
m<0

f̂m(1− P n)Lm(1− P n−N) +
∑
m≥0

f̂mLm(1− P n))ξt|| ≤ (3.32)

≤ Cω||f ||rω ||(1− P n−N)ξt||1.

The last inequality is derived using the triangle inequality followed by

||(1−P n)Lm(1−P n−N)ξt|| ≤ ||Lm(1−P n−N)ξt|| , ||Lm(1−P n)ξt|| ≤ ||Lm(1−P n−N)ξt||,

and applying (3.26). We wish to show that (3.32) is smaller than 1
n

when ξ = Ω and n

is larger than some constant. We need to use

||ξt||3 = ||etXξ||3 ≤ e6|tX|A,3||ξ||3 ≤ e6|X|A,3 ||ξ||3 ≤ e6M2||f ′||rω+2 ||ξ||3 (3.33)

which follows from (3.28, 3.29). Let ξt =
∑

l(ξt)l with (ξt)l ∈ Vl. Recall

||ξt||s = ||(L0 + 1)sξt|| = (
∞∑
l=0

(l + 1)2s||(ξt)l||2)
1
2 . (3.34)
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Let us suppose that (3.30) is > 1
n
. We find a constant upper bound for n:

1

n
< ||(eX − eY )ξ|| =

∫ 1

0

||(X − Y )etXξ||dt =⇒

(3.35)

1

n
< Cω||f ||rω

∫ 1

0

||(1− P n−N)ξt||1dt = Cω||f ||rω
∫ 1

0

(
∑

l>n−N

(l + 1)2||(ξt)l||2)
1
2 dt =⇒

(3.36)

(n−N)2

n
< Cω||f ||rω

∫ 1

0

(
∑

l>n−N

(l + 1)6||(ξt)l||2)
1
2 dt < Cω||f ||rω

∫ 1

0

||ξt||3dt

(3.37)

where we multiplied both sides by (n−N)2 in the last line. By (3.33), this implies

(n−N)2

n
< Cω||f ||rωe6M2||f ′||rω+2||ξ||3. (3.38)

Finally, specializing to the case of Theorem 3.5.1, where ξ = Ω =⇒ ||ξ||3 = 1, and the

norms depending on f and N are also constant (with regards to how complexity of the

algorithm is measured). Clearly for n higher than some constant the above inequality

does not hold, meaning (3.30) is smaller than 1
n
. This proves Theorem 3.5.1.

The proof actually provided an efficient estimate of the state eiL(f)ξ for any ho-

mogeneous ξ with given energy E. This energy can be a parameter of the algorithm

complexity, as ||ξ||3 is a polynomial in E in (3.38).

If N and f are accounted for in the complexity of the algorithm, the bound on n will

be polynomial if ||f ′||rω+2 is of log order O(log(N)). The following is the best we can

prove for this simulation problem on eiL(f)ξ.

Theorem 3.5.2 Inputs: Given function f with N many Fourier coefficients, with each

coefficient f̂m computable in polynomial time p(m) with respect to m using a classical
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Turing machine, and a unit homogeneous vector ξ with energy E prepared in advance.

Also given the promise that ||f ′||rω+2 is of order O(log(N)).

Output: The state eiL(f)ξ up to an error ε. The complexity of the algorithm is

measured with respect to {1
ε
, N,E, f̂m}.

The above problem is in BQP.

The above is a nontrivial result. Regarding the norm condition, it includes cases where

the Fourier coefficients f̂m are of order log(N)
(N+1)rω+4 .

Next case is the product of unitary operators eiL(f (j)) (Conjecture 3.3.1). Following

the previous theorem, our best result on the full version of Conjecture 3.3.1 is derived:

Theorem 3.5.3 Consider the same settings as in Conjecture 3.3.1, with the exception

of a prepared homogeneous state ξ of energy E instead of Ω, and the promise that

k∑
j=1

||(f (j))′||rω+2 (3.39)

is of order O(log(n1, . . . , nk, k)). Then one can efficiently approximate the state

k∏
j=1

eiL(f (j))ξ (3.40)

up to error ε in polynomially many steps in {1
ε
, n1, . . . , nk, k, E} ∪ {( ˆf (j))m}j,m on a

quantum computer.

Proof: LetXj = iL(f (j)) and Yj = iLn(f (j)). Using the intermediate sums technique

k∏
j=1

eYj −
k∏
j=1

eXj =
k∑
b=1

(
b−1∏
j=1

eYj(eYb − eXb)
k∏

j=b+1

eXj), (3.41)
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followed by the triangle inequality to sum up estimates on

||
b−1∏
j=1

eYj(eXb − eYb)
k∏

j=b+1

eXjξ|| (3.42)

will give the error rate of the estimate of (3.40). If each of the above is smaller than 1
n
,

the error is k
n

and choosing a higher n like nk, the desired rate of error is achieved. For

each of the intermediate terms in (3.42),

||
b−1∏
j=1

eYj(eXb − eYb)
k∏

j=b+1

eXjξ|| = ||(eXb − eYb)
k∏

j=b+1

eXjξ||, as eYj is unitary. (3.43)

After repeating the previous argument in Theorem 3.5.1, replacing ξ with
∏k

j=b+1 e
Xjξ,

N with nb and f with f (b) in (3.38),

(n− nb)2

n
< Cω||f (b)||rξe6M2||(f (b))′||rω+2||

k∏
j=b+1

eXjξ||3. (3.44)

According to (3.29, 3.28),

||
k∏

j=b+1

eXjξ||3 ≤ e
∑k
j=b+1 6|Xj |A,3||ξ||3 = e6M2

∑k
j=b+1 ||(f (j))′||rω+2 ||ξ||3. (3.45)

As a result

(n− nb)2

n
< Cω||f (b)||rωe6M2

∑k
j=b+1 ||(f (j))′||rω+2||ξ||3. (3.46)

By making sure that none of the k inequalities above for b = 1, . . . , k hold, the theorem

follows. The promise in the statement is needed to be able to have a polynomial bound

on n.
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Remark 3.5.2 In order to discard the promise, the first possible approach is to find a bet-

ter estimate for ||ξt||s than what (3.29) provides, which is not exponential in ||f ′||rω+s−1.

Below, an example is provided that shows the tightness of this bound. There is a need

to estimate accurately ||(1 − P n−N)ξt||s, instead of replacing it with ||ξt||s as is done in

(3.37). One can hope that ||(ξt)l||s has a rate of growth similar to the Taylor series term

||f ′||lrω+s−1

l!
of e||f

′||rω+s−1, in which case ||(1− P n−N)ξt||s is polynomially bounded.

Remark 3.5.3 This method has potential and provided some progress into the simulation

problem. The power of the Fock space to yield accurate restriction of the Virasoro field

on finite spaces is clearly more than that of ACs. The analysis of the convergence rate

becomes doable as well. Further, as mentioned in Remark 3.5.1, the issue of preparation

of any primary state in the vacuum sector is completely dealt with, as Ω is simply |0 . . . 0〉.

We leave it to the future to apply this method on functions with infinite Fourier series,

and to find out what possible additional promise is needed in that case.

We prove the claim made in Remark 3.5.2 regarding the growth rate of ||ξt||s. Notice

that for any γ(eiθ) = eiρ(θ) ∈ Diff+(S1), where ρ is a 2π−periodic diffeomorphism of R,

and h ∈ C∞R (S1), we have ([85, (15)])

U(γ)L(h)U(γ)† = L(γ∗(h)) + r(c, h, γ)1, (3.47)

where r(c, h, γ) is some constant, computed in [86, (3.27)]. The adjoint action γ∗ of

γ ∈ Diff+(S1) is defined as

γ∗(h)(z) =
1

(ρ−1)′(θ)
h(γ−1(z)), z = eiθ (3.48)

The function h is chosen to be h ≡ 1, giving L(h) = L0. This is required to take a power
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of (L0 + 1) acting upon ξt:

||ξt||s = ||(L0 + 1)sU(γ−1)Ω|| = ||(L0 + 1)sU(γ)†Ω|| = (3.49)

||U(γ−1)(L(γ∗(h)) + (r(c, h, γ) + 1)1)sΩ|| = ||(L(γ∗(h)) + (r(c, h, γ) + 1)1)sΩ||.

Therefore, our example would be to choose γ such that the above is exponential. Let

γ = exp(cos(Nθ)), hence U(γ) = eiL(f) with f(eiθ) = cos(Nθ) =⇒ L(f) = LN + L−N .

From standard Lie group theory γ∗ = exp(adf ). The map ad is defined as

adf (g) = [f, g] = f ′g − g′f, where f ′ :=
d

dθ
f(eiθ). (3.50)

We will show a lower bound for (3.49) that is exponential in N . We compute

adf (h) = f ′ = −N sin(Nθ) (3.51)

adf (sin(Nθ)) = −N sin2(Nθ)−N cos2(Nθ) = −N = −Nh.

As a result, adf : span{h, sin(Nθ)} → span{h, sin(Nθ)}. This implies the exponential

of the adjoint map, restricted to the subspace generated by the above two functions, is

precisely equal to its Taylor series:

exp(adf )h =
∞∑
k=0

(adf )
k

k!
h = (

∞∑
k=0

N2k

(2k)!
)h− (

∞∑
k=0

N2k+1

(2k + 1)!
) sin(Nθ). (3.52)

We will choose s = 1 and compute ||ξt=1||1 in this setting:

||
(
L
(
(
∞∑
k=0

N2k

(2k)!
)h− (

∞∑
k=0

N2k+1

(2k + 1)!
) sin(Nθ)

)
+ (r(c, h, γ) + 1)1

)
Ω|| (3.53)

154



Efficient Quantum Simulation of CFT Chapter 3

As the operator corresponding to the smearing field above is a sum of L0, LN , and L−N ,

the result is a sum of two vectors of weight 0 and N as we are acting on Ω. The two

vectors are orthogonal to each other, and in order to obtain a lower bound on the norm

above, we compute the norm of the weight N vector:

||(
∞∑
k=0

N2k+1

(2k + 1)!
)L−NΩ|| = (

∞∑
k=0

N2k+1

(2k + 1)!
)

√
cN(N2 − 1)

12
= (

eN − e−N

2
)

√
cN(N2 − 1)

12
.

(3.54)

This is clearly exponential in N , thus exponential in ||f ′||rω+s−1 = N(N + 1)rω+s−1 (we

chose s = 1, but this estimate works for any ||ξ1||s).

3.6 Point-like correlation function on the unit circle

To compute correlation functions, ideally, we would want the product of point-like

field insertions to give a well-defined vector. This is not the case in general, hence why the

observables are called almost linear and only their expectation values are well-defined.

Nevertheless, if the field insertions are inside the unit circle (meaning insertions are done

in the past in the radial setting), and they are energy-bounded, their product is a vector.

All theorems proven below are formulated using the vertex operator Y (a, z) for

energy-bounded primary field a. The hermitian assumption on a is not needed and

is only assumed in the quantum simulation problem. Moreover, one can also add the

quasi-primary Virasoro field ω to this collection, due to its conformal covariance prop-

erty similar to that of primary fields.

We will always implicitly adjust the weighting of the vertex operator by Y (a, z)zwt a =∑
(a)mz

−m, so that the modes (a)m with coefficient z−m change weights by −m. This

does not impact any of the convergence results as it is a simple global multiplication.
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Energy-boundedness implies:

||(a)mξ|| ≤ Ca(|m|+ 1)ra ||(L0 + 1)ξ||,∀ξ ∈ V(∞),

where if ξ ∈ Vk is homogeneous, then

||(a)mξ|| ≤ Ca(|m|+ 1)ra(k + 1)||ξ||.

All theorems generalize for intertwiners Y(a, z). We will make some remarks on the

possible subtleties of this generalization in the end.

As the product order can be important, we set a convention for the order of any

product as follows:
∏l

i=k Ai = Al . . . Ak, where the bottom index k of
∏

appears first in

the product. We also recall the definition of configuration space forX ⊂ C as Confn(X) =

{(x1, . . . , xn) ∈ X | xi 6= xj} and denote the closed unit disk by D1 and its interior by

D̊1 with the zeros removed giving D×1 , D̊
×
1 . This is important as the insertion points will

always be nonzero.

The final result in Theorem 3.6.16 is to show that the correlation of point-like inser-

tions on the unit circle, i.e. (3.8), rewritten here for the vertex operator Y = Y

(Y (b(l), wl) . . . Y (b(1), w1)Ω, U(γ)Y (a(n), zn) . . . Y (a(1), z1)Ω), (3.55)

is well-defined on Confl(S
1) ×γ Confn(S1). ×γ means the cartesian product with the

additional condition γ(zi) 6= wj. We prove this by demonstrating that (3.55) is equal to

(3.9) (up to some scalar), rewritten here for the vertex operator Y = Y

(Y (η(a(1)), γ(z1)) . . . Y (η(a(n)), γ(zn))Y (b(l), wl) . . . Y (b(1), w1)Ω, U(γ)Ω). (3.56)
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The proof involves using estimates and analytic continuation to find the definition of

correlators on Confl(S
1) ×γ Confn(S1) that are closer and closer in form to our target

correlator in (3.55).

• An important Lemma 3.6.1, which shows if insertions are done in the past, i.e.

|z1| < . . . < |zn| < 1, then
∏n

i=1 Y (a(i), zi)Ω ∈ V(∞) is an actual state (note that

Y (a(i), zi) are not linear operators on V(∞)).

• This implies Corollary 3.6.8, where by some analytic continuation argument,

(Ω, U(γ)
n∏
i=1

Y (a(i), zi)Ω)

is an analytic function defined on Confn(D×1 ).

• In Corollary 3.6.10, the first nontrivial result on the domain of (3.55) is obtained:

(
l∏

i=1

Y (b(i), wi)Ω, U(γ)
n∏
i=1

Y (a(i), zi)Ω)

is an analytic function defined on the region Confl(D̊
×
1 )×Confn(D̊×1 ). Fixing either

of zi or wi allows analytic extension to Confl(D
×
1 ) or Confn(D×1 ).

• To extend the domain to the boundary of the above configuration spaces, we will

need to relate the correlator to their smeared versions. By doing so, one can use the

known conformal covariance of smeared correlators, and send the smeared functions

to delta functions, in order to recover conformal covariance for point-like insertions

on the unit circle (Theorem 3.6.12 and Lemma 3.6.14):

(v, U(γ)
n∏
i=1

Y (a(i), zi)Ω) =
n∏
i=1

ρ′(φi)
d
a(i) (v,

n∏
i=1

Y (a(i), γ(zi))U(γ)Ω),
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where γ(eiθ) = eiρ(θ), da = wt a and v =
∏l

i=1 Y (b(i), wi)Ω for |wi| < 1.

• From one of our first results, the RHS of the previous equation is known to an-

alytically extend to |wi| = 1. By taking the adjoint of the fields Y (a(i), γ(zi))

to the other side of the inner product, the main Theorem 3.6.16 follows. It

shows (3.55) is well-defined on Confl(S
1) ×γ Confn(S1) and equals (3.56) up to

(−1)
∑
d
a(i)
∏n

i=1 ρ
′(φi)

d
a(i) .

We start the procedure outlined above by showing that past insertions form a smooth

vector.

Lemma 3.6.1 For insertion points |z1| < . . . < |zn| < 1

n∏
i=1

Y (a(i), zi)Ω = v =
∞∑
k=0

vk, (3.57)

where vk with energy k has norm smaller than B(| z1
z2
|, . . . , | zn−1

zn
|)zkn, for some function B

depending on a(i). As |zn| < 1, it follows v ∈ V(∞) ⊂ V.

Proof: Fixing k, we have to estimate

∑
k1,...,kn−1

||P kY (a(n), zn)P kn−1Y (a(n−1), zn−1) . . . P k1Y (a(1), z1)Ω||, (3.58)

where Pm projects onto Vm. Computing each term

|zn|mn . . . |z1|m1||(a(n))−mn . . . (a
(1))−m1Ω||, (3.59)

where
∑t

i=1mi = kt ≥ 0,∀t ≤ n − 1 and
∑n

i=1mi = k. Notice mn ≤ k as taking the
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adjoint of P k(a(n))−mn , if mn > k, gives zero. Next, using energy boundedness repeatedly,

||(a(n))−mn . . . (a
(1))−m1Ω|| ≤ (3.60)

(
n∏
i=1

Ca(i)(|mi|+ 1)ra(i) )(m1 + . . .+mn−1 + 1)sa(n) . . . (m1 + 1)sa(2)

Let Ca(1),...,a(n) :=
∏n

i=1 Ca(i) . Replace mn with mn+k, implying
∑n

i=1mi = 0 and mn ≤ 0,

and replace mi = ki − ki−1 for 1 ≤ i ≤ n with k0 = kn = 0. Rewriting the inequality

|zn|k
n∏
i=1

|zi|mi ||(a(n))−mn−k . . . (a
(1))−m1Ω|| ≤

Ca(1),...,a(n)|zn|k
n−1∏
i=1

(ki + 1)sa(i+1) | zi
zi+1

|ki .
n∏
i=1

(|ki − ki−1|+ 1)ra(i) . (3.61)

The factor zkn has been obtained. The rest needs to be shown to be smaller than some

function B() of | zi
zi+1
|. The terms

∏n
i=1(|ki−ki−1|+1)ra(i) can be replaced by the following

rough estimate

|ki − ki−1|+ 1 ≤ ki + ki−1 + 1 ≤ (ki + 1)(ki−1 + 1). (3.62)

Rewriting accordingly for the whole sum,

∑
k1,...,kn−1≥0

n−1∏
i=1

(ki + 1)sa(i+1)+r
a(i)

+r
a(i+1) | zi

zi+1

|ki (3.63)
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Notice that | zi
zi+1
| < 1, implying

∑
k1,...,kn−1≥0

n−1∏
i=1

| zi
zi+1

|ki =
1∏n−1

i=1 (1− | zi
zi+1
|)
. (3.64)

The factors (ki + 1)sa(i+1)+r
a(i)

+r
a(i+1) in (3.63) can be obtained by multiplying the above

by enough powers of | zi
zi+1
| and taking a derivative with respect to it sa(i+1) + ra(i) + ra(i+1)

times. The above function has its Taylor expansion also converging to its derivative (term

by term differentiation), implying uniform convergence to a function B(| z1
z2
|, . . . , | zn−1

zn
|).

Corollary 3.6.2 For u ∈ V(∞) the correlation function (u,
∏
Y (a(i), zi)Ω) is absolutely

convergent where |z1| < . . . < |zn| ≤ 1. More precisely, the sum

∑
k,k1,...,kn

|(P ku, P kY (a(n), zn) . . . P k1Y (a(1), z1)Ω)| (3.65)

is uniformly convergent in any compact neighborhood.

Proof: By the previous lemma, for u =
∑

k ckuk where uk a unit vector with energy

k, the above is bounded by

B(|z1

z2

|, . . . , |zn−1

zn
|)
∑
k

|ck||zn|k. (3.66)

As u ∈ V(∞), ck is decreasing faster than any polynomial. Hence, even for |zn| = 1, the

sum is uniformly convergent in any compact neighborhood.

Remark 3.6.1 Due to the above results, we can unambiguously write the correlation

160



Efficient Quantum Simulation of CFT Chapter 3

function as

∑
k,k1,...,kn

(u, P kY (a(n), zn) . . . P k1Y (a(1), z1)Ω), (3.67)

or any other sum alike, where projections are done only in 1 ≤ j ≤ n fixed places such as

∑
k,ki1 ,...,kij

(P ku, . . . P kijY (a(ij), zij) . . . P
ki1Y (a(i1), zi1) . . . Y (a(1), z1)Ω). (3.68)

Remark 3.6.2 It is easy to see that Ω can be replaced by any state in V, as that would

only introduce finitely many poles at z1.

From the previous corollary, as U(γ) : V(∞) → V(∞),

Corollary 3.6.3 For γ ∈ Diff+(S1), the correlation function (U(γ)Ω,
∏
Y (a(i), zi)Ω) is

absolutely convergent for |z1| < . . . < |zn| ≤ 1.

The next step is to extend the domain of the correlation function to the closed unit disk in

the configuration space, i.e. Confn(D×1 ) = {(z1, . . . , zn) | zi ∈ D1, zi 6= zj}. Let us define

Fk(z1, . . . , zn) := (uk,
∏n

i=1 Y (a(i), zi)Ω). It is well-known (following Huang’s results in

[30]) that Fk is an analytic function defined on the configuration space Confn(C×). More

precisely, Fk is a rational function of the form

Fk =
Gk(z1, . . . , zn)∏
i<j(zi − zj)sij

(3.69)

where Gk is a polynomial, and the order of the poles for (zi− zj) is at most sij, where

(a(i))ma
(j) = 0 for all m ≥ sij. Note the absence of zi = 0 poles is due to the action on

the vacuum Ω [87, Remark 3.5.2]. Replacing Ω by a higher energy state would produce
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poles at zi, order of which is dependent on a(i) and the state [15, section 3]. Next, define

F (zn, . . . , z1) := (u,
n∏
i=1

Y (a(i), zi)Ω) =
∑
k

ckFk, (3.70)

which has been shown so far to be analytic for |z1| < . . . < |zn| ≤ 1.

We shall bound the coefficients of the polynomial Gk, so that G :=
∑
ckGk is

uniformly convergent on compact neighborhoods in Confn(D×1 ). As a result, F =

G
∏

i<j(zi−zj)−sij is also analytically extended to that space. Most importantly, this will

allow us to define F on n distinct points with |zi| = 1, getting us closer to the formulation

in (3.8).

Lemma 3.6.4 The order of zi for any i in Gk is at most k +
∑

j sij.

Proof: This fact comes from the same proof that Gk is a polynomial [15, Proposition

3.2.7]. By weak commutativity, the following holds in formal calculus

∏
i<j

(zi − zj)sij(uk,
n∏
i=1

Y (a(i), zi)Ω) = Gk =
∏
i<j

(zi − zj)sij(uk,
n∏
i=1

Y (a(σ(i)), zσ(i))Ω),

(3.71)

where σ is any permutation. Consider zi for some fixed i and σ such that σ(1) = i. This

shows that zi has no poles (as pointed out previously) since z−mi (a(i))mΩ = 0,∀m > 0 .

Taking σ(n) = i, as uk has weight k, shows zi has maximum positive order k. Finally,

the product
∏

(zi − zj)sij gives a contribution of
∑

j sij to the maximum order of zi.

Let Gk =
∑

j1,...,jn≥0

dj1,...,jn,k
∏

i z
ji
i .

Lemma 3.6.5 There exist constants Qa(1),...,a(n) , Ra(1),...,a(n) > 0 depending on a(i) and n

such that

dj1,...,jn,k < Qa(1),...,a(n)k
R
a(1),...,a(n) ,
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for large enough k.

Proof: Consider a substitution |z1| < . . . < |zn| of complex numbers for the left

equality in (3.71). Then one can use the expansion below of the correlator

∑
j1,...,jn≥0

dj1,...,jn,k
∏
i

zjii =
∏
i<j

(zi − zj)sij(uk,
n∏
i=1

Y (a(i), zi)Ω) = (3.72)

∏
i<j

(zi − zj)sij
( ∑

∑
mi=k

∏
i

zmii (uk,
n∏
i=1

(a(i))−miΩ)
)
.

To compute the coefficient of
∏

i z
ji
i , we first decide which powers are selected from the

product (zi−zj)sij . Let S = maxi
∑

j sij. There are at most (max(sij+1))(
n
2) < (S+1)(

n
2)

choices that can be made from the product
∏

i<j(zi−zj)sij . Afterwards, there is a unique

choice of mi in the expansion of the correlation function that would give
∏

i z
ji
i .

There are also bounds on these choices. For zi, by the previous lemma ji ≤ k+S, and

no positive power more than S can emerge from
∏

j 6=i(zi − zj)sij . Therefore the choice

for the mi is bounded by −S ≤ ji−S ≤ mi ≤ ji ≤ k+S. The minimum for mi happens

when the maximum power (≤ S) for zi is selected from
∏

j 6=i(zi − zj)sij . The maximum

for mi happens when no zi is selected from the product (zi − zj)sij .

Let us now compute the coefficient corresponding to each choice. The binomial coef-

ficient for a power of zi in
∏

j 6=i(zi − zj)sij can be no more than
(
S
S
2

)n−1
< 2(S−1)(n−1).

As mi is bounded between −S and k+S, it follows |mi| ≤ k+S. Let R = max(sa(i) +

ra(i)). Using the following loose estimates

(m1 + . . .+mt + 1)sat ≤ (|m1|+ . . .+ |mt|+ 1)sat < (nk + nS + 1)R (3.73)

(|mi|+ 1)ra(i) < (k + S + 1)R, (3.74)
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we obtain |(uk,
∏n

i=1(a(i))−miΩ)| ≤

Ca(1),...,a(n)(m1 + . . .+mn−1 + 1)sa(n) . . . (m1 + 1)sa(2)
∏
i

(|mi|+ 1)ra(i) < (3.75)

Ca(1),...,a(n)(nk + nS + 1)Rn(k + S + 1)Rn < Ca(1),...,a(n)(nk + nS + 1)2Rn.

It follows

|dj1,...,jn,k| < Ca(1),...,a(n)(S + 1)(
n
2)2(S−1)(n−1)n(nk + nS + 1)2Rn, (3.76)

where the first term is the maximum number of possible choices to get
∏

i z
ji
i , the second

comes from the bound on the coefficient of zi in
∏

j 6=i(zi−zj)sij for each i = 1, . . . , n, and

the third term is the bound calculated for the unique choice of mi. The above is clearly

smaller than Qa(1),...,a(n)k
R
a(1),...,a(n) , for large enough k, for a suitable choice of constants

Qa(1),...,a(n) , Ra(1),...,a(n) .

Corollary 3.6.6 There exist constants Q′
a(1),...,a(n)

, R′
a(1),...,a(n)

> 0 such that

∀(z1, . . . , zn) ∈ Dn
1 : |Gk(z1, . . . , zn)| ≤ Q′a(1),...,a(n)k

R′
a(1),...,a(n) ,

for large enough k.

Proof: There are at most (k+S+1)n many coefficients |dj1,...,jn,k| since 0 ≤ ji ≤ k+S.

When |zi| ≤ 1,

|Gk(z1, . . . , zn)| ≤
∑

j1,...,jN

|dj1,...,jn,k| < (k + S + 1)nQa(1),...,a(n)k
R
a(1),...,a(n) . (3.77)

A suitable choice for Q′
a(1),...,a(n)

, R′
a(1),...,a(n)

clearly exists to satisfy the statement.
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Corollary 3.6.7 F =
∑
ckFk is an analytic function defined on Confn(D×1 ) with order

of singularity at zi = zj at most sij. In particular, the same holds for

(U(γ)Ω,
n∏
i=1

Y (a(i), zi)Ω).

Proof: As Fk =
∏

i<j(zi − zj)sijGk and this product is independent of k, bounding

|Fk| only requires bounding |Gk|. By the previous corollary, this is bounded uniformly

by Q′
a(1),...,a(n)

k
R′
a(1),...,a(n) for large enough k. As ck decays faster than any polynomial

in k, uniform convergence on any local compact neighborhood in Confn(D×1 ) is ensured,

and F is analytic on Confn(D×1 ). For the statement on the order of singularities, note

G =
∑

k ckGk =
∏

i<j(zi − zj)sijF is defined on the entire Dn
1 .

Corollaries below show that one can take adjoints of operators Y (a(i), zi) or U(γ) in the

inner product when evaluating the correlation function at all points in the domain.

Corollary 3.6.8 (Ω, U(γ)
∏n

i=1 Y (a(i), zi)Ω) is an analytic function on Confn(D×1 ) with

order of singularity at zi = zj at most sij. In fact

(Ω, U(γ)
n∏
i=1

Y (a(i), zi)Ω) = (U(γ−1)Ω,
n∏
i=1

Y (a(i), zi)Ω),

on Confn(D×1 ).

Proof: Note that U(γ)† = U(γ−1). Even though this corollary seems obvious, note

that one can use the definition of the correlator above as a sum of inner products (see

(3.67)) only on |z1| < . . . < |zn| ≤ 1 where absolute convergence holds. When |zi| = |zj|,

evaluation is done by taking the analytic extension, thus taking a limit. We note that

(Ω, P 0U(γ)P kY (a(n), zn)P kn−1 . . . P k1Y (a(1), z1)Ω) =
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(P kU(γ−1)Ω, P kY (a(n), zn)P kn−1 . . . P k1Y (a(1), z1)Ω),

which summing over k, k1, . . . , kn−1, implies

(Ω, U(γ)
n∏
i=1

Y (a(i), zi)Ω) = (U(γ−1)Ω,
n∏
i=1

Y (a(i), zi)Ω).

As |z1| < . . . < |zn| ≤ 1 and its permutations form a dense subset in Confn(D×1 ), the rest

follows from the previous corollary.

One can also take adjoints of the fields. Recall the anti-linear involution η : V → V for

which

(x,
n∏
i=1

Y (a(i), zi)y) = (−1)
∑

wt a(i)(
1∏
i=n

Y (η(a(i)), zi
−1)x, y) (3.78)

for all x, y ∈ V . We would like to show the same holds when x ∈ V(∞) and (zi)i ∈

Confn(D×1 ).

Corollary 3.6.9 (
∏1

i=n Y (η(a(i)), zi
−1)U(γ)Ω,Ω) is an analytic function on Confn(D×1 )

with order of singularity at zi = zj at most sij. In fact

(−1)
∑

wt a(i)(
1∏
i=n

Y (η(a(i)), zi
−1)U(γ)Ω,Ω) = (U(γ)Ω,

n∏
i=1

Y (a(i), zi)Ω),

on Confn(D×1 ). More generally, one could take adjoints of only some of the insertions

giving

(−1)
∑j
i=n wt a(i)(

j∏
i=n

Y (η(a(i)), zi
−1)U(γ)Ω,

j−1∏
i=1

Y (a(i), zi)Ω) = (U(γ)Ω,
n∏
i=1

Y (a(i), zi)Ω),

on Confn(D×1 ).

Proof: First, the equality of the inner products involved in the expansion (3.67) in
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the region |z1| < . . . < |zn| ≤ 1 is shown:

(−1)
∑1
i=n wt a(i)(Y (η(a(1)), z1

−1)P k1 . . . P kn−1Y (η(a(n)), zn
−1)P kU(γ)Ω,Ω) =

(−1)
∑2
i=n wt a(i)(P k1 . . . P kn−1Y (η(a(n)), zn

−1)P kU(γ)Ω, Y (a(1), z1)Ω) =

(−1)
∑2
i=n wt a(i)(Y (η(a(2)), z2

−1) . . . P kn−1Y (η(a(n)), zn
−1)P kU(γ)Ω, P k1Y (a(1), z1)Ω) =

. . . = (P kU(γ)Ω, Y (a(n), zn)P kn−1 . . . P k1Y (a(1), z1)Ω)

where each equality is implied from (3.78), and taking P ki to the other component. Using

the analytic extension as proven in Corollary 3.6.7 for (U(γ)Ω,
∏

i Y (a(i), zi)Ω) implies

the equality on the entire Confn(D×1 ). The last statement has a similar proof.

The combination of above corollaries gets us closer in proving the well-definedness of

(3.8). Let D̊1 be the interior of D1.

Corollary 3.6.10 (
∏l

i=1 Y (b(i), wi)Ω, U(γ)
∏n

i=1 Y (a(i), zi)Ω) is an analytic function de-

fined on the region Confl(D̊
×
1 )× Confn(D̊×1 ).

Fixing either of the two points in (zi)i ∈ Confn(D̊×1 ) or (wj)j ∈ Confl(D̊
×
1 ), the

function can be extended analytically to Confl(D
×
1 ) or Confn(D×1 ).

The same holds for all other formulations of the inner product (which do not involve

any interchanging of U(γ) with the fields), like taking adjoints of the fields or U(γ).

Proof: By lemma 3.6.1, the correlator is analytic in the region Confl(D̊
×
1 ) ×

Confn(D̊×1 ), and vectors on both components of the inner product are inside V(∞). More

explicitly, for the expansion

∑
k,k′,ki,k′i

|(P k

l∏
i=1

P kiY (b(i), wi)Ω, P
kU(γ)P k′

n∏
i=1

Y (a(i), zi)P
k′iΩ)| ≤
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∑
k,k′,ki,k′i

||P k

l∏
i=1

P kiY (b(i), wi)Ω||.||P kU(γ)P k′
n∏
i=1

Y (a(i), zi)P
k′iΩ|| ≤

∑
k,k′,ki,k′i

||P k

l∏
i=1

P kiY (b(i), wi)Ω||.||P k′
n∏
i=1

Y (a(i), zi)P
k′iΩ||,

where the last inequality is due to U(γ) being unitary. According to Lemma 3.6.1,

both terms above are exponentially decreasing with order wkl and zk
′
n . Hence, the sum

is absolutely convergent on Confl(D̊
×
1 ) × Confn(D̊×1 ), and uniformly convergent on any

compact neighborhood.

If the zis are fixed in Confn(D̊×1 ), then U(γ)
∏n

i=1 Y (a(i), zi)Ω ∈ V(∞), and by Corollary

3.6.7, we have an analytic extension to Confl(D
×
1 ).

The same can be done when wis are fixed, where

(
l∏

i=1

Y (b(i), wi)Ω, U(γ)
n∏
i=1

Y (a(i), zi)Ω) = (U(γ−1)
l∏

i=1

Y (b(i), wi)Ω,
n∏
i=1

Y (a(i), zi)Ω)

as both components are vectors in V(∞). Similarly, using Corollary 3.6.7, we can extend

analytically to Confn(D×1 ). Note this also shows one example for the last statement of the

corollary and other formulations of the inner product can be similarly shown to deliver

the same correlator.

Eventually, the definition of the correlator should be extended to include Confl(S
1) ×γ

Confn(S1) where ×γ means γ(zi) 6= wj, as alluded to in (3.9). For this purpose, we shall

study the relationship between the smeared and the point-like correlation functions on

the unit circle, from which conformal covariance of point-like correlation functions on

S1 follows. Our work so far and the Proposition 3.12 in [31] provides the basis for this

discussion.
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Lemma 3.6.11 For u ∈ V(∞) we have

(u,
n∏
i=1

Y (a(i), fi)Ω) =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
(u,

n∏
j=1

Y (a(j), eiθj)Ω)
∏
j

fj(e
iθj)
∏
i

dθi, (3.79)

where fi ∈ C∞C (S1) with disjoint support.

Remark 3.6.3 Note the disjoint support of fi is needed to not hit singularities of the

correlation function at zi = zj. Further, as zj = eiθj have the same norm, the value of

(uk,
∏n

j=1 Y (a(j), eiθj)Ω) is determined by the analytic extension of (uk,
∏n

i=1 Y (a(i), zi)Ω)

to Confn(D×1 ), which is a continuous extension to the boundary on which the point (zj)j =

(eiθj)j lives. As mentioned previously, one can not use the expansion:

(uk,
n∏
i=1

Y (a(i), zi)Ω) =
∑

∑
mi=k

∏
i

zmii (uk,
n∏
i=1

(a(i))−miΩ),

as this expansion does not absolutely converge when zis have equal norms, thus is not

well-defined. The value of F is obtained by taking a limit from the interior of the disk:

lim
zj→eiθj

F = lim
zj→eiθj

∑
k

ckFk =
∑
k

ck lim
zj→eiθj

Fk,

where swapping the limit and the infinite sum is allowed since the convergence was proven

to be uniform in any compact neighborhood on Confn(D×1 ).

Proof: We first show these two identities:

lim
K→∞

(
K∑
i=1

ckuk,
n∏
i=1

Y (a(i), fi)Ω) = (u,
n∏
i=1

Y (a(i), fi)Ω) (3.80)
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lim
K→∞

K∑
k=1

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
ckFk(e

iθ1 , . . . , eiθn)
∏
j

fj(e
iθj)
∏
i

dθi = (3.81)

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
F (eiθ1 , . . . , eiθn)

∏
j

fj(e
iθj)
∏
i

dθi.

The first identity is obvious due to the continuity of the inner product on V(∞)×V(∞) and∑K
i=1 ckuk → u ∈ V(∞). The second is due to the uniform convergence of

∑
ckFk to F on

compact neighborhoods given by the union of supports of fis. This allows interchanging

the limit and integral. The statement immediately follows as the LHS of the above two

identities are equal, as shown in [31, Proposition 3.12].

Remark 3.6.4 One can replace the vacuum by any finite energy vector vk, and it follows

by the exact same argument after taking adjoints that

(
n∏
i=1

Y (a(i), fi)u, vk) =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π

( n∏
j=1

Y (a(j), eiθj)u, vk

)∏
j

fj(e
iθj)
∏
i

dθi,

(3.82)

Ultimately, we will need a stronger version of the above lemma where the vacuum is

replaced by any vector coming from past insertions, i.e. v =
∏l

i=1 Y (b(i), wi)Ω for some

|w1| < . . . < |wl| < 1. Stating the desired theorem explicitly, given a number of past

insertions Y (b(i), wi) in addition to our present insertions Y (a(j), eiθj) (on the unit circle),

we want to be still able to integrate over the present insertions. Recall from Lemma 3.6.1

that v =
∑

k vk ∈ V(∞).

Theorem 3.6.12 For u ∈ V(∞) and v as defined above,

(u,
n∏
i=1

Y (a(i), fi)v) =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
(u,

n∏
j=1

Y (a(j), eiθj)v)
∏
j

fj(e
iθj)
∏
i

dθi, (3.83)

where fi ∈ C∞C (S1) with disjoint support.
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We shall generalize the proof of [31, Proposition 3.12]. A few energy-bound estimates

are needed which are recited from [31].

Lemma 3.6.13 (Proposition 3.9, [31]) Recall the property of an energy-bounded field

a, where

||Y (a, f)v|| ≤ Ca||f ||ra ||v||sa ,∀v ∈ V(∞),∀f ∈ C∞C (S1),

for some Ca, ra, sa > 0, with r, s−th norms defined in (3.24). We have

||Y (a, f)v||p ≤ 2pCa||f ||ra+p||v||sa+p,∀v ∈ V(∞), p ∈ N.

Proof: This can be proved using the infinitesimal rotational covariance:

[L0, Y (a, f)] = iY (a, f ′).

We will do induction on p. For p = 0, it is the assumption. Assume

||Y (a, f)v||p ≤ 2pCa||f ||ra+p||v||sa+p,∀v ∈ V(∞).

Then

||Y (a, f)v||p+1 = ||(L0 + 1)Y (a, f)v||p = ||Y (a, f)(L0 + 1)v + iY (a, f ′)v||p ≤

||Y (a, f)(L0 + 1)v||p + ||Y (a, f ′)v||p ≤

2pCa||f ||ra+p||(L0 + 1)v||sa+p + 2pCa||f ′||ra+p||v||sa+p =

2pCa(||f ||ra+p||v||sa+p+1 + ||f ′||ra+p||v||sa+p) ≤ 2p+1Ca||f ||ra+p+1||v||sa+p+1

where the first inequality is using the induction hypothesis and the last is using the
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observations we made in (3.24).

Remark 3.6.5 For f = einθ in the lemma above,

||(a)nv||p ≤ 2pCa(|n|+ 1)ra+p||v||sa+p, ∀v ∈ V(∞). (3.84)

This implies that for (u,
∏n

i=1 Y (a(i), fi)v) for u, v ∈ V(∞) with ||u|| = 1, the expansion of

the inner product like in (3.67) is absolutely convergent:

∑
m1,...,mn

|(u,
n∏
i=1

(a(i))miv)|
n∏
i=1

| ˆ(fi)mi | ≤
∑

m1,...,mn

||
n∏
i=1

(a(i))miv||.
n∏
i=1

| ˆ(fi)mi | ≤

Ma(1),...,a(n)

∑
m1,...,mn

∏
(|mi|+ 1)ra(i)+...+r

a(n) ||v||∑n
j=1 sa(j)

n∏
i=1

| ˆ(fi)mi |,

where the last inequality is obtained by iteratively applying (3.84), and Ma(1),...,a(n) is a

constant that is a product of the powers of 2 and the Ca(i)s. It follows that

≤Ma(1),...,a(n)||v||∑i sa(i)

n∏
i=1

(
∑
mi

(|mi|+ 1)ra(i)+...+r
a(n) | ˆ(fi)mi |)

≤Ma(1),...,a(n)||v||∑i sa(i)

n∏
i=1

||fi||r
a(i)

+...+r
a(n)

<∞.

Remark 3.6.6 Let u =
∑
ckuk ∈ V(∞), and v =

∑
vk ∈ V(∞) a result of past insertions

at w1, . . . , wl, where uk, vk have energy k and ||uk|| = 1. From our previous computation,

∑
m1,...,mn

|ck||(uk,
n∏
i=1

(a(i))mivk′)|
n∏
i=1

| ˆ(fi)mi| ≤

|ck|Ma(1),...,a(n) ||vk′ ||∑i sa(i)

n∏
i=1

||fi||r
a(i)

+...+r
a(n)

.
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which sum over k, k′ is finite:

Ma(1),...,a(n)

n∏
i=1

||fi||r
a(i)

+...+r
a(n)

∑
k,k′

|ck| ||vk′||∑i sa(i)
=

Ma(1),...,a(n)

n∏
i=1

||fi||r
a(i)

+...+r
a(n)

∑
k

|ck|
∑
k′

||vk′ ||∑ s
a(i)
,

but
∑

k |ck| < ∞ and
∑

k′ ||vk′ ||∑ s
a(i)

< B((| wi
wi+1
|)l−1
i=1)

∑
k′(k

′ + 1)
∑
i sa(i) |wl|k

′
< ∞, due

to Lemma 3.6.1.

Proof: [Proof of Theorem 3.6.12] Choose |wl| < r1 < . . . < rn < 1, such that |wl|
r1

< c

for some fixed |wl| < c < 1, i.e. r1 not arbitrarily close to |wl|. Let v′k′ =
vk′

wk
′
l

. By the

previous remark,

|ck|.|(uk, P knY (a(n), fn)P kn−1 . . . P k1Y (a(1), f1)v′k′).(
wl
r1

)k
′
n−1∏
i=1

(
ri
ri+1

)kirkn|

is bounded by a constant (as |wl| < r1 < . . . < rn < 1 and |wl|
r1

< c) multiplied by

|ck|.|(uk, P knY (a(n), fn)P kn−1 . . . P k1Y (a(1), f1)v′k′)|ck
′
,

the sum of which over k, k′, k1, . . . , kn−1 is finite. Indeed, by a similar argument in the

previous remark, it is less than

Ma(1),...,a(n)

n∏
i=1

||fi||r
a(i)

+...+r
a(n)

∑
k

|ck|
∑
k′

||v′k′||∑i sa(i)
ck
′

and
∑

k′ ||v′k′ ||∑i sa(i)
ck
′
< B((| wi

wi+1
|)l−1
i=1)

∑
k′(k

′ + 1)
∑
i sa(i)ck

′
is still finite as c < 1. It

is crucial that v is not any state in V(∞), but a state with energy components vk′ with

exponential norm decay (a corollary of being a result of past insertions). Otherwise, the
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summation over k′ might have been divergent due to presence of r−k
′

1 . Thus as long as the

conditions |wl| < r1 < . . . < rn < 1 and |wl|
r1

< c are satisfied, one can apply dominated

convergence theorem to interchange the limit and the sum in the equation below

(u,
n∏
i=1

Y (a(i), fi)v) =

∑
k′,k,k1,...,kn

lim
r1,...,rn→1

ck(uk, P
knY (a(n), fn)P kn−1 . . . P k1Y (a(1), f1)v′k′).(

wl
r1

)k
′
n−1∏
i=1

(
ri
ri+1

)kirkn

= lim
r1,...,rn→1

∑
k′,k,k1,...,kn

ck(uk, P
knY (a(n), fn)P kn−1 . . . P k1Y (a(1), f1)v′k′).(

wl
r1

)k
′
n−1∏
i=1

(
ri
ri+1

)kirkn

= lim
r1,...,rn→1

∑
k′,k,k1,...,kn

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
ck(uk,

n∏
j=1

P kjY (a(j), eiθj)v′k′)
n∏
j=1

fj(e
iθj)

n∏
i=1

dθi(
wl
r1

)k
′
n−1∏
i=1

(
ri
ri+1

)kirkn

where the last equality is simply the integral giving the Fourier coefficients of fis at

ki−1−ki for i > 1 and k′−k1 for f1. The next step is to use the ri to change the insertion

points to:

= lim
r1,...,rn→1

∑
k′,k,k1,...,kn

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
ck(uk,

n∏
j=1

P kjY (a(j), rje
iθj)vk′)

n∏
j=1

fj(e
iθj)

n∏
i=1

dθi.

Next, we exchange the sum and integral. This is possible because of our first lemma

on insertions in the past and the uniform convergence of the expansion of inner product

in a locally compact neighborhood (see Remark 3.6.1). Note the assumption that v =∏l
i=1 Y (b(i), wi)Ω is an insertion at points |w1| < . . . < |wl| < r1 is being used here where

ck

(
uk,
∏n

j=1 P
kjY (a(j), rje

iθj)vk′
)

is similar to (3.68), which includes all the fields a(i) and

b(i), but projections are not done after the past insertions b(i), except for P k′ after the
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last past insertion b(l). It follows

= lim
r1,...,rn→1

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
(u,

n∏
j=1

Y (a(j), rje
iθj)v)

n∏
j=1

fj(e
iθj)

n∏
i=1

dθi.

The last step is to exchange the limit and the integrals, which is possible due to the

analyticity of (u,
∏n

i=1 Y (a(i), zi)
∏l

i=1 Y (b(i), wi)Ω) in Confn+l(D
×
1 ).

Set da = wt a and let v be an insertion in the past like in the previous setting.

Lemma 3.6.14 For γ(eiθ) = eiρ(θ) with ρ a 2π−periodic diffeomorphism of R, i.e. ρ(θ+

2π) = ρ(θ) + 2π, we have

(v, U(γ)
n∏
i=1

Y (a(i), zi)Ω) =
n∏
i=1

ρ′(φi)
d
a(i) (v,

n∏
i=1

Y (a(i), γ(zi))U(γ)Ω), (3.85)

where zj = eiφj are distinct points on S1.

The lemma is essentially conformal covariance, but on the unit circle for point-like inser-

tions. Recall the smeared version of conformal covariance for primary fields, where

U(γ)Y (a, f)U(γ)† = Y (a, βda(γ)(f)) (3.86)

as operators on smooth vectors, which implies

(v, U(γ)
n∏
i=1

Y (a(i), fi)Ω) = (v,
n∏
i=1

Y (a(i), βd
a(i)

(γ)(fi))U(γ)Ω). (3.87)

Here, βda(γ)(f)(z = eiθ) =
(

1
(ρ−1)′(θ)

)da−1

f(γ−1(z)), a generalization of the adjoint action

γ∗ defined in (3.47). (3.86) can be derived very similarly to [88, eq. (39)] and (3.47);
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from the infinitesimal conformal covariance

[Ln, Y (a, z)] = (zn+1∂z + (wt a)(n+ 1)zn)Y (a, z) (3.88)

one obtains the smeared infinitesimal conformal covariance

[iL(f), Y (a, g)] = Y (a, (wt a)f ′g − g′f), (3.89)

which can be exponentiated. Then using the fact below gives the desired equation (3.86)

d

dt
exp(βda(γt)(g))|t=0 = (wt a)f ′g − g′f, where γt = exp(tL(f)).

Proof: [Proof of Lemma 3.6.14] Let U(γ)†v = uv, U(γ)Ω = uΩ with uv, uΩ ∈ V(∞).

We first rewrite the RHS of (3.87) as

(−1)
∑
d
a(i) (

1∏
i=n

Y (η(a(i)), βd
a(i)

(γ)(fi))v, uΩ),

where η : V → V gives the adjoint field. By the previous lemma, the LHS and RHS of

(3.87) are themselves equal to

(uv,
n∏
i=1

Y (a(i), fi)Ω) =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
(uv,

n∏
j=1

Y (a(j), eiθj)Ω)
n∏
j=1

fj(e
iθj)

n∏
i=1

dθi, (3.90)

(−1)
∑
d
a(i) (

1∏
i=n

Y (η(a(i)), βd
a(i)

(γ)(fi))v, uΩ) = (3.91)

1

(2π)n

∫ π

−π
· · ·
∫ π

−π
(−1)

∑
d
a(i) (

1∏
j=n

Y (η(a(j)), eiθj)v, uΩ)
n∏
j=1

βd
a(j)

(γ)(fj)(e
iθj)

n∏
i=1

dθi.
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Thus RHS of both equations above are equal. The terms inside the integrals have to be

shown to be related according to the statement.

We shall take the limit as fi converges to a delta function at zj = eiφj to recover the

statement. Consider fδj , parametrized by δj > 0, as a smooth function on the circle,

nonzero symmetrically around eiφj with the measure of the support interval equal to

δj, and with integral on the circle equal to 2π. As δj goes to zero, since φk 6= φj, the

functions will have disjoint support which allows the use of the previous lemma. Hence,

(uv,
n∏
i=1

Y (a(i), fδi)Ω)− (uv,
n∏
j=1

Y (a(j), eiφj)Ω) = (3.92)

1

(2π)n

∫ π

−π
· · ·
∫ π

−π

(
(uv,

n∏
j=1

Y (a(j), eiθj)Ω)− (uv,
n∏
j=1

Y (a(j), eiφj)Ω)
) n∏
j=1

fδj(e
iθj)

n∏
i=1

dθi.

(uv,
∏n

j=1 Y (a(j), eiθj)Ω) is uniformly continuous on any compact subset in Confn(D×1 ). As

the integral can be taken not on the whole circle but only on δi compact neighborhood of

φi, the norm of the difference inside the integrand gets smaller than any ε > 0. Therefore

as δi → 0

(uv,
n∏
j=1

Y (a(j), eiφj)Ω)− ε ≤ (3.92) ≤ (uv,
n∏
j=1

Y (a(j), eiφj)Ω
)

+ ε =⇒ (3.93)

(uv,
n∏
i=1

Y (a(i), fδi)Ω)→ (uv,
n∏
j=1

Y (a(j), eiφj)Ω).

Let us now evaluate the same limit for (3.91). For a function f with integral 2π, the

function βda(γ)(f), by change of variable and periodicity of ρ, has integral

∫ π

−π
βa(γ)(f)dθ =

∫ π

−π

( 1

(ρ−1)′(θ)

)da−1

f(γ−1(eiθ))dθ = (3.94)
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∫ π

−π

( 1

(ρ−1)′(ρ(θ))

)da−1

f(γ−1(eiρ(θ)))dρ(θ) =

∫ π

−π
ρ′(θ)daf(eiθ)dθ.

If f is converging to a delta function at eiφ, then the above will converge to 2πρ′(φ)da .

Taking (3.91), we have

(
1∏
i=n

Y (η(a(i)), βd
a(i)

(γ)(fδi))v, uΩ)− 1

(2π)n
(

1∏
j=n

Y (η(a(j)), γ(eiφj))v, uΩ)×

n∏
i=1

∫ π

−π
βd

a(i)
(γ)(fδi)dθi =

1

(2π)n

∫ π

−π
· · ·
∫ π

−π

(
(

1∏
j=n

Y (η(a(j)), eiθj)v, uΩ)− (
1∏

j=n

Y (η(a(j)), γ(eiφj))v, uΩ)
)
×

n∏
j=1

βd
a(j)

(γ)(fδj)(e
iθj)

n∏
i=1

dθi

Since γ is smooth, as δi → 0, the support of βd
a(j)

(γ)(fδj)(e
iθj) which depends on the

support of fδj(γ
−1(zj)) goes to zero as well and the functions will have disjoint support.

Hence the integral can be taken on arbitrarily small neighborhoods of γ(eiφj)s. With an

argument similar to (3.92), given that the integrals
∫ π
−π βda(i) (γ)(fδi)dθi → ρ′(φi)

d
a(i) , it

follows

(uv,
n∏
j=1

Y (a(j), eiφj)Ω) = (−1)
∑
d
a(i)

n∏
i=1

ρ′(φi)
d
a(i) (

1∏
j=n

Y (η(a(j)), γ(eiφj))v, uΩ) =⇒

(3.95)

(v, U(γ)
n∏
j=1

Y (a(j), eiφj)Ω) =
n∏
i=1

ρ′(φi)
d
a(i) (v,

n∏
j=1

Y (a(j), γ(eiφj))U(γ)Ω),

where the last implication follows from the last statement in Corollary 3.6.9.

Corollary 3.6.15 (
∏l

i=1 Y (b(i), wi)Ω, U(γ)
∏n

i=1 Y (a(i), zi)Ω) on Confl(D̊
×
1 )×Confn(S1),
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i.e. |wi| < 1 and zj = eiφj , equals

(−1)
∑
d
a(i)

n∏
i=1

ρ′(φi)
d
a(i) (

1∏
i=n

Y (η(a(i)), γ(zi))
l∏

i=1

Y (b(i), wi)Ω, U(γ)Ω).

Proof: This is a direct application of the previous lemma followed by taking adjoints

of Y (a(i), γ(zi)) to the other side as shown in the last statement of Corollary 3.6.9.

By Corollary 3.6.7 (
∏1

i=n Y (η(a(i)), z′i)
∏l

i=1 Y (b(i), wi)Ω, U(γ)Ω) is an analytic function

on Confn+l(D
×
1 ), implying the main theorem of this section:

Theorem 3.6.16 The correlation function (
∏l

i=1 Y (b(i), wi)Ω, U(γ)
∏n

i=1 Y (a(i), zi)Ω) is

well-defined on Confl(S
1)×γ Confn(S1) and equals

(−1)
∑
d
a(i)

n∏
i=1

ρ′(φi)
d
a(i) (

1∏
i=n

Y (η(a(i)), γ(zi))
l∏

i=1

Y (b(i), wi)Ω, U(γ)Ω).

3.6.1 General case for intertwiners

Below we explain the necessary changes required for the generalization of the results

in the previous part to intertwiners. Each result which proof needs some additional

remarks is mentioned below.

• Throughout the previous part, there was a convention that Y (a, z)zwt a be used

instead of Y (a, z). This had no impact in the convergence result, as it was a product

by a constant integer power of z. More importantly, this also had no impact on the

question of existence of analytic extensions. For intertwiners zwt a is replaced by

zwt a+∆Y , with ∆Y = (hA+hB)−hC for conformal weights h of the irreps involved in

the intertwiner type Y
(
C
A B

)
. This number can be fractional. When doing analytic

extension, this can no longer be ignored, as is explained below.

• The function Fk = (uk,
∏n

i=1 Yi(a
(i), zi)Ω) is generally a multi -valued rational func-
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tion on Confn(C×), thus single-valued on the universal covering space ˜Confn(C×).

The important equation Fk = Gk∏
i<j(zi−zj)

sij still holds with the caveat that G is a

polynomial if multiplied by suitable fractional powers of zis.

• Lemma 3.6.4 is proven similarly, with an important change in (3.71), where right

equality needs to be changed to

∏
i<j

(zi − zj)sij
∑
1,...,n

Bσ,1,...,n(uk,
n∏
i=1

Yi(a
(σ(i)), zσ(i))Ω),

where braiding coefficients Bσ,1,...,n appear to allow the permutation of intertwiners.

This is the same as performing the necessary braidings on a fusion tree to implement

a given permutation σ on the anyons. Here, summation is over i, which represents

all intertwiners of type
(

C
Ai B

)
for all irreps B,C. Of course, only admissible types

matter according to fusion rules. Recall that the equations (3.71) are in formal

calculus, and that is enough to bound the degrees of zi in Gk. The bound k+
∑

j sij

in Lemma 3.6.4 will only change by some constants, all depending on ∆Y of the

intertwiners involved in the equation above.

• Regarding Corollary 3.6.7 and all similar results showing certain correlators are

analytic or equal on some configuration space, in this generalized setting, they now

imply that the correlators are multi-valued analytic functions or equal as multi-

valued analytic functions.

• Proposition 3.12 in [31] is the basis of the results involving the relationship between

smeared and point-like correlators on the unit circle. This proposition is formulated

for general intertwiners. As such, all arguments leading to Theorem 3.6.12 easily

generalize. Then, Lemma 3.6.14 and the main Theorem 3.6.16 follow similarly.
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2008.

187


	Curriculum Vitae
	Abstract
	Introduction
	Thesis outline
	Modular Tensor Category (MTC)
	Vertex Operator Algebra (VOA)
	Smeared field or Wightman's observable
	Local Conformal Net (LCN)
	Anyonic Chain (AC)

	CFT as Scaling Limit of Anyonic Chains
	Outline of main results
	Previous works
	Scaling limit of quantum theories
	Scaling limit of Ising anyonic chains
	Scaling limit algebras in TEXT
	Conjectures and future directions

	Efficient Quantum Simulation of CFT
	Outline of main results
	Previous works
	Unitary evolution simulation problem
	Correlation function simulation problem
	Unitary evolution simulation using Fock space construction
	Point-like correlation function on the unit circle

	Bibliography



