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ABSTRACT
We have generalized a theorem according to which the ‘force
between two gently curved objects in close proximity is proportional,

to the interaction potential per unit area between two flat surfaces

made of the same material, the constant of proportionality being =2

measure of the mean curvature of the two objects. This theorem leads

to a formula for the interaction potential between curved objects.
(e.g. two smooth cylinders of mica or two atomic nuclei) which is a
mroduct of a simple geomefrical factor and a universal function .of
separation, ‘characteri'stic of .the.mtérial of which the objects.ar.e
made, and intimately related to the surface energy coefficient. Wé.v

have calculated and tabulated this 'univérsal function for nucleai‘

‘surfaces, using the nuclear Thomas-Fermi approximation. The
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Permneﬁt addreé_é: Institute of _Physics, Uhive_rs_it_y‘ of Aarhus,
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results can be expressed by a simple cubic-exponential formula which
gives the potential between any two muclei in the separation degree

of freedom. Even simpler expressions are found for the interaction

energy associated with the "crevice" or neck in the nuclear conflgu.ra.-

tion that would be expected immediately after contact of two puclei.

-Thesé "Proximity Energies" are used to supplement the usual expansion

of the energy ofa ’_chin-‘skinned system into volume, surface, curvature
and higher ordér terms. - The résulting elementé.ry formulae are tested
aga‘insi: explicit models of interacting nuclei ‘and against elastic

scattering data, and are found to be usgful for even .quite small mass

numbers.
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1. INTRODUCTION

For certain physical systems such as homogeneous solids, fluids

or the heavier atomic nuclei, made up of elements interacting by short-

range forces and possessing a surface region which is thin compared to

the size of the object under consideration (1leptodermous systems), the
potential energy -of the system may be decomp0sed into a bulk term and
a surface-layer term. The surface-layer term is associated with the
surface‘region and is, therefore, abproximately proportional‘to the
area of the surface bounding the object. For a simply-connected

system the above decomposition is accurate if the principal radii of

curvature of the surface are everywhere much larger than the thickness

of the surface region. Moreover, when this condition is satisfied,
corrections to the leading.area-proportional term in the surface-
‘layer energy (such as the curvature correction) ma§ be derived hy
ex;ansions in povwers of the ratio of the thickness of the surface to
the gize of the system, thus making the expression for the potential
energy even more accurate (see Section 3), Such a_seriesvexpansion |
nas been useful’in discussing the average bincihg energies (masses) of
atomic. nuclei, and”one_might have thought that, apart from effects
_ essociate& with the discreteness of nucleoos (shell effects) there was
no more to the problem of average nuclear energies than the calculation
of ‘the above series expansions to a sufficiently high order. This is.
not the case. Thus, when the surface of the system becomes contorted
into features whose characteristic dimensions are of the order of the
'_thickness of the_surface region itself, the above series expansions .
become of limited usefulness. This failing is by»no‘means of merely'

academic interest: it is serious for a system with a thin neck, on the

I

‘verge of dividing into two fragments (as in nuclear fission), or im .

the case of two sub-systems about to come into contact (as in
collisions between heavy nuclei). In the,latter case in particular,
when the system is not simply-connecte&,la calculation of the surface-
layer energies of the two pieces, no matter how accurately‘they’are
corrected for the curvatures of the two surfaces,ican never give rise
to the (strong) attraction that in practice appears when the two
surfaces approach to within a distance comparable with the surface
thickness. o

Various attempts to remedy these failings have been made in
the past. They range from microscopic computer calculations on
individual pairs of nuclei(l-B)_through various folding prescriptions
where a potential well is folded into a density distribution(h-6), to

direct estimates of certain aspects of the nucleus-nucleus force in

. A 8
terms of the experimentally known surface-energy coefficient.(7’ ) o
In line with the latter developments we have found it possible

to derive simple expressions for the additional potential energy (or

. forces) associated with certain of the more important types of

| violently contorted surfaces, which should enable one to complement-

in a useful way the usual series expansions of the.nuclear energy; We "
shall call these-additional forces "Proximity Forces" because.they
arise from the proximity of elements of the contorted surface, the
contortion being such that dlfferent pieces of the surface actually
face each other across & (small) gap or crevice, In tarticular we
have re-derived and ‘extended a theorem that mahes it possible to

relate (approximately) the interaction between two finite nuclei to :

" the interaction between two flat ;arallel slabs of semi-infinite"’
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nuclear matter--a problem that is simpler, and can be. solved (in &
suitable apprbximation).dnce and for all. .(The derivatién of the_
tﬁeorem, in many essential aspects, is contained in a l93hﬁpaper By

. Deryagié9)on coagulation of aerosols. We are grateful to H.dlKrappe

for pointing this out to .us.)

A

2. THE PROXIMITY ENERGY
The starting point of our considerations is an_expfession for
the proximity energy VP associated with a curved gap or'crevice>of

zeptly variable width D , which we shall write in the form
I's

vy = /, e(D)ac + corrections . . »(l)_
) o

Here e(D) 4is the interaction enmergy per unit area of two parallel

surfacesvat the appropriate separation D. Thé integrél'is over the

area of the.gap or crevice and the "corrections" become negligible as

tﬁe curvatures of the surfacéé defining the gap become smali.

The geometry of the gently veriable gap may be specifiéd by
first choosi;g a mean gap surface I (a two-dimensional surface in
space) and then considering normal displacemeqts oes ni, locatiﬁg
the right- and left-hand s_iqe's of the gap, n - nL = D(u,v) being’
the distance between the two sides ft, FR of the gap. The gap width
2(u,v) is a (slowly varying) function of position on the surface T,

the position being specified by two coordimates u and v, say. -

Since e(D) .is, by definition,'a function of only one

variable, D, rather than of the two position variables u cand- v, - :

the surface integral in Eq. (1) may be converted at omce into a one-
dimensiénal integral, Thus imagine that a family of (closed) curves

“(or 'sets of curves) is constructed on the surface .I'. corresponding. to

-6~

constant values of D. Denote by J(D)ap the area of the surface T
that lies between two such curves (or sets of curves) defined by D

and D + dD. Then we may write

vy = jfe(D)J(D)dD+---. . @

!

The function’ J(D) 1is characteristic of the geometry of the gap, and
thus if the two sides of the gap are shiffed, rotated or deformed.in
some .way so that tﬁe gap surface I and gap width D are changed,

J will be a function (strictly speaking a functional) of the;e shifts,
rotations or deformations. We shall write J(®,D) to exhibit
explicitly the dependence of *J on the sef of degrees of freedom «
specifying the gap geometry. The function e(D) .(thg interaction
energy per unit area of two parallel surfaces) is, by defiﬁition,
independent of the geometry @f the gaﬁ. It does depend, however, on
the nature of the surfaces. In particular, if the structure of the
surface (e.g., the density fall-off profile in the surface region) is
considered as variable, and specified’by a8 set 'of degrees of freedom

B , we may exhibit this by writing e(8,D). Thus our basic equation

- for the emergy associated with a gently variable gap or érevice is

Vp(o,p) = | e(p,D) J(eD)aD + --- , ' (3)
where « specifies.the geometry of the gap and’ B specifies the
structure of the surface region.

In what follows we shall specialize at once to the case of

surfaces with an invariable structure corresponding to that of a

standard plane surface at equilibrium, characterized by an equilibrium

density profile and a standard surface-emergy coefficient. (For a
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N
discussion of the dependence of e -on the surface diffuseness see
Refs. (10), (11).) As regards the geometry of the gap we.shall
illustrate the applications of Eq. (3) by several assumptions about -

the function D(u,v) and the mean gap surface T .

2.1 Gap with gently variable paraboloidal width

Consider a mesn gap surface I = which is so gently curved
* that the coordinates u,v. on the surface ' ‘may be taken aS_‘
cartesian coordinates x,y , and the normal coordinate n used to
- specify the .gap (nR. - nL = D) may be taken es the cartesian coordi-
nate z, with zp - zi, =D, (Some attempts were made to derive the
corrections arising from a finite curvature of T However, the
increase in the cemplexity of the formulae seemed to exceed iﬁ most
cases the slight gain in accuracy obtained by working with a curved
mean gap surface.) Consider now as an example & gap width D(x;y).
which has a least value D =

at x =y =0, say, and whose width

in the vicinity of this point is given by the Taylor expension

D(x,y) = s+%Dxxx2+2—Dyyy2+-
2 2 : .
. Lx Ly L .. ~ (1
= 8*3R. Y EZR T . ' (8)
x y

In the above, Dxx' and Dy'y are the second derivatives of D with

- respect to x and y evaluated at the point of least- gap width. In o

the second line these derivatives are written in terms -of -the
'px"incipal radii of curvature, Rx a.nd Ry, of . the surface obtained
by plotting the gap width D as & function of X and y - : ‘I'he'
di‘rections of x an_cl y are assumed to have been chosen alohé ‘tr_ie“'

principal axes of the quadratic form . D(x,y) so there is no cross
term in xy in Egq. (4). B
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Now change variables from x,y to §&,n , defined by

v
]

L - .
x/ (sz)é' , n=y/ (2Ry)2 , so that D may be written as

D=3s + 92, with 92 = §2 + _ne. ~ The proximity energy can then be

transformed as follows:

vy(s) = jaqu,é(n) : )

P
]

- 2(Rny)é !dg an.e(D)

4.
= 2(RR )% 2np dp e(b) :
[
= 2x R ~ av e(D)
D=s
. zﬁﬁa(s) . - (6)

In the last few llnes the integra.tlon has been extended ‘to 1nfinity

This assumes that the gap width grovs to beyond the range of the

interaction f‘u.nction e(D-) and that e(D) -approaches zero suffi-
,‘c:.iently fapid_ly for large vaiues of D- so that the _:Lntegr_al becomevs--
essentially independent of the upper' limit. (ﬁote_ that this means
that, with D given by Fa. (4), Fa. (6) is valid for ay finite value -
of R l, V’Ry-l, however 'small, 'but not for Ry 1. O, Ryf'li= 0,
whlch would correspond to a parallel gap whose sides never get outside

the range of e(»D).) The-quantlty. R is the geometrlc meéan of the

. two pr;ncipal radii of curvature R}'c,_ 'Ry, characterizing the gap D.
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The reciprocal of R is 1/(Rny)§ , -the square root of the invariant

Gaussian curvature at x =y =

D versus x and y .

The negatlve of the partlal derivative of Vg (s). with respect

to s gives the force between the two surfaces as a. functlon of the

‘separation degree of freedom:

v, _ : .
F(s) i =_?ﬂRe(S)~ - (7)

This leads to the_fpllowing Proximity Force Theorem:

"The force between two gently curved sﬁrfaces as a function of
the separation degree of freedom s 1s proportional to the interaction
potential per unit area, e(s), between tﬁolglgg surfaces, the
propoftionality factor:being -2n times the reciprocal ofithe sduare
root ef the Gaussian curvature of the gap width function at the point
of closest epproach.” ‘ N

In the case of two spherical surfaces with radii C; and G,

the equation for D is.

'so that the mean curvature radius & becomes R=c¢C 02/(0 + Gy ), a

kind of "reduced radius’ of the two spheres (1ike a reduced mass

'MIM/(M]_ M2))

The usefulness of the Prox1m1ty Force . Theorem lles in the
circumstance that the principal features of the function ef(s) may

be derived from experimentally known surface properties, such as.the

surface energy coefficient 7> and the degree of diffuseness of the

0 of the surface obtained by plotting =
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surface layer. Thusvfor‘ s greater than the thickness ofvthe.surface
(2 or.B fermis in the case of nuclei) e(s) tends rapidly to zero.
For smaller values of s ; e(s) becomes negative; and for § = 0. it
is approximately equal to minusvtwice the surface energy. per unit area
of the material of which the system is composed. This is because at

=0 thebtwo juxtaposed densify distributions add up to an approx-
imately constent bulk value, s6 that the mb effect of bringing the
surfaces together from infinity.is to aeStfoy the two surfaces. Thus
e(0) ® 2y , where' y 1is the surface energy coefficieﬁt'(about
1 MeV/fm2 ‘for nuclear matter,_about 75'ez_'gs/cm2 for water).

If one were to continue on to negative values of s , adding -

up the two density distributions without allowing them to get out of

each other's way, the function e(s) would begin to increase, would

- go through zero; and would eventually gfow without limit, reflecting

the energy cost of doubling the density in the overlap region. It
follows that- e(s) exhibits a minimum, and this minimum occurs in
fact near s = 0 , where e(0) ® -2y . This is because it is at this

separation that the total density is approximately equal.to the

" standard bulk density, and the bulk energy of stable saturating

systems (such as nuclei or“Ordinary matter) is a minimum wifh fespecé
to deviations ofithe densi£y from the standard value.:‘From thie .
circumsbanee follews an interesping result._ The maxismum attraction
predicted by Eq. (7)-oceurs~where e(s) 1is most negative,vena this

~ ~

as we saw occurs at s X O where e X -2y . Hence

Maximum Attraction X 27 R e(0)

&

L ®y . (8)
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This equation expresses the remarkable result that the maximum. -

attraction (in the separation degree of .freedom) between gently cqryed
bodies may be written down approximately without any knowledge of thg
nature of the cohesive interactioﬁs between the.particles constituting
the 5odies, provided only the surface energy coefficienf i§ known.

As the two curved objects begin to overlap bgyond the point
of maximum attraction at s x O , the attractién in the-separatioﬁ
degree of freedom decreases and becomes zero at some point . = where
the function e(sl) is zero. Since the zéfo(s) of ‘e(s) are, in

the nature of things, independent of the curﬁatures of the two‘objects,

we deduce a second noteworthy result: the equilibrium point (a miumnun)

in the separation degree of freedom for two gently curved objects,
such as two (uncharged) nuclei, occurs at one and the same oveflap 
distance 5 for all‘pairs pf'nuciei;’independently‘of their sizes.
(Note, héﬁever, that infinitely large objects--two really flaf.shrfaces
-—are, once again, an exception. ) ' ' /
Under the conditions stated Eq (8) would apply equally well
to the contact force in the separation degree of f:eedom‘between
;orAinary solids ‘(where the attraction is due to molecular forces), or
“to huclei, where the attraction is aué'to nucleon-nucleon forces. The
magnitude of the force predictea by Eq. (8) may be illustrétéd as’
follows. With a nominal value of.;y equal to 100 ergs/cm? (the
surface energy of solids is of this order of mggnitude, for example,
500'ergs/cﬁ? for mica) we find that two equal spheres Qith'radiiv5 cm

. should attract each other with a force

F = - = -3,
max 3100 dymes ? 2 gm Weight

-12-

Cohesive forces betwéen smboth curved surfaces of mica, rubber and

gelatln have in fact been found experimentally to have this order.of

magnltude (12,13)
In the case of nuciei the surfacé energy coefficient 7y is

about 1 MeVT/fm2 and for two equal spheres witﬁ radii 5 fm (corresponding

approximately to medium nuclei with mass number 76) we find

Flox © -3 MeV/fm. % - 500 kg weight.

In order to c¢alculate the force between two nuclei in its
dependence on the serardtion s one has to use Eq. (7), whose right-
hand side is a product of a geometrical factor 2n R depending. on the

two nuclei in question, and a universal functim of distance- e(s) ,

independent of the nuclei. The semi-quantitative appearance of e(s)
has been skeﬁched out above, but in ofdér to calculate e(s) in detail
one needs to have a theory describing the structure of the nuclear_
surface region, so that. one may také ﬁwo.flat nucleér surfaces and
calculate their intéraction enefgy per unit area as a function of the

separation. "We have performed such a calculation of e(s) using a

‘theory of the nuclear surface based on the Thomas-Fermi treatment.

ce

The results will be described in Section L.

2.2. .Other gap or crévice geometries

: The proximity potential mayAbe readily generalized to ofher
equations besides the paraboloidai relation between. D and X, ¥
given by Eq. (L).

First note that eQuétion (5)_£or'the-PrOXimity Potential is

- invariant with respect, to an area-mreserving stretching and compression

" ‘of the transverse coordinates from x, y to x', y' where x' = ox,
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y' =‘$-y . It follows that even if we specialize to systems for which

D 1is assumed to be only a function of the transverse radial distance

2 2 2 . .
.T , where r =1x +y , the results will liold, without any

modifications, for "stretched" systems obtained by deforming the
original circular contours of constant' ﬁ into area—preserving-

ellipses. Conversely, in any problem where the contours of constant

D are ellipses, the analysis may be 51mp11fied at ‘once by cons1der1ng

the case of circular contours, where D 1is a function of r2 only{'

Consider now the relation between r2 and D' to be of thé

2 A n ’ A
r = y cnrD > : (9)

where c = are arbitrary coefficients. Inserting Eq. (9) in Eq. (5)

form

we find

o | |
VPK = ; 2n r dr.e(D) )
- ‘
=" EE: n ey E%-ly’
B E ’
jwilere the quantities ]
@ » _ o
g = / P e®ap, Qo)
s’or O -

are moments of the universal function e(D) The‘lowef limit, "s or
‘O” distinguishes between what we shall call a gap and a crevice.

»The former means that D has a least value (say s) ‘at r =;O.'

(This value may be negative, corresponding to an overlapping of the

-1h-

two bodies which, for large-negative s , would lead to a region of.

doubled density.) The latter means that D becomes zero at some
finite value of r , say a neck or crevice radius rneck (related to

c. by r2 ), and there is no overlap or density . doubling Thus'

0 neck

a gap refers to two bodies (overlapping or not) and a crevice to a
single indented body.

' The upper limit in Eq. (10) has been set equal to infinity
under the same. assumptions as’ before.

- The case N =1, with c, =2 & and ¢, = -sc corresponds

1 : 0 1
to the paraboloidal gap considered before. For'a paraboloidal crevice
(a crevice formed by portions of two.intersecting paraboloids) we have

Vp = onR - e(p) ap .

Note that the proximity potentiél for a paraboloidal crevice with '

given R is independedt of co (or » ), i.e., is a constant

neck

independent of the degree of overlap.

It follows that the prox1m1ty potential along a sequence of

-conflgurations which for s > 0 consists of approaching gently curved

surfaces (approximated by pa:aboloidsj and for s <0 turns into the
correSponding crevice, exhibits a discontinuity in the first derivative
at s = 0. This is because as s tends to zero from above, aV?/as
tends to about xR 7 (Eg. 85, whereas for s < O, BVP/Bs =0 . As
is readily verified,this 4R 7 is precisely the negative of the
discontinuity.in the derivative of the surface energy that occurslwhen.

two gently curved surfaces characterized by a.gap width curvature
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radius R. turn into a crevice at contact. It follows that the
zddition of the proximity energy .rounds‘ off (approximatély)

the fami}iar kink that.is present when only the surface enel;gy ) '
is retained in the calculation of the potential for two. fusing nuclei
parametrized by separated or ow}erlaﬁping figures.such as sﬁheresbor.

spheroids.

The case N =2 corresponds to a relation between r2-' and:

D which defines a conic:

2 2 -
T = eyt D+ e, (11)

leading to
- e _ :
Vp = nclgo + 2n Oy - (12) -

For -gaps, EO (the same as 6) and gl are two universal functions
-of s; and for crevices two universal constants, characteristic of the
mterial of which .the surface is made. |
Gaps or crevices corresponding to tﬁe fol_lowing-geometricai
-arrangements are covered by Eqs. (11, 12).  (For crevices ‘ﬁhe over-
‘lapping portions are erased.) . |

(1) Two equal coexial spheroids with semi-axes' C, B (C

along the line of centers) and tip distance s (which may be negative)l

The equation for D 1s . in this casve

1 1.2 .
(C+§S-§D) 1'2
+ = = 1.

C,2 '- .B2,

This is of the form of Eq. (11), with c; = B2(C + % s)/F,

1

'<':2 = o 2/&02 . TFor two spheres C = B.

{a plane) we find c

be negative) we readily find ¢

16-

" (i1) As above, but with one spheroid infinitely large (i.e.

a plane). Thus we have a sphei'oid at a distance - s from a plane, or

a protuberance on a plane in the form of a portion of a spheroid.

‘One readily verifies that in this case ey = 232(0 + s)/02 s

2 C‘2 . ’
e, = -B /. (In the general case of unequal spheroids N is infinite.)
(#1i) For two equal juxtaposed hyperboloids with.axes C, B
(C along the line of centers) and tip-distance s we find
2 1 2 .
cl—B(C—Es)/C2, 0, = B/u . |
(iv)' As above, but with one hyperboloid infinitely large
= 2]32(0 - s)/C2 s G = BE/CQ‘.
(v) For the case of a body in the form of a single hyperboloid

of one or two sheets we have ¢, =0, c, = B2/1+C2 . When the

1
hy’pezj"c;oloid is of two sheets this is a special case of (iii). When
the hyperboloid is of one sheet we have the case of a hyperboloidal
crevice, a form often used fo_describe the ”neck shape of a fissioni;)g'
nucleus-or the crevice fqrmed after contact of two nuclei.

(vi) For two juxtaposea coaxial circular cones w.ith semi-
»o.pen-ing angles ai and and tip distan.cé s (which as usual may

= (cot o + cot a2)'2 ;oo = -2¢, s.

(vii) 1In addition, for the case of a gap beﬁweer; two coaxial .
elliptic paraboloids with tip distance s, with radii of curvature

Al and Bl .in the principal planes of curvature through the tip of .

pafabol‘oid 1, and . Ag; : B2 foif peraboloid 2, and an azimuthal
angle P Dbetween the principal planes of curvature of 1 and 2, we -

find c1=2§, ¢, = 0, where

2

e
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1 1 A 1 10y
= = + = + + sln ¢
27 KB TRE <A1A2 13132‘)

AQB> s

vThis'formula could be useful for discussing the nuclear force between
two nonepherical nuclei. In this case, in addition to an attraction
along the line of least separation, there-is a torque around it, tr&ﬁg
tc align the principal planes of curvature ie theiviciniﬁy of'the 
point of least separation. . |

" Note that the above results are valid insofar as the

_juxteposed surfaces are nearly-;arailel. Contributions from parts

of the surfaces where this is not satisfied cannot be expected to
te given accurately. Fortunately these contributions usually tend

%0 zero, which is at least qualitatively correct in most cases.

3. THE ENERGY OF LEPTODERMOUS SYSTﬁMS
In this section we shall give a derivation of the functional
form of the energy of a 1eptodermous (thln sklnned) system .in order

to arrive at a totel energy expresslon, 1nclud1ng the Proximity Energy,

- vwhich may be used as an approximation to the energy of many compﬁnatad

systems in a varlety of configurations of practical 1nterest
Consider a system with a rerticle density o(¥) and an energy

density 7(T). The total number of particles is

18-

aﬁd the total energy is

The integrals are over all epace.

Note that no classical assumptions are made in defining p
and 71 . For example, if the %ave'function of a system of _A
identical Iartieles is W(;i---;A). then the densit& p and an energy
denéity M ’may be defined in teims of the expectation valueseof ﬁhe~

density and energy-density opefators, leading to

oF) = A ] / oy,
>r2 Ty :
n(T,) =

L% )
[...[~WHW,
- I U

where H 1is the Hamiltonien of the A-particle system.

In order to define a leptodermous system pick any number

a. . with the dimensions of an energy and form the following identity:

1
E = Aa, + “/ {n - a, p) .

'The definition of & leptodermous systeh is now as follows: if it is

possible to find an ay

confined to a small neighborhoed of a surface in space, then the

such that. the integrand 1 -a o is

system is leptodermous. "Small” means small compared to typical
dimensions of the system. .
As an example of a 1eptodermous system conslder one with a

dens1ty which looks like Fig. la, and an energy density n .which
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, Ve pick the value of /o in

the bulk, say aB = 'rLB/pB , then 1 - aBp looks- like Fig. .lc; ‘Thbe

locks like Fig. 1b. Now, if for a

condition for the system to be leptodermous is that the bump in the

integ-rahd N - a.p should be localized near the surface and in the

B
case illustrated this is ensured because of the vanishing' of 71 and

£ outside the system and the cancellation of 7 and a.Bp inside.

For some given physical system (a drop of water, a soap bu‘pble,_"

a degenerate Fermi gas in a éontainer, an atomic nucleus, a hypothetiml
super-dense nucleus(lh_), a 'bag' or 'bubble' model of a n’ucleon(l5 ))
the answer to the question whether the leptodermous condition is ~

satisfied or not may be sometimes obvious and sometimes subtle. It L

involves the examination of the enérgy-densify bump function 10 - alp‘ 5.

in particu.laz" as regards the convergence of certain space integrals
over this function.. The discﬁssion of this prpblem' for various |
_systems- is outside the scope of this séction, which will concern
itself with the probf of ?he central theore;n that foilows‘ if _thé
leptodermous»conditioﬁ is satisfied. .

Theorem: For a le;btodérmous system an aéprox-ixﬂation to the energy

may be written as follows

B o= Poax ¥ Bgurrace layer ’ ) (1,3 )
where ] o ’ )

Bpax = 2t
_ = oV
and

Eourface layer = c?..j.-# (:3)( + clﬂ& + Sy é ,
+ corrections that vanish as A= o

V. T .(lh')"_’
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In ﬁhe abovev' ¢ s equal to T]B , is the energy per unit volume in ﬁhe
bu]Lk, and Lf/’l " is the volume o’f the system defined by A/ Py - All the
c.oefficients e1s Cps c5, cy an@ .ch' .are, in'general, functions of
the bulk density N but are independent of the shape or size of

the system. The shape and size dependence of the- Surface-Ias;er energy

for a fixed p, 1is given by the following four functionals and by the

. proximity energy VP :

[ : g ' . -
Ydo = surface area . o \

‘integrated curvature

\ ()

]

Kk do

K2 do

i

¥
p
) J&J »T' do = 4integrated Gaussian curvature

integrated squared curvature

T J
. N e(D) do .
Y g

gaps and crevices

<3
Q

)

‘ Here the integrals Q[ aie ovér the surface of the system, « is the

)

total curvature and I the Gaussian curvature at a point on the

surface:

T = 2
i

where R and R}',' are the two principal ‘redii. of ‘curvature at the -

) : . . ’ . .
point in question. The five terms ¢ to ¢y, are the result of.a

1
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. systematic expansion of the energy in powers of the ratio of the

surface thickness to the size of the system (tﬁe suffix indicates the
relative order of the term )., The underlying assumption is that tﬁe
condi‘tioﬁs in the vicinity of a point on the surface are fungtions.
only of the propéz‘ties of the surface in the -immediate neighbofhood :
of that point. The Pro:_cimity kaergy is an additional contribution
that arises when the surface is so‘contorted tﬁat the conditions at
some points are also functions of the location of a second I;early |
parallel piece of the sur,face.brought into close proxi‘l.nity by .the
contortion of the surface. | »

To prove Egs. (13, 1b) consider first a plane surface region

so that loci of constant density and constant energy density are plane

© parallel surfaces. The surf'_ace_ energy function 71 - aBp . is, by

hypothesis, effectively confined to a 'limited region, of width of the
order of b , say (a 1ength).' Integrating 1 - agp in the direction
normal. to the surface inside a "normél tube" of wnit cross section
gives the standard surface energy coéfficient, which we shall dénoté
by 74 - (The.integrél over in is the actual energy,Athebihtegral
over aBp is the energy that the same amqunt of ﬁatter'wou;d havé if
it were in the bulk, and so thg.difference is the surface energy.)
imagine'now the surface to be gently cﬁ:ved S0 thaﬁ ﬁhé
surfaces of constant ¢ are curved and the normals to these surfaces

can be used to construct slightly curved normal tubes with somewhat .

_ variable cross sections. Definevnow an effective sharp surface -of the

density distri‘but_ibn as.that surface which cuts off a given infinites-

inél tube at just such & point that as much material is in the‘tub_e

outside the cut as would be needed to make up the density inside the

22~

cut to a uniform bulk value. The surface layer energy may then be

written as

(- agp) - :j oy, @)

where the double integral is over the surface X , and 40 7 stands

for the result of integfating. 1 - a0 1inside a tube that intercepts

B
the surface I in the infinitesimal area element do . The local

surface energy coefficient ¥ +thus defvinedA mey now vary from point to

point on the surface T We shall at first assume that it can be only
a function of -the local prope_rties of the surface I at a given éoint.'
These local properties of I are the various curvature, inflection

and higher order invariants of the surface at a gi-ven point, as .
revealed by a Taylor expansién of the surface in the vicinity of that

point. Consider then the equation for the surface X iri the viecinity

of a point P to be written in cartesian coordinates as follows:

z(x,y) = ra £+ Lz y2 + Lz © + a2 <y

Y 2 Txx T 2 Tyy & “xoxx 2 "xxy
1 2 1 :
CEhy Y Yt G

The origin of the coordinates has been chosen a.f P with the
z-cooz;di.z:ate along the normal and the x - y coordinates in the
tangent plane at P . (The orientation of the x -y axes has‘,b'een
chosen so that tﬁe cross term in Xy '; does not éppear in Eq. an.)
The .symbols izxx’-i zxxy" ‘etc. st'anci for. f;he repeated derivatiy_es of
z(x,y_) with respect to x an& Yy, eyaldated‘ at P, The second

) o -1 . - .
derivatives have the dimension. (length) = {they are the reciprocals of
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the principal radii of curvat.ure R, Ry at P.). The third der‘iv-v
atives have the dimension (length_),'e, and so on. Except. for violently,.
contorted regions of the .surface these lengths may be.taken to be nof
1eés in order .of magnitude tha,n a typical dimensioﬁ of the shape in.
question, such as the radius Ro of the -equivalent sphere of equal

~ volume. The dimensionless éuant’ities of which the local surface energy

y can be a function are thus bz_, bz , vz s vz
XX Yy

| : Pxxx s ete.,
which are of order b/Ro, ('b/Ro-)?, etc., Thus we have

B o 2 2 2 . 2 .
Yy = 7(bzxx, bzy_y,- bz bzxxy’ bzxyy, Dz, ees) .

For a gehtly curved surface the dimensionless arguments are

&ll small and we may in turn expénd 7 in ‘a Taylor series:

7= vt klbz;(x' + kzbzyy + kjbgzix + »khbezfry + ksbezxxzyy o

2 2 2 2
+ k6bzxxx + g?bzm‘+ kanyy_*' k9bzyyy

+ higher powers of b . N S (18)

Here 70 is the surface energy per unit area of a plane surface and

k“.l. -+ k, are expansion coefficients. For exétmple, k6b2 is the

9

derivative of the surface energy coefficient 7 with respect to a
cubic type of bending of the surface described by the term % zmxj

lnEq (17), the derivative (with respect to ~b2z'm) being evaluated

for zx:d{ =0, 1i.e. for a plane surface. Thus :k6 describes the
.response of a plane surface to an x3 type of bending. - From this it~

follows at once that all the coefficients k, to k9 {those

miltiplying odd derivatives of z) must be zero. This is because the

2h-

response of a plane surface to a bending associated with 2’ ' say,

‘must be identical to the response associated _With minus ZM’ the

two'bent surfac:es differing from one an‘other oniy by a reflectibon_in
one of the _coordinate _i)lanes.' (The x = 0 plane in -th‘ils-caf,se.) ..Thus
7 must be an even fu.n‘ction of the g_i;d_' derivatives, and .so must not
contain linear terms in .'zxx;c,_ zx.xf ete. It is also clear that K
must be etiual to kz, ahd ‘ k3 must bg equal to vku (ﬁhe response of
a plane to bendings in any two directions, such as x and y, must

be identically the same. ). It follows that 7 may be written simply

as
1.1 1 1 1
P 2 A A L =
o * A% R, ' KE‘RQ- - K5Rny
) . Y
+ terms of order (,b/RO)3 and higher. .
’ : o . y :
= - I o
= 7y * KK + K3K + (K5 2K3) + ,
' RS R | Lol '
whéere K =R + Ry , = (Rny) , and where the coefficients

K are the following derivatives describing the response of a plane

- surface to infinitesimal bendings

/2 I/
1 X " 3R -l) !
plane b'e {plane
R
T2 -1 .
AR e
. o
K = £y %
g B(Rx'l)a(R -1y 1
' y iplane

(19)
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Tne total surface-layer energy of a gently curved leptodermous system

is then
.
E | ly do
=1, fj
,J“ .
(20)
._?
- d
= cyp0 * CBK + (ch(v + cué) + higher order terms,

where ég =7y e =Ky o = K - 2Ky, ¢, = K;, and ) ,]‘\’,Z,{f _

are defined by Egs. (15).
For a given bulk density DB the coefficients c1 e _cl:
are constants and the total energy of the system is an expansion whose

terms are readily verified to be of order (RO/'D)B, (Ro/b )2, (R()/'b)’

. O b - N
and (Ro/b) . Since, for a constant * py , the radius R, is propor-

/3 /3, A3 0 itn

tional to A , the terms are of order A,
corrections that tend to zero as A tends to . An important point
established in this section is thus that in order to discuss the energy

of a gently curved leptodermous system even up to and including terms

. of order AO, one does not need to calculate higher inflection

invariants of the surface beyond the standard total and Gaussian '
curvatures k and T, _ e}ipressible_ in terms of the two elementary
princiﬁal radii of curvature Rx and R_.

The addition of the proximity energy VP to the surfz_ace-layer-

. energy (20) 'broadens the énergy expression te include situations when .

tne condltlons at some polnts on a surface are no longer fu.nctlons of
only local propertles, but depend on the presence of other Juxtaposed,

nearly parallel surf‘a.ce elements. - .

appears that the coefficient ¢
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Of the three curvature correction functionals /r // (,
the  integrated Gaussian curvature is equal to 27 times the
Euler-Poincaré characteristic X of a surface (e.g. Ref. 32}. This

quantity is characteristic of the topology of a surface but b_therwise .

" independent of its shape. (To determine X for a given‘sur.face,

subdivide the surface into a set .of s-imple polygonal faces by drawing
a set. of edges coming together at a set of vertices. The number of
vertices, minus the number of_ edges, plus the number of faces, gives
X .) Thus f is lUx for surfaces with the topology of a singie
fragment, "lym  for n fragments, zero for a_torus or bubble nucleus,
ete. .The i.ucluéion of J in the _1eptoderﬁous series for arbitrary}
shapes is thus a trivial matter. The integrated curvature )f has
been the subject of some studies in the nuclear context, where it

(18,29) .

may be close to zero.

3

might thus turn- out that in order to discuss the average nuclear

energy to order A% ‘the only new shape functional required beyond

the surface energy TJ is the integrated squared ¢urvature é .

Note that in the case of certain crevices the higher-order
curvature correct.ions in the leptodernious, expansion might diverge
near or at the edge of the crevice. In such cases a more satisfactory

overall
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energy‘eipression would be obtaiﬁed by not retaining these terms,'at.
least not in the neighborhood of the cfevice. Note also that for . °*
large overlaps the terminology of a "Surface-Layer Energy" and a
"Proximity Energy" should be modified. Thus for large overlaps this
energy will be composed of an energy associated with the bulk of the
overlap region, and of a surface-iayer.energy of a new kind, associatad
with the surface dividing the douﬁle-denéity and single-density régions;
It_is then more natural to make the obvious decomposition of this
energyAintQ nevw bulk and surface-iayer terms,iand not refer to it as

a "Proximity Fnergy." (For a calculation of the new surface energy
coefficient; see Ref. 16.)

‘Corrections to the gap or crevice energies given by Eq. (1)
(arising, for example, from deviations from pdrallelism of the
juxtaposed surface elements) have nst beep anglyzed systematically--
this “should bé done in brdér to clarify the range of appliéability of
the ProximitylFormula. Some -empirical information on this point,is.
provided by the comparisons in Sec. 4.3, .

Note that the implicit definition bf,‘y through Eq. (16)-
depends on the choice of the‘surface' 3% on which the surface.eleménts
40  are defined. Thus if one chose & Aiffergnt;surface' £’ with
whose surfgceieleménts do' one vere to 1abel’tﬁe "normal. tubes, " the
resulting local surface energy 7f would be diffe?ent, even though
the product do'y' 1is, by def;nition,vthe éamebfqr'a'given tube. "It
follows thaf the total surface-layer‘eneréy EéL is invarianﬁ with'
respect to a‘change'from T to another referenqe surface X' ; but
the local surface enefgy f' .is not, transfofming in fact in a simple

geometrical way as the reciprocal of the surface element do' that

. correction coefficients ¢
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intercepts a given tube. It follows that the sum of all the terms in
Eq. (13) is invariant to changes from £ to Z', but the division

into individual terms in the series is not. For example, if the

‘surface Z' 1s chosen to differ from the effective sharp sufface by

a small constant normal displacement (say of the order of the surface

“width D), then it is readily verified that even though the surface

energy coefficients ¢ are the same in the two cases, the curvature

2

39 c;{ ete. are different. It is, in fact,
possible to pick'a surface, say Zt , -whose fixed normal displacement
with respect to £ 1is just such that the curvature correction

coefficient vanishes identically. (Such a surface is sometimes

%
referred to as the "Surface of Tension."). Another possibility would
ﬁe to cﬁoose,ninétead of Z , the half-density surface. Zi/z (thg
surface where the dgnsify has dropped to half its bulk value) or,
perhaps, its generalization, the "Central Surface” z, - (See next
section.) It them turns out that both ¢, emd o, are the same
for the,th choices 21/2 (6r ZC') and ‘£, but that the higher
order coefficients are different.

Insofar.as a diffuse density distribution has no unique
surf;ce, the fact that there is a ceftaiﬁ amount of arbitrariness in

the choiée of a feference surface withinlthe surface region_is_natural;

and it need cause no difficultieé if one is always‘careful to specify

thé éurface with respéct to which one has chosen to calculate the
curvature correction'gdefficients' QB, _ch, etc. vIn.making this .
cnoice'one should bear ‘in mind the following. The balf-density
surface 2122 or,»preferably,.the central surface Zc,.vare.better

suited for describing the location in space of the diffuse density
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profile. The surface of tension Z% is better suited for describing

the location in space of the surface- -energy bump n - aBp . The

‘effective sharp surface X has the advantage’that the volume 2/ it

encloses is related simply to the Pulk density pB and to the number

of particles by A = ¢ For the other surfaces the relation

BY !
involves, besides the volume enclosed{ other properties of the
surfaces, such as their areas or integrated curyatures. This has’
led in the past (and, we fear, will continue to. lead in the future) to
drastic misuﬁderstandings in thevidentification of the eorfect value

of even the surface energy coef’1c1ent c This results from a

'
2.°

mixing up of the true surface energy, assoc1ated with the surface

region, with a contribution from the bulk, which arises when the bulk

_ density is made (unwittingly) a function of the shape or size of the

system by demanding that the volume inside some surface other than I
be constaﬂt. (See Ref. (2&) and p. 19 of Ref. (17).) in view of the
uniquely 51mple relation between the effective sharp surface and the
bulk density and';a:ticle number, we tend to single out I as the

standard reference eurface, introducing‘ofher surfaces such as Zc

‘only when there is a special reason to do it.

The confusion arising when the bulk demsity is unwittingly

made a function of'ehape or size sheuld be diStinguished clearly from

the discussion of real, physical effects associated with explicit

‘variations of the bulk density of a system. Such variations may result

from the seeking out by a system in eqﬁilibriﬁm}of the configuration
of minimum potential energy. (For examplejlight_nuclei tend to have

nigher equilibrium bulk densities than heavy nuclei because'theyiare

" squeezed more etrongly by the surface tensien and dilated less strdmﬂy

730-

by the electrostatic repulsion.) Once the relevant dependences of -

~ the coefficients cys Cos c5, etc. -on the bulk density are known'

(or an assumption is made about the functional form of these
dependences) there is no difficulty (though there are subtieties)‘>

in setting up the equations that describe the variations:of the

. equilibrium bulk densities with size and shape of the system. An

example of this is provided by the Droplet Model (Refs. 18, 19)

The Droplet Model provides also &n illustration of the way:
deviations from a strictly leptodermous situation may be treated.
Thus when -the loﬁngange eleetrostatic»inferaction is included in
the idealized nuclear problem the bulk density is no. longer constant,

but exhibits instead a gentle variation. This variation

" may, however, be se;érated'from the rapid density decrease in the

sﬁrface, and the system may still be coneidered as leptodermous in -
an extended sense. The resulting energy expressiqns are derived

in Refs. 18, 19.
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3.1, Geometrical properties

For the practical utlllty of the Irox1m1ty Theorem 1t

» turns out to be of the utmost 1mportance ‘to be precise 1n v
deflning the relative positions of the diffuse surfaces of twé-
interacting leptodermous systems. (The strong'interaction between
two such.systems has a range of the order of the surface‘diffuseness
end unless the surface positions are specified to within a fraction
of this already small number the calculated interaction will be
correspondinglj in error.)v In this connection we shall clarify.some
elementary geometrical propertiesvofldiffuse.surfaces in a way that

(20)- (l)

follows the much more extensive works of Slissmann and Myers .
(whioh, however, were specialized to sphericai shapes).
‘Consider a diffuse distribution in' s;ﬁace defined by f‘;rst
choosing a uniform distribution tounded by the effective'sharp surface
Z and.by then moving matter from inside to outside_this surface |
according ‘to- some fall-off proflle f£(n) , a function of‘the»normai
:distance from I .; The function £(n) is supposed to drop from 1 to

zero in some (small) distance of order b , say, and to have an

intrinsic shape independent of the position.on X . As before_

construct normal tubes subtending-elements of area  dc 'on"Z . If the -
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amount of matter in a tube after the diffusing -of the surface is to

be equal to the amount before we must have

o . ' . . _ Lo
do ‘// - an(1 + kn) £(n) =-do ' dn(l + Kn) .o

| N o . N ‘ . (21)
Here (1 + «kn)dn do 1is the volume element in the integration along &
tube;.the familiar,factor 1+ kn oorrecting for the.slight non-
uniformity in the tube cross section essociated with the small
curvature K of the surface I (e.g., Ref. 17, p._58).» The lower
limit -N is assumed to be sufficiently deep inside the distribution,
where f(-N) is essentielly unity, so that Eg. (21) is essentially
independent of N . .

. Integrating the left side of Eq. (21) by parts and the right

" directly and re-arranging gives

/FD ar 1 f 2, at
j o nl-glam+zx o (-3 )dn
.'_N ». 4

= N - 2(aN)] %Kl\le.{l.- (M7 2 0.
| - | ' (22)
‘The negative of the derivative of the profile function,
-df/dn), has the appearance of a bump in the surface region which,
for a leptodermous system, is assumed to fall off rapidly away from
the surface. ' The two terms on the left of Eq- (22) are thus propor-

tional to the first and second moments of . the bump functlon evaluated

with respect to the origin of the normal coordinate n y which Was

taken to be on the surface z .- (These moments are essentially

1ndependent of -N ¥ which we shall put equal to - .) _Following



i

33

Stissmann we shall define the "Central Surface” Zc to be located at
such a value of n , denoted by n, that the first moment of the

profile bump function taken with respect to nc -is zero. Thus

@-n)-E)m - o. e

-0

This ';Central Surface" is thus at the center of gravity of the
profile bump functién '(hence the name) and may be used to specify thé
ldcation of the diffuse surface. In this respect it is analogéus to
the half-density surface but, being an integral quantity, does nd‘b
suffer from the arbitrériness of.'»being associated w‘i‘bh a prticulaf

value of the density (the half-value). In order to solve explicitly

' for the distance ‘nc of the Central Surface from the Effective Sharp

Surface we write

]2

=]
1]

[{a - nc) + 1,

2

2 .
= (n-nc) +2nc(n-nc)+ncv,

vand substitute in Eq. (_22 ), using Eq. (23):

[o.0]

o1 2y folae '
(nc+§Knc) ('dn)'dn+-

|-
x
-
B .
'
o]
o)
S
.
~~
1
S
=%
=]
I
(o]

~co . =

It follows that, for Kn, <1,

1
n, = -z3kb

2}+...V. ,.. . ' . ' . (2’4)

where

where L o=

-3h-

3

o’
I

(-2l (-L)a

is the r.m.s. width of the profile bump ﬁmction--Sﬁssmﬁn's "width"
of the diffuse surface.

Equation (24) is the generalization ‘of Stssmann's relation
for spherical systems between the effective sharp radius R and the

central radius C (Ref. (21), p. 468):

. .b2 : .o .
C = RL-Z5 +--0 ), : (25)
. R : . S
that is,
. 2
b
C-R = -‘?'f- .

_Since for a sphere the curvature k. is 2/R Egs. (2‘1+) and (25) agree,

The position of the surface of tension was derived on p. 58
of Ref. (17). -By writing the surface-layer energy including the

curvature correction as

N [ d°€o '+'I.§7E\\§1aﬁe ‘. >

do (1 + VA

=
"

A
70

ANy

, ‘one realizes that the surface—layer'
plane ' ’

energy is, to the relevant approximation, an int..egral of the standard
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surface énergy 70 but over a surface shifted normally by the length
L (V(hich is equal to the ratio cj/c-2 of the curvature and_ surface
snergy coefficients in Eq. (20)). This shift to the ."Surface of
Tension, " displaced by a constant from the effective shé.rp surface 5,
may thus bé used . to absorb fhe curvature correction in.the surface .
enérgy.
3.2 Comments

» We hope to have clarified somewhat the content of Leptodermous
. Pnergy Formulae of the type of Egs. (13, 14), TFormulae like this aré

often thorught of in the context of a Liguid Drop model of nuclei,

which historically has tended to be identified with systems of stronglyv.

-interacting particles characterized by short mean-freé-paths, and
treatéd according to classical meéhanics. As a result formulae of ‘the
type of Eq_s.} (13, lh),. with their bulk and surfaée-layer energies bha.ve
been thought to be in conflict with the independent-particle model of
nuclei, which is characterized by péfticles with long mean-free-paths,
treated quantally. Our_derivation of the Leptodermous. Ehergy Formula
shows, we hope, that classiéal assumptions about the treatment. of the
: cpnstituents of fhe system do not enter, and that. no assumptions a"t>01.1t.
the mean-free-paths are necessary. The crucial ﬁssumpti-on on which |
the Lebtodern;ous Energy Formuia is base& is the félative thi_nﬁe_sé of
the sﬁrface layer, and this need not be in cor;flict with a model éf :
qma;ntizeq independent (long mean-free-path) particies._ . B
In fact, References (17, 19, 22, 23, 2k, 25) uiustfate_
gx'ecisgly;how in the case of either independent or ir;t.eracting
particles treated qgantal_lfy the ‘energy denéity ﬁmctibﬁ‘- n - a.Bo |

remains confined to the vicinity of the surface and the leptodermous

relatively thin-skinned éystems, one may, we feel, use the
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condition is Vsatisffiedv. Thus if the Thomﬁs—Fermi approximation is
used to treat f.he problem of quantized interactj.ng nucleons(l_g) the
deviatigns of the densities and energy densities f‘rom thei;r. bulk ﬁlueé
ténd to disappear éxpo_nentié.lly as one leaves fhé sﬁrface ‘region-along
the inward normal. (T,he disappearance is even more rapid towards the
outside.) In the case of a Hartree treatment of & semi-infinite sy'steﬁ,
where a i:roduct‘ wave-function is use&, the energy density function
M - agP is also. confined',to the surface region(%) (al&hougl; the tail
extending inward exhibi@:sb oscillétions and must be treated with care).
The use of a determinantal wave ﬁlﬁétion(zz) does not appear to qhange‘
things aippreciai:ly. For a finite syétem (e.g. completely
independent quantized particles in é bbx) the oscillations in the
densit.ies’my be appreciable, especially for boxes possessing a high
degree of symmetry. This is associated with shell effects (due to the
discretgness of the particles, augmented by deéeneracies associated
with symmetries). The problem of iéolating in that case the smooth,.
shel'l-a\.reraged, background .in the energy expressions is a subtle
one and has beeﬁ the subject of many .recent investigafions. However,
studies of speclal cases, such @s those in Refs . (2k, 25} iilustratfa
how even then a“leptodermous expénsion is able to i‘epresent accurately
the average trends of thé j:otal. energy (8 sum over emergy eigenvalues). -
Since one E}lso knows expegimgntally that moét nuclei are.

Leptodermous Formula for nuclear energies without undue reservations

on the score that one is "just parametrizing" nuclear masses in an -

ad ‘hoc way. The essentizl reservation to keep in mind is that
. h ; :

the formula refers té smooth, ’shell-avefaged trends of the nuclear

energy.
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4., APPLICATIONS TO NUCLET . - ~ -only enters in deterzﬁing the functional form (vut not the scale) of
%.1 The Universal Functions » : . . £he proximity functions.
It is convenient to introduce the following.dimensipnless . ‘%e have carried out a calculation of the un;iversal nuclear
Froximity function ' ' o » N ' .proximity function $ and of the associated moment functions .'_fn

using the nuclear Thomas-Fermi model with Seyler-Blanchard phenom- -

BL) = eltw)oy,

enological nucleon-nucleon interactions (Refs. 19, 23, 26). Appendix

obtained from e(s) by measuring the separétion & in units of the , A gives a brief des;:ription of the model and its adaptation to the
~ surface width. b, ¢§ = s/b ,’Aand by measuriqg energy in units of. ' calculation of the proki'mity energy. The resulting function ¢(§)
twice the sﬁrface energy coefficient 7 (the 7o of the previoﬁs - is displayed in Fig. 2 and the integrated function Pp(t) in Fig. 3.
section). ' ' ' . o Table I gives @P(¢) together .with i’cs first four incomplete moments
’ Similarly we define the dimen_sic.mless (incomplete) proxi_mity 5(!); ﬁl(g), @2(‘;) and 53(0'

wmoments by
For practical applications it is useful to have available a

simple analytical représentation of the function ﬁ which enters in

2. - ¢ B(e) ag = & ()fer™t . ;
4 ‘ ’ : the nucleus-nucleus proximity potential that follows from Eq. (6):
{For the zeroth moment 150 ‘we shall simply write f .) o v, = I{Jt yRb - f(g) . , (26)

By dealing with these dimensionless functions one can make . .
’ One such approximation is given by the following "Cubic-Exponential

the predictions of the theory insensitive to certain guantitative 7)
. ) ‘ i : pocket formula :
shortcomings of the models of the nuclear surface that have to be . .
used in calcuiating e(D) and »its integrals. Thus a model of the @(Q < El) = - % (¢t - §0)2 - k(¢ - go)3 i
surface could be somewhat inaccurate in reproducing the absolute - v : ' } (27)
. > _ - _ E
-values of the experimental surface energy and/or width (diffuseness) ﬁ—(C - Cl) - 5f457 exp(-£/0.75) , | i

%

and, nevertheless, generate relatively accurate dimensionless functims - . o
: ' where ¢ =1.2511 # 5/%,

£y = 2.54 ‘and k = 0.0852 ® 1/12 ,

$ apd § . Combining these functions as predicted by the model with- o : : :
: : This pocket formula for P is illustrated (by the circles) in Fig. b,

the experimental vaiues of 7y and b (rather’ than with the possibvly
inaccurate values given by the mode;) will then result in the most

reliable exploitation of fhé theory, where the model of thé surface
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and sﬁouid be adequate for many purposes. The cubic expression has
oeen chosen to go smoothly to zero and so it could be used by itself
in cases where the tail of the interaction is not an impoftant.feature.
Approximate expressions for the higher moments .gﬁ can fgiobtained by
integrating Eq. (27). One can also obtain an -approximation fd b vy
differeptiating.Eq. (27), but the result is only a rouéh representation
since a discontinuity in the élope of § “appears at'.t_i 1.2511 (a .

’ ~Tesult of the discontinuity in the cui-vature in Eq. (27) at that: h
point). » . |

4.2, Suggested parameters

In applications of the above formulae to nuclear problems the
Zollowing choice of numefical parameters would be reasonable.
For the surface enérgy coefficient 7‘ one might use the

fysekil mass formula of Ref. (28) according to which

y = 0.9517 [1 - 1.7826 Ig}MeV/fmg ;o (28)

where I = (N - Z)/A, and N, 'Z and A. refer to the combined
system of the two'inﬁefactingﬂnuclei. In this way some aliowaﬁcg is
ﬁﬁde for the dependence of the PToXimity Potential on the neutfon

" excess, even though the uﬁiversal functiéns 9 and Jﬁ were cal-
culated.for zero.neut;on excess. (A rough apﬁroximation to Y wﬁuld 

be simply (1 - 21°) MeV/fu® .)

In: calculating the value of R in Eq. (26) and the separation

s =r - Cl - 02

using Sissmann's central radius C , related to the effective sharp

for spherical muclei the surfaces should be located -

redius by Eq. (25). (In the case of more general geometries the

central .surface Zc should be used, related,to the effeéﬁive'sharp.'

~ho=

surface I by Eq. (24).) For the effective sharp redius one mey use

the following formula:

=
n

1.28 RN 0.76 + 0.8 a3 _ (29)

Q

1.15 aY3 o | ' (30)

When used in conjunction fith the Proximity Force Theorem the
central radius is preferable to the effective sharp radius R , which
ﬁoves out relative to the density profile by an amount proportional
to A'l/3 (Eq. 25), and which.is not, therefore, in an inveriant
relation to the location of the profile for finite nuclei with
different radii. Note that the Ppoximity Force Theorem is based on
Eq. (1), whose physical content is the'approximate replacement of the

interaction_enérgy of two curved surfaces by an integral of the

interaction energy per unit area of ;aralléi flat surfaces for which

the se;arﬁtion D(x,y) matches, point by point, the distance between

pairs of.eléments of the actual curved surfaces. - In order for the
approximation to be accurate the flat $urfaces should be located so

that their profiles match the locations of the actual profiles as well

. as possible. This is ensured to a higher degree of accuracy by

working with the central radius C rather than with the effective
sharp radius. R . (See ‘below.)

Nevertheless, we comsider R ‘as the primary quantity for

which we provide empirical expressions (Eqs. 29, 30) because it is

l/j for

R and not C which is exactly proportional to A
1/3

incompressible systems, and nearly proportiomal to A for nearly

incompressible systéms3suph as nuclei. A'réfined apalysis of the

. 1, 2 i 1/3
experimental evidence on nuclear_sizes indicates(g"-'?) that R/A /3
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s
is to a fair approximation constant at about 1.15 fm. A”slight
7arigtion from aboutAl;ll fm for A~ 20 to 1.18 for A = 250 ,ié
the expected result of the finite compressibility of nuclei, lgading
to a-relatiVely greater squeez;ngiof light ;uclei by the sprfaée_.
Tension forces and the dilation of heévy nuclei by the electrostatic

Tepulsion. An attempt to take this into account is represented by

_Eg. (29). This value of R, vhen divided by Al/g, reproduces -

bclosely the middle curve in Fig. 5 of Ref. (29), représenting average

muclear matter radii between A = 20 aﬁd A =250. It is important
to stress that neither the coefficient 1.28 of Al/B in Eq. (29)'nor
the 1.15 in Eq. (30) is to be interpreted as the nuclear radius
constant of nuclear matter, whose value, as deduced in Ref. (29), is
1.18 fm * about 0.02 fm. ]

The width b in By. (26) has the approximate value of 1 fm.
Thus for a Woods-Saxon surface profile the Siissmang width b is

related to the "10-90 fall-off distance" by (Ref. 21)
v = [n/.(ZVB_ in 9)]1:10_90, |
which for .t10-90 =2.4% fm gives O.99’fmi For a mo?e refined analysis
of the course of the neutron, proton and, éverage surfacé wiatks
throughout the periodic table see Ref. (11). As a nominal value
of b we shall, however, use 1 fm. .
Thé above equations give 6nly average eétimafes of nuclear
sizes. Variatiqns caused by shell effects,vincludiné defdrmatiohs;'
have to be'ﬁaken into account sepéfately._ in particular, when using.

the Prbximity Potential for deformed nuclei, the distance of closest

approach s, as well as the mean curvature radius R of the gap width.

function in the v1c1n1ty of the point of closest approach, have to be

carefully related to the orientations and shapes of the nuclel.

.

In the formulae given above there are no adjustable parameters .
in fhe predicted nucleus-nucleus interaction. TFor some purpééesvit
might be useful to have adjustable parameters that could be varied,
wifhin reasonable limits,‘in correlating expefimental date. For
example some slight variations in the.nuclgar radii from the nominal
values.given by Eas. (29,v30) would be reasonablef 'Similarlyvthe
nominal values of the surface energy coefficient. y (Eq. 28) and of
the surface width b (= 1 fm) need not, of cpurse,’remain'
inviolate. Altogether the slight freedoms associated with adjuétments
ip the values of the radius, surface energ& and surface width'ére
together equivalent to slight_freedéms representing a horizontal shift,
and horizontal and vertical stretchings of the nucleus-nucleus
potential VP(r) . Such adjustéents ofvthe parameters should, however,
be used with moderation and shoﬁld not be.in conflict with what is
known about nuclear radii and surface properties. In ;articular, if,
in the inferpfetation of nucleus-nucleus scatiering
experiments by means of the frozen idealization (in which all degrees
of freedom except the separation between nuclei are frozen), unrea-
sonable adjﬁstments of the parameters are ¢alled for, the explanationis
very likely fo bevthe inadeqﬁacy of the frozeﬁ jidealization. One -
would then be wiser to display clearly the discrepancies rathér than
to mask the expected féilure of the}frozen'idealization by an abuse of
the nuclear parameters.

With reference to some earlier misunderstandings; let us stress
that the use of the Proximity Energy expressions (as generalized in
Section 2.2 for various geometrical arrangeﬁents'ihcluding necks and

crevideS) is nof tied to the frozen idealization. .Thus if a neck



-3

degree of freedom is added-in the description of (e.g. deep inelastic)
scattering, an appropriate Proximity FEnergy formula, taken for example
'ﬁ'om Sec. 2.2, mway be used.

4,3, Tests of the Leptodermous. Formula

The accuracy of the Leptodermous Energy expressions (13, 14)
depends on the smallness of the ratio 'b/R . How accurate should'one
expect ‘the exyression to be in nuclear applications where this ratio
may not be very small, espec1ally for light nuclei?

We shall first test Eqs. (15, 1k) against the exactly soluble
mathematical model of Krappe and Nix (Ref.-4) of two sharp spheres
(vith surface separat_ion s), whose‘ volume elements interact by a
Yukawa interaction of range a and strength written as VO/ )maB .

For a single such sphere of radius R- the exact energy is

v = vo[-hnR3/3 + enaR_e + 0-8°R - 2ma’
+ ena(R.+ a)2- exp(-QR/a)] .

With V, =.2.2105 MeV/fm5,

representatlve of the nucleay sltuatlon) this gives (in MeV)

=1lfw, R=1.2 Al/3 fm (values

v

164 + 20223 o.-Al/3 - 13.89 + 15;89'(1.2 A3 4 1 Pexp(2. uib)

50 +125 + 0 - 13.89 + 0.5, or A = 15.65 (1.e. 47 =25

Equations (13, 1k) applied to this case give

T2

IV

vV = 2.2105 '(Mev/ﬁnB)'[“"?/4 %agf+ o.?( -éa%& - %9@ ]

= 2,2105 (MeV/ftnB)[ -lmR3/5 + 2%eR° + 0 - 2na’l

= 250 + 125 + 0 - 15.89 MeV.

(In Ref. (27), p. 5 the coefficients of ,&ﬁ “and Q were interchanged )

- In this case the 'onlyA term not reproduced by the Ieptodermous '

- Formula is the expoﬁential one, amounting to 0.55 MeV. This may not

. be a representative figure, however, because in the

Krai)pe-N.ix model the po]_.y'nomial part‘ of the energy expression happens
to tei‘_minate at the _AO' term. If this is a peculiarity ef this -
model then in a more 'generel case one miéht expect the next |
term to be of order (lO-QO)A'l/3 MeV, i.e. a few MeV rather than
L MeV for AR i6 , somevwhat less foi"larger systems.

For two equal Krappe-Nix spheres, whose centers are sepa.rated

by r , the exact additional interaction energy méy be written as

/lma. b4

AN -4(p cosh p - siﬁh p)e(r/a)'l' exp(-}‘/é).

i

-4(p cosh}b - siph p)e(c + 20)’}1 exp(-0 - 2p) ,

(31)

~ where p = R/a ) 0= s/a and 7 equal to aVo/.?‘,‘ is-the surface

energy coefficient in the Krappe-Nix model. (In.Ref. (27), p. 5 there
is a misprint in the formula for V, ..) '
In the example under consideration the value of .- vint is

-9.35 MeV for o =0, and -2.95MeV for o= 1.
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In applying the Proximity Formula (6) to this case we first

rote that the interaction energy per unit area between two Krappe-Nix .

slabs is readily verified to be

e(s) = - 27>e-s/a .

In inserting this in Eq. (6) (where R = Clca/(q1 + 02)) we

shall use for the effective central radius C of a Krappe-Nix

eff
cbject (a éharp sphere generéting a. diffuse potential) the mean beétween

the centrél radii of the density and potential distributions:

Core = 5 (G + Cy) s
where

c, = R

c. = R(L --b°/R° &+ )

v

Here b is the Slssmann width of the surface of the diffuse
votential distribution. In the Krappe-Nix case it is related simply
to the range of the Yukawa interaction by b = Ve a (Ref. 21, Eq.

(18)). Thus the effective radius of the interacting spheres is
Copp = R(1" - §2/R2v +__ii- ) s

and the separation between their effective surfaces is
s = r-2R(1 - a?/Re) = s +2a°/R .

eff

Inserting these values in the formula

-46-
2
C /a
V. = -Urya . eff eff ,
P Copp +C
T eff eff
we find
2 1 <1 =1 :
Vp/ba® = - = (p - p7) exp(-0 - 2077) . o (3e)

(In Ref. 27, p. 6 there'is a misprint in the-expénent.)' This
formula gives -9.51 MeV for o= o. and -3.50 MeV for o = 1 as
the interaction energy in the cése under éonsideration, when. R=3fm
and a =1 fm, -so that p = 3.

The upper left-hand part of Fig. 5 compares the exact inter-
action energy (Eq. 31) with the proximity formula (Eq. 32) for .

R/a = 3. The other two graphs make the comparison for R/a =2 and 1.

On the right the exact and appréximate interaction energies
at contact (s = 0) are compareq as functions of . R/a . Also shown
(by the dot-dash curve) is the result of not béing careful in the
choice of the effectiveAloéation_of‘the surface of a Krappe-ﬁix ébjéct.
This curve i; the re;ult.of taking 'R iﬁstead.of Ceff té locate thé

surface. This leads to

2 -(r-2R)/a -
V, = -bmya . S .
P R+R a 4
or
. 2 1. S
.VP/hﬁya = -5 pexp (-0) .

- This expression, even though formally correct in the 11m1t of very

large o, would be useless in’ ;wactlce for e- values in the range

around 2 - .5.
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vlhese cooperisons illustrate the importance of recognizing the
proﬁer.location of the surface profiles of the cur&ed.objecfs to %hich
the Proximity Theorem is‘being applied. This has.to do with‘the
importance of properly matching the parallel flat.surfaces (ﬁnderlying
the Proximity Theorem) to the profiles of the curved surface elements
thatvthe flat surfaces are.supposed to represent. In the Krappe;Nix
case this proper matching makes all the differenceibetween the theorem
beiné a useless curiosity and a practical tool for predicting the
results of a calculation, Without carrying out the somewhat involved
multiple integrations associated with folding inv(¥ukawa) interactions.
We should remark, however, that the Krappe-Nix case, with a‘§§§££
density but ‘a diffuse potential, is a .situation that exaggerates this
aspect of the problem. It is only because the density is sharp that
its profile stays at R whereas the locatioo of the potential profile
moves‘in by b2/R as the surface is curved. In a self-cobesive
system (such as a nucleus), where the deneity.generates the potential
and‘the potential-determines the denslty,in a self-consistent way, the
widths of the poﬁential and density profiles are approximately -equal,
and the den51ty and potential proflles do not move apprec1ably with
respect to each other as the surface is curved. Applylng the Proximlty
. Theorem simply to the matter density'radii c, (as was implicitly
suggested in Sectioo h.2):ehould then be a fairly adequate procedure.

TheiProximity.Theorem was tested also for the case of uneQual
Krappe-Nix spheres, with s1milar results to those described above.
In addltion, in Ref. 30, an exhaustive series of comparisons was made
for a generalized Krappe-Nix model wheﬁe equal or unequal diffuse .

‘'spherical density distributions were used-to éenerate diffuse

_;h8-
potentials by way of Yukawa interactions of various ranges. A limiting
case is that of two diffuse spherical distributions whose elements
interact by zero-fange (delta-functiod) forces. In all cases the
Proximity Formula was a useful approximation, provided the effective
surfaces of the interacting systems were‘properly.located at the
average position between the deoeify and.potential surface locatione.

In the most realistic cases where the density and potential had

comparable diffuseness the agreement was even closer than in the

‘extreme case of a.sharp'denSity; illustrated in Fig. 5.

A second comparison of the nuclear Proximity Potential was

made, this time with the interaction potential between model nuclei

described with the aid of a simplified Thomas-Fermi method (the energy-
density formalism of Refs. 2).

Figure 6 shows such a comparison for the case of uOAr + lleb

. 8l ) .
and Fig. 7 for hKr + 20931. "The calculated potentials are
genierally similar, but one should bear in mind that in such comparisons
one is not just testing the Proximlty Theorem but also

the correctness of some of the parameters used in the energy-density

‘formalism.  (In rarticular those combinations of parameters that

control the values of the nuclear radii, éurface energy and diffusemess.)
Thus if a set of parameters is used in the energy—density formalism
that does not reproduce experimental nuclear propertles well, a
relatively large ‘deviation from the Prox1m1ty Potential (w1th its

parameters taken from experiment) may be expected. This is illustrated

in Fig. & based on Ref. 31. . Here the dashed line refers to a-set of

rarameters (set II) referred by the authors,»and the solid curve to
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an earlier set of parameters, which shows rather large deviations

‘Zrom the Proximity Potential.

As remarked by the authors of Ref. 31 their results are
consistent with the Proximity Theorem in the .sense that the,'int.;er—
action potentials for 17 pairs ofl nuclei (calculated with one and ‘the.
same sef of parameters) can be reduced approximteiy to a universal
function of the separation between the'nucleaz; surfaces by dividing -

out an eéstimated reduced radius, roughly proportional to

.L\i/} A;/%Ai/a + A;'/B) . To test quantitatively the accuracy of the

. Proximity Theorem in this way it would be necessary to determine the

surface locations (central radii Cl and C2) of the model ruclei

employed, and to use these values in making the reduction of the

interaction curves to a universal function. :
We have recently become aware of an analysis of elastic .

scattering data in Ref. (34) which makes possible a comprehensive

" comparison of the theoretical Proximity Potential with experiment in

the extreme tail region (see Fig. 3). As discussed in Ref. (34), the

results of 57 elastic scattering experiments (involving projectiles
ranging from 10 4o 2
used to deduce, for each pair of muclei, a value of a potential depth

v at a certain --distanée rexp between the centers of the

exp

interacting nuclei ( & distance related to the rainbow angle)..
3y dividing the potential by the factor LarybR. appropriate to the
system in question, an experimental value of _13; Xp may be deduced.

The dimensionless separation .;exp at which thié'vﬁlue 'isv‘plo_tted as

a point in Fig. 9-is obtained by subtracting from, rexp

the apyro-

priate sum of the cemtral radii C

Target * CProjectile <°?t?in??,

. using Bas. (29) and (25)) and dividing by b (= 1 fm). - .

S and targets from ',llB to 208Pb) can be

=50+

Figure 9 shows that the theoretical value of the intefaction

function j in the extreme tail is of ‘the order of magnitude of the

» experimental points and tha;b it exhibits thé observed trend with

separation. To what extent the deviations are significant is not

clear at fhe moment--the systematic deviation (most points lie to the
right of the curve) could be removed by a 2% increase in the nominal
radius formula Eq. (29), used to deduce Cexp from T oxp’ But there

ié no reason to think that this is necessarily the explanation of the

deviations.

Based on these and other cc;mparisons carriedb out so far, our
impression is that the suggested simple scheme of estimat_ing the
nucléus-nucleus potential (in the seraration degree of freedom),
using for example the pocket formula (27) and experimental values of
nuclea::' radii, surface energy and diffusenéss,_' éhould be useful down

to quite small systemé, with A values perhaps below even A =16.

" In the later stages of a nucleus-nucleus interaction, when a crevice

or neck has formed, the appropriate Px“oximity Energy expréssipri shouid
also ccontinue to be useful in correcting the grossesi_‘. shortcomings of
the folynomial part of the leptodermous expansion, Eg. (20). A study
of this problem is under way. A '

As a final application of the proximity :upctioﬁ $ we might
mention the estiiﬁate of the tehsi'le' str_éng‘th of (a éylinder of) nuc'lear'

matter against é disruption into two pieces with two new surfaces
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f2cing each other across a gap.’ (In nuclear fission the question.
sometimes arises as to the smallest neck that could withstand the

. electrostatic repulsion between the fragments before rupturing by way

o? such a new degree of freedom, not included in the usual parametriza-

tions of fissioning shapes.)_

If the rupture is assumed to proceed along a degree of freedom -

that is essentially the reverse of the bringing together of two
suxtaposed surfaces with frozen density profiles, the force necessary
‘to cause rupture is proportional to
ae(s) 2y 0o
- & - -Z FA0
. : max

max

Jsing Table I we find that the maximum value of Jé' is about 0.486
{at' ¢ = 1.55). With the nominal values of 7y and b we then find
for the tensile strength {:he simple result of just e.bout (l MeV/ fm)
er f‘me. _ -

In conclusion we hope that this paper will be useful in
=ivancing ouI; q_ua_ntitat';i.ve undei‘standing of macroscopic. nuclear

properties and that, perhaps, it !_night‘ also be fou_nd to have relevance

in the domain of surface physics.
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'APPENDIX A

In this Appendix we. give a brief outi_ine of the adaptation of
f.he_ Seyler-Blanchard nuclear model to the calculation of the proximity
function.

The model is based on the following phenomenological nucleon-.

nucleon interaction( 6)
-r /a
e 2 2
v, = -C A (1 - plg/'b )- .
12 h .
Here ' rl‘2 Iis the separation between the two nucleons and p12 their

» relative momentum. The parameters entering aré: a, the range of the

Yukawa interaction, b, the critical momentum at which the interaction

turns repulsive, and C (= C, or Cu), the interaction strength,

¢

which is different for like and unlike nucleon pairs. For symmetric

systems (idez_ztical neutron and proton distributions) only the average
1. .

strength C = % (cL + cu) enters.

The associated nuclear many-body problem is treated in the

Thomas-Fermi approximation. In this appreximation the local,Fermi

. - ) . - 3 .
momentum PF(r) determines the matter density plr) (~ PF(r) ) as

well as the kinetic-energy density 7)) (~ PF(;)S). Because of the -

quadratic momentum dependence, the energy density in the presence of .

"the Seyler-Blanchard interaction can be expressed 'solely in terms of

5/3

" the distributions p and T . Moreover, since T ~p , it follov_s‘

that the ener@_ of the system is determined once the matter density

distribution p has been specified. The various relevant formulae

‘can be found in Ref.- (23).
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The fact that the energy density is uniquely determined once -

the matter density o has been specified is exploited in the calcula-

‘tion of the proximity energy. The matter density distribution

associated with the combined system is simply -the superposition of '
the two individual density distributions, each of which is given as
the equilibrium distribution assoclated with one isolated semi-infinite

system.

The actual calculation of the function ;6 displayed in Fig. 2

© 1is performed as follows. Firét, the problem of.'on_e isolated symmetric

semi-infinite system is solved as in Ref. (23). This determines the
density profile of the standerd nuclear surface, and in particular its
energy and diffuseness. The parameter values employed are those

determined in Rc‘ef.‘ (19). They are

a = 0.62567 fm -
b = 592.’-#8 MeV/e
G = 328.61 MeV.

; This leads to a surface energy of 7TF = 1.017 MeV/ﬁn2 and a surface

0 equa; to

1.2049 fm is used -- see Ref. (19). As rgmarked’in Section 4.1 the

diffuseness of B = 0.872 fm when a radius constant r

fact that these numbers may not ‘be the most accurate représentati_ons

of the experimentai values of 7 and b is largely immaterial for

the calculation of $ and 7.

Sui)sequently, two -identical semi-infinite systems are - :

positioned with a certain separation s between the locations of

their parallel surfaces. The two dénéity pi'ofiles are assumed .to |

q5h-

remain frozen in their asymptotic, isolated form. Then the total

matter ‘density is obtainéd by Superposition and the total energy,

‘ relative to the energy of two infinitély separated systems, is

calculated (per unit surface area). The universal dimensionless

proximity function @(¢) is. obtained by measuring the calculated

_energy per unit area in units of twice the surface energy Yo and

.

the surface separation s in units of the diffuseness bTF



O o = o I

10.

13-

1k,

15.

=55~
REFERENCES

W. Greiner, Proceedings of.Heavy-Ion Sumer Study at Oak Ridge
Netional Isboratory, Jume 12 - July 1, 1972, pege 1.

K. A. Brueckner, J.R. Buchler, S. Jorna and R. J. vMard, Phys.
Rev. 171, 1188 (1968). .

For example, C. Ngb et al., Nucl Phys. A240, 353 (1975),

J. Galin et al., Phys. Rev. C9, 1018 (1974).

H. J. Krappe and J. R. Nix, Proceedmgs of - the 'I*h.ird IAFA Symposium
on Physics and Chemistry of Fissiox;x, Rochester, New Yor.k', August h
1973, pege 159.

D. M. Brink and N. Rowley, Nucl. Phys. A219, 79 (197).

R. A. Broglla and A. Winther, Phys. Reports L, 153 (2972).

J. Wilezyfiski, Nucl. Phys. A216, 386 (1973)

 R. Bass, Phys. Lett. 47B, 139 (1973).

B. Deryagin (Dérjaguin), Kolloid.-2.69,155(1934); see also ref. 33.
J. Ré.ndrup, Nuclear Chemistry Annual Report, Law_rence_ Berkeley
Leboratory Report LBL-2366, 1973, p. 137.

W. D. Myers aﬁd H. von Groote, I..aw;rence Berkeley Laboratofy Report
LBL-4327, Oct. 1975, submitted to Phys; ].:,ett. B. v
J.. N. Israelachvili and D. Tabor, Proc. Roy. Soc. (London) &?_13

19 (1972).

K. L. J’ob.nson';.- K. Kendall and A. O. Roberts, Proc. Roy Soc. (Lonkm) v

A32h, 301 (1971). |
T. D. lee and G. C. Wick, Phys. Rev. D9, 2291 (197h).

W. Bardeen et al., Phys. Rev. D11, 1094 (1975); A. Chodos et al.,

Phys. Rev. D9, 3471 (197L).

16.

17.
18.
19.
20,
21.
22,

23.

oh,

25.

26.

27.

28, W. D. Myers andw J. Swiatecki,- Arkivf Fysik3

-56-

J. Randrup, to be published.

W. D, Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

W. D, Myers and W. J. Swiatecki, Ann. Phys. 84, 186 (1974).

"W. D. Myers and W. J. éwia:cecki, Ann. Phys. 55, 395 (1969).

G. Siissmann, Lawrence Berkeley laboratory Report LBL-1615 (1973).
W. D. Myers, Nucl. Phys. A_g_(&, 465 (1973). _

W. J. Swiatecki, Proc. FPhys. Soc. A6, 226 (1%51).

J. Rahdrﬁjg;, Lawrence ﬁerkeley Iaboratory Report LBL-4302-(1975);
Nucl. Phys. A259, 253 (1976). ‘

C. F. Tsang (Ph.D. Thesisl, University of ’Califorﬁia Radiation
Laboratory Report UCRL-18899 (May ‘1969).

W, J. Swiatecki, "Nuclear Reactions Idduc;ed by Heavy Ioms," R. Bock
and W. R. Herriné, editors (North Holland), 1970, p. 729;

W. D. Myers in "Dynamic Structure of Nuclear States,” Proc. 1971

Mont Tremblant International Summer School, University of Torénto

Press, 1972.

R. G. Seyler and C. H. Blanchard, Phys. Rev. 124, 227 (1961);
131, 355 (1963).
W. J. Swiatecki, "Macroscopic Description of the Interaction
Between Two éomplex Nuclei," talk presented at the .International »
School Semina.r ‘on Reactions of Heavy Ions x;ith Nuclei and Synd:e's!.s
of New Elements, Dubna, USSR, Sept. 23-0Oct. 4, 1975; lawrence

Berkeley lLaboratory Report LBL- 24296, Sept. 1975

315 (1967)



33.

-57=-

W. D. Myers, lawrence Berkeley Laboratory Report LBL-4332 (Oct.
1975), to appear in Atomic Data and Nuclear Data Tables, 1976.
J. Randrup, ILawrence Berkeley Laboratory Report LBL-4317, 1975.

C. Ngo et al., Nucl. Phys. A252, 237 (1975).

H'S. M. ' Coxeter, Introduction to Gebniet_rx (John Wiley and Sons,

- New York-London, 1961).

B. Deryagin, et.al., J. Colloid. and Interface Science 53, 31k

(1975).

P. R. Christensen and A. Winther, Phys. Letters, to be published.

-58- -

TABLE I
~3.50 3.0459 0.4697 -10.1755 20,811 82,44
=3.45 2.9632 0.31% < 9.653h 18.997 -76.13
-3.40 2.8808 0.1734 - 9.1530 17.283 -70.26
~3.35 - 2.7987 0.0314 - 8.6738 15.665 -64,80
~3.30 2.7169 -0.1064 - - 8.2153 14,18 1 259,73
-3.25 2.6355 -0.2403 - 7.7T7T71 12.705 "=55.03
-3.20 2.5545 -0.3700 - 7.3586 11.356 -50.68
=3,15 - 2.4738 -0.4%57 - 6.95% 10.088 -h6.65
-3.10 2.39%5 =0.617h - 6.57% 8.900 ~h2. o4
-3.05 . 2.3136 -0.7351 - 6.2173 T7.787 -39.52
-3,00 2.2342 -0.8488 - 5.8754 6.747 -36.37
-2.9 2.1551 -0.9585 - 5.5469 5.775 -33.48
=2.90 2.0766 -1.0643 - 5.23T5 4.870 -30.8%
-2.85 1.9984 -1.1661 - L4,9446 4,028 -28.41
2.80 1.9208 -1.2641 - 4,6678 3.2L46 -26.20
-2.75 1.8437 -1.3582 - b, ho66 . 2.521 2kh.19
-2.70 1.76T1 -1.4485 - 4,1606 1.851 -22.36
-2.65 1.6910 -1.5350 - 3.929 1.232 - - -20.71
-2,60 1.6155 - -1.6176 - 3.7123 0.662 . . -19.21
-2.55 1.5406 -1.6965 © - 3,50 0.139 -17.86
-2.50 1.h662 -1.777 - 3.3195 -0.339 -16.65
) 1.395 . -1.8432 .~ 3.1k2k -0.TTT -15.57
-2.,40 1.3194 -1.9109 - 2.,9780 ~1.176 -1k4.60
-2.35 1.2470 -1.9751 - 2.8256 -1.538 -13.7h
-2.30 1.175% -2,0357 - 2.6848 -1.865 -12.98
-2.25 1.10k2 -2.0%6 - 2.5552° . -2.160 -12.31
-2.20 1.0339 -2.1461 - 2.4362 - ) -11.72
-2.15 0.96kk4 -2,1960 - 2.3276 -2.661 -11.21
-2.10 0.8%56 -2.2k25 - 2.2288 -2.871 -10.76
-2.05 0.8276 -2.2856 . - 2,139 -3.057 -10.37
-2,00- 0.760k -2.3253 - 2.0590 -3.,220 ~10.04
-1.95 0.6941 -2.3617 - 1.987 -3,362 - 9.76
-1.90 0.6287 -2.3947 - 1.®35 -3.484 - 9.53
-1.85 0.5642 -2.k2u6 - 1.8676 -3.589 " - 9.33
-1.80 '0.5006 -2.4512 -'1.8190 -3.6718 - 9.17
-1.75 0.4379 2. 4746 - 17773 -3.75%2 - - 9.0h4
. =1.70 0.3763 -2.4950 - 1.7h22 -3.812 - 8.93
-1.65 0.3156 -2.,5123 - 1.7132 -3.861 -'8.85
-1.60 0.2560 -2.5266 - 1.6900 -3.899 - 8.719 "
-1.55 0.1975 -2.5379 - 1.6721 -3.27 - 8.75

_Teble I (Comt.) .
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TABLE I (Cont.)

¢ p $ 8 5 5,
-1.50 0.14k01 -2.5463 -1.65%2 -3.947 -8.72-
-1.b5 0.0838 -2,5519 -1.6510 -3.959 -8.70
-1.h%0 0.0287 -2.5547 -1.6470 . -3.965 -8.69
-1.35 -0.0252 T -2.55L48 -1.6468 -3.,965 -8.69
-1.30 -0.0779 -2.,5522 -1.650% -3,960 -8.70
-1.25 -0.1294 -2.5471 -1.6569 -3.952 -8.71
-1.20 -0.1795 -2.5393 -1.6663 -3.940 -8.72
-1.15 -0.2284 -2.5291 1-1.6783 -3.96 -8.7h4
-1.10 -0.2759 -2.5165 -1.695 -3.910 -8.75
-1.05 -0.3220 -2.5016 -1.7085 -5.893 8,77
-1.00 -0.3667 -2.4843 -1.7262 -3.875 -8.79
-0.95 -0.4100 -2.,u64k9  -1,7451 -3.856 -8.81
-0.90 -0.4519 -2 4h3l -1.7650 -3.838 -8.83 -
-0.85 -0.koe2 -2.97 -1.7857 -3.820 -8.84
-0.80 ~0.5310 -2.3942 -1.8068 -3.803 -3.86
-0.75 -0.5683 2.3667  -1.8281 -3.786 -8.87
-0.70 -0,6040 -2.337h -1.8493 -3.771 -8.88
-0.65 -0.6381 -2.3063 -1.8703 -3.757 -8.89
-0.60 -0.6706 -2.2736. -1.8907 -3. 744 -8.90
-0.55 -0.701h -2.2393 -1.9104 -3.,7%2 -8.,01
~0.50 -0.7306 -2.,2035 -l.929 3,723 -8.91
-0.45 -0.7581 -2.1662 -1.9469 -3.71k -8.,01
-0.%0 . -0.7838 -2.1277 -1.9633 -3.707 8.
-0.35 -0.8079 -2.0879 -1.9782 -3.702 8.
-0.30 -0.8302 -2.0469 --1.9915 23,697 -8.%2
-0.25 -0.8508 -2.0049 -2.0031 -3.694 8.
-0.20 -0.86%96 -1.9619 -2.0128 -3.,692 -8.92
-0.15 -0.8866 -1.9180 -2.0204 . ~3.691 8.
-0.10 -0.9018 -1.8732 -2.0260 -3.690 8.9
-0.05 -0.9153 -1.878 -2.0294 -3.690 8.
.0.00 -0.9270 -1.7817 -2.,0306 -3.690 8.

0.05 -0.9369 -1.7351 2,029 -3.689 8.9

..0.10 -0.9450 -1.6861 -2.,0259 -3.689 8.
0.15 -0.951k -1.6407 . -2.0199 -3,688 8.9 -
0.20 -0.9560 -1.593%0 -2.0116 -3.687 B.e -
0.25 -0.9589 -1.5451 -2,0008 -3.685 8.
0.30 -0.9601 -1.h971 -1.9876 -3.681 8.9
0.35 - -0.9595 -1.401 -1.9720 <3.676 8.
0.40 =0.9573 -1.ho12 -1.950. ~3,669 -8.®
0.45 -0.9535 -1.353h <1.9338 -3,660 -8.91
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0.50 -0.9480 -1.3059 -1.9112 -3.650 -8.91
0.55 -0.9410 -1.2586 -1.8864 -3.637 -8.90

60 -0.9325 -1.2118 -1.8594 -3,621 -8.8¢9
0.65 -0.9225 -1.1654 -1.8305 -3.603% -8.88
0.70 -0.9111 -1.1196 -1.79% -3.580 -8.87

P -0.8983 ~1.0743 -1.7667 . =3,558 -8.85
0.80 -0.88k42 -1.0297 -1.7322 ~3.532 -8.83
0.85 -0.8689 -0.9859 -1.6960 -3.502 -8.80
0.90 -0.852h -0.9429 -1.6584 ~3.469 -8.18
0.9 -0,8348 -0.9007 -1.6194 -3.433 -8.7h4

.00 -0.8161 <0.8594 -1.5791 -3.393 -8,70

.05 -0.7965 "-0.8191 -1.5378 -3.351 -8.66

.10 -0. 7761 -0.7798 -1.bgs5 -3.306 -8.61

.15 -0.7549 -0.7415 -1.4525 ~3.257 -8.56

.20 -0.7329 -0.70L43 -1.4088 -3.206 -8.50
1.25 -0.710k4 20,668 -1.3646 -3.152 -8.43
1.30 -0.6873 -0.63%33 -1.3200 -3.,095 -8.36
1.35 - -0.6638 -0.5995 -1.2753 -3.0%6 -8.28
1.4%0. -0.6400 -0.5669 ~1.230h4 -2.97h4 -8.19
1.45 -0.6159 -0.5355 -1.1857 -2.910 -8.10
1.50° -0.5917 ~0.5053 -1.1l12 -2.845 -8.01
1.55 -0.567h4 -0.4763 =1.0970 -2.777 -7.90
1.60 -0.5431 -0.54486 -1.0533 -2.708 -7.80
1.65 -0.5190 -0.4220 -1.0101 -2.638 -7.68
1.70 -0.4950 -0.3967 -0.9677 -2.567 -7.56
1.75 ~0.4713 -0.3725 = -0.9260 -2.405 -7 .4k
1.80 -0.4480 -0.3495 ~ -0.8852 -2.,k23 -7.31
1.85 -0.4250 -0.3277  -0.8h5h4 -2.350 -7.18
1.90 -0.4026 -0.3070 -0.8066 2.277 . -7.04
1.9 -0.3807 -0.2874 -0.7689 . =2,205 -6.90
2.00 -0.3595. -0.2689 © 20,732k -2.133 T -6.76
2.05 -0.3389 -0.2515 -0.6970 -2,061 -6.61 -
2.10 -0.3190 -0.2350 © -0.6629 ©-1.990 -6.47
2.15 -0.2998 -0.2196 ~0.6301 -1.921 -6.32
2.20 .-0.2815 -0.2050 -0.5985 -1.852 -6.17
2.25 -0.2639 -0.1914 -0.5681 -1.78% . 6.2
2.30 -0.2k71 . -0.1786 ~0.5391 ~-1.718  -5.87
2.35 . -0.2312 -0.1667 -0.5113 -1.65k -5.72
2.40 -0.2162 <0.1555 -0.4847 . -1.591 -5.57
2 -0.2019 -0.1450 - -0.4594 -1.529 -5.k2

Table I (ant.)
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TABLE I (Cont.) . o "~ FIGURE CAPTIONS
¢ . ) 45 «ﬁi j% "és Fig. 1. A schematic illustration of the density p , energy density
- — : . ) _ . 1 and surface-energy density function 7 - app for a
2.50 © -0.1885 -0.1353 -0.4353 -1.469 -5.27 o :
2,55 -0.1759 -0.1262 -0.1123 -1.411 ~5.12 o leptodermous system.
12,60 -0.16k1 -0.1177 -0.3904 -1.355 -4,98 : ’
) 2.65 -0.1531 -0.1098 -0.3696 © -1.300 --h.8k : . _Fig. 2. The dimensionless proximity force function @H(f) as a
2.70. -0,1k27 -0.102k -0.3498 -1.28 - -k70 : T
K . ' ) ’ ‘ . function of the dimensionless separation £ . The minimum
2.75 -0.1331 -0.0955 <0.3310 o -1.196 -5.56
2.80 -0,12k2 -0.0890 -0.3132 -1.147 gyt and point of inflexion in f are indicated.
2.85 -0.1158 -0.0831 - -0.2963 -+ =1.099 -4.28 - :
2.90 -0.1080 -0.0775 -0.2802 . -1.053 -h15 ' * Fig. 3. The dimensionless.proximity potential function _ﬁ(@) as a
2.95 -0.,1007 -0.0722 -0.2649 -1.008 boe - . _ v -
. ' . function of the dimensionless separation ¢ . The minimum
3.00 -0.0939 -o,og7g : —0.252h -0.962, -3.89 ) . . ' :
3.05 -0.0876 -0.062 -0.2367 ~0.% =377 o (at ¢ = -1.3734) and the point of inflexion in are
3.10 -0.0817 -0.0586 -0.2237 -0.884 -3,64 _ v £
) 3.15 -0.0762 -0.0547 -0.2114 ~0.8h5 -3.52 indicated. The potential between two nuclei is a geometrical
o 3.20 - -0.0711 -0.0510 -0,1997 -0.808 3.0 v -
' . . . factor times ﬁ . It follows that the equilibrium point (in
if - 3.25 -0.0663%. - -0.0475 -0.1886 -0.772 -3.29 " . : _
3.30 -0.0618 -0.0kk3 $-0.1781 -0.738 -3.18 the separation degree of freedom) for the nuclear interaction
ney 3.35 -0.0577  -0.0k1k -0.1682 =0.705 -3.07 ‘ 4
- © 3,40 -0.0538 -0.0386 -0.1588 . -0.67% -2.96 between any two nuclei occurs at the universal interpenetra-
- 3.45 -0,0502 -0.0360. -0.1%99 -0.643 -2.86
i : : ' tion distance of 1.3734 b or about 1.37 fm. The dashed
3.50 ~0.0468. -0.0336 -0.1115 T-0.614 2,75
2 ‘ : ) Co rectangle on the right indicates the region where a comparison
iyl « ] - R _ _ of the function j§~is made with éxperiﬁental values in Fig. 9
For >2.74  th t1 and are exact - '
o ¢>2.7 e functions 449 “6(§) €S using an expanded scale.

exponentials with a range 0.7176 (equal to the Yukawa range N
. . s . S e e ( ¢ e Fig. 4. ' The universal nuclear function j5 is shown by the solid . line

0.62567 fm of the Seyler-Blanchard interaction, measured in : : L .
. : and the cubic-exponential approximation by circles. The dots

L units of the Thomas Fermi surface width of 0.872 fm -- see
o i ) show. the continuation of the cubic beyond the dashed line

Appendix A). v
ppe (locating its junction with the exponential) to where it
touches the ({-axis at 2.54. The frozen Thomas-Fermi

densities of the two semi-infinite distributions touch at

='257h.



Fig. 5.

Fig. 9.
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A comparison of the exact interaction betweeh two equal

_Krappe-Nix spheres (solid lines) and the approximation

;‘ésu.lting from applying the Prox:i.mity Theorem to properly
chosen effective spheres (dashed lines aﬁd crosses). The dot-
&ashed line corresponds to a poor choice 'of.t.he radii of the
interacting objects. . .

A comparison of the interaction potentiai between hoAr and
Sb calculated usiﬁg the energy-density formalism (line)
and the Proximity Theorem (dots). In constructing ‘ghé_
Prox_imity Potentials in Figs. 6, 7 and 8 the radii were
calculated according to R = -(.1'.13, + O.oooeA)Al/ 5 fm.  This
is an older version of BEq. (29) -- in the cases'illust_rated
the differenée between the two empirical expressions for R is
negligible.

209331.‘ The energy-density -

Same as Fig. 6 but for- 8“1{1- .and
calculafions are described in Ref. (3); a more detailed ﬁable,
on which the. present ‘curv_e‘s are Ba.sed were supplied cc;urtesy
of Professor D. Sperber. _

The proximity potential VP betweenv 6 Cu -and A19-7Au
(circles) is compared with the ca,lculétions of Ref. (31):

'I'h; dashed curve refers to a calculation with 'a favored set’

of parameters, the solid curve to an earlier version.

A comparison of the extreme tail of the universal function

.+ _# (see Fig. 3) with experimental valués deduced from an

analysis of elastic ‘scattering data (Ref. 34). The inset on.
the right, with a few exi)efimental points, serves to recall . '

the original scale of the function § in Fig. 3.
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