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The nonparametric Fisher geometry and
the chi-square process density prior
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3Department of Mathematics, UC Irvine

November 14, 2017

Abstract

It is well known that the Fisher information induces a Riemannian geometry on parametric families of probability
density functions. Following recent work, we consider the nonparametric generalization of the Fisher geometry. The
resulting nonparametric Fisher geometry is shown to be equivalent to a familiar, albeit infinite-dimensional, geometric
object—the sphere. By shifting focus away from density functions and toward square-root density functions, one may
calculate theoretical quantities of interest with ease. More importantly, the sphere of square-root densities is much
more computationally tractable. This insight leads to a novel Bayesian nonparametric density estimation model.
We construct the χ2-process density prior by modeling the square-root density with a restricted Gaussian process
prior. Inference over square-root densities is fast, and the model retains the flexibility characteristic of Bayesian
nonparametric models. Finally, we formalize the relationship between spherical HMC in the infinite-dimensional
limit and standard Riemannian HMC.

1 Introduction
The Fisher information—and the geometry it induces—has been one of the unequivocal success stories
of geometry in statistics. Building on recent work, we extend the Fisher geometry beyond parametric
statistical models and show that the resulting geometry is equivalent to that of the infinite-dimensional
sphere. The purpose of this paper is to bring attention to this new perspective and to demonstrate its
theoretical and methodological consequences. As an application, we introduce the χ2-process density prior,
a flexible nonparametric model for Bayesian density estimation that admits fast computation while requiring
minimal assumptions.

The Fisher information matrix is canonical in statistics: it is rooted in information theory [1]; it appears
in Jeffrey’s prior of Bayesian analysis [2]; and it plays a central role in Bayesian and Frequentist asymptotics
[3]. Fisher advocated the importance of the information matrix in maximum likelihood estimation [4].
Fisher’s student, Rao, was the first to place the information matrix in a differential geometric context [5].
Since then, the differential geometric implications for parametric statistical models have been the subject of
extensive inquiry [6]. Recently, a number of researchers have drawn connections between the Fisher geometry
and the geometry of the infinite sphere [7]–[12]. Much of this work has been in the area of shape analysis
and has focused on using the Fisher geometry to measure distance between probability densities. Bayesian
uses for the nonparametric Fisher geometry were featured in [8], where Bayesian variational inference was
accomplished by minimizing the Fisher distance, and in [10], where the nonparametric Fisher geometry was
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used for sensitivity analysis of Bayesian models. Here, we focus on fully Bayesian nonparametric inference,
including the generation of posterior samples using Hamiltonian Monte Carlo (HMC). In contrast to recent
research, the geodesics associated with the nonparametric Fisher geometry are used to efficiently explore the
MCMC state space and not to measure or minimize the distance between density functions.

This paper, and other recent research in the Fisher geometry, builds on the sub-field of square-root density
estimation. [13] used a wavelet basis to estimate the square-root density by effectively fitting the curve and
then normalizing a sparse collection of wavelet coefficients, and [14] introduced a Bayesian follow-up to
this work. Recently, [15] used Riemannian geometry to fit a square-root density model, but did not make
any connections to the Fisher geometry. More recently [12] performed square-root density estimation for
object recognition using minimum description length as fitting criterion and used the nonparametric Fisher
geometry to obtain a closed-form expression of this criterion.

In this paper, we focus on the application of the nonparametric Fisher geometry to Bayesian inference
for probability densities. While the density function is the object of interest, we instead model the square-
root density function, that is, the function the square of which integrates to unity. We take a Bayesian
nonparametric approach and endow the square-root density with a Gaussian process (GP) prior [16], [17]
multiplied by a Dirac measure limiting its support to the infinite-dimensional sphere. In order to maintain
this restriction, it is useful to use the Karhunen-Loève (K-L) expansion [18] of the GP prior as opposed
to its kernel representation. Every GP with bounded second moment may be represented in terms of the
eigenfunction expansion of its covariance operator, but this (the K-L) expansion is only explicitly known for
a few classes of GPs [18]. Still, the K-L expansion has seen much recent success in the realm of Bayesian
inverse problems [19], [20] and has been featured in infinite-dimensional HMC and infinite manifold HMC
(∞-mHMC) [21]. The proposed application of the K-L expansion to model the square-root density is
unprecedented and offers a probabilistic interpretation to the use of basis expansions for density estimation.

Due to the orthonormality of the eigenfunction basis, the restriction to the (uncountably) infinite-
dimensional sphere translates to a restriction to the (countably) infinite-dimensional sphere for the eigen-
values of the GP. Then, following the precedent set in [21], the K-L expansion is truncated and the object
of inference is reduced to the posterior distribution of a finite number of K-L coefficients restricted to a
finite sphere. This computation is quick and easy using either spherical HMC [22]. Thanks to the basis
representation, computational complexity scales linearly with the number of data points, as opposed the
cubic rate of the GP density sampler [23]. Moreover, we show that—in the square-root density estimation
context—spherical HMC corresponds to Riemannian HMC in the infinite-dimensional limit.

Squaring the GP square-root density prior gives a χ2-process [cf. 24] density prior. We illustrate the
use of this prior for a number of problems. The model is flexible and its posterior draws provide plausible
realizations of the uncertainty inherent in the density estimation problem. Besides a recent application to
Bayesian quadrature [25], we are unaware of statistical applications for the χ2-process and are therefore
pleased to present its novel application to Bayesian density estimation.

The contributions of this paper are as follows:

• we review a nonparametric generalization of the Fisher geometry and show its relationship to the
infinite-dimensional (L2) sphere, the space of square-root density functions;

• we derive the geodesics on the L2 sphere and use these geodesics to formalize the relationship between
Riemannian HMC and infinite-dimensional spherical HMC;

• focusing on Bayesian nonparametric density estimation, we demonstrate the practical benefits to mod-
eling the square-root density function. The resulting χ2-process density prior performs well for a variety
of problems and is efficiently computed using spherical HMC.

The rest of the paper is organized in the following way. In Section 2 we review the parametric Fisher
geometry, present a nonparametric extension of the Fisher geometry, and derive key results by relating this
geometry to the infinite-dimensional sphere. Section 3 presents the χ2-process density prior along with some
necessary tools, such as the Karhunen-Loève expansion. In Section 4, we discuss efficient Bayesian inference
for the model and relate Riemannian HMC to infinite-dimensional spherical HMC. Empirical results are
presented in Section 5. Finally, in Section 6 we discuss model limitations and possible extensions.
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2 The nonparametric Fisher geometry

2.1 The parametric Fisher geometry
Given data x in domain D, it is often useful to specify a probabilistic model S = {pθ = p(x, θ) | θ =[
θ1, . . . , θp

]
}, where θ is a vector parameterizing the model and taking values in the continuous parameter

space Θ. Then at any point θ ∈ Θ, the Fisher information is the expectation of the negative log-likelihood
Hessian:

I(θ) = −Ex
(∂2`(θ)
∂θ∂θT

)
= −

∫

D

∂2`(θ)

∂θ∂θT
p(x|θ)µ(dx) , (1)

where `(θ) = log p(x|θ). In the language of optimization, the Fisher information encodes second-order
functional information about `(θ). This fact explains the use of the Fisher information as a gradient precon-
ditioning matrix in both (the Frequentist) Fisher scoring [26] and (the Bayesian) Riemannian HMC [27]. The
Fisher information may also be written as the expected outer product of the score vector ∂ log p(x|θ)/∂θ:

I(θ) = Ex
((∂`(θ)

∂θ

)(∂`(θ)
∂θ

)T)
=

∫

D

(∂`(θ)
∂θ

)(∂`(θ)
∂θ

)T
p(x|θ)µ(dx) . (2)

The Fisher information is symmetric positive definite at any point θ ∈ Θ. Taking note of this fact, Rao
[5] interpreted the Fisher information matrix as a Riemannian metric tensor, i.e. a smoothly varying,
symmetric positive definite matrix defined over the parameter space Θ. In this way, the Fisher information
matrix induces a Riemannian metric gθ(·, ·) over Θ satisfying

gθ(`i, `j) = Iij(θ) , and gθ(ψ, φ) =
∑

i,j

ψiφjIij(θ) (3)

for `i = ∂`(θ)/∂θi, ψ =
∑p
k=1 ψ

k`k and φ =
∑p
k=1 φ

k`k. Hence, the Fisher information may be thought of as
inducing a non-trival geometry on the otherwise Euclidean parameter space Θ. There has been much inquiry
into the nature of the parametric Fisher geometry. Efron used the Fisher geometry to prove the second-order
efficiency of the MLE for exponential family models [28], and Amari and Nagaoka [6] has constructed a body
of work around the Fisher geometry and its dual connections. More recently, Girolami and Calderhead
[27] successfully used the Fisher geometry to guide the Hamiltonian flow of their Riemannian HMC. In this
paper, we take another tact by generalizing the notion of the Fisher geometry to nonparametric models.

2.2 Beyond parametric models
We consider probability distributions over smooth manifolds D, of which D ∼= Rd is a special case. Having
fixed a background measure µ, let

P :=

{
p : D → R | p ≥ 0,

∫

D
p(x)µ(dx) = 1

}
(4)

be the space of probability density functions over D. That is, P is the set of Radon-Nikodym derivatives of
probability measures that are absolutely continuous with respect to µ. The following construction is agnostic
to whether µ is the Lebesgue measure over D = Rd or the Hausdorff measure over a general Riemannian
manifold D =M.

We deal with the space P and do not fix a parametric model. Instead we give P the structure of an
infinite dimensional (formal) Riemannian manifold. First, we think of it as a smooth manifold. Observe that
for a given p ∈ P, the tangent space can be identified with

TpP :=

{
φ ∈ C∞(D) |

∫

D
φ(x)µ(dx) = 0

}
. (5)
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This identification arises when one differentiates the unit measure condition on probability density functions.
That is, for a smooth curve pt : (−ε, ε)→ P satisfying dpt/dt|t=0 = φ, we have

0 =
d

dt

∫

D
pt(x)µ(dx)

∣∣
t=0

=

∫

D

dpt
dt

(x)µ(dx) =

∫

D
φ(x)µ(dx) . (6)

Now that we have a smooth manifold and an associated tangent space, we may define a Riemannian metric,
i.e. a smoothly varying, symmetric, non-degenerate, bilinear function g(·, ·)p : TpP × TpP → {0} ∪ R+.
Riemannian metrics are useful for developing a notion of distance on a manifold that does not depend on
any embedding in Euclidean space. One may define uncountably many metrics on a general manifold, but
we are interested in a generalization of the parametric Fisher information metric.

Definition 1. ([7], [11]) Given D, the nonparametric Fisher information metric on P(D)1 is

gF (φ, ψ)p :=

∫

D

φ(x)ψ(x)

p(x)
µ(dx). (7)

This metric is a consistent generalization of the parametric Fisher information metric. To see this,
consider the parametric model p(x|θ), with θ as a vector. Then each element θi of θ defines a curve Θi → P,
where Θi is a slice of Θ, and

Iij(θ) =

∫

D
`i`j p(x|θ)µ(dx) =

∫

D

pi(x|θ)
p(x|θ)

pj(x|θ)
p(x|θ) p(x|θ)µ(dx) =

∫

D

pi(x|θ)pj(x|θ)
p(x|θ) µ(dx) . (8)

Here, we have adopted the shorthand pi(x|θ) = ∂p(x|θ)/∂θi. Expressed in a more invariant fashion, in-
terpreting a model as a map θ : Θ → P, one has that the parametric Fisher metric is induced by the
nonparameteric Fisher metric, i.e.

θ∗gF = gθ. (9)

In what follows we make a nontrivial change of variables suggested by this geometric picture which
provides various theoretical and computational simplifications. In particular, for various reasons the manifold
P equipped with Riemannian metric (7) is not particularly easy to deal with. In order to calculate geometric
quantities of interest (e.g. geodesics, distances), we shift focus to the L2 unit sphere, i.e. the space of
square-root density functions

Q :=

{
q : D → R |

∫

D
q(x)2 µ(dx) = 1

}
. (10)

This space, which is identified with P by a simple transformation indicated below, provides a much simpler
backdrop for calculations. This infinite-dimensional L2 sphere is a surprisingly familiar object. Its tangent
spaces and geodesics are formally the exact same as those of the finite dimensional sphere Sn−1, the only
difference being the replacement of the Euclidean inner product with the integral inner product of L2:

〈f, h〉L2 =

∫

D
f(x)h(x)µ(dx) . (11)

Remarkably, this simpler space is isometric to the space of density functions equipped with the nonparame-
teric Fisher metric defined above.

Lemma 1. The map S : (P, gF )→ (Q, 〈·, ·〉L2) defined by S(p) := 2
√
p is a Riemannian isometry.

1From the definition, the nonparametric Fisher metric can take on infinite values. It is possible to avoid this by limiting the
space of interest to strictly-positive density functions or by bounding the metric at an arbitrarily large value. It is also possible
to modify the definition of the tangent space to enforce tangent functions to equal 0 when their respective densities do.
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Proof. We must show that 〈S∗ψ, S∗φ〉L2 = gF (ψ, φ)p, where S∗ is the pushforward (or Jacobian) of S:

S∗ =
dS

dp
(p) =

d(2
√
p)

dp
=

1√
p
. (12)

By direct computation,

〈S∗ψ, S∗φ〉L2 =

∫

D
(S∗ψ)(x) (S∗φ)(x)µ(dx) =

∫

D

ψ(x)√
p(x)

φ(x)√
p(x)

µ(dx) (13)

=

∫

D

ψ(x)φ(x)

p(x)
µ(dx) = gF (ψ, φ)p .

In the remainder of this section we present a few basic results regarding the nonparametric Fisher geom-
etry, working with the L2 sphere model and transferring results to the traditional Fisher geometry. We note
that investigations of the nonparameteric Fisher information have independently appeared in [7]–[12]. We
reproduce some fundamental aspects of this geometry relevant to Theorem 1 (Section 4.1) for convenience.
To begin we observe how to describe the tangent space to Q.

Lemma 2. Given q ∈ Q, one has that

TqQ :=

{
f : D → R |

∫

D
q(x)f(x)µ(dx) = 0

}
. (14)

Proof. If qt : (−ε, ε)→ Q denotes a path in Q satisfying dqt/dt|t=0 = f , then the unit integration constraint
on p = q2 means

0 =
d

dt

∫

D
qt(x)2µ(dx)

∣∣∣
t=0

= 2

∫

D
q0(x)

dq

dt
(x)
∣∣∣
t=0

µ(dx) = 2

∫

D
q0(x)f(x)µ(dx) . (15)

We next solve one version of the geodesic problem on P. In particular we consider an initial point and
velocity and solve for continuing the geodesic in that direction. We will exploit the isometry between P and
Q and solve first in Q.

Lemma 3. Given q0 ∈ Q and f ∈ TqQ a unit vector, the geodesic with initial condition q0 and velocity f
exists on (−∞,∞) and takes the form

qt = q0 cos t+ f sin t. (16)

Proof. First we derive the geodesic equation in Q. One conceptual method for obtaining this, exploiting the
spherical structure of Q, is to first observe that if qt is a path in Q and at ∈ Tq(t)Q is a tangent vector along
the curve, the Fisher geometry induces a covariant derivative along the path via

D

∂t
a = ȧ− q

∫

D
ȧq, (17)

which is manifestly the time derivative of the family at projected to the tangent space at qt, as expected.
For a curve qt to be a geodesic, it should have zero acceleration, i.e.

0 =
D

∂t
q̇ = q̈ − q

∫

D
q̈q. (18)
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However, using that
∫
D qt(x)2 µ(dx) = 1 for all q and differentiating twice in t, one sees that this is equivalent

to

q̈ + q

∫

D
q̇2 = 0, (19)

which we now take as the geodesic equation in Q. Another method for deriving this equation is to solve for
which curves are critical points for the length functional with fixed endpoints.

Now, to solve this equation in our setting, first let us observe that since f ∈ Tq0Q, by Lemma 2 we have
∫

D
q0f = 0. (20)

Using this and the fact that f is a unit vector we compute

d

dt

∫

D
q̇2 = 2

∫

D
q̈q̇ (21)

= 2

∫

D
[−q0 cos t− f sin t] [−q0 sin t+ f cos t]

= 2

∫

D

[
q20 − f2

]
cos t sin t

= 0.

Thus
∫
M
q̇2 =

∫
D f

2 = 1. We then simply observe the ODE

q̈ = −q, (22)

and it is clear that q satisfies (19), and so the lemma follows.

We now translates this result into a corresponding one for geodesics in P.

Lemma 4. Given p0 ∈ P and f ∈ TpP a unit vector, the geodesic with initial condition p0 and initial
velocity f exists on (−∞,∞), and takes the form

pt =

(√
p0 cos t+

f

2
√
p0

sin t

)2

. (23)

Proof. We use Lemma 3 and reinterpret the geodesic equation in terms of square-roots. In this formalism
the initial condition is q0 =

√
p0 and the initial velocity is

d

dt
q =

d

dt

√
p =

f

2
√
p0

=
f

2q0
.

These basic lemmas show the advantage of working in Q, yielding a conceptual derivation of the geodesic
equation. These lemmas will be used to prove Theorem 1 in Section 4.1. As we will see below, not only is
the L2 sphere Q more theoretically tractable, it also turns out to be more computationally tractable. In the
following sections, we take advantage of these two kinds of tractability to construct a Bayesian nonparametric
model on Q and use it for an application in density estimation.
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3 The chi-square process density prior
In this section, we transition from the theoretical to the applied aspects of the nonparametric Fisher geometry.
We find that the square-root representation q =

√
p is of use practically as well as theoretically. Here we

focus on its natural application for density estimation.
A good density estimate places more mass where there is more data but takes the finite nature—and the

uncertainty that comes with it—of that data into account. Bayesian non-parametric density estimation effects
this balance: non-parametric models give flexibility, while the Bayesian prior contributes regularization.
These methods model the data generating distribution as a random function, itself drawn from a specified
stochastic process. Dirichlet processes mixture models (DPMMs) convolve the Dirichlet process with a
smooth distribution, in effect constructing an infinite mixture model [29]. More recently, [23] proposed a
new method, called Gaussian Process Density Sampler (GPDS), offering a similar amount of flexibility as the
DPMM but having an arguably simpler framework. Nonetheless, inference for DPMMs requires an advanced
Gibbs sampling routine [30], and inference for the GPDS requires exchange sampling to handle the unit-
integral restriction on the GP model [23]. In contrast, the model we propose here can be computed using
generic spherical HMC [22] or geodesic Monte Carlo [31] algorithms. Further, we take a different approach
from other Bayesian nonparametric density models by modeling the square-root density function instead. In
the previous section, theoretical results for the nonparametric Fisher geometry were easier to obtain by first
obtaining the corresponding results on the L2 sphere and then translating the results to the Fisher geometry.
This theme continues in application, where we show that Bayesian density estimation can be much easier
when one shifts focus to the sphere of square-root densities. We place a GP prior on the square-root of the
probability density function. This amounts to a χ2-process prior on the density function itself.

Suppose we want to attribute a smooth density function to observed data x1, . . . , xn on finite domain
D ⊂ Rd and recall the definitions (from Section 2) of the space of density functions and the space of
square-root density functions:

P :=

{
p : D → R | p ≥ 0,

∫

D
p(x)µ(dx) = 1

}
and Q :=

{
q : D → R |

∫

D
q(x)2 µ(dx) = 1

}
, (24)

respectively. We want to find a suitable element p(·) ∈ P(D), the space of functions over domain D. Although
this space contains the functions of interest, we opt to deal with the space Q of square-root densities instead.
As stated in the prior section, Q is the unit sphere in the infinite-dimensional Hilbert space L2(D). We model
the square-root density with a GP prior (or a Gaussian measure in L2) multiplied by the Dirac measure
restricting the function to the unit sphere:

q ∼ GP × δq(Q) . (25)

It turns out that it is much easier to enforce the constraint given by Dirac measure δq(Q) than it is to enforce
the corresponding constraint δp(P) (as is done for the GPDS). To do so, however, we do not represent the GP
prior using its kernel representation as is commonly done in the literature [32]. We opt instead to represent
q in terms of the eigenvalues and orthonormal eigenfunctions of its covariance operator.

3.1 The Karhunen-Loève representation
In order to tractably enforce the constraint δq(Q) in (25), it is helpful to write q as a function (or linear sum
of functions) for which we know the values of both

∫

D
q(x)µ(dx) and

∫

D
q(x)2µ(dx) . (26)

This condition is satisfied by representing random function q as a linear combination of orthonormal basis
functions. The K-L representation [18] provides a canonical way of doing so and thus links our fully proba-
bilistic approach to other square-root density methods that rely on a basis [13]–[15]. Let u(·) ∼ GP(0,K(·))
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be a mean zero Gaussian process over domain D with covariance operator K(·). Then u admits a K-L
expansion of the form

u(·) =

∞∑

i=1

ui φi(·), ui
ind∼ N(0, λ2i ), (27)

where the λis and the φis are respectively the eigenvalues and eigenfunctions of operator K. That is to say,
they satisfy

K(φi)(x
′) =

∫
k(x, x′)φi(x)µ(dx) = λiφi(x

′) (28)

where k(·, ·) is the usual covariance kernel. The eigenvalues are decreasing and their sum-of-squares is finite:
λi+1 < λi,

∑∞
i=1 λ

2
i <∞. Finally, the eigenfunctions form an orthonormal basis of L2:

∫
φi(x)φj(x)µ(dx) = 0, and

∫
φ2i (x)µ(dx) = 1 . (29)

In this paper, we model q as belonging to the Matérn class of GPs. For the Matérn class, a closed-form
orthonormal basis may be obtained from the eigenfunctions of the Laplacian [21], [33]. The covariance
operator is given by

K = σ2(α−∆)−s , (30)

where α and σ2 are positively constrained scale parameters, s is a smoothness parameter, and ∆ is the
Laplacian

∑d
i=1 ∂

2
i . The eigenvalues and eigenfunctions corresponding to this covariance operator depend

on the area and dimensionality of domain D and are presented in Section 5 below. It should be noted that
the decision to use the Matérn class is entirely dictated by ease of computation and does not preclude other
classes of GP from being used in future applications.

3.2 The model
The proposed density model is Bayesian nonparametric, i.e. we place a prior distribution on a set of
functions and eschew a restrictive parametric form. Given data x = (x1, · · · , xN ) ∈ D, we obtain a posterior
distribution, which is itself a distribution over the same set of functions and is absolutely continuous with
respect to the specified prior distribution. As stated above, the prior π(q) on square-root density q ∈ Q is a
GP multiplied by the Dirac measure on the L2 sphere. Following (27), the prior for q and the likelihood of
the data x given q are given by

π(q) ∝ δq(Q)

∞∏

i=1

exp
(
− q2i /(2λ2i )

)
, and π(x|q) =

N∏

n=1

q2(xn) , (31)

since q is the square-root density. This prior can also be interpreted as arising from an infinite-dimensional
Bingham distribution on the coefficients [34]. The posterior distribution on q is then given by

π(q|x) =
π(x|q)π(q)∫
Q π(x|q)π(q) dq

∝ π(q)
N∏

n=1

q2(xn) . (32)
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Suppressing the Dirac measure, the log-posterior given data x1:N may be written in terms of the K-L
expansion (27) of q:

log π(q|x) ∝
N∑

n=1

log q(xn)2 − 1

2

∞∑

i=1

q2i /λ
2
i (33)

= 2
N∑

n=1

log |q(xn)| − 1

2

∞∑

i=1

q2i /λ
2
i

= 2

N∑

n=1

log |
∞∑

i=1

qiφi(xn)| − 1

2

∞∑

i=1

q2i /λ
2
i .

By modelling the square-root density q with a GP prior, we model the density function p with a χ2-process
prior. Modeling the density p as a χ2-process, we automatically enforce the non-negativity requirement for
probability density functions. On the other hand, χ2-processes are not restricted to have unit integrals. We
therefore rely on a geometric HMC inference scheme to restrict proposals to the L2 sphere. This is discussed
in the following section.

4 Inference
Inference for the χ2-process density model is relatively straightforward and amenable to advanced HMC
methods. In Section 4.1, we show that, in this context, infinite-dimensional spherical HMC is equivalent
to Riemannian HMC using the parametric Fisher information. In practice, we follow Beskos, Girolami,
Lan, et al. [21] and truncate2 the K-L expansion of the GP square-root density prior for an integer I using
truncation operator TI :

TI
(
q(x)

)
= TI

( ∞∑

i=0

qi φi(x)
)

=
I∑

i=0

qi φi(x) . (34)

Due to the orthonormality of the basis φi, the unit integral constraint on TI(q)
2 translates directly to a

spherical constraint on the random coefficients qI = (q0, · · · , qI). That is,

1 =

∫

D
TI
(
q(x)

)2
µ(dx) =

∫

D

( I∑

i=0

qi φi(x)
)2
µ(dx) =

I∑

i=0

q2i

∫
φi(x)2µ(dx) =

I∑

i=0

q2i (35)

where the penultimate equality is given by the orthogonality of the basis elements and the last equality is
on account of the basis elements being normal. Thus, inference can be performed over the coefficients qI
by using spherical HMC [22] on the sphere SI . Both of these methods augment the state space with an
auxiliary velocity variable v (satisfying vT qI = 0) and simulate from a Hamiltonian system by splitting [36]
the Hamiltonian of interest (H) into two Hamiltonians (H1 +H2):

H(qI , v) = − log π(qI) +
1

2
G(qI) +

1

2
vT v (36)

H1(qI , v) = − log π(qI) +
1

2
G(qI)

H2(qI , v) =
1

2
vT v .

2We note that one may conceivably place a prior on the truncation index I and thus avoid having to choose the number of
eigenfunctions. This would provide for an interesting extension of the model presented here, but would necessitate new MCMC
techniques that enable the change of model dimensionality (e.g. reversible jump MCMC [35]) while maintaining manifold
constraints. Hence, we leave this for future work.
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Here π is the posterior distribution and G is the canonical Riemann tensor for the sphere [22]. Simulating
from H1 involves a small perturbation of the velocity by the gradient of H1 with respect to qI ; simulating
H2 involves moving along the sphere’s geodesics in the direction v. This last fact is relevant to the discussion
of the following section.

Spherical HMC requires the gradient of the log-posterior with respect to the coefficients. Elementwise,
this is given by

∂

∂qj
log π(qI |x) = 2

N∑

n=1

∂

∂qi
log |

I∑

i=1

qiφi(xn)| − 1

2

∂

∂qj

I∑

i=1

q2i /λ
2
i (37)

= 2
N∑

n=1

φj(xn)
∑I
i=1 qi φi(xn)

− qj/λ2j .

The Markov chain may be initialized using Newton’s method on the sphere (see Appendix A).
Since the values of the eigenfunctions at the observations may be precomputed, the main computational

burden is in the summations involved in the evaluation of the log-posterior and its gradient. Since in practice
I � N , these computations are O(N), where N is the number of data points. This is orders faster than the
O(N3) computations required to perform inference for the GPDS [23].

4.1 Inference in the limit
We note that both spherical HMC uses geodesic flows on the finite dimensional sphere to propose new Markov
chain states. Since these flows are formally equivalent to the geodesic flows on the L2 sphere (see Section
2) and since the natural geometry on L2 is equivalent to the nonparametric Fisher geometry, it is worth
asking whether these inference schemes are adapted to the nonparametric Fisher geometry in a similar way
to Riemannian HMC’s adaptation to the parametric Fisher geometry3.

Indeed this is the case, and it is a simple consequence of Lemma 1 and the isometric relationship between
square-integrable functions and square-summable sequences induced by any orthonormal basis {φi}∞i=1 with
completion L2. Denote the space of square-summable sequences and its sphere

`2 =

{
q = {qi}∞i=1

∣∣ 〈q, q〉`2 =
∞∑

i=1

q2i <∞
}
, S∞ =

{
q ∈ `2

∣∣ 〈q, q〉`2 =
∞∑

i=1

q2i = 1

}
. (38)

Then it follows from the orthonormality of {φi}∞i=1 that (L2, 〈·, ·〉L2) ∼= (`2, 〈·, ·〉`2), since for any arbitrary
function q = q(·) ∈ L2,

〈q, q〉L2 =

∫
q(x)2µ(dx) =

∫ ( ∞∑

i=1

qiφi(x)
)2
µ(dx) =

∞∑

i=1

q2i = 〈q, q〉`2 . (39)

It is an immediate result that the respective spheres are also isometric, i.e. (Q, 〈·, ·〉L2) ∼= (S∞, 〈·, ·〉`2), and
hence, by Lemma 1, the following result holds.

Lemma 5. Given an orthonormal basis for L2, the space of density functions equipped with the Fisher metric
is isometric to the sphere S∞ with its natural Euclidean metric, i.e. (P, gF (·, ·)) ∼= (S∞, 〈·, ·〉`2).

Our goal is to show that spherical HMC is adapted to the nonparametric Fisher geometry in the infinite-
dimensional limit. Given that the geodesic paths followed by spherical HMC converge to geodesics on S∞,
Lemma 5 will imply that these paths correspond to geodesics on (P, gF (·, ·)).

Lemma 6. Geodesic flows on the finite sphere SI−1 converge to geodesic flows on the infinite-dimensional
sphere S∞ as I →∞.

3By Riemannian HMC, we mean Riemannian HMC where the Riemannian metric is the finite Fisher metric, as this is the
most common usage. We note that it is theoretically possible to use other metrics [31], [37].
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Proof. For any point q ∈ S∞, let qI ∈ SI−1 be vector obtained by applying the truncation operator to q and
then normalizing:

qI =
TI(q)

‖TI(q)‖
=

(q1, . . . , qI)
T

√
(q1, . . . , qI)(q1, . . . , qI)T

. (40)

Similarly, for any vector in the tangent space to S∞

v ∈ TqS∞ =

{
v ∈ `2

∣∣ 〈v, q〉`2 =

∞∑

i=1

qivi = 0

}
(41)

let vI ∈ TqISI−1 be the I-dimensional vector obtained by truncating v, projecting onto the tangent space
TqISI−1, and scaling such that ‖v‖`2 = ‖vI‖ (where ‖ · ‖ is the Euclidean norm):

ṽI = TI(v)− qI〈qI , TI(v)〉`2 , and vI = ṽI
‖v‖`2
‖ṽI‖ . (42)

It follows from the definition of truncation (Equation (34)) that qI → q and vI → v with respect to 〈·, ·〉`2
as I →∞ .

Next, let t 7→ (q(t), v(t)) be the geodesic flow on S∞ with initial position q0 = q(0) and initial velocity
v0 = v(0) ∈ Tq0S∞. Let t 7→ (qI(t), vI(t)) be the analogous flow on the tangent bundle TSI−1, where qI0 and
vI0 are obtained from q0 and v0 following Formulas (41) and (42), respectively. Denote the distance between
flows at time t

f(t) = ‖qt − qIt ‖2`2 + ‖q̇t − q̇It ‖2`2 . (43)

Our goal is to show that

lim
I→∞

∫ T

0

f(t) dt = 0 , (44)

for any finite T , and hence that geodesic flows on the finite sphere converge to those on S∞. Begin by
bounding ḟ(t) by a constant times f(t):

d

dt
f(t) = 2

(
〈qt − qIt , q̇t − q̇It 〉`2 + 〈q̇t − q̇It , q̈t − q̈It 〉`2

)
(45)

= 2
(
〈qt − qIt , q̇t − q̇It 〉`2 + 〈q̇t − q̇It ,−qt‖q̇t‖2`2 + qIt ‖q̇It ‖2〉`2

)
.

Here, the second line follows from the geodesic formula. Noting that ‖q̇t‖2`2 = ‖q̇0‖2`2 , ‖q̇It ‖2 = ‖q̇I0‖2, and
that (by Equation (42)) ‖q̇I0‖2 = ‖q̇0‖2`2 , we get

d

dt
f(t) = 2

(
〈qt − qIt , q̇t − q̇It 〉`2 − 〈q̇t − q̇It , qt − qIt 〉`2‖q̇0‖2`2

)
(46)

= 2
(
1− ‖q̇0‖2`2

)
〈qt − qIt , q̇t − q̇It 〉`2 .

We obtain our bounds by noting that

0 ≤ ‖qt − qIt ‖2`2 − 2〈qt − qIt , q̇t − q̇It 〉`2 + ‖q̇t − q̇It ‖2`2 (47)

= f(t)− 2〈qt − qIt , q̇t − q̇It 〉`2 (48)

= f(t)− ḟ(t)

1− ‖q̇0‖2`2
,
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and hence that

d

dt
f(t) ≤

(
1− ‖q̇0‖2`2

)
f(t) . (49)

Integrating gives

f(t) ≤ f(0) et (1−‖q̇0‖
2
`2

) . (50)

Since, by definition, f(0)→ 0 as I →∞, we have

∫ T

0

f(t) dt ≤ f(0)

∫ T

0

et (1−‖q̇0‖
2
`2

) dt (51)

= c f(0) −→ 0 .

Thus we have proven the convergence of geodesic flows on the finite sphere to those on S∞.

We are now ready to connect Riemannian HMC and spherical HMC in the infinite-dimensional limit
(where the latter is applied to the square-root density estimation problem). To make this relationship as
clear as possible, we introduce a different (but equivalent) definition of a geodesic based on the calculus of
variations (in contrast to the null acceleration definition from Lemma 3). Assume that two points A and B
are close together in a small open set of Riemannian manifold (M, g(·, ·)). Let Γ : [a, b]× (−ε, ε)→M be a
family of curves γs : [a, b]→M satisfying γs(a) = A and γs(b) = B for all s ∈ (−ε, ε). Then γ is a geodesic
if it minimizes the energy functional

E(γ) =
1

2

∫ b

a

gγ(t)
(
γ̇(t), γ̇(t)

)
dt , and thus satisfies

d

ds
E(γs) = 0 . (52)

For a parametric family of distributions Pθ equipped with the Fisher metric, the parametric Fisher energy
takes the form

E(θ) =
1

2

∫ b

a

gθ(t)
(
θ̇(t), θ̇(t)

)
F
dt =

1

2

∫ b

a

∇θ`(θ(t))T I(θ(t))−1∇θ`(θ(t)) dt , (53)

where I(θ) is the Fisher information, and `(θ) = log p(θ). On the other hand by Lemmas 1 and 5, the
nonparametric Fisher energy for a family of curves in P takes the form

E(p) =
1

2

∫ b

a

gp(t)
(
ṗ(t), ṗ(t)

)
F
dt =

1

2

∫ b

a

〈q̇(t), q̇(t)〉L2 dt =
1

2

∫ b

a

〈q̇(t), q̇(t)〉`2 dt (54)

where q =
√
p =

∑∞
i=1 qiφi(·).

Theorem 1. Let q(·) =
√
p(·) ∈ Q be a square-root density function with expansion satisfying

q(·) =
∞∑

i=1

qiφi(·) , and 1 =

∫

D
q(x)2 µ(dx) =

∞∑

i=1

q2i , (55)

with random, real-valued coefficients qi, i = 1, . . . ,∞. Then, in the infinite-dimensional limit, spherical HMC
follows the nonparametric Fisher metric’s geodesic flows in the same way that Riemannian HMC follows the
Fisher metric’s geodesic flows over the parametric family of distributions Pθ.

Proof. Each of these algorithms relies on a split Hamiltonian [36] integration scheme (e.g. Equation (36)),
wherein the Hamiltonian of interest (H) is split into two Hamiltonians (H1 +H2) that are then iteratively
simulated. The formal Hamiltonian for spherical HMC on limI→∞SI−1 = S∞ has the same form as in
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Equation (36), but in this case the velocity v is restricted to the tangent space to S∞ at q, TqS∞. The
Hamiltonian corresponding to Riemannian HMC is also split in the following way [31]:

H(θ, ξ) = − log p(θ) +
1

2
log I(θ) +

1

2
ξTI−1(θ)ξ (56)

H1(θ, ξ) = − log p(θ) +
1

2
log I(θ)

H2(θ, ξ) =
1

2
ξTI−1(θ)ξ ,

where I(θ) is the Fisher information, and ξ is the auxiliary momentum variable.
Switching out ξ(t) for ∇θ`(θ(t)) in Equation (53), it follows that the solutions to the Hamilton’s equations

for Hamiltonian H2(θ, ξ) are the geodesics on the Riemannian manifold (Pθ, gF ). This is because the
Hamiltonian flow θ(t) preserves H2(θ, ξ):

d

ds
E(θ) =

d

ds

1

2

∫ b

a

ξ(t)TI(θ(t))−1ξ(t) =
d

ds

b− a
2

ξ(a)TI(θ(a))−1ξ(a) = 0 . (57)

Thus, Riemannian HMC steps around the state space by minimizing the parametric Fisher energy.
In the same way, exchanging v(t) for q̇(t) of Equation (54), it follows that the solutions to the Hamilton’s

equations for Hamiltonian H2(q, v) are geodesics on the Riemannian manifold (S∞, 〈·, ·〉`2) and, by Lemma
5, correspond to geodesics on (P, gF (·, ·)). Hence, both formal algorithms move around the state space by
iteratively perturbing the velocity (H1) and travelling the geodesics corresponding to the parametric and
nonparametric Fisher geometries, respectively.

Finally, Lemma 6 guarantees that the finite-dimensional spherical geodesics (used in practice) pass in the
limit to the geodesics of the sphere S∞ and hence of (P, gF (·, ·)).

5 Empirical results
Here we apply the χ2-process density model to both simulated and real-world data. As stated in Section
3.1, the eigen-pairs corresponding to the GP with covariance operator (30) depend on both the dimension
and the area of D. When D is the one-dimensional unit interval, the eigen-pairs are given by

λ2i = σ2(α+ π2i2)−s , and φi(x) =
√

2 cos(π i x) , (58)

for i ≥ 0. For D the two-dimensional unit square D = [0, 1]× [0, 1], the eigen-pairs are given by

λ2i = σ2
(
α+ π2(i21 + i22)

)−s
, and φi(x) = 2 cos(π i1 x1) cos(π i2 x2) , (59)

for i1, i2 ≥ 0. See Beskos, Girolami, Lan, et al. [21] for a similar approach. In the following experiments, all
Markov chains are initialized using Newton’s method on the sphere (see Appendix A).

5.1 Simulated experiments
Figure 1 depicts 1,000 data points (red hash marks) drawn from four different beta distributions (density
red) along with 100 MCMC draws from the posterior distribution based on the χ2-process density model.
From left to right and top to bottom, the beta distribution parameters are (1, 1), (5, 2), (.5, .5), and (2, 2).
Note that while the individual posterior draws adhere closely to the sampled data, the variability in the
posterior draws accounts for uncertainty and gives good coverage to the true density. The hyperparameter
settings for the top-left plot is given by (σ, α, s) = (.5, 1, 1), and (σ, α, s) = (.5, .5, .8) is the hyperparameter
setting for the rest. I = 30 for each example. 10,000 thinned MCMC iterations were used to make each
figure.

Figure 2 depicts 1,000 data points (red) drawn from four different distributions on the unit square along
with the contours of the pointwise median of 1,000 posterior draws from the χ2-process density model. The
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Figure 1: Each plot shows 100 posterior draws from the χ2-process density sampler. 1,000 data samples
were drawn from a different beta distribution for each plot. The generating pdf is given in red, and the red
hash marks describe the actual data produced.

data in the first three plots was generated using truncated Gaussians and mixtures of truncated Gaussians.
The data for the last plot was generated by Gaussian noise added to the uniform distribution on the circle.
The model adapts easily to multimodal and patterned data samples. For all examples, the hyperparameters
were fixed to (σ, α, s) = (.9, .1, 1.1). 0 ≤ i1, i2 ≤ 5 for each example.

5.2 Experiments with real-world data
Figure 3 features the British coal mine disaster data set, in which the dates of 191 disasters are recorded
between the years of 1851 and 1967. In both plots, the dates are given in red. Two comparisons are implied by
the figure. The first is a comparison between the variability of 100 posterior draws based on 191 data points
(left plot) with the variability in 100 posterior draws based on 1,000 data points, as in Figure 1. One sees
much less variability in the latter. The other comparison is between the close fit exhibited in the posterior
draws of the left plot compared to the smooth fit shown by the pointwise quantiles (median, black; .25, blue;
.75, blue). As we can see, our method is valid for modeling densities without periodic tendencies, despite the
specific form of the basis. Both plots are based on 10,000 thinned MCMC iterations, with hyperparameter
settings (σ, α, s) = (.5, .5, .8) with I = 30.

Figure 4 features Hutchings’ bramble canes data (red) [38], [39], consisting of the locations of 823 bramble
canes in a square plot. The left figure contains a heatmap of the pointwise posterior mean of the χ2-process
density model, where black pertains to low density and white pertains to high density. Finally, a single
contour (blue) at density level 0.3 divides the majority of points from areas of extremely low density. The
hyperparameters were set to (σ, α, s) = (2, .01, 1.1) with 0 ≤ i1, i2 ≤ 5, and the posterior sample featured
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Figure 2: The contours (black) of the posterior median from 1,000 draws of the χ2-process density sampler.
Each posterior is conditioned on 1,000 data points (red).

10,000 MCMC iterations. The right figure features 823 draws from the posterior predictive distribution of the
χ2 process density model. Each draw from the posterior predictive distribution was obtained by randomly
selecting one posterior draw from the χ2 process density model. Since this single posterior sample is itself a
density function, one can then sample from its corresponding distribution using a rejection sampling scheme.
There is a remarkable similarity between the posterior predictive sample (right, black) and the bramble canes
data (left, red): despite a few differences, both low and high density regions are faithfully recovered.

6 Discussion
The Fisher geometry is central to many areas of classical and parametric statistics. On the other hand,
nonparametric methods—both Frequentist and Bayesian—is a vital area of statistical research with many
realizations and applications. We presented a nonparametric extension to the parametric Fisher geometry and
showed that this generalization is consistent with its parametric predecessor. To do so, the set of probability
density functions over a given domain was defined to be an infinite-dimensional smooth manifold where each
point is itself a density function. This manifold becomes a Riemannian manifold when equipped with the
nonparametric Fisher information metric and is then identified with the infinite-dimensional sphere, a well
understood geometric object for which results are readily obtainable. Indeed, the benefits of shifting focus
to the infinite-dimensional sphere do not stop at theory. Due to the relationship between the nonparametric
Fisher geometry and the infinite sphere, it proves convenient to define nonparametric models directly on this
sphere.

We demonstrated one application of this approach in the form of Bayesian nonparametric density es-
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Figure 3: Coal mining disasters data: the left figure shows 100 posterior draws from the χ2-process density
model (gray) over 191 vertical lines (red) marking the precise date of each disaster. The right figure shows
the pointwise median (black) for the same sample as well as pointwise quantile bands (blue). Note how the
undulations exhibited by individual draws does not appear in the quantile bands.

timation. The resulting χ2-process density model is flexible and computationally efficient: it is amenable
to HMC and, in comparison to the cubic scaling of GP competitors, scales linearly in the number of data
points. Of course, there is nothing a priori restricting the prior to be Gaussian [40], and an important next
step is placing a prior on the number of basis functions to use, as is done in [20].

Moreover, spherical HMC uses geodesics to propose new states on the sphere, and these geodesic flows
are formally equivalent to those derived on the L2 sphere. Thus, the empirical effectiveness of spherical
HMC in this context suggests that the proposals somehow adapt to the nonparametric Fisher geometry, and
we showed that these proposals minimize the nonparametric Fisher energy in the same way that Riemanian
HMC minimizes the parametric Fisher energy. We hope the χ2-process density model will serve to motivate
extensions of HMC to Hilbert manifolds, of which the L2 sphere is one example. It is now known how to
perform HMC on certain finite dimensional manifolds [22], [31], [37] as well as Hilbert spaces [41]. We hope
that the model presented here will motivate the extension of HMC technology to a large class of Hilbert
manifolds, including the infinite-dimensional sphere.

The theoretical and methodological results presented in this paper are merely first steps in exploiting the
simple geometry implied by the nonparametric Fisher metric. Whereas density estimation is perhaps the
most obvious application, it is also one of the fundamental problems in statistics and thus has connections
to many other areas of statistics and machine learning. On the other hand, methodologies such as functional
regression and classification [42] can benefit from the use of random functions defined on the sphere, which
objects we constructed and performed inference on. Additionally, the nonparametric methodology proposed
in this paper was Bayesian, but the spherical representation of the nonparametric Fisher geometry has clear
connections to Frequentist nonparametrics by way of the geometry of the bootstrap [43].

Acknowledgement
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Figure 4: Hutchings’ bramble canes data: the first figure depicts the 823 bramble canes (red), a heatmap of
the pointwise posterior mean (black is low, white is high), and a single contour at density 0.3 (blue) including
all but a few points. The second figure shows 823 draws from the χ2-process density posterior predictive
distribution, obtained using a rejection sampling scheme.

A Initializing the Markov chain: Newton’s method on the sphere
Starting with a Riemannian manifold Q isometrically embedded in Euclidean space, we consider function
F : Q → R.

Definition 2. Given point q0 ∈ Q and initial velocity q̇0 ∈ Tq0Q, we follow Edelman, Arias, and Smith [44]
and define the Hessian of function F along q̇0 as the matrix satisfying

HessF (q̇0, q̇0) =
d2

dt2

∣∣∣
t=0

F (q(t)) . (60)

Proposition 1. Hess F on the sphere is given by

HessF = Fqq − FTq q0 I , (61)

where Fq and Fqq are the Jacobian and usual Hessian matrices.

Proof. We need the formula for the geodesic on the sphere given q0 and q̇0. Letting α be the Euclidean norm
of q̇0, the geodesic is given by:

q(t) = q0 cos(αt) +
q̇0
α

sin(αt) . (62)

It is easy to verify that
q̈(t) = −α2 q(t) . (63)

Next the derivatives are given by:

d

dt
F (q(t)) =

∂F

∂q
(y(t))q̇(t) , (64)

and

d2

dt2
F (q(t)) = q̇(t)T

∂2F

∂q2
q̇(t) +

∂F

∂q

T

q̈(t) . (65)

17



Combining (63) with (65) gives:

d2

dt2
F (q(t)) = q̇(t)T

∂2F

∂q2
q̇(t)− α2 ∂F

∂q

T

q(t) (66)

= q̇(t)T
(
Fqq − FTq q(t) I

)
q̇(t) .

Evaluating at t = 0 gives the result.

Hess F is the Hessian matrix at point q0 in direction q̇0. Newton’s method on the sphere is achieved by
Algorithm 1.

Algorithm 1 A single iteration of Newton’s method on the sphere
1: Given point q on sphere:
2: Calculate Fq
3: Calculate Hess F = Fqq − FTq q0 I
4: Calculate W = (I − qqT )Hess−1F (I − qqT )
5: V ← −W Fq
6: Progress along geodesic (62) with initial velocity V for time 1.
7: q ← q(1)

B Relationship to the Cox process
The χ2-process density prior may be used to model the intensity function of a Cox process [45]. The Cox
process is a point process over a given domain such that each realization at point t is drawn from a Poisson
distribution with intensity µ(s), where intensity function µ(·) is itself a random process over the same given
domain. Cox processes are useful for the analysis of spatial and time series data. Given µ(·), the likelihood
of such data {sn}Nn=1 is given by

p
(
{sn}Nn=1|µ(·)

)
= exp

(
−
∫

D
µ(s) ds

)
×

N∏

n=1

µ(sn) . (67)

Bayesian inference on µ(·) requires the calculation of two integrals, that over the parameter space and that
from Equation (67). We make the latter integral trivial by modeling the intensity function as the product
of a density function and a positively constrained random variable:

µ(s) = M × p(s) = M × q(s)2 . (68)

In this case, the likelihood may be written

p
(
{sn}Nn=1|µ(·)

)
= exp

(
−
∫

D
Mq(s)2 ds

)
×

N∏

n=1

Mq(sn)2 (69)

= exp(−M)MN
N∏

n=1

q(sn)2 .

Since the likelihood factors in M and q(·), it follows that the two random variables will be independent in
posterior distribution if they are specified to be independent in prior distribution. Indeed, M may even be
given a conjugate prior: it is easy to see that

M ∼ Γ(a, b) , implies M |N ∼ Γ(a+N, b+ 1) . (70)

18



Sampling from the joint posterior of µ(·) is as simple as independently sampling M from its posterior and
q2(·) from the χ2-process density sampler and then multiplying the two together. Such a model should be
used with care. As a function of the data, the posterior distribution ofM solely depends on N , which is itself
a single realization from a Poisson distribution. Thus, our χ2-process density prior–Cox process formulation
is useful in situations where ample prior information on M is available.
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