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* ffiOXIMITY FORCES 

LBL-50l4 

** + ,J. Blocki, J. Randrup, W. J. §wi~tecki and C. F. Tsang 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

April 2, 1976 

ABSTRACT 

We have generalized a theorem according to which the force 

between two gently curved objects in close proximity is proportional 

to the interaction potential per unit area between two flat surfaces 

made of the same material, the constant of proportionality being a 

measure of the mean curvature of the two objects. This theorem leads 

to a formula for the interaction potential between curved objects 

(e.g. two smooth cylinders of mica or two atemic nuclei) which is a 

product of a simple geometrical factor and a universal function of 

separation, characteristic of the material of which the objects are 

made, and intimately related to the surface energy coefficient. We, 

have calculated and tabulated this Universal function for nuclear 

surfaces, using the nuclear Thomas-Fermi approximation. The 
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results can be expressed by a simple cubic-exponential formula which 

gives the potential between any two nuclei in the separation degree 

of freedom. Even simpler expressions are found for the interaction 

energy associated with the "crevice"or neck in the nuclear configura-

tion that would be expected immediately after contact of two nuclei. 

These "Proximity Energies II are used to supplement the usual expansion 

of the energy of a th:ln"skinned system into volume, surface, curvature 

and higher order terms. The resulting elementary formulae are tested 

against explicit models of interacting nuclei and against elastic 

scattering data, and are found to be useful for even ~uite small mass 

numbers. 
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1. INTRODUCTION 

.For certaIn physica,l systems such as homogeneous solids, fluids 

or the heavier atomic nuclei, made up of elements interacting by short­

::-ange forces and possessing a surface region which is thin cQmpued to 

the size of the object under consideration (leptodermous systems), the 

potential energy of the system may be decompOsed into a bul~ term and 

a surface-layer term. The surface-layer term is associated with the. 

~~face region and is, therefore, approximately proportional to the 

area of the surface bounding the object. Fora simply-connected 

system the above decomposition is accurate if the principal radii of 

curvature of the surface are everywhere much larger than the thickness 

of the surface region. Moreover, when this condition is satisfied, 

corrections to the leading area-proportional term in the surface-
I . 

layer energy (such as the curvature correction) may be derived by 

expansions in powers of the ratio of the thickness of the surface to 

the .size of the system, thus making the expression for the potential 

energy even more accurate (see Section 3). Such a series expansion 

has been useful in discussing the average binding energies (masses) of 

atomic. nuclei, and ·one might have thought that, apart from effects 

associated with the discreteness of nucleons (shell effects) there was 

no more to the problem of average nuclear energies than the calculation 

of the above series expanl?ions to a. sufficiently high order. This is 

not the case. Thus, when the surface of the system becomes contorted 

into features whose characteristic dimensions are of the order of .the 

thickness of the surface region itself, the above series expansions 

become of limited usefulness. This failing is by no means of merely 

academic interest:, it is serious for a systemw.ith a thin neck, on tre 
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verge of dividing into two fragments (as in nuclear fission), or in 

the case of two SUb-systems about to come into contact (as in 

collisions between heavy nuclei). In the latter case in particular, 

when the system is not simply-connected,. a calculation of the surface-

layer energies of the two pieces, no matter how accurately they are 

corrected for the curvatures of the two surfaces, can never give rise 

to the (strong) attraction that in practice appears when the two 

surfaces approach to within a distance comparable with the surface 

thickness. 

Various attempts to remedy these failings have been made in 

the past. They range from microscopic computer calculations on 

individual pairs of nuclei (1-3) through various folding prescriPtions 

h t ti 1 11 i f ld·ed i t d n ity dl.·stributl.·on(4-6), to were a po en a we son 0 a e s 

direct estimates of certain aspects of the nucleus-nucleus force in 

terms of the experimentally known surface-energy coefficient. (7,8) 

In line with the latter developments we have found it possible 

to derive simple expressions for the additional potential energy (or 

forces) associated with certain of the more important types of 

violently contorted surfaces, which should enable one to complement 

in a useful way the usual series expansions of the nuclear energy. We. 

shall. call these additional forces "Proximity Forces" because they 

arise from the proximity of elements of the contorted surface, the 

contortion being such that different pieces of the surface actually 

face each other across a (small) gap or crevice. In particular we 

have re-derived and extended a theorem that makes it Possible to 

relate (approximately) the interaction between two finite nuclei to 

the interaction between two flat parallel slabs of semi-infinite 

~' 
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nuclear matter--a problem that ·is simpler, and can be solved (in a 

suitable approximation) .once and for all. (The derivatibn of the 

theorem, in many essential aspects, is contained in a 1934 paper by 

B. Deryagid9)on coagulation of aerosols. We are grateful to H. J. Krappe 

for point.ing this out to us.) 

2 • THE PROX]]IIITY ENERGY 

The starting point of our considerations is an expression for 

the proximity energy Vp associated with a curved gap or crevice of 

gently variable width D, which we shall write in the form 

'( I I e(D)da + corrections . 
J.) 

(1) 

Here e(D) is the interaction energy per unit area of two iarallel 

surfaces at the appropriate separation D. The integral is over the 

area of the gap or crevice and the "corrections" become negligible as 

the curvatures of the surfaces defining the gap become small. 

The geometry of the gently variable gap may be specified by 

first choosing a mean gap surface r (a two-dimensional surface in 

splce) and then considering normal displacements ~, ~, locating 

the right- and left-hand sides ·of the gap, ~ ~ ~ = D(u,v) being 

the distance between the two sides r L' r R of the gap. The gap width 

D(u,v) is a (slowly varying) function of position on the surface r, 

the position being specified by two coordinates 1.1 and v, say. 

Since e(D) is, by definition, a function of only one 

variable, D, rather than of the two position variables u and v,· 

the surface integral in Eq. (1) may be converted at once into a. one-

dimensional integral. Thus imagine that a family of (closed) curves 

(ors~ts of curves) is constructed on the surface . r corresponding. to 
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constant values of D Denote by J (D )dD the area of the surface r 

that lies between two such curves (or sets of curves) defined by D 

and D + dD. Then we may write 

f'e(D) J(D)dD + •.. 
j 

(2 ) 

The function J(D) is characteristic of the geometry of the gap, and 

thus if the two sides of the gap are shifted, rotated or deformed in 

someway so that the gap surface r and gap width D are changed, 

J will be a function (strictly speaking a functional) of these shifts, 

rotations or deformations. We shall write J(a,D) to exhibit 

explicitly the dependence of J on the set of degrees of freedom a 

specifying the gap geometry. The function e(D) (the interaction 

energy Per unit area of two plrallel surfaces) is, by definition, 

independent of the geometry of the gap. It does depend, however, on 

the nature of the surfaces. In plrticular, if the structure of the 

surface (e.g., the density fall-off profile in the surface region) is 

considered as variable, and specified by a set of degrees of freedom 

~ , we may exhibit this by writing e(~,D). Thus our basic equation 

for the energy associated with a gently variable gap or crevice is 

vp(a,~) = fe(~'D) J(a,D)dD + 

where a specifies the geometry of the gap and ~ specifies the 

structure of the surface region. 

In what follows we shall specialize at once to the case of 

surfaces with an invariable structure corresponding to that of a 

standard plane surface at equilibrium, characterized by an equilibrium 

density profile and a standard surface-energy coefficient. (For a 
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iiscussion of the dependence of e on the surfac·e d.iffuseness see 

~efs. (lO), (11).) As regards the geometry of the gap we shall 

illustrate the applications of Eq. (3) by several assumptions about 

the function D(u,v) and the mean gap surface r 

2.1 Gap with gently variable pl.raboloidal width 

Consider a mean gap surface r which is so gently curved 

that the coordinates u,v on the surface r 'may be taken as 

cartesian coordinates x,y, and the . normal coordinate n used to 

specify the gap (~-.Z\ = D) may be taken as the cartesian coordi­

nate z, with zR - zL = D. (Some attempts were made to derive the 

corrections arising from a finite cUrvature of r However, the 

increase in the complexity of the formulae seemed to exceed in most 

cases the slight gain in accuracy obtained by working with a curved 

mean gap surface.) Consider now as an example a gap width D(x, y). 

which has a least value D = sat x = y = 0, say, and whose width 

in the vicinity of this point is given by the Taylor eXpl.nsion 

D(x,y) + l D x2 ·1· 2 s 2 xx + 2" Dyy Y + ••. 

1 x2 
s + - - + 2R x 

1 2 _L + 
2 R . 

Y 

( 4) 

In the above, D and D are the second derivatives of D with 
xx yy 

respect to x and y evaluated at .the point of least·gap width. In 

the second line these derivatives are written in terms ·of·the 

ptincipl.l radii of curvature, R and R , of the surface obtained x y 

by plotting the gap width D as a function of x and y. The 

directions of x and yare assumed to have been chosen along the 

principl.laxes of the 'luadratic form D(x,y) so there is no cross 

term in xy in Eq. (4). 

Now change variables from x,y to· s,~ , defined by 

2 
D=s+p, 

1 

~ = y/(2R )2 , so that D may be written as 
y 

2 2 
S +.~. The proximity energy can then be 

transformed as follows: 

2(R R Y~flrdSdTJ e(D) x y . 
. ) 

.!. 
2(R R)2 x y J 211p dp e(D) 

o 

I d.D e(D) 

D-s 

211 R 

-~ = 211 R 0 (s) . (6) 

In the last few lines the integration has been extended to i·nfinity. 

This assumes that the gap width grows to beyond the range of the 

interaction function . e (D) and tb8.t e (D) approaches zero suffi-

ciently rapidly for 1BZ-eJ! values of D so that theintegz:i3.l becomes· 

essentially independent of the upper limit. (Note that this means 

tha~ with: D given by Eq. (4)j Eq. (6) is valid for ~ finite value 

-1· -1 
of R , R , 

x Y 
-1 

however ·small, . but not for Rx '= 0, 
-1 

R. = 0, 
Y 

which would correspond to a pl.rallel gap whose sides ... ~ get outside 

the range of e CD).) The 'luantity if is the geometriC mean of the 

two principl.l radii of curvature Rx' R , 
Y 

characterizing the gap D. 
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The reciprocal of Ii: 

Gaussian curvature at 

D versus x and y 

is 
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1/ (R R ).i , 
x y 

the square root of the invariant 

x = y = 0 of the surface obtained by plotting 

The negative of the partial derivative of Vp(s) with respect 

to s gives the force between the two surfaces as a function of the 

separation degree of freedom: 

F(s) 211: Ii: e(s) • 

This leads to the following Proximity Force Theorem: 

"The force between two gently curved surfaces as a function of 

the separation degree of freedom s is proportional to the interaction 

potential per unit area, e (s), between two flat surfaces, the 

proportionality factor being .211: times the reciprocal of the square 

root of the Gaussian curvature of the gap width function at the point 

of closest approach." 

In the case of two spherical surfaces with radii C
l 

and ~ 

the equation for D is 

D 
1 

s + 2' + ••.. 

so that the mean curvature radius if becomes Ii: = Cl C/(C
1 

+ G
2

), a 

kind of "reduced radius" of the two spheres (like a reduced mass 

¥/(~ +~) ). 

The usefulness of· the Proximity Force.Theorem lies in the 

circumstance that the principal features of the function e(s) may 

be derived from experimentally known surface properties, such as . the 

sUrface energy coefficient r and the degree of diffuseness of the 
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surface layer. Thus.for s greater than the thickness of the surface 

(2 or 3 fermis in the case of nuclei) e(s) tends rapidly to zero. 

For smaller values of s, e(s) becomes negative, and for s = 0 it 

is approximately equal to minus twice the surface energy per unit area 

of the material of which the system is composed. This is because at 

s = 0 the two juxtaposed density distributions add up to an approx-

imately constant bulk value, so that tre rEt effect of bringing the 

surfaces together from infinity. is to destroy the two surfaces. Thus 

e (0) :::: :'2r, where r is the surface energy coefficient (about 
. 2 

1 MeV/rm2 for nuclear matter, about 75 ergs/cm for water). 

If one were to continue on to negative values of s, adding 

up the two density distributions without allowing them to get out of 

each other's way, the function e(s) would begin to increase, would 

go through zero, and would eventually grow without limit, reflecting 

the energy cost of doubling the density in the overlap region. It 

follows that· e(s) exhibits a minimum, and this minimum.occurs in 

fact near s = 0 ,where e(O).~ -2r . This is because it is at this 

separation that the total density is approximately equal to the 

standard bulk density, and the bulk energy of stable saturating 

systems (such as nuclei or"Ordinary matter) is a minimum with respect 

to deviations of the density from the sta.ndard value. From this 

c.ircumstance follows an interesting result. The maximum attraction 

predicted by Eq. (7) occurs where e(s) is most negative, and this 

as' we saw occurs :at s ~ 0 where e ~ -2r Hence 

Maximum Attraction ~ 2,. R e(O) 

.,.411: Ii: r (8) 
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This equation expresses the remarkable result that the maximum,' 

e.ttraction (in the separation degree offreedan) between gently curved 

bodies may be written down approximately without any knowledge of the 

nahlre of the cohesive interactions between the particles constituting 

the bodies, provided only the surface energy coefficient is known. 

As the two curved objects begin to overlap beyond the point 

of maximum attraction at s ~ 0 , the attraction in the seIBration 

degree of freedom decreases and becanes zero at sane point. sl where 

the function e(sl) is zero. Since the zeroes) ofe(s) are, in 

the nature of things, independent of the curvatures of the two objects, 

-"e deduce a second noteworthy result: the equilibrium point (a min;lmun) 

in the seIBration degree of freedan for two gently curved objects, 

such as two (uncharged) nuclei, occurs at one and the same overlap 

distance for all pairs of nuclei, independently of their sizes. 

(Note, however, that infinitely large objects--two really flat sUrfaces 

--are, once again, an exception.) 

Under the conditions stated Eq. (8) would apply equally well 

to the contact force in the seIBration degree of freedom between 

ordinary solids (where the attraction is due to molecular forces), or 

to nuclei, where the attraction is due to nucleon-nucleon forces. The' 

magnitude of the, force predicted by Eq. (8) may be illustrated as 

follows. With a nominal value of .)' equal to 100 ergs/ cm
2 

(the 

surface energy of solids is of this order of magnitude, for example, 

300' ergs/cm2 for mica) we find 'that two equal spheres with'radii 5 cm 

should attract each other with a force 

F 
max -3100 dynes -3.2 gm weight. 
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Cohesive forces between smooth curved surfaces of mica, rubber and 

gelatin have in fact been found experimentally to have this order.of 

magnitude. (12,13) 

In the case of nuclei the surface energy coefficient )' is 

about 1 Mev/rm2 and for two equal spheres with radii 5 rm (correSIOnding 

approximately to medium nuclei with mass number 76) we find 

F ~'-31 MeV/fro. ~ 
max 500 kg weight. 

In order to calculate the force between two nuclei in its 

dependence on the sep3,ration s one has to use Eq. (7), whose right­

hand side is a product of a geometrical factor 2~ R depending, on the 

two nuclei in question, and a universal functicn of distance e(s) , 

indePendent of the nuclei. The semi-quantitative appearance of e(s) 

has been sketched out above, but in order to calculate e(s) in detail 

one needs to have a theory describing the structure of the nuclear 

surface region, so that, one may take two ,flat nuciear surfaces and 

calculate their interaction energy per unit area as a function of the 

separation. We have performed such a calculation of e(s) using a 

·theory of the nuclear surface based on the Thomas-Fermi treatment. 

The results will be described in Section 4. 

2.2. ,Other gap or crevice geometries 

The proximity potential may be readily generalized to other 

equations besides the paraboloidal relation between D and x, y 

given by Eq. (4). 

First note that equation (5) for the Proximity Potential is 

invariant with respect. to an area-preserving stretching and compression 

'of the transverse coordinates' from x, y to X I, Y I where x I = ax, 



,0 
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Y' 1 =r;J It follows that even if we specialize to systems for which 

D is assumed to be only a function of the transverse radial distance 

r , ·where 
222 

r = x + y , the results. will hold,without any 

modifications, for "stretched" systems obtained by deforming the 

original circular contours of constant Dinto area-preserving 

ellipses. Conversely, in any problem where the contours of constant 

D are ellipses, the analysis may be simplified at once by considering 

the case of circular contours, where ·D is a function of r2 only. 

Consider now the relation between r2 and D to be of the 

form 
N 

2 I Dn r c 
n, 

n=O 

where cn are arbitrary coefficients. InsertingEq. (9) in Eq. (5) 

we find 

where the quantities 

( 

j 211 r dr e(D) 

N 

L 
1 

n c 6. 1 ,. n n-

tn r D
n 

e(D) dD , 

s.£r 0 

are moments of' the uni ver:sal function e (D ). 

(10 ) 

The lower limit lIS or 

0" distinguishes between what we shall call a "gap" and. a "crevice." 

The former means that D ha.s a least value (say s) at r =0. 

(This value may be negative, corresponding to an overiapping of the 
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two bodies which, for large negative s, would lead to a region of 

doubled density.) The latter means that D becomes zero at some 

finite value of r, say a neck or crevice radius r 
neck 

(related to 

co), and there is no overlap or density doubling. Thus 

a gap refers to two bodies (overlapping or not) and a crevice to a 

single indented. body. 

The upper limit in Eq. (10) has been set equal to infinity 

under the same·assumptions as'before. 

The case N = 1, with c =2R and 
1 

corresponds 

to the paraboloidal gap considered before. For a paraboloidal crevice 

(a crevice formed. by portions of two intersecting paraboloids) we have 

Vp 2'& I olD) dD . 

Note that the proximity potential for a paraboloidal crevice with 

given R is independent of (or 

independent of the degree of overlap. 

r k)' i.e., is a constant nec 

It follows that the proximity potential along a sequence of 

configurations which for s >,0 consists of approaching gently curved 

surfaces (approximated. by paraboloids) and for s < 0 turns into the 

corresponding crevice, exhibits a discontinuity in the first derivative 

at s = O. This is because as s tends to zero from above, 9VpldS 

tends to about 41lR?, (Eq. 8), whereas for s < 0, ?Jv/cs =- 0. As 

is readily verified.,this 4nR'?' is precisely the negative of the 

discontinuity in the derivative of the surface energy that .occurs, when 

two gently curved. surfaces characterized. by a gap width curvature 
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radius if turn into a crevice at contact. It follows that the 

~ddition of the proximity energy rounds off (approximately) 

the familiar kink that is present when only the sUrface energy 

is retained in the calculation of the potential for two fusing nuclei 

parametrized by ·separated or overlapping figures such as spheres or 

spheroids. 

The case N = 2 corresponds to a relation between r2 and 

D Which defines a conic: 

2 2 r Co + clD + c
2

D , (ll) 

leading to 

Vp = rccpo + 2rc ", 
c2 vl (12 ) 

For gaps, eo (the same as £) and &1 are two universal functions 

·of s; and for crevices two universal constants, characteristic of the 

material of which the surface is made. 

Gaps or crevices corresponding to the following geometrical 

arrangements are covered by Eqs. (11, 12). (For crevice~ .the over­

lapping portions are erased.) 

(i) Two eiJ.ual coaxial spheroids with semi-axes C, B (C 

along the line of centers) and tip distance s (which may be negati ve~ 

The equation for D is.in this case 

(C + 2~ s - ~ D)2 
2 . 

1 . 

This is of the form ofEq. (ll), with ci = B2 (C + ~ s·)/r:? , 

c2 = _B
2/4CF. For two spheres C.= B; 
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(ii) As above, .but with one spheroid infinitely large (Le. 

a plane). Thus we have a spheroid at a distance s from a plane, or 

a protuberance on a plane in the form of a portion of a spheroid.­

One readily verifies that in this case cl = 2Ef(C + s)/r:? , 

c2 = _B
2/cF. (In the general case of unequal spheroids N is infinite.) 

(iii) For two equal juxtaposed hYperboloids with axes C, B 

(C along the line of centers) and ttpdistance s we find 

cl =B2(C - ~ s)/r:?, c2 =B2/4r:? 

(iv)· As above, but with one hyperboloid infinitely large 

(a plane) we find ~l = 2Ef(C - s)/r:?, c2 = B2/r:? . 

(v) For the case of a body in the form of a single hyperboloid 

of one or two sheets we have c
l 

= 0, c
2 

= B2/4r:? When the 

hyperboloid is of two sheets this is a special case of (iii). When 

the hyperboloid is of one sheet we have the case of a hyperboloidal 

crevice, a form often used to describe the neck shape of a fissioning 

nucleus· or the crevice formed after contact of two nuclei. 

(Vi) For two juxtaposed coaxial circular cones with semi-

opening angles 0:
1 

and 0:
2 

and tip distance s (which as usual may 

be negative) we readily find c2 = (cot ~ + cot 0:2 r2, cl = -2c2 s. 

(vii) In addition, for the case of a gap between two coaxial 

elliptic paraboloids with tip distance s, with radii of curvature 

Al and 1. in the principal planes of curvature through the tip of . 

p3.raboloid 1, and . ~,' B2 for p3.raboloid 2, and an azimuthal 

angle . ¢ betveen the princip3.1 planes of curvature of 1 and 2, 

find 2 if , where 
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col ¢. 

This'formula could be useful for discussing the nuclear force between 

tvo nonspherical nuclei. In this case, in addition to an attraction 

along the line of least sepl.ration, there is a torCi.ue around it, tryjng 

to align the principl.l planes of curvature in the vicinity of the 

point of least sepl.ration. 

Note that the above results are valid insofar as the 

juxtaposed surfaces are nearly pl.rallel. Contributions from pl.rts 

of the surfaces where this is not satisfied cannot be expected to 

be given accurately. Fortunately these contributions usually tend 

~o zero, which is at least Ci.ualitatively correct in most cases. 

3. THE ENERGY OF LEPrODERMOUS SYSTEMS 

In this section we shall give a derivation of the functional 

form of the energy of a leptodermo~s (thin-skinned) system in order 

to arrive at a total energy expression, including the Proximity Energy, 

which may be used as an approxiIilation to the energy of many complicated 

systems in a variety of configurations of practical interest. 

Consider a system with a pl.rticle density p(;) and an energy 

iensity 11 (;) . The total number of pl.rticles is 

A 
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and the total energy is 

E (.11 
) 

The integrals are over all spl.ce. 

Note that no classical assumptions are made in defining p 

For example, if the wave function of a system of A 

identical pl.rticles is "'(; ... ; ) 
1 A then the density p and an energy 

density 11 may be defined in terms of the expectation values of the 

density and energy-density operators, leading to 

[",[ * 
'" H '" , 

where H is the Hamiltonian of the A-particle system • 

In order to define a leptodermous system pick any number 

a
l 

with the dimensions of an energy and form the following identity: 

r' 

E - A a l + J (11 - al p) . 

The definition of ,a leptodermous system is now as follows: if it is 

possible to find an al such that the integrand 

confined to a small neighborhood of a surface in spl.ce, then the 

system is leptodermous. "Small" means small cOlnp!.red to typical 

dimensions of the system. 

As an example of a leptodermous system consider one with a 

density which looks like Fig. la, and an energy density ti which 
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looks like Fig. lb. Now, if for a
l 

we pick .the value of TJI P in 

the bulk, say a B = ~I PB , then TJ - aBP looks like Fig. lc ~ The 

condition for the system to be leptodermous is that the bump in the 

integrand TJ - aBP should be localized near the surface and in the 

case illustrated this is ensured because of the Vanishing of TJ and 

P outside the system and the cancellation of TJ and ~P inside. 

For some given physical system (a drop of water, a soap bubble, 

a degenerate Fermi gas in a container, an atomic nucleus, a hypothetkBl 

super-dense nucleus (14), a 'bag' or 'bubble' model of a nucleon (15)) 

the answer to the question whether. the leptodermous condition is 

satisfied or not may be sometimes obvious and sometimes subtle; It 

involves the examination of the energy-density bump function I] - alP' 

in pl.rticular as regards the convergence of certain spl.ce integrals 

over this function. The discussion of this problem for various 

systems is outside the scope of this section, which will concern 

itself with the proof of the central theorem that follows' if the 

leptodermous condition is satisfied. 

Theorem: For a leptodermous system an approximation to the energy 

may be written as follows 

E ~ __ + E 
J3ulk Surface Layer ' 

where 

and 

~urra:ce Layer c2 J + c3 It + c 4 ~ + c;' ~' 
+ corrections that vanish as A - 00 

(14) 
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In the above 
.. I 

bulk, and '1 i 
'/ 

cl ' equal to I]B' is the energy per unit volume in the 

is the volume of the system defined by AI P
B

. All the 

coefficients .are, in general, functions of 

the bulk density P
B

, but are independent of the shape or size of 

the system. The shape and size depend~nce of the Surface-Layer energy 

for a fixed . P
B

. is given by the follOWing four functionals and by the 

proximity energy Vp 

surface area 

'integrated curvature 

xb .. J r d' integratal ,,"u",ian o=wt=e 

~.:. .f i do = integrated squared curvature 

(r 
jJ 

gaps and creVices 

e(D) do . 

Here the integrals £. are over the" surf'ace of the system, 
I 

K is the 

total curvature and r the Gaussian curvature at a point on the 

surface: 

1 1 
K If"" + If"" x y 

r 1 
RR' x y 

where Rand R are the two principl.lradii of curvature at the 
x y 

pOint in question. The five terms c1 to c~ are the result of,a 
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systematic expansion of the energy in powers of the ratio of the 

surface 'thickness to the size of the system (the suffix indicates the 

relative order of the term). The underlying assumption is that the 

conditions in the vicinity of a point on the surface are functions 

only of the properties of the surface in the immediate neighborhood 

of that point. The Proximity Energy is an additional contribution 

that arises when the surface is so contorted that the conditions at 

scme pOints are also functions of the location of a second nearly 

parallel piece of the surface brought into ,close proximity by ,the 

contortion of the surface. 

To prove Eqs'. (13, 14) consider first a plane surface region 

so that loci of constant density and constant energy density are plane 

parallel surfaces. The surface energy function 1J - ~P is, by 

hypothesis, effectively confined to a'limited region, of width of the 

order of b, say (a length). Integrating 1J - aBP in the direction 

normal, to the surface inside a "normal tUbe" of unit cross section 

gives the standard surface energy coeffiCient, which we shall denote 

by 'lO' (The integral over 1J is the actual energy,the integral 

over ~P :j.s the energy that the same amount of matter would have if 

it were in the bulk, and so the difference is the surface energy.) 

Imagine now the surface to be gently curved so that the 

surfaces of constant p are curved and the normals to these surfaces 

can be used to construct slightly curved normal tubes with somewhat 

variable cross sections. Define now an effective sharp surface-of the 

density distribution as that surface Which cuts off a given infinites-

imal tube at just such a point that as much material is in the tube 

o;ltside the cut as would be needed to make up the density ins:i.dethe 
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cut to a uniform bulk value. The surface layer energy may then be 

written as 

(16) 

where the double integral, is over the surface 2:, and do 'l stands 

for the result of integrating 1J - aBP inside a tube that intercepts 

the surface 2: in the 'infinitesimal area element do. The local 

surface energy coefficient y thus defined. may now vary from point to 

point on the surface 2:. We shall at first assume that it can be only 

a fun'ction of ,the ~ properties of the surface 2: at a given pOint. 

These local properties of E are the various curVature, inflection 

and higher order invariants of the surface at a given point, as 

revealed by a Taylor expansion of the surfac,ein the vicinity of that 

pOint. Consider then the equation for the surface 2: in the vicinity 

of a point P to be written in cartesian coordinates as follows: 

z(x,y) 1 2 
+ 2' zxxy x y 

1 2 
+ 2' zyy y 

+ ~ zxyy xy2 + g Zyyy; +... • 

The origin of the coordinates has been chosen at P with the 

z-coordinate along the normal and the x - y coordinates in the 

tangent plane at P. (The orientat:iDn of the x - y axes has been 

chosen so that the cross term in xy does not appear in Eq. (17).) 

The symbols zxx,zxx? etc. stand for the repeated derivatives of 

z (x, y) with respect to x and y, evaluated at P. The second 

der~vatives have the dimension (lengthr
l 

(they are the reciprocals of 
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the princip3.1 radii of curvature Rx' Ry at P.). The third, deri v­

atives have the'dimension (length)~2, and so on. EXcept, for violently 

contorted regions of the ,sur'face these lengths may be taken to be not 

less in order of magnitude than a typical dimension of the shape in 

question, such as the radius RO of the equivalent sphere of equal 

volume. The dimensionless quantities of which the local surface energy 

l can be a fUnction are thus bzxx' 

which are of order biRo' (b/Ro)2, 

bz , 
,YY 

etc. 

b
2 , t Zxxy' e c., 

Thus we haVe 

2 
b zyyy' ••. ) • 

For a gently curved surface the dimensionless arguments are 

all small and we may in turn expand / ina Taylor series: 

2 
+ ILb z z ) xx yy 

+ higher powers of b . 

Here /0 is the surface energy per uni tarea of a plane surface and 

~ '" k are eXp3.nsion coefficients. For example, k6b2 is the 
, 9 

derivative of the surface energy coefficient r with respect to a 

cubic type of oending of the surface described by the term ~ zxxxx3 

inEq. (17), the derivative (with respect to 'b2z ) being evaluated 
xxx 

for Zxxx = 0, i.e. for a plane surface. Thus k6 describes' the 

response of a plane surface to an x3 type of bending .. From this it 

follows at once that all the coefficients k6 to k9( those 

multiplying Odd derivatives of z)must be zero. This is because the 
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response of a plane surface to a bending associated with zxxx' say, 

must be identical, to the response associated with ~ zxxx' the 

two bent surfaces differing from one another only by a reflection in 

one of the coordinate planes. (The x = 0 plane in this case.) Thus 

/ must be an ~ function of the Odd derivatives, and ,so must not 

contaih linear terms in zxxx' zxxy' etc. It is also clear that ~ 

must be equal to ~, and ~ must be equal to k4 (the response of 

a plane to bendings in any two directions, such as x and y, must 

be identically the same. )". It follows that / may be written simply 

as 

1 1 
/0 + IS. (If" + If" ) 

x y 

1 
+ IS RR 

x y 

+ terms of order and higher. 

+ + 

where 
-1 -1 

K=R +R , 
x Y 

r = (R R )-1 , 
. xy 

and where. the coefficients 

K are the following derivatives' describing t~e response of a plane 

surface to infinitesimal bendings 

~i \ dK 
plane 

o(R -1) 
x 

I 
I lplane 

\ 
\ plane 

I 
) 

/ 
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7ne total surface-layer energy ofa gently curved leptodermous system 

is then 

where c2 = 'YO' c3 = KJ., 
are defined by Eqs. (15). 

For a given bulk density 

(20) 

+ higher order terms, 

P
B 

the coeffic.ients 

are constants and the total energy of the system is an expansion whose 

terms are readily verified to be of order (RJb)3, (RJb)2, (RJb), 

and (RJb)O. Since, for a constant PB , the radius RO is propor­

tional to All3 , the terms are of order A, A2/3, Al/3, AO, with-

corrections that tend to zero as A tends to (Xl. An important point 

established in this section is thus that in order to discuss the -energy 

of a gently curved leptodermous system even up to and including terms 

° of order A, one does not need to calculate higher inflection 

.invariants of the surface. beyond the standard total and. Gaussian 

curvatures K and r, expressible in terms of the two elementary 

principal radii of curvature Rx and R. 
Y 

The addition of the proximity energy Vp to the surface-layer 

energy (20 ) broadens the energy expression to include situations .when 

the conditions at some points on a surface are no longer functions of 

only local properties., l:ut depend on the presence of other- juXtaposed, 

nearly parailel surface elements. 
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Of the three curvature c.orrection functionals ~!. "/.;' ,/j ''IV J (.,_ 

the integrated . Gaussian curvature r/J is equal to 211· times the 

Euler-Poincare characteristic X of a surface (e.g. Ref. 32). This 

quantity is characteristic of the topology of a surface but otherwise 

independent ·of its shape. (To determine X for a given surface, 

subdivide the surface into a set of simple polygonal faces by drawing 

a set of edges coming together at a set of vertices. The number of 

vertices, min~s the number of edges, plus the number of faces, gives 

X.) Thus/! is 411 for surfaces with the topology of a single 

fragment, 411n for n fragments·, zero for a torus or bubble nucleus, 

etc. The inclusion Of.(; in the leptodermous series for arbitrary 

shapes is thus a trivial natter; The integrated curvature X- has 

been the subject of some studies in the nuclear context, where it 

appears that the coefficient c
3 

nay be close to zero. (18,29) . It 

might thus turn out that in order to discuss the average nuclear 

energy to order AO the only new shape fUnctional required beyond 

the surface energy rI' is the integrated squared curvature € . 
Note that in the case of certain crevices the higher-order 

curvature corrections in the leptodermous expansion might diverge 

near or at the edge of the crevice. In such cases a more satisfactory 
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energy expression would be obtained by not retaining these terms,' at 

least not in the neighborhood of the crevice. Note also that for 

large overlaps the terminology of a "Surface-Layer Energy If and a 

"Proximity Energy" should be modified. Thus for large overlaps this 

energy will be composed of an energy associated with the bulk of the 

overlap region, and of a surface-layer energy of a new kind, assQciatai 

with the surface dividing the double-density and single-density regions. 

It is then more natural to make the obvious decomposition of this 

energy, into new bulk and surface-layer terms,' and not refer to it as 

a "Proximity Energy." (For a calculation of, the new surface energy 

coefficient; see Ref .16. ) 

Corrections to the gap or crevice energies given by Eq. (1) 

(arising, for example, from deviations from parallelism of the 

juxtaposed surface elements) have not been analyzed systematically--

this should be done in order to clarify the range of applicability of 

the Proximity Formula. Some empirical information on this point is 

provided by the comparisons in Sec. 4;3. 

Note that the impliCit definition of , through Eq. (16) 

depends on the choice of the surface' E on which the surface elements 

do are defined. Thus if one chose a different'surface E' with 

whose surface 'elements do' one were to label'the "normal tubes, ",the 

resulting local surface energy " would be different, even though 

the product do',' is, by definition,the Same for a given tube. 'It 

follows that the total surface-layer energy ESL is invariant with 

respect to a change from E to another reference surface E', but 

the local surface energy " is not, transforming in fact in a simple 

geometrical way as the reciprocal of the surface element do' that 

intercepts a given tube. It follows that the sum of all the terms in 

Eq. (13) is invariant to changes from E to E', but the division 

into individual terms in the series is not. For example, if the 

surface E' is'chosen to differ from the effective sharp surface by 

a small constant normal displacement (say of the order of the surface 

width b), then it is readily verified that even though the surface 

energy coefficients c
2 

are the same in the two cases, the curvature 

correction coefficients are different. It is, in fact, 

possible to pick a surface, say Et' whose fixed normal displacement 

with respect to E is just such that the curvature correction 

coefficient c
3 

vanishes identically. (Such a surface is sometimes 

referred to as the "Surface of Tension. ") Another possibility would 

be to choose, instead of E, the half-density surface ;'/2 (the 

surface where the density has dropped to half its bulk value) or, 

perhaps, its generalization, the "Central Surface" E 
c 

(See next 

section.), It then turns out that both c2 and c3 are the same 

for the two choices (or E 
c 

order coefficients are different. 

andE , but that the higher 

Insofar as a diffuse density distribution has no unique 

surface, the fact that there is a certain amount of arbitrariness in 

the choice of a reference surface within the surface region is natural, 

and it need cause no difficulties if one is always careful to specify 

the surface with respect t'o which one has chosen to calculate the 

curvature correction coefficients Cy ,c4' etc. In making this 

choice one should bear 'in mind the following. The half-density 

surface ;'/2 or, preferably, the central surface Ec' are better 

suited for describing the location in space of the diffuse density 

,-
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profile. The Eurface of tension Lt is better suited for describing 

the location in space of the surface-energy bump ~ - aBP . The 

effective sharp surface 
0) 

E has the advantage that the volume t- it 

encloses is related simply to the bulk density PB and to the number 

0:' particles by A = PBci/. For the other surfaces the relation 

involves, besides the volume enclosed, other properties of the 

surfaces, such as their areas or integrated curvatures. This has 

,led in the past (and, we fear, will contirLUe to lead in the future) to 

drastic mis~derstandings in the identification of the correct value 

of even the surface energy coefficient c2 ! This results from a 

mLxing up of the true surface energy, associated with the surface 

region, with a contribution from the bulk, which arises when the bulk 

density is made (unwittingly) a function of the shape or size of the 

system by demanding that the volume inside some surface other than L 

be constant. (See Ref. (24) and p. 19 of Ref. (17).) In view of the 

uniquely simple relation between the effective sharp surface and the 

bulk density and particle number, we tend to single out L as the 

standard reference surface, introducing other surfaces such as 

only when there is a special reason to do it. 

L 
c 

The confusion arising when the bulk density is unwittingl¥ 

made a function of shape or size should be distinguished clearly from 

the discussion of real, physical effects associated with explicit 

variations of the bulk density of a system., Such variations may result 

from the seeking out by a system in equilibrium of the configuration 

of minimum potential energy. (For example 'light nuclei tend to have 

higher equilibrium bulk densities than heavy nuclei because they are 

squeezed more strongly by the surface tension and dilated less str~ 
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by the electrostatic repulsion.) Once the relevant dependences of 

the coefficients cl ' c2' c
3
, etc. on the bulk density are 'known' 

(or an assUmption is made about the functional form of these 

dependences) there, is no difficulty (though there are sUbt~eties) 

in setting up the equations that describe the variations of the 

equilibrium bulk densities with size and shape of the system. An 

example of this is provid~d by the Droplet M,odel (Refs. 18, 19). 

The Droplet Model provides also an illustration of the way 

deviations from a strictly leptodermous situation may be tr,eated. 

Thus when the long-range electrostatic interaction is included in 

the idealized nuclear problem the bulk density is no longer constant, 

but exhibits instead a gentle variation. This variation 

may, however, be separated from the rapid density decrease in the 

surface, and the system may still be considered as leptodermous in 

an extended sense. The resulting energy expressions are derived 

in Refs. 18, 19. 
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).1. Geometrical properties 

For the 'practical utility of the Proximity Theorem it 

t~s out to be of the utmost importance to be precise in 

defining the relative positions of the diffuse surfaces of two 

interacting leptodermous systems. (The strong interaction between 

two such systems has a range of the order of the surface diffuseness 

and unless the surface positions are specified 1;0 within a fraction 

of this already small number the calculated interaction will be 

correspondingly in error.) In this connection we shall clarify some 

elementary geometrical properties of diffuse surfaces in a way that, 

follows the much more extensive worlls of Sussmann (20 ), and Myers (21)' 

(which, however, were specialized to spherical shapes). 

'Consider a diffuS~ distribution in'sp:!.ce defined by first 

choosing a uniform distribution bounded by the effective sharp surfac'e 

E and by then moving matter from inside to outside this surface 

according to some fall-off prOfile f(n) , a function of the normal 

distance from E. The function f(n) is supposed to drop from 1 to 

zero in some (small) distance of order b, say, and to have an 

" 
intrinsic shape independent of the position on, E As before 

construct normal tubes subtending elements of aiEB do on E. ,If the 
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amount of matter in a tube after the diffusing 'of the surface is to 

be equal to the amount before we must have 

do [ dn(l + rn) fen) 

-N 

• do f dn(l + =) . 

-N 
(21) 

Here (1 + Kn)dn do is the volume element in the integration along a 

tube, the familiar factor 1 + Kn correcting for the slight non­

uniformity in the tube cross section associated with the small 

curvature K of the surface E (e.g., Ref. 17, p. 58). The lower 

limit -N is assumed to be sufficiently deep inside the distribution, 

where f(-N) is essentially unity, so that Eq. (21) is essentially 

independent of N . 

Integrating the left side of Eq. (21) by p:!.rts and the right 

directly and re-arranging gives 

r df 1 [" i n(-dn)dn+2'K 
), 
-N 

n2 
( _ ~~ ) dn 

(22 ) 

The negative of 'the derivative of the profile function, 

(-df/dn), has the appearance of a bump in the surface region which, 

for a leptodermous system, is assumed to falloff rapidly away,from 

the surface. ,The two terms on the left of Eq. (22) ar~ thus propor­

tioOO:I to the first and second moments of theb~p function evaluated 

with respect to the origin' of the normal coordinate n, which was 

taken to be on the surface E (These,moments are essentially 

independent of ',.N , which we shall put equal to -co .) .FollowiI;lg 
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siissma= we shall define the "Central Surface" E to be located at c 

such a value of n, denoted by nc} that the first moment of the 

profile bump function taken with respect to nc is zero. Thus 

r (n - n ) (- df ) dn = O. 
c dn 

-00 

This "Central Surface" is thus at the center of gravity of the 

profile bump function (hence the name) and may be used to specify the 

location of the diffuse surface. In this respect. it is analogous to 

the half-density surface but, being an integral quantity, does not 

suffer from the arbitrariness of being associated with a particular. 

value of the density (the half-value). In order to solve explicitly 

for the distance nc of the Central Surface from the Effective Sharp 

Surface we write 

2 
n [en - n ) + n ]2 

. c c 

2 . 2 = (n - n) + 2n (n - n ) + nc c c c 

and substitute in Eq. (22 ), using Eq. 

00 

(nc 
+ - K n) . (- -1 21 df 

2 c dn 
) dn + 

-00 

It follows that, for 

where 

Kn «I 
c 

1 
12K 

(23) : 

I (n 

-00 

2 d:f ) dn - n ) (-
dn 

o . 
c 

(24 ) 
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b 

~ [ r (n - n/ ( - ~ ) dn ] 

-CD 

is the r.m.s. width of the profile bump function--S"Ussmann's "width" 

of the diffuse surface. 

Equation (24) is the generalization of s'lissmarui' s relation 

for spherical systems between the effective sharp radius R and the 

central radius C (Ref. (21), p. 468): 

C 

that is, 

C - R 

Since for a sphere the curvature K is 2/R Eqs. (24) and (25) agree. 

The position of. the surface of tension was derived on p. 58 

of Ref, (17).· By writing the surface-layer energy including the 

curvature correction as 

f dot;O"+ ~I\. K + ..• ) 
~ plane 

E 

J 
E 

'110 ~ I 
plane 

where . one realizes that the surface-layer 

energy is, to the relevant approximation, an integral of the standard 
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surface energy Yo but over a surface shifted normally by the length 

'- (which is equal to the ratio c
3
/c2 of the curvature and surface 

energy .coefficients in Eq. (20». This shift to the "Surface of 

rension, " displaced by a constant from the effective sharp surface 2:, 

rm.y thus be used to absorb the curvature correction in the surface 

energy. 

3.2 Comments 

We hope to have clarified somewhat the content of Leptodermous 

Energy Formulae of the type of Eqs. (13, 14). 'Formulae like this are 

often thought of in the context of a Liquid Drop model of nuclei, 

which historically has tended to be identified with. systems of strongly 

~teracting particles characterized by short mean-free-paths, and 

treated according to classical mechanics. As a' result formulae of the 

type of Eqs. (13, 14), with their bulk and surface-layer energies have 

been thought to be in conflict with the independent-particle .model of 

~uclei, which is characterized by particles with long mean-free-paths, 

treated quantally. Our derivation of the Leptodermous Energy Formula 

s~s, we hope, that classical assumptions about the treatment of the 

constituents of the system do not enter, and that no assumptions about 

the mean-free-paths are necessary. The crucial assumption on which 

the Leptode~ous Energy Formula is based is the relative thinness of 

the surface layer, and this need not be in conflict with a model of 

quantized independent (long mean-free-path) particles. 

In fact, References (17, 19, 22, 23, 24, 25) illUStrate. 

precisely1how in the case of either independent or interacting 

particles ·treated· quantally the energy density function ~ _ ~p 

remains confined to the Vicinity of the surface and the leptodermous 
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condition is satisfied. Thus if the Thomas-Fermi approximation is 

used to treat the problem of quantized interacting nucleons(19) the 

deViations of the densities and energy densities from their bulk values 

tend to diSappear exponentially as one leaves the surface region along 

the "inward normal. ('f;he disappearance is even more rapid towards the 

outside.) In the case of a Hartree.· treatment of a semi-infinite system, 

where a product'wave-funGtion is used, the energy density function 

~ - ~p is also confined.to the surface region(23 ) (although the tail 

extending inward exhibi~s oscillations and must be treated with care). 

. . (22) 
The use of a determinantal wave function does not appear to change 

things appreciably. For a finite system (e.g. completely 

independent quantized particles in a box) the oscillations in the 

densities rm.y be appreCiable, especially for bOxes possessing a high 

degree of symmetry. This is associated with shell effects (due to the 

discreteness of the particles, augmented by degeneracies associated 

with symmetries). The problem Of isolating in that case the smooth, 

shell-averaged, background.in the energy expressions is a subtle 

one and has been the subject of many recent investigations. However, 

studies of special cases, such as those in Refs.. (24, 25) illustrate 

how even then a leptodermous expansion is able to represent accurately 

the average trends of the total energy (a sum over energy eigenvalues). 

Since one also knows experimentally that most nuclei are 

relatively thin-skinned systems, one may, we feel, use the 

Leptodermous Formula for nuclear energies Without undue reserVations 

on the score that one is "just parametrizing" nuclear masses in an 

ad hoc way. The .essential reservation to keep in mind is that 
. I 

the formula refers to smooth, shell-averaged trends of the nuclear 

energy. 
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4. APPLICATIONS TO NUCLEI 

4.1 The Universal Functions 

It is convenient to introduce the following dimensionless 

Jroximity fUnction 

obtained from e(s) by measuring the sep3.I'ation s in units of the 

surface width. b, S ~ sib ,. and by measuring energy in units of 

twice the surface energy coefficient '1 (the YO of the previous 

section). 

Similarly we defiDe the dimensionless (incomplete) proximity 

!!lcments by 

(?or the zeroth moment Po we shall simply write j .) 

By dealing with these dimensionless fUnctions one can make 

the predictions of·the theory insensitive to certain quantitative 

shortcomings of the models of the nuclear surface that have to be 

",sed in calculating e(D) and its integrals. Thus a model of the 

surface could be somewhat inaccurate in reproducing the absolute 

values of the experimental surface energy and/or width (diffuseness) 

and, nevertheless, generate relatively accurate dimensionless fUncticns 

rj) and .J. Combining these fUnctions as predicted by the model with 

the experimental values of '1 and b (rather than with the possibly 

inaccurate values given by the model) will then result in the. most 

reliable exploitation of the theory, where the model of the surface 

only enters in determing the functional form (but not the scale) of 

the proximity functions. 

We have carried out a calculation of the universal nuclear 

proximity function ¢ and of the associated moment- functions .~ .. n 

using the nuclear Thomas-Fermi model with Seyler-Blanchard phenom-

enological nucleon-nucleon interactions (Refs. 19, 23, 26). Appendix 

A gives a brief description of the model and its adaptation to the 

calculation of the proximity energy. The resulting function ¢( n 
is displayed in Fig. 2 and the integrated function 1(0 in Fig. 3. 

Table I gives ¢(s) together with its first four incomplete moments 

For practical applications it is useful to have available a 

simple analytical representation of the fUnction J which enters in 

the nucleus-nucleus proximity potential that follows from Eq. (6): 

(26) 

One such approximation is given by the following "Cubic -Exponential" 

pocket formula (27). 

-3.437 exp(-s/0.75) , 

where Sl = 1.2511 ~ 5/4, 

I 
} 
! 
! 

(27) 

This pocket formula for J is illustrated (by the· circles) in· Fig. 4, 
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a:Jd should be adequate for many purposes; The cubic expression has 

oeen chosen to go smoothly to zero and so it could be used by itself 

in cases where the tail .of the interaction is not 'an important feature. 

Approximate expressions for the higher moments P can be obtained by 
-n 

integrating Eq. (27). One can also 'obtain an·approximation t6 p by 

d.ifferentiatingEq. (27), but the result is only a rough representatio~ 

since a discontinuity in the slope of ¢ appears at t; = 1.2511 (a 

result of the discontinuity in the curvature in Eq. (27) at that 

point). 

4.2. Suggested pl.rameters 

In applications of the above formulae to nuclear problems the 

=ollowing choice of numerical pl.rameters would be reasonable. 

For the surface energy coefficient 'Y one might use the 

Lysekil mass formula of Ref. (28) according to which 

" 
where I = (N - Z)/A, and N,' ·z· and A refer to the combined 

system of the two interacting nuclei. In this .way some allowance is 

made for the dependence of· the Proximity Potential on the neutron 

excess, even though the "\IIli versal functions ¢ and j were cal­

culatedfor zero neutron excess. (A rough approximation to 'Y would 

be simply (1 - 212) MeV/rm2 .) 

In'. calculating the value of R in Eq. (26) and the sepl.ration 

s = r - Cl - C2 for spherical nuclei the surfaces should be . located 

using S'ussmann' s central radius C; related to the effective sharp 

!'l¥iius by Eq. (25). (In the case of more general geometries the 

central surface Ec should be used, related, to the effective sharp 
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surf'aCe E by Eq. (24).) For the effective sharp radius one may use 

the following formula: 

R 

When used in conjunction with the Proximity Force Theorem the 

central radius is preferable to the effective sharp radius R, which 

moves out relative to the density profile by an amount proportional 

to A-1/3 (Eq. 25), and which is not, therefore, in an invariant 

relation to the location' of the profile for finite nuclei with 

different radii. Note that the Proximity Force Theorem is based on 

Eq. (1), whose physical content is the approximate replacement of the 

interaction energy of two curved surfaces by an integral of the 

interaction energy per unit area of pl.ra11el flat surfaces for which 

the sepl.ration D(x,y) matches, point by point, the distance between 

p9.irs of elements of the actual curved surfaces. In' order for the 

approximation to be accurate the flat surfaces should be located so 

that their pro~iles match the locations of the actual profiles as well 

as possible. This is ensured to a higher degree of accuracy by 

working with the central radius C rather than with the effective 

sharp radius. R. (See below . ) 

Nevertheless, we consider R as the primary quantity for 

which we provide empirical expressions (Eqs. 29, 30) because it is 

R and not C which is exactly proportional to All3 for 

. t·· 1 t Al/3 f 1 incompressible systems, and nearly propor ~ona 0' or neary 

incompres'sible systems. such as nuclei. A refined analysis of the 

experimental evidence on nuclear sizes indicates(21, 29) that R/A
1!3 

" . 
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::'5 to a fair approximation 'constant at about 1.15:fro. A'slight 

'~iation from about 1.11 :fro for A ~ 20 to 1.18 for A ~ 250 is 

~he expected result of the finite compressibility of nuclei, leading 

~o a relatiVely greater squeezing,of light nuclei by the surface-

tension forces and the dilation of heavy nuclei by the electrostatic 

repulsion. An attempt to take this into account is represented by 

Eq.(29). This value of R, when divided by Al / 3, reproduces 

closely the middle curve in Fig. 5 of Ref. (29), representing average 

nuclear matter radii between A = 20 and A = 250. It is important 

to stress that neither the coefficient 1.28 of Al / 3 in Eq. (29) nor 

the 1.15 in Eq. (30) is to be interpreted as the nuclear radius 

constant of nuclear matter, whose value, as deduced in Ref. (29), is 

1.18:fro t about 0.02 :fro. 

The width b in Eq. (26) has the approximate value of 1 :fro. 

Thus for a Woods-Saxon surface profile the SUssmann width b is 

related to the "10-90 fall-off distance" by (Ref. 21) 

b 

which fortlO_
90 

= 2.4 fm, gives O.99:fro. For a more refined analysis 

of the course of the neutron, proton and average surface widths 

throughout the periodic table see Ref. (11). As a nominal value 

of b we shall, however, use l:fro. 

The above equations give only average estimates of nuclear 

sizes. Variations caused by shell effects, including deformations, ' 

have to be' taken into account s~parately. In particular, when using 

the Proximity Potential for deformed nuclei, the distance of closest 

approach s, as well as the mean curvature radius If of the gap width 

f""clJlction in the vicinity of the point of closest approach, have to be 

carefUlly related to the orientations and shapes of the nuclei. 
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In the formulae given above there are no adjustable parameters 

in the predicted nucleus-nucleus interaction. For some purposes it 

might be useful to have adjustable parameters that could be varied, 

within reasonable limits, in correlating experimental data. For 

example some slight variations in the nuciear radii from the nominal 

values given by Eqs. (29, 3() would be reasonable. Similarly the 

nominal values of the surface energy coefficient r (Eq. 28) and 'of 

the surface width b (= 1 :fro) need not, of course, remain 

inviolate. Altogether the slight freedoms associated with adjustments 

in the values of the radius, surface energy and surface width are 

together equivalent to slight freedoms representing a horizontal shift, 

and horizontal and vertical stretchings of the nucleus-nucleus 

potential vp(r). Such adjustments of the parameters should, however, 

be used with moderation and should not be in conflict with what is 

known about nuclear radii and surface properties. In :r;articular, if 

in the interpretation of nucleus-nucleus scattering 

experiments by means of the frozen idealization (in which all degrees 

of freedom except the separation between nuclei are frozen), unrea-

sonable adjustments of the parameters are called for, the explanation is 

very likely to be the inadequacy of the frozen idealization. One 

would then be wiser to display clearly the discre:r;ancies rather than 

to mask the expected failure of the frozen idealization by an abuse of 

the nuclear :r;arameters. 

With reference to some earlier misunderstandings, let us stress 

that the use of the Proximity Energy expressions (as generalized in 

Section 2.2 for ,various geometrical arrangements including necks and 

crevices) is not tied to the frozen idealization. ,Thus if a neck 
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iegree of freedom is added in the description of (e.g. deep inelastic) 

scattering, an appropriate Proximity Energy formula, taken for example 

'from Sec. 2.2, may be used. 

4.3. Tests of the Leptodermous,Formula 

The accuracy of the Leptodermous Energy expressions (13, 14) 

d.Ep!nds on the smallness of the ratio b/RO ' How accurate should one 

expect the expression to be in nuclear applications where this ratio 

may not be very small, especially for light nuclei? 

We shall first test Eqs. (13, 14) against the exactly soluble 

mathematical model of Krappe and Nix (Ref.· 4) of ·two sharp spheres 

(with surface separation s), whose volUme elements interact by a 

Yukawa interaction of range a and strength written as voI4na3: 

For a single such sphere of radius R the exact energy is 

v 

+ . 21!a(R + a)2 exp(-2R/a)] 

With Vo = 2.2105 MeV/fm3, a =1 fm, R = 1.2 Al/3 fm (values 

representative of the nuclear' situation) this gives (in MeV) 

. 62 ( 1/3 ) -250 + 125 + 0 - 13.89 + 0.55, 'for A 15. r5 i.e. A = 2.5 . 

Equations (l3, 14) applied to this case give 
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V 

-250 + 125 + 0 - 13.89 MeV. 

(In'Ref'. (27), p. 5 the coefficients of 4~ and "'; were interchanged~ 
In this case the only term not reproduced by the Leptodermous 

Formula is the exponential one, amounting to 0.55 MeV. This may not 

be a representative figure, however, because in the 

Krappe-Nix model the polynomial part of the energy expression happens 

to terminate at theAO term. If this is a peculiarity of this 

model then in a more general case one might expect the next 

term to be of order (10_20)A-l / 3 MeV, i.e. a few MeV rather than 

~ MeV for A ~ 16 , somewhat less for larger systems. 

For two equal Krappe-Nix spheres, whose centers are separated 

by r , the exact additional interaction energy may be written as 

-4(p cosh p - sinh p)2(r/a)-1 exp(-r/a) 

-4(p cosh p - sinh p)2(0 + 2p)-1 exp(-o - 2p) 

(31) 

where p = Ria , 0= s/a and l, equal to avoI2, is·the surface 

energy coeffic·ient in the Krappe-Nix model. (In. Ref. (27), p. 5 there 

is a misprint in the-formula for vint .) 

In the example under consideration the value of. Vint 

-9.35 MeV for ,,= 0, and -2.95 MeV for 0= l~ 

is 



o 

In applying the Proximity Formula (6) to this case we first 

~otethat the interaction energy per unit area between two Krappe-Nix 

slabs is readily verified. to be 

e(s) - 2r e 
-s/a 

shall use for the effective central radius Ceff ofa Krappe-Nix 

object (a sharp sphere generating a diffuse potential) the mean between 

the central radii of the density and potential distributions: 

-.;here 

C 
P 

R 

Here b is the SUssmann width of the surface of the diffuse 

:potential distribution. In the Krappe-Nix case it is related. simply 

to the range of the Yukawa interaction by b = Y2 a (Ref. 21, E~. 

(18) ). Thus the effective radius of the interacting spheres is 

Ceff = R(l +. ... ), 

and the separation between their effect! ve sUl'f9."es is 

2 2 2 
r -:- 2R (1 - a /R ) = s + 2a /R • 

Inserting these values in the formula 
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4:rr r a 

we find 

1 ( -1) ( -1 - 2" p - P exp -0" - 2p ). 

(In Ref. 27, p. 6 there is a misprint in the exponent.) This 

formula gives -9.51 MeV for. 0" = 0 and -3.50 MeV for 0" = 1 as 

the interaction energy in the case under consideration, when R = 3 fm 

and a = 1 fm, . so that p = 3. 

The upper left-hand part of Fig. 5 compares the exact inter-

action energy (~. 31) with the proximity formula (~. 32) for 

R/a = 3. The other two graphs make the comparison for R/a = 2 and 1. 

On the right the exact and approximate interaction energies 

at contact (s 0) are compared as functions of R/a. Also shown 

(by the dot-dash curve) is the result of not being careful in the 

choice of the effective location of the surface of a Krappe-Nix object. 

This curve is the result of tak;ng R ;nstead of C to locate the • •. eff 

surface. This leads to 

-(r-2R)/a 
e 

or 

- ~p exp (-0) : 

This expression, even though forma:lly correct in the limit of very 

large p, would be useless in practice for p-values in the range 

around 2 - 5. 



-47-

These comparisons illustrate the importance of recogni~ing the 
I 

proper location of the surface profiles of the curved objects to which 

the Proximity Theorem is being applied. This has to do with the 

i~portance of properly matching the parallel flat surfaces (underlying 

the Proximity Theorem) to the profiles of the curved surface elements 

that the flat surfaces are supposed to represent. In the Krappe-Nix 

case this proper matching makes all the difference between the theorem 

being a useless curiosity and a practical tool for predicting the 

results of a calculation, without carrying out the somewhat involved 

~~tiple integrations associated with folding in (Yukawa) interactions. 

"~ie should remark, however, that the Krappe-Nix case, with a sharp 

density but a diffuse potential, is a ,situation that exaggerates this 

aspect of the problem. It is only because the density is sharp that 

its profile stays at R whereas the location of the potential profile 

moves in by b2/R as the surface is curved. In a self-cohesive 

system (such as a nucleus), where the density generates the potential 

and the potential determines the denSity in a self-consistent way, the 

widths of the potential and density profiles are approximately,e~ual, 

and the density and potential profiles do not move appreciably with 

respect to each other as the surface is cUrved. Applying the Proximity 

Theorem simply to the matter density 'radii C P (as was implicitly' 

suggested in Section 4.2) should then be a fairly ade~uate procedure. 

The Proximity Theorem was tested also for the case of une~ual 

Krappe-Nix spheres, with similar results to those described above. 

In addition, in Ref. 30,an exhaustive series of comparisons was made 

for a generalized Krappe-Nix model where e~ual or une~ual diffuse 

spherical density distributions were used to generate diffuse 
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potentials by way of Yukawa interactions of various ranges. A limiting 

case is that of two diffuse spherical distributions whose elements 

interact by zero-range (delta-function) forces. In all cases the 

Proximity Formula was a useful approximation, provided the effective 

surfaces of the interacting systems were properly located at the 

average position between the density and potential sur~ace locations. 

In the most realistic cases where the density and potential had 

comparable diffuseness the agreement was even closer than in the 

extreme case of a sharp density, illustrated in Fig. 5. 

A second comparison of the nuclear Proximity Potential was 

made, this time with the interaction potential between model nuclei 

described with the aid of a simplified Thomas-Fermi method (the energy­

denSity formalism of Refs. 2). 

Figure 6 shqws such a comparison for the case of 4°Ar + 121Sb 

and Fig. 7 for 84Kr + 209Bi. The calculated potentials are 

gerierally similar, but one should bear in mind that in such comparisons 

one is not just testing the Proximity Theorem but also 

the correctness of some.of the parameters used in the energy-density 

~formalism. (In particular those combinations of parameters that 

control the values of the nuclear radii, surface energy and diffU~.) 

Thus if a set of parameters is used in the energy-density formalism 

that does not reproduce experimentai nuclear properties well, a 

relatively large deviation from the Proximity Potential (with its 

parameters ,taken from experiment) may be expected. This is ilJJJsirated 

in Fig. 8 based on Ref. 31~ Here the dashed line refers to a set of 

parameters (Set II) preferred by the authors, and the solid curve to 
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e.nearl-ier set of p9.rameters', which shows rather large deviations 

~om the Proximity Potential. 

As remarked by the authors of Ref. 31 their results are 

consistent w~th the Proximity Theorem in the sense that the inter­

action potentials for 17 p9.irs of nuclei (calculated with one and the, 

same set of p9.rameters) can be reduced approximately to a universal 

fUnction of the sep9.ration between the nuclear surfaces by dividing 

a.lt an estimated reduced radius, roughly proportional to 

,~/3 A21/3/'(All/3 + A21/3) • JL /~ To test quantitatively the accuracy of the 

Proximity Theorem in this way it would be necessary to determine the 

surface locations (central radii Cl and C
2

) of the model nuclei 

employed, and to use these values in making the reduction of the 

interaction curves to a universal function. 
We have recently become aware of an analysis of elastic 

5cattering data in Ref. (34) which makes pcssible a comprehensive 

compariscn 'Of the thecretical Prcximity Potential with experiment in 

the extreme tail region (see Fig. 3). As discussed in Ref. (34), the 

~esults of 57 elastic scattering experiments (invclving prcjectiles 

ranging rrom lOB to 32S and targets from ,1~ tc 208Pb ) can be 

used tc deduce, for each pair 'Of nuclei, a value of a potential depth 

V at a. certain distance r between the centers 'Of the exp exp 

interacting nuclei (a distance related to the rainbow angle). 

3y dividing the potential by the factcr 4rrlbR appropriate tc,the 

system in question, an experimental value of .i
exp 

may be deduced: 

The dimensicnless separation ~ at which this value 'is plotted as exp 

a point in Fig. 9' is obtained' by subtracting from r the ap~' c-. exp 

priate sum of the central radii C + C (cbtain~ 
Target ,Projectile 

using Eqs. (29) and (25)) and dividing by b (= 1 rm). 
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Figure 9 shows that the theoretical value of the interaction 

function j in the extreme tail is of the order of magnitude of the 

experimental points and that it exhibits the observed trend with 

sep9.ration. To what extent the deviations are significant is not 

clear at the moment--the systematic deviation (most points lie to the 

right of the curve) could be remcved by a 2% increase in the nominal 

radius formula Eq. (29), used tc deduce from r . exp But there 

is no reason to thirik that this is necessarily the explanation of the 

deviations. 

Based on these and other comp9.risons carried out so far, our 

impression is that the suggested simple scheme of estimating the 

nucleus-nucleus potential (in the separaticn degree of freedom), 

using fcr example the pocket formula .(27) and experimental values 'Of 

• nuclear radii, surface energy and diffuseness, should be useful dcwn 

to 'luite small systems, with A values perhaps below even A = 16. 

In the later stages of a nucleus-nucleus interacticn, when a crevice 

or neck has formed, the appropriate Proximity Energy expressi?n should 

also continue to be useful in correcting the grossest shcrtcomings of 

the polynomial part 'Of the J,eptodermous expansion, Eq. (20). A study 

of this problem is under way. 

As a final application of the prOXimity function ¢ we might 

mention the estiioo.te of the tensile strength of (a cylinder of) nuclear 

matter against a disruption into two pieces with two new surfaces 
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~acing each other across a gap. (In nuclear fission the question 

sometimes arises as to the smallest neck that could withstand the 

electrostatic repulsion between the fragments before rupturing by: way 

c~ such a new degree of freedom, not included in the usual parametriza-

tions of fissioning shapes.) 

If the rupture is assumed to proceed along a degree of freedom 

that is essentially the reverse of the bringing together of two 

,;uxtaposed surfaces with frozen density profiles, the force necessary 

to cause rupture is proportional to 

max max 

-jsing Table I we find that the maximum value of P' is about 0.486 

(at S 1.55). With the nominal values of )' and b we then find 

for the tensile strength the simple result of just about (1 MeV/fm) 

;'er fm2. 

In conclu.sion we hope that this paper Will be useful in 

~avancing our quantitative understanding of macroscopic nuclear 

properties and that, perhaps, it might also be found to have relevance 

ill the domain of surface physics. 
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APPENDIX A 

In this Appendix we give a brief outline of the adaptation of 

the. Seyler-Blanchard nuclear model to the 'calculation of the proximity 

function. 

nucleon 

The model is based 

illtera~tion (26) 

e-r12 / a 

-c 

on the folloWing pheriomenological nucleon-

2 2 
(1 - P12/b ) ... 

Here is the separation between the two nucleons and their 

relative momentum. The parameters entering are: a, the range of the 

Yukawa interaction, b, the critical momentum at which the interaction 

turns repulsive, and C (= Ct or C ), the interaction strength, 
u 

which is different for like and unlike nucleon pairs. For symmetric 

systems (identical neutron and proton distributions) only the average 

strength C 

The associated nuclear many-body problem is treated in the 

Thomas-Ferini approximation. In this approximation the local,Fermi 

momentum PF(;) determines the matter density pC;) .(- PF(;)3) as 

well as the kinetic-energy density T(;) (- PF(;)5). Because of the 

quadratic momentum dependence, the energy density in the pre.sence of 

the Seyler-Blanchard interaction can be expressed solely in terms of 

the distributions p and T. Moreover, since T - p5/3 , it follows 

that the energy of the system is determined. once the matter denSity 

distribution p has been specified. The various relevant formulae 

can be found in Ref. (23). 
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.The .factthat the energy density is uni<luely determined once 

the matter density p has been specified is exploited in the calcula­

·tion of the proximity energy. The matter density distribution 

associated with the combined system is simply.the superposition of 

the two individual density distributions, each of which is given as 

the e<luilibrium distribution associated with one isolated semi-infinite 

system. 

The actual calculation of the function ¢ displayed in Fig. 2 

is performed as follows. First, the problem of one isolated symmetric 

semi-infinite system is solved as in Ref. (23). This determines the 

~ density profile of the standard nuclear surface, and in particular its 

energy and diffuseness. The parameter values employed are those 

o 
l,ll 

determined in Ref. (19). ~ey are 

a 

b 

0.62567 fm 

3'R.48 MeV/c 

C 328.61 MeV. 

c:r This leads to a surface energy of 'YTF = 1.017 MeV/rm
2 

and a surface 

diffuseness of lLF = 0.8[2 fm when a radius constant r.O e<lual to o -T 

1.2049 fm is 'used -- see Ref. (19). As remarked in Section ~.l the 

fact that these numbers may not be the most accUrate representations 

of the experimentai values of 'Y and b is l,argel,y immaterial for 

the cal,culation of ¢ and J 
Subse<luently, two·identical semi-infinite systems are 

positioned with a certain separation s between the locations of 

their parallel surfaces. The two density prOfiles are assuIiled . to 

remain frozen in their asymptotic, isol,ated form. Then the total 

matter density is obtained by superpos~tion and the total, energy, 

relative to the energy of two infinitely separated systems, is 

cal,culated (per unit surface area). The universal, dimensionless 

proximity function ¢(~) is obtained by measuring the cal,culated 

energy per unit area in units of twice the surface energy 'YTF and 

the surface separation s in units of the diffuseness b
TF

• 
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,.1.65 0.3156 -2.5123 - 1. 7132 -3.861 -8.85 
-1.60 0.2560 -2.5266 - 1.6900 -3. 899 - 8.79 
-1.55 0.1975 -2.5379 .;. 1.6721 -3.927 - 8.75 

Table I (Cont. ) 
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TABLE I (Cont. ) TABLE I (Cont. ) 

S ¢ j 'p 1 P2 P3 S ¢ p A /2 § 
3 

-1.50 0.1401 -2.5463 -1.6592 -3.947 -8.72 0·50 -0.9480 -1.3059 -1.91l2 -3.650 -8.91 
-1.45 0.0838 -2.5519 -1.6510 -3.959 -8.70 0.55 -0.9410 -1.2586 -1.8864 -3.637 -8.90 
-1.40 0.0287 -2.5547 -1.6470 -3.965 -8.69 .0.60 -0.9325 -1.2118 -1. 8594 -3.621 -8.89 
-1.35 -0.0252 -2.5548 -1.6468 -3.965 -8.69 0.65 -0.9225 -1.1654 -1.8305 -3.603 -8.88 
-1.30 -0.0779 -2.5522 -1.6503 -3.960 -8.70 0.70 -0·9111 -1.1196 -1. 7995 -3.582 -8.87 

-1.25 -0.l294 -2.5471 -1.6569 -3.952 -8.71 0.75 -0.8983 -1.0743 -1. 7667 . -3.558 -8.85 
-1.20 -0.1795 -2.5393 -1.6663 -3.940 -8.72 0.80 -0.8842 -1.0297 -1. 7322 -3.532 -8.83 
-1.15 -0.2284 -2.5291 -1;6783 -3.926 -8.74 0.85 -0.8689 -0.9859 -1.6960 -3.502 -8.80 
-1.10 -0.2759 -2.5165 -1.6925 -3·910 -8.75 0.90 -0.8524 -0.9429 -1.6584 -3.469 -8.78 
-1.05 -0·3220 -2.5016 -1. 7085 -3.893 -8.77 0.95 -0.8348 -0.9007 -1.6194 -3.433 -8.74 

-1.00 -0.3667 -2.4843 -1. 7262 -3.875 -8·79 1.00 -0.8161 ';0.8594 -1.5791 -3.393 -8.70 
-0.95 -0.4100 -2.4649 -1.7451 -3. 856 -8.81 1.05 -0.7965 -0.8191 -1.5378 -3.351 -8.66 
-0·90 -0.4519 -2.4434 -1.7650 -3.838 -8.83 . 1.10 -0.7761 -0.7798 -1.4955 -3.306 -8.61 
-0.85 -0.4922 ..;2.4197 -1. 7857 -3.820 -8.84 1.15 -0.7549 -0.7415 -1.4525 -3.257 -8.56 
-0.80 -0.5310 -2.3942 -1.8068 -3. 803 -8.86 1.20 -0.7329 -0.7043 -1.4088 -3.206 -8.50 

-0.75 -0.5683 -2.3667 -1.8281 -3.786 -8.87 1.25 -0.7104 -0.6682 -1.3646 -3.152 -8.43 
-0.70 -0.6040 -2.3374 -1.8493 -3·771 -8.88 1.30 -0.6873 -0.6333 -1.3200 -3.095 -8.36 
-0.65 -0.6381 -2.3063 -1.8703 -3.757 -8.89 1.35 -0.6638 -0.5995 -1.2753 -3.036 -8.28 
-0.60 -0.6706 -2.2736 -1. 8907 -3.744 -8.90 1.40 -0.6400 -0.5669 -1.2304 -2.974 -8.19 
-0.55 -0.7014 -2.2393 -1. 9104 -3.732 -8.91 1.45 -0.6159 -0.5355 -1.1857 -2.910 -8.10 

-0.50 -0.7306 -2.2035 -1.9292 -3.723 -8.91 1.50 -0.5917 -0.5053 -1.14l2 -2.845 -8.01 
-0.45 -0.7581 -2.1662 -1. 9469 -3.714 -8.91 1.55 -0.5674 -0.4763 -1.0970 -2.777 -7.90 
-0.40 -0.7838 -2.l277 -1.9633 -3·707 -8.92 1.60 -0.5431 -0.4486 -1.0533 -2.708 -7.80 
-0.35 -0;8079 -2.0879 -1.9782 -3.702 -8.92 1.65 -0.5190 -0.4220 -1.0101 -2.638 -7.68 
-0.30 -0.8302 -2.0469 .-1. 9915 -3.697 -8.92 1. 70 -0.4950 -0.3967 -0.9677 -2.567 -7.56 

-0.25 -0.8508 -2.0049 -2.0031 -3.694 -8.92 1.75 ~0;4713 -0.3725 -0.9260 -2.495 -7.44 
-0.20 -0.8696 -1. 9619 -2.0l28 -3.692 -8.92 1.80 -0.4480 -0.3495 -0.8852 -2.423 -7·31 
-0.15 -0.8866 -1.9180 -2 .. 0204 -3.691 -8.92 1.85 -0.4250 -0·3277 -0.8454 -2.350 -7.18 
-0.10 -0.9018 ":1.8732 -2.0260 -3.690 -8.92 1.90 -0.4026 -0.3070 -0.8066 -2.277 .-7.04 
-0.05 -0·9153 -1.8278 -2.0294 -3.690 -8.92 1.95 -0.3807 -0.2874 -0.7689 -2.205 -6.90 

.0.00 -0.9270 -1. 7817 -2.0306 -3.690 -8.92 2.00 -0.3595 -0.2689 -0.7324 -2.133 -6.76 
0.05 -0.9369 -1.7351 ':2.0294 -3.689 -8.92 2.05 -0.3389 -0.2515 -0.6970 -2.061 -6.61 
0.10 -0.9450 -106881 -2.0259 ~3.689 -8.92 2.10 -0.3190 -0.2350 -0.6629 . -1.990 -6.47 
0.15 -0.9514 -1.6407 -2.0199 -3.688 .8.92 2.15 -0.2998 -0.2196 ':'0.6301 -1·921 -6.32 
0.20 -0.9560 -1.5930 -2.0116 -3.687 -8.92 2.20 -0.2815 -0.2050 -0.5985 -1.852 -6.17 

0.25 -0.9589 -1.5451 -2.0008 -3.685 -8.92 2.25 -0.2639 -0.1914 -0.5681 -1: 784 -6.02 
0·30 -0.9601 -1.4971 -1.9876 -3.681 -8.92 2.30 -0.2471 -0.1786 -0.5391 -1. 718 -5. 87 
0.35 -0·9595 -1.4491 -1.9720 -3.676 -8.92 2.35 -0.23l2 -0.1667 -0.5113 -1.654 -5·72 
0.40 -0,9573 . -1.4012 -1.9541 --3.669 -8 .. 92 . 2.40 -0.2162 -0.1555 -0.4847 -1.591 -5.57 
0.45 -0.9535 -1.3534 ';1.9338 -3.660 -8.91 2.45 -0.2019 -0,1450 -0.4594 -1.529 -5.42 

Table I (Cont. ) Table I (Cont. ) 
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TABLE I (Cont. ) 

s ¢ J A fi2 .13 

2.50 -0.1885 -0.1353 -0.4353 -1.469 -5.27 
2.55 -0.1759 -0.1262 -0.4123 -1.411 -5.12 
2.60 -0.1641 -0.1177 -0.3904 -1.355 -4.98 
2.65 -0.1531 -0.1098 -0.3696 -1.300 -4.84 
2.70 -0.1427 -0.1024 -0.3498 -1.248 -4.70 

* -1.196 -4.56 2.75 -0.1331 -0.0955 ..;0.3310 
2.80 -0.1242 -0.0890 -0.3132 -1.147 -4 .. 42 
2.85 -0.1158 -0.0831 -0.2963 -1.099 -4.28 
2·90 -0.1080 -0.0775 -0.2802 -1.053 -4.15 
2·95 -0.1007 -0.0722 -0.2649 -1.008 -4.02 

3·00 -0.0939 -0.0674 -0.2504 -0.965. -3.89 
3.05 -0.0876 -0.0628 -0.2367 -0.924 -3· 77 
3·10 -0.0817 -0.0586 -0.2237 -0.884 -3.64 
3·15 -0.0762 -0.0547 -0.2114 -0.845 -3.52 
3.20 -0.0711 -0.0510 -0.1997 -0.808 -3.40 

3.25 -0.0663 -0.0475 -0.1886 -0·712 -3·29 
3.30 -0.0618 -0.0443 . -0.1781 -0.738 -3.18 
3.35 -0.0577 -0.0414 -0.1682 ... 0.705 -3·07 
3.40 -0.0538 -0.0386 :"0.1588 -0.673 -2.96 
3.45 -0.0502 -0.0360. -0.1499 -0.643 -2.86 

3.50 -0.0468 -0.0336 -0.1415 . -0.614 -2·75 

* ¢(O j(O For S > 2.74 the functions and are exact 

exponentials with a range 0.7176 (equal to the Yukawa range 

0.62567 fro of the Seyler-Blanchard interaction,measured in 

units of the Thomas Fenni surface width of 0.872 fm-- see 

Appendix A). 
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FIGURE CAPrIONS 

Fig. 1. A schematic illustration of the density p ,energy density 

~ -and surface-energy density function ~ ~ a
BP for a 

leptodennous system. 

Fig. 2. .The dimensionless proximity force function ¢( 0 as·a 

function of the dimensionless separation s. The minimum 

and point of inflexion in ¢ are indicated. 

Fig. 3. The dimensionless. proximity potential function P( I:) as a 

function of the dimensionless separation S. The minimum 

(at S = -1.3734) and the point of inflexion in .p are 

indicated. .The potential betw:een two nuclei is a geometrical 

factor times j). It follows that the equilibrium point (in 

the separation degree of freedom) for the nuclear interaction 

between any two nuclei occurs at the universal interpenetra-

tion distance of 1.3734 b or about 1.37 fro. The dashed 

rectangle on the right indicates the region where a comparison 

of the rUnction Ji is made with experimental values in Fig. 9, 

using an expanded scale. 

Fig. 4. The universal nuclear function J is shown by the solid line 

and the cubic-exponential approximation by circles. The dots 

show the continuation of the cubiC beyond the dashed line 

(locating its junction with the exponential) to where it 

touches the s-axis at 2.54. The frozen Thomas-Fenni 

densities of the two semi-infinite distributions touch at 
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Fig. 5. A comparison of the exact interac.tion between two equal 

Krappe-Nix spheres (solid lines) and the approximation 

Fig. 6. 

. Fig. 7. 

resulting from applying the Proximity Theorem to properly 

chosen effective spheres (dashed lines and crosses). The dot-

-dashed line corresponds to a poor choice of the radii of the 

interacting objects. 

40 A comparison of the interaction potential between Ar and 

12lSb calculated using the energy-density formalism (line) 

and the Proximity Theorem (dots). In constructing the 

Proximity Potentials in Figs.· 6, 7 and 8 the radii were 

calculated according to R = ·(1.13 + O.OOC12A)Al / 3 fin. This 

is an older version of Eq. (29) -- in the cases illustrated 

the difference between the two .empirical expressions for R is 

negligible. 

6 · b4 Same as Fig. but for· Kr .and The energy-density 

calculations are described .in Ref. (3); a more detailed table 

on which the present curves are based were supplied courtesy 

of Professor D. Sperber. 

Fig. 8. The proximity potential Vp between 63CUand 197Au 

(circles) is compared with the calculations of Ref. (31); 

The dashed curve refers to a calculation with a favored set' 

of parameters, the solid curve to an earlier version. 

Fig. 9. A comparison of the extreme tail of theuniveraal function 

I (see Fig. 3) with experimental values deduced frOil! an 

analysis of elastic scattering .data (Ref. 34). The inset on 

the right, with a few experimental points, serves to recall 

the' original scale or the function j in Fig. 3. 
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The function ¢ 
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2.54 
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<P ~- 3.437 exp (-S/O.75) 
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-3 - SEPARATION S 

Fig. 4 
X B L 7 59 - 4073 
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.-________ LEGAL NOTICE---______ .... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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