
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A new scheduling algorithm for parallel sparse LU factorization with
static pivoting

Permalink
https://escholarship.org/uc/item/3x73t37z

Authors
Grigori, Laura
Li, Xiaoye S.

Publication Date
2002-08-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3x73t37z
https://escholarship.org
http://www.cdlib.org/

A New Scheduling Algorithm for Parallel Sparse LU

Factorization with Static Pivoting∗†

Laura Grigori Xiaoye S. Li

Lawrence Berkeley National Laboratory, MS 50F-1650

One Cyclotron Road, Berkeley, CA 94720, USA.

email: {lgrigori, xsli}@lbl.gov

Abstract

In this paper we present a static scheduling algorithm for parallel sparse LU fac-
torization with static pivoting. The algorithm is divided into mapping and scheduling
phases, using the symmetric pruned graphs of LT and U to represent dependencies.
The scheduling algorithm is designed for driving the parallel execution of the factoriza-
tion on a distributed-memory architecture. Experimental results and comparisons with
SuperLU DIST are reported after applying this algorithm on real world application
matrices on an IBM SP RS/6000 distributed memory machine.

1 Introduction

To factorize unsymmetric and non-definite matrices, many solvers rely on partial pivoting to
maintain numerical stability. In that case, the structures of the L and U factors depend both
on the structure of the initial A and on the row interchanges induced by partial pivoting.
Thus the L and U structures cannot be determined before the numerical computation of the
factors. In particular, this implies that some dynamically changing data structures should
be used, together with a dynamic scheduling algorithm that identifies data dependencies
while the numerical computation is in progress. In a distributed memory environment this
approach has been observed not to scale so well [1].
A possible way to address the scalability issue is to first evaluate to what extent replacing

the partial pivoting with other, more static techniques, can help maintain numerical sta-
bility. Li and Demmel show that such techniques are indeed possible [12]. Their proposed
SuperLU DIST solver uses a 2D distribution of the sparse matrix on a 2D grid of processors
and is intended for large-scale distributed-memory machines. This solver is highly parallel
and its ability to scale proportionally with the matrix size has been tested on a set of large
matrices from various application domains. For almost all the matrices, the 2D distribution
led to a very good load balance. However, exceptions have been noted with some matrices,
for which a significant load imbalance was observed on 64 processors. Experiments using

∗This work was supported by the Director, Office of Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of Energy under contract number DE-AC03-76SF00098.
This research used resources of the National Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of Energy. The work of the first author is also
supported by an INRIA post-doc abroad fellowship.

†0-7695-1524-X/02 $17.00 (c) 2002 IEEE

1

the 64 processors of a CRAY T3E [11] showed that the time spent in communication or
synchronization represents a significant percentage of the total execution time. Even for
the matrices for which the algorithm scales well up to 128 processors, more than 50% of the
factorization time was spent waiting to receive messages.
These experiments suggest that further refinements are needed in order to improve the

parallel efficiency. Several possibilities exist, among which the most relevant are: use more
accurate information about the dependencies between computations, develop more sophis-
ticated functions to map blocks to processors, consider additional scheduling techniques
overlapping communication and computation.
Several mapping and scheduling algorithms have been proposed in the literature, mainly

in the context of the Cholesky factorization. These algorithms use the elimination tree [14]
to model the parallelism due to the sparsity of the matrix. An example of such an algorithm
is the subtree to subcube mapping [7] which leads to good performance if the elimination
tree is balanced. A generalization of this algorithm for unbalanced elimination tree is the
proportional mapping algorithm, proposed by Pothen and Sun [15]. These algorithms map
the columns to processors during a top-down traversal of the elimination tree, balancing
the load while minimizing the communication.
Starting from these algorithms, a static scheduling algorithm was developed in the

PaStiX solver [9]. This algorithm is based on two distinct phases. The first phase (parti-
tioning phase) assigns to each supernode j a set of candidate processors. They are obtained
by using the proportional mapping algorithm of Pothen and Sun [15]. The second phase
(mapping phase) simulates the parallel factorization to order the tasks associated with the
computation of each supernode. These tasks are assigned to a subset of processors from the
set of candidate processors. Thus, the computation of each supernode will be assigned to
only one processor (in 1D distribution) or several processors (in 2D distribution), depending
on the workload associated to this supernode and the number of processors in the set of
candidate processors.
In this paper we present a static scheduling algorithm for the sparse LU factorization.

The main goal is to reduce as much as possible the communication, while balancing the
load. Similar to the PaStiX solver, the algorithm uses the first phase to map the supernodes
to processors, followed by the second phase to schedule the tasks. Our contributions are
as follows. In contrast to most of the existing algorithms which use a tree to represent the
dependencies between tasks, we use the symmetric pruned graphs of LT and U to represent
accurate dependencies between tasks. For the first phase, we develop a generalization of the
proportional mapping, and the resulting algorithm represent one of the main contributions
of the paper. For the second phase, we use a list scheduling heuristic. We show that
this scheduling algorithm is especially effective to improve the scalability on large number
of processors for very sparse matrices. Compared with the 2D mapping, the number of
messages is significantly reduced from between 9023 and 50682 to between 615 and 3856 on
64 processors. Moreover, the proposed mapping and scheduling algorithm is fast, with its
time complexity linear in the size of the input DAG, i.e., the symmetric pruned graph of U .
The rest of the paper is organized as follows: Section 2 introduces the dependency

graphs for the LU factorization with static pivoting, and describes the scheduling algorithm
for the graph to minimize the execution time. Experimental results and comparisons with
SuperLU DIST solver are presented in Section 3, followed by the conclusions and future
work in Section 4.

2

2 The mapping and scheduling algorithm

Let a square matrix be partitioned into blocks of submatrices. This is usually obtained
by partitioning the columns using the unsymmetric supernodes (columns of L with the
same nonzero structure [2]). After that, the same partitioning is applied to the rows of the
matrix to further break each supernode into blocks of submatrices. We denote by Ukj (Lkj)
a submatrix of U (L) at row block index k and column block index j. For each column
block, we identify two types of tasks. Task Factor(k) factorizes the column block k and
exists for each 1 ≤ k ≤ N . Task Update(j, k) updates block column k by block column j
and exists for j < k and Ujk 6= 0.

1 The sparse LU factorization algorithm can be described
as:

for k := 1 to N do

for j := 1 to k − 1 with Ujk 6= 0 do

Perform task Update(j, k);
end for

Perform task Factor (k);

end for

We use two phases to distribute the data and to schedule the computations, as in the
PaStiX solver. In the first phase we assign a set of candidate processors to the computation
of each supernode. In the second phase we schedule the computations in order to mini-
mize the execution time. During the second phase, the computation of each supernode is
scheduled on a processor from its candidate processors set.
The two phases of the scheduling algorithm use the dependencies between tasks. In the

case of an unsymmetric matrix A, several tools can be used to represent the dependencies:

• the elimination tree of A+AT [14];

• the elimination DAGs of LT and U [8];

• the symmetric pruned graphs of LT and U [4, 5].

The elimination tree of A+ AT is a structure offering simple manipulation and access.
This tree can be used to represent the dependencies between supernodes, but it overesti-
mates these dependencies. The elimination DAGs of L and U are the transitive reductions
of the graphs of L and U , and are a compact way of representing all dependencies between
computations, and only those dependencies. But a major disadvantage is their significant
amount of construction time.
A good tradeoff is to use the symmetric pruned graphs of LT and U . These graphs can

be built very efficiently [4, 5]. Even if they introduce redundant dependencies compared
to the elimination DAGs, we experimentally observed that they contain few redundant
edges. Thus, they can be used effectively. However, due to their simplicity, we still use the
elimination DAGs to develop the theoretical results. Knowing that all these results are also
valid if used with the symmetric pruned graphs, our experimental results are based on the
symmetric pruned graphs of LT and U .

1The details of the Factor() and Update() tasks are not important in describing the algorithms in this
paper.

3

2.1 Finding a set of candidate processors

The goal of the first phase is to assign a set of processors to each supernode, such that these
processors can participate efficiently in the factorization of the supernode.
For symmetric matrices, the proportional mapping algorithm [15] attempts to map de-

pendent computations on the same processor while balancing the load. This algorithm
uses the elimination tree to represent the dependencies between supernodes. It starts by
assigning all processors to the root. Then it considers the subtrees of the root in descend-
ing workload order. It assigns to each subtree a subset of processors proportional to the
workload of the subtree. The algorithm continues until only one processor is assigned to
each subtree. The advantage of this algorithm is that the communication in a subtree
is restricted to only between the processors assigned to this subtree, thus ensuring a low
communication cost.
For unsymmetric matrices, we are interested in using more accurate information on the

dependencies between supernodes, and in this case the elimination DAG of U is helpful.
This led us to consider a generalization of the proportional mapping algorithm to the DAGs.
At each step of the algorithm, we consider a node i of the graph and its set of processors.
Our goal is to assign to each predecessor j of node i a subset of i’s processors, such that
the communication between node i and its predecessors is minimized.
When the proportional mapping algorithm is applied to the elimination tree, each node

j has only one successor i, and assigning to node j a subset of processors from the set of
processors of i will reduce the communication. In the case of the elimination DAG, a node
j has several successors, and it can communicate data to all these successors. The basic
idea of our approach is to assign to node j several processors from its successors. We assign
more processors from the successors with whom node j communicates more. To do so, we
include a proportion of the workload associated with j to the workload associated with each
of its successor i. This proportion depends on the communication between j and i.
Since we only want to consider communication between j and its immediate successors,

a new problem arises. Some of the edge j → k in the graph of U disappears and occurs as a
path of length greater than one in the elimination DAG (e.g., j → i → k). So node j needs to
update its immediate sucessors and some of its ancestors in the elimination DAG. How do we
estimate the communication between node j and its immediate successor i in the elimination
DAG? We propose to approximate this as follows. We first compute total communication
volume to node i, including all the incoming edges to i in the graph of U . We then divide
this amount equally among i’s immediate predecessors in the elimination DAG. In other
words, all the communication from i’s descendents are treated as the communication from
i’s immediate predecessors, so that the global communication information is retained even
in the presence of graph contraction.
Algorithm 1 considers the floating-point operations to factorize a supernode (FSN), the

number of predecessors of each supernode in the graph (noPred), the volume of commu-
nication involved in the factorization of supernode i (avgCommIn[i]), and the volume of
communication from supernode j to its successors (commOut[j]). Using this information,
the algorithm computes the workload associated with each supernode (WSN), taking into
account the workload of its predecessors and the communication with its predecessors.
After computing the workload associated with each supernode, we can compute the set

of candidate processors using Algorithm 2. This algorithm takes as input the dependency
graph G, annotated with the workload and communication, and returns for each supernode

4

Algorithm 1 Compute the communication and the workload of each supernode
Input G: graph representing the dependencies between supernodes
for i := 1 to N do

compute CommIn[i] and FSN [i];
avgCommIn[i] := CommIn[i]/noPred[i];
for each predecessor j of i in G do

commOut[j] += avgCommIn[i]
end for

end for

for i := 1 to N do

WSN [i] := FSN [i];
for each predecessor j of i in G do

WSN [i]+ = avgCommIn[i]/commOut[j] ∗WSN [j];
end for

end for

a set of candidate processors. We add to the dependency graph G a sink supernode N +1,
which is used to start the algorithm.
Algorithm 2 is a generalization of the proportional mapping algorithm of Pothen and

Sun [15]. The main difference is that for each node i, it considers a proportion of the
workload of each predecessor to assign a subset of its processors, taking into account the
volume of communication. Note that if the input graph G is a tree, the algorithm is
identical to the proportional mapping algorithm. If G is a tree and i is the parent of j in
this tree, then commOut[j] will be equal to avgCommIn[i]. Thus the workload associated
with supernode i, denoted as WSN [i], is equal to the sum of the workloads associated with
all the nodes belonging to the subtree rooted at i, similar to the proportional mapping
algorithm of Pothen and Sun.
Now we illustrate the execution of this algorithm on an example matrix B in Figure 1,

where each column corresponds to a supernode and each nonzero element corresponds to a
block.

9

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

 !
!

""#
#

$$%
%

&&'
'

(()
)

*+**+*,
,

-+--+-.
.

/+//+/0+00+0

112
2

334
4

556
6

778
8

99:
:

;;<
<

8

=+==+=>+>>+>

?+??+?@+@@+@ A+A
A+A
BB

CCD
D

7

6

5

4

3

2

1

98765432

E+EE+E
E+E
F+FF+F
F+F

1

Figure 1: A supernodal matrix B = L+ U − I

First, we illustrate the execution of the proportional mapping algorithm of Pothen and
Sun in Figure 2. This figure shows the elimination tree of B + BT , and each node of this
tree corresponds to a supernode of the supernodal matrix B. At the right of each node i we
label the information used by the proportional mapping algorithm, i.e. FSN represents the
floating-point operations to compute supernode i, and WSN represents the load associated

5

Algorithm 2 Generalized proportional mapping algorithm for a DAG
Input: G: an annotated graph representing the dependencies and workload, E: set of processors
proc[N + 1] := E;
for i := 1 to N do

proc[i] := ∅;
end for

for i := N + 1 to 1 do

S := proc[i], ρ := |S|;
if i has predecessors then

let j1, j2, . . . jq be the predecessors of i, s.t. WSN(j1) ≥ . . . ≥WSN(jq);
WSN [i] − = FSN [i];
for pred := j1 to jq do

w := avgCommIn[i]/commOut[pred]×WSN [pred];
k := w/WSN [i]× ρ+ 0.5;
if k = 0 or S = ∅ then

find a processor p with the least workload from proc[i];
proc[pred]← proc[pred] ∪ {p}

else

if k > |S| then k := |S|; endif

C := a subset of k processors from S;
proc[pred]← proc[pred] ∪ C
S ← S \ C;

end if

end for

end if

end for

with the subtree rooted at supernode i, which is the sum of the workloads of all the nodes
belonging to the subtree rooted at i. At the left of each node i, we represent the set of
candidate processors, which later can take part in the computation of supernode i. For
example, node 5 disposes of 4 processors, namely P0, P1, P2, P3. This node has two sons, 3
and 4. The load of the subtree rooted at 3 represents 3/4 of the total load of the subtree
rooted at 5, while the load of the subtree rooted at 4 represents 1/4 of this load. Thus,
node 3 will receive three processors P0, P1, P2, while node 4 will receive the processor P3.
Second, we illustrate the execution of our proportional mapping algorithm on the same

example matrix B in Figure 1. The elimination DAG of U is shown in Figure 3. Again,
the nodes of this graph represent supernodes of B. In Figure 3 we label at the right of
each node its corresponding values in the arrays WSN and FSN . These values are used
in Algorithm 2. Moreover, avgCommIn[i] is labeled on each edge to i, thus the value
commOut[j] is the sum of the outgoing edges from j. As an example, the value of the load
WSN associated with node 8 is obtained by doing the sum 50 + 200 + (300 ∗ 6/9) + (250 ∗
6/30) = 500.
In Figure 4 we present the set of candidate processors assigned to each node by Al-

gorithm 2. In this figure, node 10 was added as a starting point for the execution of the
algorithm. Consider node 2. This node communicates mainly with its successor 3, thus
it receives a processor from node 3 and no processor from node 5. Node 3 communicates
roughly the same amount of data to its two successors, and thus it receives a processor from
each one of its successors 8 and 9.
By comparing the results of the executions when using the elimination tree of B + BT

6

P

P

WSN 80

P P P P

P P P P

P P P P

P P0 1

P P P P

0 1 2 3

P P P P0 1 2 3

P P P0 1 2

0 1 2 3

FSN 200

FSN 50

FSN 80
WSN 125
FSN 125

WSN 145WSN 305

WSN 550

0 1 2 3

0 1 2 3

2

3

FSN 150

FSN 50

WSN 600

FSN 100

FSN 100 FSN 145

WSN 1000

WSN 850

WSN 650

6

5

7

8

9

21

3 4

Figure 2: The elimination tree of B +BT corresponding to the matrix in Figure 1

24

FSN 150 FSN 50

WSN 145WSN 80WSN 125

WSN 250WSN 300WSN 200

WSN 250

66
63

30 30 2 2

WSN 500
FSN 50

FSN 200 FSN 100 FSN 100

FSN 125 FSN 80 FSN 145

WSN 250

1 4

3

9 8 6

7 5

2

Figure 3: Elimination DAG of U corresponding to the matrix in Figure 1

7

P P

P

P
0 2 3

30 21

0 P

P PP

P P

0 1 2 3P P P P

31 2P

3

1

10

9 8

4

6

7 5

2

Figure 4: Illustration of Algorithm 2 on the elimination DAG from Figure 3

(Figure 2) and the elimination DAG of U (Figure 4), we notice that our approach using
the elimination DAG tries to minimize the communication by considering the dependencies
between supernodes and their communication. Node 3 in Figure 2 has received a subset of
processors from node 5, even if there is no dependency between supernodes 5 and 3. This is
due to the fact that the elimination tree of A+ AT introduces false dependencies between
supernodes.

2.2 Scheduling the computations

After the phase for mapping a supernode to a set of candidate processors, we perform
scheduling. We use a list-based scheduling heuristic [6, 16] in this phase, which assigns the
tasks associated with the computation of each supernode to a processor from the set of
candidate processors.
A left-looking approach with a 1D distribution of the data is used: the computaion of

a supernode k is assigned to one processor; the updates to supernode k (Update(*, k)) are
executed just before the factorisation of this supernode (Factor(k)).
With this approach, the elimination DAG of U gives all the dependencies between

supernodes computations, and hence it can be used as a dependency graph in the list
scheduling algorithm. Each node of this graph corresponds to a supernode. An entry
supernode is defined as a supernode with no incoming edges, while an exit supernode is
defined as a supernode with no outgoing edges. During the scheduling, a supernode becomes
ready when all its predecessors were scheduled.
Each supernode has a computation cost, which is the number of floating-point operations

performed for this supernode. Each edge is assigned a communication cost, which is equal
to the volume of data transferred between its two end supernodes. Using this information,
we assign the priority of each supernode as the longest path from this supernode to an exit
supernode. The length of the path is the sum of the communication and the computation

8

costs of its constituent edges and supernodes.
For each processor we maintain a list of ready supernodes and the processor’s start time.

At each iteration of the scheduling loop, we select the processor with the earliest start time.
From its list of ready supernodes, the supernode with the highest priority is selected (say
supernode k), and needs to be assigned to one of its candidate processors that can execute it
at the earliest time. Thus, we attempt to assign the supernode to each processor in its set of
candidate processors, and determine on which processor the computation of this supernode
can have the earliest start time. The supernode is then mapped on the selected processor
and the tasks associated with its computation (tasks Update(*, k) and Factor(k) can be
scheduled as soon as the computation of the last supernode assigned to that processor is
finished. To overlap computations and communications, we consider a valid order between
tasks Update(*, k), and we schedule them in the order in which the data needed from its
predecessors has arrived locally; we discuss the valid order further in this section.
The processor start time is updated as the finish time of the supernode scheduled on

that processor. If a successor of the current supernode becomes ready for execution, then
it is added to the ready list of every processor in its candidates set. The scheduling loop is
repeated as long as there exist unscheduled supernodes.
A valid order between tasks Update(j, k) is given by the ascending order of the indices

j. Using the elimination DAG of LT , we can obtain a valid order which uses more accurate
information on the dependencies between these tasks.
The following lemma gives the dependency between the updates from two supernodes

i, i′ to supernode k, where i, i′ are linked by a path in the elimination DAG of LT .

Lemma 1 Consider supernodes i, i′ and k such that i′ is the successor of i in the elimi-
nation DAG of LT and tasks Update(i, k), Update(i’, k) exist. Then task Update(i, k) has
to be completed before task Update(i’, k) can start its execution.

Proof As i′ is the successor of i in the elimination DAG of LT , then block Li′i is nonzero.
As tasks Update(i, k), Update(i’, k) exist, we can deduce that blocks Uik, Ui′,k are also
nonzero.
Task Update(i’, k) can begin its execution as soon as all the updates to block Ui′k are

finished. As task Update(i, k) is one of these updates, then this task must modify block
Ui′k before task Update(i’, k) can start its execution. 2

Let i, i′ be two supernodes such that i < i′. If there is no path from i to i′ in the
elimination DAG of LT , then block Li′i is zero. Consider another node k such that tasks
Update(i, k), Update(i’, k) exist. Then there is no dependency between the two tasks, as task
Update(i, k) does not modify block Ui′k necessary for the execution of task Update(i’, k).
From these results, the dependencies can be defined as follows :

• There is a task Update(i, k) for each Uik 6= 0 and 1 ≤ i < k ≤ N .

• There is a dependency from Update(i, k) to Update(i’, k) if i′ is the successor of i in
the elimination DAG of LT .

• There is a dependency from Update(i, k) to Factor(k) if i is an exit node, or the
smallest successor j of i in the elimination DAG of LT is no smaller than k.

We illustrate in Figure 5 these rules by computing the dependencies between the tasks
associated with supernode 8 for the matrix in Figure 1. Before factorizing this supernode

9

(task Factor(8) in the dependency graph), supernode 8 is updated by supernodes 1, 2, 3, 5
and 7. A valid order of these updates is given by the ascending order of the source supern-
odes in the updates 1, 2, 3, 5, 7. However, an order exhibiting more parallelism is the order
using the elimination DAG. Hence, there is a dependency from Update(1, 8) to Update(3, 8)
because 3 is the successor of 1 in the elimination DAG of LT (the elimination DAG of LT is
presented in Figure 6). But there is no dependency between Update(2, 8) and Update(3, 8)
because there is no path from 2 to 3 in the elimination DAG of LT .

Update(1,8)

Update(3,8) Update(2,8)

Update(5,8)

Update(7,8)

Factor(8)

Figure 5: Illustration of several dependencies involved in the factorization of supernode 8
for the matrix in Figure 1

4 6

1

2

7 9

5 8

3

Figure 6: Elimination DAG of LT corresponding to the matrix in Figure 1

3 Experimental results

In this section, we present the experimental results obtained when applying the new schedul-
ing techniques on the real world matrices. We tested the new factorization method on an
IBM SP RS/6000 distributed memory machine at NERSC. The system contains 2944 com-

10

Matrix Order nnz(A) nnz(L+ U − I) Flops
×106 ×109

af23560 23650 460598 12.8 5.41

bbmat 38744 1771722 36.2 27.80

ex11 16614 1096948 14.1 5.99

onetone1 62424 1717792 11.8 0.90

onetone2 36057 227628 1.3 0.23

rma10 46835 2374001 14.7 1.60

venkat01 62424 1717792 11.8 2.41

wang4 26064 177196 27.7 8.78

Table 1: Benchmark matrices.

Matrix #snodes #edges #edges #entries #exits
G(SNU) G(pr SNU) G(pr SNU) G(pr SNU)

af23560 10543 78962 10700 7482 1

bbmat 12726 214767 16944 5451 1

ex11 2597 23603 2596 678 1

onetone1 22370 123427 37323 10274 611

onetone2 21682 69098 27602 10426 611

rma10 7861 33265 7862 3045 1

venkat01 13570 61348 13569 4116 1

wang4 16302 89082 16301 11710 1

Table 2: Characteristics of the graphs. G(SNU) is the supernodal graph of U . G(pr SNU)
is the symetric pruned supernodal graph of U.

pute processors distributed among 184 compute nodes. Each processor is clocked at 375
Mhz and has a peak performance of 1.5 GFlops. Each node has 16 to 64 Gbytes of shared
memory. We used several medium and large matrices from a variety of application domains.
These matrices and their characteristics are presented in table 1, which includes the matrix
order, the number of nonzeros in the matrix A, the number of nonzeros in the factors L
and U , and the number of floating-point operations.
Table 2 presents the size of the supernodal graph and its symmetric pruned graph.

The second and the third columns list the number of nodes and edges in the supernodal
graph of U . The fourth column lists the number of edges in the symmetric pruned graph
of U . The fifth and the sixth columns list the number of entry and exit supernodes in the
symmetric pruned graph of U . For all our test matrices, the supernodal symmetric pruned
graph of U is much smaller than the supernodal graph of U . Very often, there are one order
of magnitude fewer edges than in the supernodal graph of U . Three of the test matrices
(ex11, venkat01 and wang4) are structurally symmetric, in which case the pruned graph
is a tree. Computing the symmetric pruned graph takes very little time, and this time is
included in the scheduling time overhead reported in Figure 7 and Table 5.
We now compare the performance of the new factorization algorithm (referred as SCHED)

to the factorization algorithm in SuperLU DIST (referred as SLUD). In particular, we com-
pare the load balance, the amount of communication and the runtime.

11

P = 4 P = 16 P = 32 P = 64 P = 128

af23560 SCHED 0.91 0.96 0.91 0.75 0.52
SLUD 0.94 0.81 0.75 0.62 0.58

bbmat SCHED 0.99 0.88 0.82 0.79 0.62
SLUD 0.97 0.91 0.80 0.65 0.60

ex11 SCHED 0.98 0.85 0.69 0.54 0.32
SLUD 0.97 0.93 0.83 0.67 0.52

onetone1 SCHED 0.94 0.74 0.49 0.48 0.24
SLUD 0.86 0.83 0.66 0.50 0.45

onetone2 SCHED 0.83 0.46 0.40 0.31 0.16
SLUD 0.81 0.64 0.59 0.40 0.21

rma10 SCHED 0.88 0.70 0.49 0.66 0.48
SLUD 0.89 0.70 0.67 0.49 0.43

venkat01 SCHED 0.95 0.91 0.90 0.63 0.37
SLUD 0.93 0.75 0.74 0.56 0.47

wang4 SCHED 0.98 0.90 0.76 0.87 0.52
SLUD 0.99 0.91 0.86 0.75 0.60

Table 3: Load balance results.

For both algorithms, the preprocessing steps are the same. These include a step to
permute large entries on the diagonal (using the routine MC64 [3]), followed by a symetric
permutation to preserve the sparsity (using multiple minimum degree algorithm applied
on A + AT [13]) and the symbolic factorization to get the structures of L and U . Only
the numerical factorization phase is different in the two approaches. This includes the
matrix distribution and the actual factorization. After the preprocessing steps, SLUD
distributes the data among processors using a 2D block-cyclic distribution on a 2D grid of
processors. Locally on the set of owner processors, each supernode of L is stored in a column
oriented format, while each supernode of U is stored in a row oriented format. This storage
scheme fits well the right-looking factorization. In SCHED, a master processor executes the
scheduling algorithm, and then sends the necessary information to all the other processors to
guide the numerical factorization. Each supernode is distributed on its owner processor, and
is stored using a column oriented format, for both L and U . This storage is well adapted
to the left-looking factorization. After the distribution, the numerical factotorization is
performed using the valid task order established by the scheduling algorithm.
To evaluate the load balance, we consider the load associated with a processor as being

the number of floating-point operations performed on this processor. As described in [11],
the load balance factor can be computed as the average load divided by the maximum load
among all the processors. Thus, the closer is this factor to 1, the better is the load balance.
Table 3 shows the load balance factors. Compared with the 2D block-cyclic mapping, the
proportional mapping algorithm usually improves load balance, with very few exceptions.
Table 4 compares the amount of communication of the two algorithms. For each matrix,

we report the average communication volume and the average number of messages per
processor. For all the test matrices, SCHED leads to a large reduction in the number of
messages. Usually the average number of messages increases with the increasing number of
processors up to 16 or 32, and then it starts decreasing. On the other hand, the volume
of communication for SCHED is not always smaller than for SLUD. Sometimes SCHED
is better and sometimes SLUD is better. But the difference is not dramatic. The worst

12

P = 4 P = 16 P = 32 P = 64 P = 128

af23560 SCHED Vol 20.83 22.27 18.47 14.04 8.20
SLUD Vol 27.27 21.25 16.38 13.01 8.13
SCHED #Mess 5647 2474 1869 1465 1250
SLUD #Mess 26185 36350 26632 33638 20301

bbmat SCHED Vol 90.69 81.75 75.00 53.50 49.98
SLUD Vol 81.53 62.67 51.23 38.09 27.77
SCHED #Mess 9663 3931 3307 2469 2442
SLUD #Mess 31719 45815 37640 46521 32686

ex11 SCHED Vol 25.72 25.98 23.15 13.57 9.71
SLUD Vol 25.02 19.44 15.45 11.98 8.00
SCHED #Mess 2435 1002 907 615 586
SLUD #Mess 6486 9336 7247 9023 5639

onetone1 SCHED Vol 7.90 6.59 6.20 5.95 3.94
SLUD Vol 7.56 5.82 4.16 3.56 2.26
SCHED #Mess 46303 2859 3115 3856 2653
SLUD #Mess 47639 57738 37322 50682 29359

onetone2 SCHED Vol 3.58 2.90 2.24 1.29 0.96
SLUD Vol 4.16 3.25 2.20 2.05 1.20
SCHED #Mess 14601 1934 2052 881 701
SLUD #Mess 46173 53654 32701 45379 24176

rma10 SCHED Vol 13.64 8.37 6.69 5.13 3.33
SLUD Vol 21.73 16.98 11.14 10.33 5.52
SCHED #Mess 1861 839 719 566 469
SLUD #Mess 19049 23743 14890 19717 10631

venkat01 SCHED Vol 14.95 9.86 8.50 7.29 4.04
SLUD Vol 27.65 21.33 14.00 12.62 6.91
SCHED #Mess 1505 545 632 627 428
SLUD #Mess 33556 42675 26918 35343 19143

wang4 SCHED Vol 34.41 33.34 32.85 24.29 22.17
SLUD Vol 24.59 18.91 14.78 11.47 8.07
SCHED #Mess 12308 2703 2684 2038 2123
SLUD #Mess 39470 50035 32983 43182 24582

Table 4: Average communication volume and number of messages per processor.

case is matrix wang4, for which the SCHED’s communication volume is twice more than
that of SLUD. These results imply that in SCHED, the message size is usually much bigger
than that in SLUD. This is mainly because using the 1D distribution in SCHED, a message
contains an entire supernode k of L. Whereas in SLUD, a message contains only a part of
supernode k of L. Therefore, it is important to overlap computation with communication so
to avoid the idle time waiting for the messages. This is well addressed in the new scheduling
algorithm.
Finally, we compare the actual runtimes in Figure 7. (The runtimes are also tabulated in

table 5.) Each plot in the figure corresponds to one matrix with varying number of proces-
sors. Since the two algorithms differ in matrix distribution and numerical factorization, we
separately report the distribution time (labeled “dist”) and the factorization time (labeled
“fact”). We also report the total time which is the sum of the two. SCHED also needs to
pay a small cost of scheduling overhead. We report this separately (labeled “schedule”).
The reason we do not include this in the total time for SCHED is that when the matrices

13

of the same nonzero structure are factorized multiple times, the scheduling algorithm will
only be invoked once, and hence the cost is very small.
On smaller number of processors (less than 16), the distribution time for SCHED

can be drastically smaller than that for SLUD, such as matrices af23560, onetone1 and
onetone2. This is due to the fact that storing both supernodes of L and U in a column ori-
ented format can lead to a more efficient distribution algorithm. But with increasing number
of processors, the distribution time for SCHED increases, while for SLUD it decreases. On
one processor, the time difference is only in the distribution step. The factorization speed
is about the same for both codes.
When comparing the total time of both distribution and factorization, SCHED is faster

than SLUD for 6 matrices; it is more than twice faster for matrix venkat01. We observed
more improvement on a large number of processors, where the total number of messages
usually increases. In this case it is even more important to reduce the number of messages,
and thus SCHED approach is effective. The time continues to decrease when increasing the
number of processors up to 64. Beyond 64 processors, only the time for bbmat continues
to decrease. This implies that this set of test matrices is not large enough to demonstrate
scalability of the algorithms. In the future, we will test larger matrices.
For ex11 and bbmat, SLUD is faster than SCHED. These two matrices are relatively

denser than the other matrices. We suspect that these matrices exhibit limited amount
of parallelism to be exploited in a left-looking algorithm with a 1D distribution. The 2D
block-cyclic distribution used by SLUD can exploit more parallelism. As part of the future
work, we will study the performance impact on denser matrices when using a 1D partition
or a 2D partition (the 2D partition was shown to be more scalable for dense matrices). We
will also evaluate the paralelism available in a left-looking algorithm versus a right-looking
algorithm.

4 Conclusions and future work

In this paper we present a new assignment and static scheduling algorithm for sparse LU
factorization with static pivoting. This algorithm uses the symmetric pruned graphs of LT

and U to represent the dependencies between computations, thus exploiting the parallelism
due to the sparsity and asymmetry of the matrix. Experimental results show that our
approach leads to a large reduction in the number of messages, and for very sparse matrices
the performance compares favorably to that of the SuperLU DIST solver on the IBM SP
RS/6000 machine. Furthermore, the proposed scheduling algorithm is easy to implement
and is fast, with its time complexity linear in the size of the input DAG, i.e., the symmetric
pruned graph of U .
In an earlier work comparing SuperLU DIST and MUMPS [1], it was found that MUMPS

is faster for smaller numbers of processors (e.g., up to 64 on a Cray T3E), but SuperLU DIST
is faster for larger numbers of processors and shows better scalability. The new factorization
algorithm SCHED in this paper usually performs better than SuperLU DIST, especially for
sparser matrices and larger machines. Therefore, it compares favorably with MUMPS for
large numbers of processors.
Future work remains to improve the performance of the new approach and several av-

enues can be explored. A more accurate performance model should be developped in order
to effectively use the list scheduling algorithm and to reduce the processor’s idle time. More
optimizations can be done to better overlap computation and communication. Methods for

14

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

Processors

S
ec

on
ds

af23560

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

2

4

6

8

10

12

14

Processors

S
ec

on
ds

bbmat

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

Processors

S
ec

on
ds

ex11

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

onetone1

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

onetone2

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

rma10

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

1

2

3

4

5

6

Processors

S
ec

on
ds

venkat01

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

wang4

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

Figure 7: Comparison of the runtime between SCHED and SLUD.

15

P = 1 P = 4 P = 16 P = 32 P = 64 P = 128

af23560 schedule 0.21 0.20 0.30 0.32 0.27 0.32
SCHED 13.19 4.51 2.82 2.19 2.29 1.99
SLUD 17.38 6.05 3.36 2.93 3.53 3.38

bbmat schedule 0.90 0.88 0.92 0.93 0.99 1.02
SCHED 75.75 34.28 12.75 9.53 8.17 7.83
SLUD 82.78 24.27 9.74 7.13 7.16 7.60

ex11 schedule 0.10 0.05 0.06 0.06 0.07 0.08
SCHED 11.55 4.20 2.24 2.30 2.35 2.80
SLUD 11.14 3.96 1.99 1.67 2.04 2.11

onetone1 schedule 0.36 0.32 0.37 0.42 0.51 0.60
SCHED 9.78 4.40 3.91 2.61 2.90 3.04
SLUD 34.13 10.21 4.30 3.27 3.65 4.88

onetone2 schedule 0.27 0.20 0.22 0.26 0.32 0.45
SCHED 3.07 1.73 1.71 1.58 1.63 1.84
SLUD 27.27 8.88 4.18 3.14 3.77 3.43

rma10 schedule 0.19 0.09 0.09 0.10 0.13 0.17
SCHED 6.45 2.38 2.08 1.37 1.89 2.15
SLUD 8.43 3.94 3.04 2.74 4.13 3.95

venkat01 schedule 0.18 0.14 0.16 0.18 0.21 0.30
SCHED 8.68 3.22 2.13 1.28 1.99 2.03
SLUD 16.73 6.75 4.48 3.92 5.25 5.28

wang4 schedule 0.26 0.21 0.30 0.28 0.33 0.40
SCHED 19.27 5.60 2.89 2.73 2.55 3.23
SLUD 30.57 9.20 4.47 3.57 4.43 4.18

Table 5: Schedule time in seconds (schedule), total numerical factorization time in seconds
(including data distribution time) on the IBM SP RS/6000.

16

controlling the memory requirement on each processor will be analyzed and implemented,
which can improve the memory usage of the left-looking scheme.
To speed up the numerical factorization for denser matrices, we plan to extend our

methods so that both 1D and 2D distributions will be used. During the list scheduling
algorithm, the computation of each supernode will be assigned to one processor (in 1D dis-
tribution) or several processors (in 2D distribution), depending on the workload associated
to this supernode and the number of processors in the set of candidate processors. Thus
both task and data parallelism will be exploited in the program.
One final remark is about the choice of the algorithm – when to use SCHED and when

to use SLUD, since both have merits. As we mentioned earlier, we think SCHED performs
better for sparser problems. So we sort the matrices in terms of density, which is defined
as nnz(L + U)/n2, and plot the performance gain of SCHED over SLUD in figure 8. If
our conjecture was true, each line would increase monotonously with increasing density.
We somewhat see this trend, with some exceptions, such as matrices af23560 and wang4,
corresponding to the two dips in the plots. These two matrices are relatively dense, but
SCHED performs better. We admit that the performance gain is a complex function of the
input matrix and the two different algorithms. More factors than just sparsity affect the
performance. It remains an open question to predict performance of different algorithms
from the input matrix in order to help choose the right algorithm. For this, we plan to
include a much larger set of matrices and analyze the global trend.

0 0.02 0.04 0.06
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Density = nnz(L+U)/n2

T
im

e
ra

tio
 o

f S
C

H
E

D
 o

ve
r

S
LU

P = 16
P = 32
P = 64
P = 128

Figure 8: The ratio of the total time SCHED over SLUD.

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of two
general sparse solvers for distributed memory computers. ACM Transactions on Mathematical
Software, 27(4):388–421, Dec. 2001.

17

[2] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A Supernodal
Approach to Sparse Partial Pivoting. SIAM Journal on Matrix Analysis and Applications,
20(3):720–755, 1999.

[3] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. Matrix Analysis and Applications, 22(4):973–996, 2001.

[4] S. C. Eisenstat and J. W. H. Liu. Exploiting Structural Symmetry in Unsymmetric Sparse
Symbolic Factorization. SIAM J. Matrix Anal. Appl., 13(1):202–211, 1992.

[5] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivoting
code. SIAM Journal on Scientific Computing, 14(1):253–257, January 1993.

[6] H. El-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling in multiprocessing systems. IEEE
Computer, pages 27–37, Dec. 1995.

[7] J. A. George, J. W. H. Liu, and E. G. Ng. Communication results for parallel sparse Cholesky
factorization on a hypercube. Parallel Computing, 10:287–298, 1989.

[8] J. R. Gilbert and J. W. Liu. Elimination structures for unsymmetric sparse LU factors. SIAM
J. Matrix Anal. Appl., 14(2):334–352, April 1993.

[9] P. Henon, P. Ramet, and J. Roman. Pastix: A parallel direct solver for sparse spd matrices
based on efficient static scheduling and memory managment. In SIAM Conference PPSC’2001,
Portsmouth, Virginie, USA, 2001.

[10] M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson. PSPASES: Scalable Parallel
Direct Solver Library for Sparse Symmetric Positive Definite Linear Systems. Technical report,
University of Minnesota and IBM Thomas J. Watson Research Center, May 1999.

[11] X. S. Li and J. W. Demmel. Making Sparse Gaussian Elimination Scalable by Static Pivoting.
SuperComputing, 1998.

[12] X. S. Li and J. W. Demmel. A Scalable Sparse Direct Solver Using Static Pivoting. 9th SIAM
Conference on Parallel Processing and Scientific Computing, 1999.

[13] J. W. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans.
Math. Software, 11:141–153, 1985.

[14] J. W. H. Liu. The Role of Elimination Trees in Sparse Factorization. SIAM J. Matrix Annal.
Appl., 11(1):134–172, 1990.

[15] A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky Factorization.
SIAM Journal on Scientific Computing, pages 1253–1257, 1993.

[16] M. Wu and D. D. Gajski. Hypertool: A programming aid for message-passing systems. IEEE
Trans. on Parallel and Distributed Systems, 5(9):951–967, 1994.

18

