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Abstract

We present a multiscale formulation for the numerical solution
of one-dimensional three-phase flow through porous media. In the
case of vanishing capillarity effects, the system of equations describing
three-phase flow becomes almost hyperbolic, and the solution develops
shocks and boundary layers. Under these conditions, classical numer-
ical methods produce a solution that is either unstable or excessively
diffusive.
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The key idea of the proposed formulation, originally presented by
Hughes [Comput. Methods Appl. Mech. Engrg., 127:387–401 (1995)], is
a multiple-scale decomposition into resolved —grid— scales and un-
resolved —subgrid— scales. Incorporating the effect of the subgrid
scales onto the coarse scale problem results in a finite element method
with enhanced stability properties, capable of accurately represent-
ing the sharp features of the solution. In the formulation developed
herein, the multiscale split is invoked prior to any linearization of the
equations. Special attention is given to the choice of the matrix of
stabilizing coefficients, and a novel discontinuity-capturing technique
is proposed and compared with existing formulations.

The methodology is applied to the simulation of two problems of
great practical interest: oil filtration in the vadose zone, and water-
gas injection in a hydrocarbon reservoir. These numerical simula-
tions clearly show the potential and applicability of the formulation
for solving the highly nonlinear, nearly hyperbolic system of three-
phase porous media flow on very coarse grids.

key words: porous media, three-phase flow, finite elements, stabilized solu-

tions, multiscale methods, shock-capturing

1 Introduction

Flow of three immiscible fluids —denoted hereafter as water, oil, and gas—
occurs in a variety of flow situations in the subsurface, including gas injection
into hydrocarbon reservoirs, water flooding in the presence of free gas, and
migration of nonaqueous phase liquids in the shallow subsurface. As a result,
mathematical and numerical modeling of three-phase flow in porous media
has become essential to perform quantitative evaluations and predictions of
enhanced oil recovery processes, and environmental remediation of the vadose
zone.

The development of physically-based and tractable mathematical models
of multiphase flow is a very challenging task. One of the main difficulties
is the inherent multiscale character, reflected not only on the scale depen-
dency of key parameters, such as the absolute permeability, but also on the
fact that different physical processes dominate at different scales: capillary
forces govern the microscale, whereas viscous and gravity forces dominate
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the macroscale. The direct consequence of this complex behavior has been
the development of mathematical models which are extensions of successful
models for single-phase flow. In this paper we use a classical mathematical
formulation [3, 7, 57], which is based on: (1) a multiphase form of Darcy’s
equation; (2) the fractional flow approach. The mathematical problem of
three-phase flow is then written as a pressure equation of elliptic type, and a
system of saturation equations of parabolic type. Because the pressure equa-
tion is trivial in the one-dimensional case, we concentrate on the numerical
solution of the system of saturation equations.

Even though the equations studied in this paper are a simplified ver-
sion of the full nonisothermal, multiphase, compositional model in several
dimensions, they display some of the essential features that pose numerical
difficulties. In particular, the problem is extremely nonlinear, almost hy-
perbolic for the case of interest —vanishing capillarity—, and the solution
naturally develops shocks and boundary layers.

It is well known that, for the type of problems described above, classi-
cal numerical methods either lack stability —producing globally oscillatory
solutions— or accuracy —solutions are overly diffusive—. In an attempt to
obtain stable solutions which retain high-order accuracy, the equations are
solved here using a stabilized finite element method (see, e.g., [17] and the
references therein). Recently, stabilized finite element methods have been re-
interpreted from the point of view of multiscale phenomena [26], where the
stabilizing terms arise naturally in a variational multiscale method [27]. This
idea of a multiple-scale decomposition of the solution, which is now dominant
in fluid mechanics, is adopted here for the simulation of multiphase, porous
media flow. The major benefit of this numerical formulation is that the oscil-
latory behavior of the classical Galerkin method is drastically reduced. This
is achieved without compromising the computational cost of the method, or
the accuracy of the solution. The specific contributions of this paper may be
succinctly summarized as follows:

1. The multiscale formalism is applied to the equations governing one-
dimensional three-phase flow through porous media. Previous work on
miscible and immisicible two-phase flow [41, 42] —described by scalar
equations— is extended here to nonlinear systems of conservation laws.

2. Nonlinearity of the equations is retained at the time of invoking the
multiscale split. Proper linearization of the stabilizing terms is intro-
duced after the multiple-scale decomposition into resolved and unre-
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solved scales. Furthermore, the multiple-scale solution is not recon-
structed from point values of coarse and subgrid scales.

3. Several definitions of the key parameter of the formulation —the ma-
trix of stabilizing coefficients— are tested and compared [11, 29, 59].
To further reduce or completely eliminate localized oscillations that
may persist in the stabilized solution, several existing shock-capturing
techniques are studied [9, 18, 30, 31, 59], and a novel expression for the
discontinuity-capturing diffusion is proposed.

It is important to realize that the formulation presented here is very dif-
ferent from other methods that account for multiple-scale phenomena, such
as the multiscale finite element method [25], the subgrid upscaling tech-
nique [1,2], and the mortar upscaling method [58], where the main objective
is to incorporate the small-scale heterogeneity. On the other hand, a recent
paper [53] applies the original variational multiscale formulation of [26, 27]
to porous media flows. It is restricted, however, to the linear scalar equation
describing steady-state, single-phase, Darcy flow, and the objective is to re-
move velocity-pressure instabilities, rather than instabilities arising from the
nearly hyperbolic character of the equations.

An outline of the paper is as follows. In Section 2 we derive the govern-
ing equations of three-phase flow, which are then written —in dimensionless
form— as a nonlinear system of conservation laws. After a summary of the
weak form of the problem and the associated standard Galerkin method, we
describe in Section 3 the multiple-scale approach. Special attention is given
to the matrix of stabilizing coefficients and to alternative shock-capturing
techniques. In Section 4 we present several representative numerical simula-
tions of three-phase flows. The first application is an oil filtration problem
in a relatively dry medium, and the second reproduces water-gas injection
in a hydrocarbon reservoir. Numerical solutions are compared with a gen-
eral, newly developed, analytical solution [40]. These simulations illustrate
the outstanding performance of the proposed methodology. In Section 5 we
gather the main conclusions, and anticipate ongoing and future research.

2 Mathematical formulation

The macroscopic equations governing immiscible multiphase flow in porous
media are mass conservation equations and constitutive relations that de-
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scribe the flux of each phase. Classical formulations rely on a multiphase
flow extension of Darcy’s equation [54]. We shall make use of this extension
—which is not rigorously derived from first principles [22]— as a modeling

assumption, rather than a physical law. By invoking the fractional flow for-
malism [7], the problem may be written in terms of a pressure equation and a
system of saturation equations. The solution to the pressure equation is triv-
ial in the one-dimensional case and, therefore, we shall focus on the numerical
solution of the system of saturation equations.

2.1 Continuum equations

Here we present a standard derivation of the equations of three-phase flow
in porous media under the following assumptions:

1. One-dimensional flow,

2. Zero distributed sources and sinks,

3. Immiscible fluids,

4. Incompressible fluids,

5. Rigid homogeneous porous medium,

6. Multiphase flow extension of Darcy’s equation,

7. Negligible gravity effects.

Similar derivations of the governing equations may be found in [3,7,21,47,57],
among others.

The equation of mass conservation of a chemical component i in a one-
dimensional medium without distributed sources (assumptions 1 and 2) is:

∂tmi + ∂xFi = 0, 0 < x < L, t > 0, (1)

where mi is the mass of the i-component per unit bulk volume, Fi is the mass
flux of component i, ∂t and ∂x denote the partial derivatives with respect to
time and space, respectively, and L is the length of the domain. By virtue
of assumption 3, one can identify any chemical component i with the generic
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fluid phase α. We shall consider three fluid phases: water (w), oil (o) and
gas (g). The mass of the α-phase per unit bulk volume is:

mα = ραSαφ, (2)

where ρα is the density of the α-phase, Sα is the saturation of the α-phase,
and φ is the porosity. In view of assumptions 4 and 5, the phase densities and
the porosity are taken as constants. We write the mass flux of the α-phase
in the form:

Fα = ραvαφ, (3)

where vα is the velocity of the α-phase. Using Muskat’s [54] extension of
Darcy’s equation to model the fluid velocities (assumption 6) with negligible
gravity effects (assumption 7):

vα = −
k

φ

krα
µα

∂xpα, (4)

where k is the absolute permeability, krα and µα are the relative permeability
and the dynamic viscosity of the α-phase, respectively, and pα is the pressure
of the α-phase. For convenience, we define the relative mobility of the α-
phase,

λα :=
krα
µα

. (5)

We define the capillary pressures Pcα in a standard way, as differences of
the phase pressures pα and a reference pressure p. For the purpose of this
derivation, we take the oil pressure as the reference pressure,

p := po, (6)

and define:

Pcw := pw − p, (7)

Pcg := pg − p. (8)

We note in passing that the water capillary pressure is usually defined with
opposite sign. Definition (7) has been used here to preserve symmetry of the
formulation.

Substituting Equations (2) and (3) into Equation (1), the mass conserva-
tion equations for the α-phase reads:

∂tSα + ∂xvα = 0, α = w, o, g. (9)
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Equations (9) are subject to the additional constraint that the fluids fill up
the entire pore space:

∑

α=w,o,g

Sα ≡ 1. (10)

The essence of the fractional flow approach (see, e.g., [3,7,57]) is to com-
bine Equations (9) with the algebraic constraint (10) to obtain a “pressure
equation” of elliptic type, and a system of “saturation equations” of parabolic
type. Summation of the mass conservation equations and use of the satura-
tion constraint yields the pressure equation:

∂xvT = 0, (11)

where we have defined the total velocity vT as

vT :=
∑

α=w,o,g

vα. (12)

Substituting the expression of the fluid velocities (4) and the capillary pres-
sures (7)–(8) in Equation (12):

vT = −
k

φ
(λT∂xp+ λw∂xPcw + λg∂xPcg) (13)

or, rearranging,

−
k

φ
λT∂xp = vT +

k

φ
λw∂xPcw +

k

φ
λg∂xPcg, (14)

where
λT :=

∑

α=w,o,g

λα (15)

is the total mobility. Using Equations (4), (11) and (14) in Equations (9),
and defining the fractional flow of the α-phase,

fα :=
λα

λT

, (16)

we obtain the system of saturation equations:

∂tSw + vT∂xfw − ∂x

[
k

φ
(λw(1− fw)∂xPcw − λwfg∂xPcg)

]

= 0, (17)

∂tSg + vT∂xfg − ∂x

[
k

φ
(−λgfw∂xPcw + λg(1− fg)∂xPcg)

]

= 0. (18)
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Remarks.

1. The mathematical problem is complete up to imposition of initial and
boundary conditions, and definition of the relative permeability and
capillary pressure functions.

2. The pressure equation (11) and the system of saturation equations (17)–
(18) are coupled through the capillary pressures.

3. This coupling is of little consequence in one-dimensional models, be-
cause the solution to the pressure equation is trivial in this case. The
total velocity is at most a function of time and, therefore, dependent
only on the boundary conditions.

4. In the multidimensional case, the pressure and saturation equations
may be decoupled by introducing a global pressure [7].

2.2 Relative permeabilities and capillary pressures

Relative permeabilities are the key descriptors of classical Darcy-type formu-
lations of multiphase flow through porous media. Strictly speaking, relative
permeabilities should depend not only on the fluid saturations, but also on
the saturation history, wettability characteristics, gravity effects, and fluid
viscosities [43, 44]. Thus, they should be properly called functionals, rather
than functions. In this paper, however, we shall understand the relative per-
meabilities as functions of fluid saturations alone. In particular, we shall use
relative permeabilities that satisfy Stone’s assumptions [60,61], that is, water
and gas relative permeabilities depend only on the water and gas saturations,
respectively, and oil relative permeability depends of both:

krw = krw(Sw),

kro = kro(Sw, Sg),

krg = krg(Sg).

(19)

Similar considerations apply to the capillary pressures. In the context
of multiphase displacements, capillarity effects lead to a nonlinear diffusion
term, whose role is to smear the moving fronts —shocks— that arise in the
displacement process. The detailed structure of these shocks —and conse-
quently the capillary pressures—, should depend on several factors, includ-
ing wettability properties, viscosity ratios, displacement process (drainage or
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imbibition) and pore-scale fluid configuration [48]. For the purpose of this
paper, however, we shall use Leverett’s assumption [3, 50] that the water
and gas capillary pressures depend only on the water and gas saturations,
respectively:

Pcw = Pcw(Sw),

Pcg = Pcg(Sg).
(20)

2.3 Equations in dimensionless form

It is convenient, both for a mathematical and a numerical analysis, to write
the governing equations (17)–(18) in dimensionless form. We define the di-
mensionless space and time coordinates:

xD :=
x

L
, (21)

tD :=
1

L

∫ t

0

vT (τ) dτ, (22)

respectively. We define also the water and gas capillary numbers:

Cw :=
(k/φ)P ∗

cw

vTµwL
, (23)

Cg :=
(k/φ)P ∗

cg

vTµgL
, (24)

where P ∗
cw and P ∗

cg are characteristic values of the water and gas capillary
pressures, e.g.,

P ∗
cw :=

∫ 1

0

|Pcw(s)| ds, (25)

P ∗
cg :=

∫ 1

0

|Pcg(s)| ds. (26)

Dimensionless water and gas capillary pressures are defined as follows:

PD
cw :=

Pcw

P ∗
cw

, (27)

PD
cg :=

Pcg

P ∗
cg

. (28)
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Using the definitions above, and the fact that the total velocity vT is at most
a function of time, the system of saturation equations may be written as:

∂Sw

∂tD
+
∂fw
∂xD

−
∂

∂xD

[

Cwµwλw(1− fw)
∂PD

cw

∂xD

− Cgµgλwfg
∂PD

cg

∂xD

]

= 0, (29)

∂Sg

∂tD
+

∂fg
∂xD

−
∂

∂xD

[

−Cwµwλgfw
∂PD

cw

∂xD

+ Cgµgλg(1− fg)
∂PD

cg

∂xD

]

= 0. (30)

Using the Leverett assumption (20) on the capillary pressures, and defining

εw := Cwµw, εg := Cgµg, (31)

we write the system in the equivalent form:

∂Sw

∂tD
+
∂fw
∂xD

−
∂

∂xD

[

εwλw(1− fw)
dPD

cw

dSw

∂Sw

∂xD

− εgλwfg
dPD

cg

dSg

∂Sg

∂xD

]

= 0,

(32)

∂Sg

∂tD
+

∂fg
∂xD

−
∂

∂xD

[

−εwλgfw
dPD

cw

dSw

∂Sw

∂xD

+ εgλg(1− fg)
dPD

cg

dSg

∂Sg

∂xD

]

= 0.

(33)

Understanding the independent variables x and t as their dimensionless coun-
terparts, we write the saturation equations in their final form as a nonlinear
system of conservation laws:

∂tu+ ∂xf − ∂x (D∂xu) = 0, (34)

where

u :=

(
Sw

Sg

)

, (35)

f :=

(
fw
fg

)

, (36)

D :=

(
Dww Dwg

Dgw Dgg

)

=




εwλw(1− fw)

dPD
cw

dSw
−εgλwfg

dPD
cg

dSg

−εwλgfw
dPD

cw

dSw
εgλg(1− fg)

dPD
cg

dSg



 , (37)

are the vector of unknown saturations, the fractional flow vector and the
capillary-diffusion tensor, respectively.
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Remarks.

1. The fractional flow and the diffusion tensor are (nonlinear) functions
of the unknown saturations, i.e.,

f = f(u), D = D(u). (38)

2. Under a (linear) change of variables, the water and gas saturations
may be understood as normalized saturations, rather than actual sat-
urations [43]. In what follows we shall understand that this change of
variables has been employed, so that the three-phase flow region —the
range of saturations where relative permeabilities are strictly positive—
covers the entire saturation triangle:

T := {(Sw, Sg) : Sw ≥ 0, Sg ≥ 0, Sw + Sg ≤ 1}. (39)

The saturation triangle is usually represented as a ternary diagram [43],
in which the pair (Sw, Sg) corresponds to the triple (Sw, Sg, So), where
So ≡ 1− Sw − Sg (see Figure 1).

3. The character of the system (34) depends on the eigenvalues and eigen-
vectors of the Jacobian matrix f ′. In [43] we argue that this matrix
must have real and distinct eigenvalues for the solution to be physi-
cally plausible, and we derive conditions on the relative permeability
functions so that this requirement is satisfied. Here, we further assume
that the capillary diffusion tensor is positive semi-definite. Under these
conditions, the system of equations is parabolic, and strictly hyperbolic
in the limit of vanishing diffusion [66].

3 Multiscale numerical formulation

In this section, we describe a multiscale formulation for the numerical solution
of the system (34). We are interested in the case of small diffusion, for
which the solution develops sharp features (shocks and boundary layers). The
multiscale approach leads naturally to a stabilized numerical method, which
enhances the stability of the solution, without compromising its accuracy in
the regions where the solution is smooth.
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Figure 1. Saturation triangle (top) and ternary diagram (bottom).

The multiple-scale formalism was first proposed in [26], and it is now
recognized as a state-of-the-art method in computational fluid dynamics.
In [41, 42], the formulation was applied to miscible flow of two components
—described by a linear advection-diffusion equation—, and immiscible flow
of two phases —which is modeled by a nonlinear scalar conservation law—.
Here we apply —and extend— the formulation to the problem of three-phase
porous media flow.

3.1 Initial and boundary value problem

The mathematical problem is defined by the one-dimensional system of con-
servation laws

∂tu+ ∂x (f(u)−D(u)∂xu) = 0, x ∈ Ω ≡ (0, 1), t ∈ (0, T ], (40)
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together with appropriate initial and boundary conditions. We shall consider
Dirichlet (essential) and Neumann (natural) boundary conditions. Let ∂Ω ≡
{0, 1} be the boundary of the domain, Γu ⊂ ∂Ω is the part of the boundary
where essential conditions are imposed, and Γn ≡ ∂Ω \ Γu is the part of the
boundary with natural boundary conditions:

u = ū on Γu, (41)

(f −D∂xu)n = F̄ on Γn, (42)

where n is the outward unit normal to the boundary, i.e., n = +1 at x = 1,
and n = −1 at x = 0. The initial conditions

u(x, t = 0) = u0(x), x ∈ Ω̄ ≡ [0, 1], (43)

close the definition of the mathematical problem.

3.2 Weak form

The development of virtually all integral methods for the numerical solution
of the initial and boundary value problem of the previous section starts from
the weak form of the mathematical problem. To this end, we define the
following functional spaces:

V := {v ∈ W : v = ū on Γu},

V0 := {v ∈ W : v = 0 on Γu},

where the appropriate Sobolev space W depends on the particular form of
the diffusion tensor. The weak form of problem (40) with boundary and
initial conditions (41)–(43) consists in finding u ∈ V for each fixed t ∈ (0, T ],
such that

(∂tu,v) + a(u,v;u) = l(v) ∀v ∈ V0,

u(x, t = 0) = u0(x),
(44)

where

(∂tu,v) =

∫

Ω

∂tu · v dΩ, (45)

a(u,v;w) = −

∫

Ω

f(w) · ∂xv dΩ +

∫

Ω

D(w)∂xu · ∂xv dΩ, (46)

l(v) = −

∫

Γn

F̄ · v dΓ. (47)
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Remarks.

1. In the context of classical —smooth— solutions, the strong and weak
forms of the mathematical problem are equivalent. The weak form
is less restrictive, however, in the sense that it may have weak —
discontinuous— solutions.

2. The functional spaces V and V0 are infinite-dimensional.

3. Equation (44) is linear in the test function v. This fact is exploited at
the implementation level, for it allows to consider test functions of the
form:

v =

(
v1
0

)

+

(
0
v2

)

. (48)

3.3 Classical Galerkin method

Once the mathematical problem has been stated in weak form, it is straight-
forward to introduce the classical Galerkin method. Instead of considering
the infinite-dimensional spaces V and V0, one employs conforming finite-
dimensional spaces Vh ⊂ V and Vh,0 ⊂ V0 of piecewise polynomials, defined
on a finite element mesh. The standard Galerkin approximation of (44)
reduces to find uh ∈ Vh for each fixed t, such that

(∂tuh,vh) + a(uh,vh;uh) = l(vh) ∀vh ∈ Vh,0, (49)

and uh(x, t = 0) is the projection of the initial function u0(x) onto space Vh.
The system of ordinary differential equations (49) is transformed into a sys-
tem of (nonlinear) algebraic equations by further discretizing the time deriva-
tive [63].

3.4 Multiple-scale approach

It is a well-known fact that the classical Galerkin method lacks stability
when diffusive effects are exceedingly small, so that the system of equations
is nearly hyperbolic. The objective of the multiple-scale approach described
here is to obtain a stabilized numerical formulation for this type of problems.
The formulation, based on the framework originally introduced in [26] was
presented in [41, 42] for miscible flow of two components and immiscible
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flow of two phases, which involve scalar conservation laws. The numerical
formulation is revisited here, and applied to systems of conservation laws.

The key idea of the formulation is a multiscale split of the variable of
interest u ∈ V into resolved and unresolved scales:

u = uh + ũ, (50)

where uh is the resolved —grid— scale and ũ is the unresolved —subgrid—
scale. This decomposition acknowledges that certain components of the so-
lution cannot be captured by the finite element mesh. This fact is espe-
cially relevant for advection-dominated problems, where the solution develops
sharp features that would require an impractical grid resolution. Decompo-
sition (50) is unique if one can express the original functional space V as the
direct sum of two spaces:

V = Vh ⊕ Ṽ , (51)

where Vh is the space of resolved scales and Ṽ is the space of subgrid scales.
The space Ṽ is an infinite-dimensional space that completes Vh in V . This
space is generally unknown, and it is the role of the subgrid model to provide
a successful approximation to it.

The multiscale decomposition was originally proposed for the linear advection-
diffusion equation in [26,27], and then extended to other linear [10,11,23,24,
35, 53, 55, 56] and nonlinear [12, 13, 19, 20, 32–34] problems. A common ap-
proach to deal with nonlinear problems is to linearize the equations upfront,
using either a Picard or a Newton strategy [12, 13]. In this work, however,
we resort to the multiscale decomposition prior to any linearization. In the
context of nonlinear problems, it seems natural to express the solution at a
given iteration step (k) as:

u(k) = u(k−1) + δu(k−1). (52)

The first term on the right hand side should be understood as an approximate
solution at the previous iteration level, and the second term as a correction.
In principle, both terms are subject to the multiscale decomposition (50):

u(k−1) = u
(k−1)
h + ũ(k−1), (53)

δu(k−1) = δu
(k−1)
h + δũ(k−1), (54)

Equation (53) requires that the approximate solution u(k−1) is reconstructed
after every iteration. To avoid this reconstruction step, and obtain a for-
mulation that completely decouples the resolved and unresolved scales (see
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below), we make the additional approximation:

u(k−1) ≈ u
(k−1)
h , (55)

so that the multiscale split takes the form:

u(k) ≈ u
(k)
h + δũ(k−1). (56)

In what follows we shall drop superscripts referring to the iteration level, and
simply write

u ≈ uh + δũ. (57)

Remarks.

1. We refer to Equation (57) as an incremental formulation, with a mul-
tiscale decomposition of the increment.

2. The term uh in Equation (57) should be understood as an approximate
solution about which the equations are linearized. The term δũ plays
the role of a perturbation that will allow stabilization of the solution.

3. The working assumption (55) makes our formulation different from
that in [13] and [19, 20], where the subgrid scales are tracked, and
the multiscale variable is reconstructed after every step of the iterative
process.

The derivation of the multiscale formulation starts by invoking a multi-
scale split of the solution u and the test function v:

u = uh + δũ ∈ V = Vh ⊕ Ṽ , (58)

v = vh + ṽ ∈ V0 = Vh,0 ⊕ Ṽ . (59)

Because the weak form is linear with respect to the test function v, the
original mathematical problem (44) is split into two, a grid scale problem:

(∂t(uh + δũ),vh) + a(uh + δũ,vh;uh + δũ) = l(vh) ∀vh ∈ Vh,0, (60)

and a subscale problem:

(∂t(uh + δũ), ṽ) + a(uh + δũ, ṽ;uh + δũ) = l(ṽ) ∀ṽ ∈ Ṽ . (61)

It is important to note that the former is a finite-dimensional problem,
whereas the latter is infinite-dimensional.
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3.4.1 Subgrid scale problem

Here we derive the final form of the subscale equations, and introduce all
the approximations required along the process. We start by writing the flux
term as a sum of element integrals, and integrate by parts on each element:

a(uh + δũ, ṽ;uh + δũ)

= −
∑

e

∫

Ωe

(
f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

)
· ∂xṽ dΩ

=
∑

e

∫

Ωe

∂x
(
f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

)
· ṽ dΩ

−
∑

e

∫

Γe

(
f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

)
n · ṽ dΓ.

(62)

We assume continuity of the flux across interelement boundaries, so that the
boundary integrals cancel each other on adjacent elements in the interior of
the domain, i.e.,

−
∑

e

∫

Γe

(
f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

)
n · ṽ dΓ

≈ −

∫

Γn

F̄ · ṽ dΓ ≡ l(ṽ).

(63)

The expression above is a true identity if uh + δũ is the exact solution, or
if locally mass conservative finite element spaces are employed. Otherwise,
Equation (63) should be regarded as an approximation.

We now approximate the total flux by a first-order Taylor expansion about
the coarse-scale solution uh:

f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

= f(uh)−D(uh)∂xuh

+ f ′(uh)δũ− (D′(uh)δũ)∂xuh −D(uh)∂x(δũ) +O(|δũ|2).

(64)

Equation (64) suggests defining the linearized advection-diffusion operator
in conservation form:

Luh
v := ∂x [f

′(uh)v − (D′(uh)v)∂xuh −D(uh)∂xv] . (65)
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The operator Luh
v depends in a nonlinear fashion on the approximate coarse-

scale solution uh, but is linear in its argument v. We write this operator in
the more suggestive (and convenient) form:

Luh
v := ∂x [A(uh)v −D(uh)∂xv] , (66)

where A(uh) is a 2×2 “advection” operator, whose components Aij(uh) take
the following expression:

Aij(uh) :=
∂fi(uh)

∂uh,j

−
∑

k

∂Dik(uh)

∂uh,j

∂xuh,k. (67)

Using Equations (63)–(66) in Equation (62), we write the first-order approx-
imation of the flux term in the subgrid scale problem (61) as

a(uh + δũ, ṽ;uh + δũ) ≈
∑

e

∫

Ωe

∂x
(
f(uh)−D(uh)∂xuh

)
· ṽ dΩ

+
∑

e

∫

Ωe

Luh
δũ · ṽ dΩ−

∫

Γn

F̄ · ṽ dΓ

(68)

A further approximation is to consider quasi-static subscales [13], i.e.,

∂tδũ ≈ 0. (69)

After this final assumption, and defining the grid-scale residual

R(uh) := −∂tuh − ∂x
(
f(uh)−D(uh)∂xuh

)
, (70)

the subscale problem (61) is written as follows:

∑

e

∫

Ωe

Luh
δũ · ṽ dΩ =

∑

e

∫

Ωe

R(uh) · ṽ dΩ ∀ṽ ∈ Ṽ . (71)

Equation (71) illustrates that the subgrid scale problem is in fact a projection
problem:

Π̃(Luh
δũ) = Π̃(R(uh)), (72)

where Π̃ is the L2-projection onto the space of subgrid scales Ṽ .

Remarks.
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1. The subgrid scale problem is infinite-dimensional, so one cannot expect
to solve it exactly. It is necessary to resort to some kind of numerical
or analytical approximation.

2. It is finally written in (71) as a sum of volume integrals evaluated
elementwise.

3. To reduce dramatically the computational cost of the solution to the
subscale problem, it seems appealing to localize the problem, so that
it can be approximated element-by-element. The difficulty of this step
stems from the fact that the boundary conditions of the local prob-
lem —values of the subscales on the inter-element boundaries— are
unknown. A common modeling assumption is to use v|Γe = 0, i.e., the
subscales are bubble functions that vanish on the boundaries of each
element [4, 5, 16,26].

4. An alternative to assumption (69) of quasi-static subscales would be
to keep track of the value of the subscales in every element, and eval-
uate the time derivative ∂tδũ [13]. One of the benefits of the quasi-
static subscale approximation —in addition to the simplicity of the
formulation— is that long-term numerical solutions do not depend on
the time integration strategy or the actual time step.

In this paper we employ an algebraic approximation to the subscales,
which leads to an algebraic subgrid scale model (ASGS):

δũ ≈ τ uh
R(uh), (73)

where τ uh
is a 2×2 matrix of algebraic coefficients, which depend not only on

the system parameters, but also on the grid scale solution uh. This approxi-
mation is substantiated by the convergence analysis of the linear case [14]. It
can also be justified from an asymptotic Fourier analysis [14], and has proven
useful in numerical tests. The matrix τ uh

is known as the matrix of stabi-
lizing coefficients or matrix of intrinsic time scales [29], and has dimensions
of time. Its design, which should be ultimately dictated by stability and
convergence analysis, is one of the most difficult issues in the development of
a stabilized numerical method. Many alternatives have been proposed, some
of which are reviewed and succinctly described in Section 3.5.
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3.4.2 Grid scale problem

We now retake the grid scale equation (60). As in the previous section, we
linearize the flux term with respect to the coarse scale solution uh:

a(uh + δũ,vh;uh + δũ)

= −

∫

Ω

(
f(uh + δũ)−D(uh + δũ)∂x(uh + δũ)

)
· ∂xvh dΩ

= −

∫

Ω

(
f(uh)−D(uh)∂xuh

)
· ∂xvh dΩ

−

∫

Ω

(
f ′(uh)δũ− (D′(uh)δũ)∂xuh

)
· ∂xvh dΩ

+

∫

Ω

(
D(uh)∂xδũ

)
· ∂xvh dΩ +O(|δũ|2).

(74)

The first term in the final expression of (74) is the Galerkin term:

−

∫

Ω

(
f(uh)−D(uh)∂xuh

)
· ∂xvh dΩ = a(uh,vh;uh). (75)

Writing the second integral in (74) as a sum of element integrals, and recalling
the expression of the linearized “advection” matrix (67), we get:

−

∫

Ω

(
f ′(uh)δũ− (D′(uh)δũ)∂xuh

)
· ∂xvh dΩ

=
∑

e

∫

Ωe

(
− AT (uh)∂xvh

)
· δũ dΩ, (76)

where AT is the transpose of A, i.e., AT
ij = Aj i. After integration by parts

element by element, the third term in (74) is written as

∫

Ω

(
D(uh)∂xδũ

)
· ∂xvh dΩ

= −
∑

e

∫

Ωe

∂x(D
T (uh)∂xvh) · δũ dΩ +

∑

e

∫

Γe

(DT (uh)∂xvh)n · δũ dΓ.

(77)

Defining the adjoint of the linearized advection-diffusion operator (66),

L∗uh
v := −AT (uh)∂xv − ∂x(D

T (uh)∂xv), (78)
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and its associated boundary operator,

b∗uh
v := (DT (uh)∂xv)n, (79)

and substituting (75)–(77) in Equation (74), the flux term of the grid scale
equation takes the form:

a(uh + δũ,vh;uh + δũ) = a(uh,vh;uh)

+
∑

e

∫

Ωe

L∗uh
vh · δũ dΩ +

∑

e

∫

Γe

b∗uh
vh · δũ dΓ +O(|δũ|2). (80)

Substituting the first-order approximation of (80) in (60), and considering
quasi-static subscales as before, we obtain the final form of the grid scale
equation:

(∂tuh,vh) + a(uh,vh;uh)

+
∑

e

∫

Ωe

L∗uh
vh · δũ dΩ +

∑

e

∫

Γe

b∗uh
vh · δũ dΓ = l(vh) ∀vh ∈ Vh,0. (81)

Remarks.

1. By direct comparison with (49), it is immediate to identify in Equa-
tion (81) the Galerkin terms and the additional stabilizing terms of the
multiscale formulation.

2. The stabilizing terms are evaluated element by element, and consist of
a volume integral and a boundary integral. The boundary contribution
to the stabilizing term is neglected in the numerical simulations of
Section 4. This simplification is sensible only if the magnitude of the
diffusive effects is small, which is precisely the case of interest.

3. The grid scale equation (81) and the subgrid scale equation (71) are
coupled through the value of the subscales δũ. For the simple sub-
grid scale model employed here, the algebraic approximation (73) is
substituted in Equation (81).

4. Because the subscales are proportional to the grid-scale residual —
Equation (73)—, the formulation is residual-based and, therefore, au-
tomatically consistent.
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5. The novel features of our formulation are the following:

(a) Linearization of the equations is employed after the multiscale
split. In particular, only the subscale effects are linearized, whereas
the full nonlinear Galerkin term is retained in the grid scale equa-
tion.

(b) The approximate solution is not reconstructed after every step in
the iterative process, or even after every time step. The bene-
fit of this working assumption is that subscale effects enter the
formulation in an integral sense only.

3.5 Matrix of stabilizing coefficients

The description of the multiscale finite element formulation is complete up
to the definition of the matrix of stabilizing coefficients τ uh

. The design of
this matrix is one of the most difficult —and controversial— issues in the de-
velopment of a stabilized formulation. This modeling step is not specific to
the multiscale formulation explained here and, in fact, is shared by other sta-
bilized formulations such as Streamline Upwind Petrov-Galerkin (SUPG) [6]
and Galerkin least-squares (GLS) [28]. Here we review briefly several options
that have been considered in the literature. They all define the stabiliza-
tion matrix τ for the linear advection-diffusion problem. Extension to the
nonlinear problem is straightforward, after defining the linearized advection-
diffusion operator (66).

3.5.1 Definition through an eigenvalue problem

This formulation was originally developed in [29]. The idea is to start from
the formulation of the scalar one-dimensional linear advection-diffusion equa-
tion [6] —for which it is possible to define a function τ so that the numerical
solution is nodally exact— and extend it to systems of equations in mul-
tidimensions. The basis for such extension is to diagonalize the system of
equations, by solving an eigenvalue problem, and transform the matrix of
stabilizing coefficients accordingly.

Consider the one-dimensional n × n system of linear advection-diffusion
equations:

∂tu+ Lu ≡ ∂tu+ ∂x(Au−D∂xu) = 0, (82)
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where the diffusion matrix is proportional to the identity matrix, D = ε1,
and the advection matrix A is assumed to be diagonalizable and have real
eigenvalues. Let νi and ri be the eigenvalues and eigenvectors of matrix A,
i.e.,

(A− νi1)ri = 0, i = 1, . . . , n. (83)

We further define the n× n matrices of eigenvalues and right eigenvectors:

Λ := diag(ν1, . . . , νn), R := [r1, . . . , rn]. (84)

The following identities are used throughout:

Λ ≡ RTAR, RTR ≡ RRT ≡ 1. (85)

The change of variables
u = Rû (86)

can be used to diagonalize (82):

∂tû+ L̂û ≡ ∂tû+ ∂x(Λû− ε ∂xû) = 0. (87)

The system (87) is uncoupled, and the i-th equation is a scalar linear advection-
diffusion equation:

∂tûi + ∂x(νiûi − ε ∂xûi) = 0. (88)

The goal is to define a stabilization matrix τ that treats each one of the
scalar equations (88) in an optimal fashion.

Following [11], the grid scale equation of the linear problem (82) can
be written, after neglecting the contribution from the interelement boundary
integrals, in the following convenient form (subscript h referring to the coarse
scale has been omitted):

∫

Ω

∂tu · v dΩ +

∫

Ω

Lu · v dΩ +

∫

Ω

L∗v · τRu dΩ = 0, (89)

where the adjoint operator and the grid scale residual are, respectively,

L∗v = −AT∂xv − ∂x(ε ∂xv), (90)

Ru = −∂tu− Lu. (91)
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It is understood that the second term in (89) is integrated by parts, and
that the third integral —the stabilizing term— is evaluated element by el-
ement. Under the change of variables (86), the Galerkin contribution to
Equation (89) is:
∫

Ω

∂tu · v dΩ +

∫

Ω

Lu · v dΩ =

∫

Ω

R∂tû · v dΩ +

∫

Ω

RL̂û · v dΩ

=

∫

Ω

∂tû · R
Tv dΩ +

∫

Ω

L̂û · RTv dΩ.

(92)

Therefore, the Galerkin contribution behaves correctly under the change of
variables (86) if the test function transforms as v̂ = RTv or, equivalently,

v = Rv̂. (93)

We now analyze the stabilizing term of the multiscale formulation. It is not
difficult to show that, under the change of variables (86) and (93),

L∗v = R L̂∗v̂, (94)

Ru = R R̂û. (95)

Using (94)–(95), the stabilizing term in Equation (89) is:
∫

Ω

L∗v · τRu dΩ =

∫

Ω

L̂∗v̂ · RTτR
︸ ︷︷ ︸

=: τ̂

R̂û dΩ. (96)

We conclude that the proper definition of the matrix of stabilizing coeffi-
cients τ for the ASGS formulation of problem (82) is

τ = Rτ̂RT , (97)

where
τ̂ = diag(τ̂1, . . . , τ̂n), (98)

and each intrinsic time τ̂i is defined for the corresponding scalar equation
of the —uncoupled— system (87). The optimal definition of the intrinsic
time when linear finite elements are used —which is nodally exact for the
steady-state advection-diffusion equation [6]— takes the form:

τ̂i =
1

2
h
ξ̂(αi)

|νi|
, (99)
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where h is the size of the element, αi is a measure of the element Peclet
number for the i-th equation,

αi =
1

2

|νi|h

ε
, (100)

and ξ̂ is a diffusion correction factor given by:

ξ̂(α) = coth(α)−
1

α
. (101)

Remarks.

1. When the system (82) has a diffusion matrix D that is not proportional
to the identity, it is not possible, in general, to fully diagonalize the
system. In this case, the pseudo-diagonal system after the change of
variables (86) reads:

∂tû+ ∂x(Λû− R
TDR ∂xû) = 0. (102)

The equation above suggests using a different diffusion coefficient εi for
each componential Peclet number in Equation (100), given by:

εi = rT
i Dri. (103)

2. Equation (101) provides the optimal diffusion-correction factor, in the
sense that the numerical solution to the steady-state diagonalizable
advection-diffusion system is nodally exact. However, alternative defi-
nitions are possible, which differ in their order of accuracy [59]:

ξ̂0(α) = 1, (104)

ξ̂1(α) = min(α/3, 1), (105)

ξ̂2(α) =
√

α2/(1 + α2), (106)

ξ̂4(α) =
√

α2/(9 + α2). (107)

A graphical comparison of the different definitions of the diffusion cor-
rection factor ξ̂ as a function of the element Peclet number α is shown
in Figure 2.
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Figure 2. Comparison of alternative definitions of the diffusion correction
factor ξ̂ —Equations (101) and (104)–(107)— as a function of
the element Peclet number α (after Shakib et al. [59]).

3. The formulation of the matrix τ described here applies also to the
nonlinear advection-diffusion operator (66). In this case, the advection
and diffusion matrices are not constant, but functions of the solution
itself. Therefore, the matrix of stabilizing coefficients depends not only
on the system parameters but also on the grid scale solution uh:

τ uh
= Ruh

τ̂ uh
RT

uh
, (108)

where
Ruh

= [r1(uh), . . . , rn(uh)]. (109)

We denote νi(uh), ri(uh), the eigenvalues and eigenvectors of the ad-
vection matrix A(uh), and

τ̂ uh
= diag(τ̂1(uh), . . . , τ̂n(uh)), (110)
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where

τ̂i(uh) =
1

2
h
ξ̂(αi(uh))

|νi(uh)|
, (111)

αi(uh) =
1

2

|νi(uh)|h

εi(uh)
, (112)

εi(uh) = ri(uh)
TD(uh)ri(uh), (113)

and ξ̂(α) is the diffusion correction factor given by Equation (101).
Since the advection and diffusion matrices now change from point to
point, one needs to solve an eigenvalue problem at each integration
point.

3.5.2 Definition through the matrix square root

A different formulation of the matrix of stabilizing coefficients was presented
in [59], in the context of the Galerkin least-squares (GLS) method. The def-
inition of τ proposed in [59] is very general and will not be presented here.
It suffices to say that it is derived in the framework of a space-time formula-
tion of unsteady multidimensional problems with a Riemannian metric, and
includes advection, diffusion, and reaction matrices. When particularized to
stationary one-dimensional systems of advection-diffusion type, discretized
with linear finite elements, the matrix of stabilizing coefficients takes the
form:

τ uh
=

(( c1
h2
D(uh)

)2

+
(c2
h
A(uh)

)2
)−1/2

, (114)

where c1 = 4 and c2 = 2.

Remarks.

1. The definition of τ given by (114) involves the square-root inverse,
which can be computed by exploiting the Cayley-Hamilton theorem
(see [52]), by solving an eigenvalue problem, or iteratively by resorting
to some kind of Newton’s method [59].

2. The matrix τ defined in this way is obviously symmetric.

3. Expression (114) has also been justified in [14] by means of an asymp-
totic Fourier analysis.
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3.5.3 Definition through the matrix inverse

A different design of the matrix of intrinsic time scales was proposed in [11] for
systems of advection-diffusion-reaction equations in multidimensions. When
restricted to one-dimensional systems of advection-diffusion type, the expres-
sion of τ uh

reduces to:

τ uh
=
( c1
h2
D(uh) +

c2
h
A(uh)

)−1

, (115)

where c1 = 4 and c2 = 2 for linear elements. This expression emanates
from an analysis of the discrete maximum principle in the scalar, stationary,
one-dimensional case [10,11].

Remarks.

1. The matrix τ given by (115) is a matrix function of the advection and
diffusion matrices, which is the essential requirement for the method to
provide optimal stabilization for each individual scalar equation when
the system is diagonalized [11].

2. Expression (115) may be viewed as an asymptotic approximation of the
previous definition of τ —Equation (114)— in the limit of vanishing
diffusion.

3.6 Shock-capturing techniques

While the multiscale formulation described above will produce stabilized nu-
merical solutions to the three-phase flow equations (see Section 4), over-
shoots and undershoots may still remain in the neighborhood of internal and
boundary layers. The reason for this localized oscillatory behavior is that the
method does not guarantee monotonic solutions. One possibility to enhance
the robustness of the stabilized formulation is to incorporate a discontinuity-
capturing term, that will further reduce or completely eliminate spurious
numerical oscillations.

The basic idea of discontinuity-capturing techniques is to introduce an
additional term in the grid scale equation (81), which is also evaluated ele-
mentwise, and satisfies the following generic design conditions [30,59]:

1. Consistency, which implies that the operator has to be proportional to
the grid scale residual.
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2. Enhanced stability, by providing extra control over the gradient of the
numerical solution.

3. Accuracy, by vanishing quickly in the regions where the solution is
smooth.

Many of the existing discontinuity-capturing formulations can be expressed
as an extra diffusion term [9],

∑

e

∫

Ωe

Dsc(uh)∂xuh · ∂xvh dΩ (116)

where the numerical diffusion tensor Dsc depends on the coarse scale solution.
This term leads necessarily to a nonlinear method, even if the underlying
equation is linear.

3.6.1 Classical discontinuity-capturing diffusion

It is not the purpose of this section to derive existing discontinuity-capturing
formulations, and the reader is referred to the vast literature on the topic [9,
15, 18, 30, 31, 36–39, 59, 62]. Here we present four different expressions of the
shock-capturing diffusion, which are inspired in the original references, and
adapted to quasi-static one-dimensional problems of advection-diffusion type,
discretized with linear finite elements.

1. A form of the shock-capturing diffusion based on [18] is regarded in [9]
as “canonical form”:

Dsc,1 =
1

2
h
|R(uh)|

|∂xuh|
1. (117)

2. The expression above may result in numerical solutions that are a bit
too diffusive. Based on an idea of [30,31], the expression above can be
modified as follows:

Dsc,2 = max

(

1

2
h
|R(uh)|

|∂xuh|
−
|R(uh)|

2
τuh

|∂xuh|2
, 0

)

1, (118)

where the τ -norm is defined as

|ϕ|2τ := ϕ · τϕ. (119)
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3. A similar expression to (117) above is proposed in [59] (termed “linear
form”), and it is based on an extension of the formulation in [30]. A
restricted version of it reads:

Dsc,3 =
1

2
h
|R(uh)|τuh

|∂xuh|τuh

1. (120)

4. Reference [59] considers also another expression (termed “quadratic
form”), which has features in common with the formulation in [18].
When reduced to our one-dimensional model problem, it takes the form:

Dsc,4 = 2
|R(uh)|

2
τuh

|∂xuh|2
1. (121)

All the formulations of the discontinuity-capturing diffusion presented
above share several properties, such as being residual-based, dimensionally
consistent, and isotropic. We do not discard the possibility that using an
anisotropic diffusion tensor formulation would be significantly more effective.
This was precisely the conclusion in [9] for the scalar advection-diffusion
equation in several space dimensions.

3.6.2 Novel discontinuity-capturing diffusion

The motivation for looking into alternatives to the classical formulations of
discontinuity-capturing diffusion is that the amount of numerical dissipation
introduced by these methods is not sufficiently localized to the neighbor-
hood of shocks and boundary layers. It is easy to understand the reason
for this deficiency, by considering the “canonical form” (117) applied to a
linear, quasi-steady, advection-dominated, scalar equation. In this case, the
grid scale residual is R(uh) ≈ −A∂xuh and, therefore, the shock-capturing
diffusion is

Dsc,1 ≈
1

2
h
| − A∂xuh|

|∂xuh|
=

1

2
hA, (122)

which is constant. This means that the formulation introduces the same
amount of artificial diffusion everywhere, even though it is only required in
the vicinity of sharp gradients [41].

To remedy this undesirable behavior, we propose a discontinuity-capturing
diffusion that introduces an essential difference with respect to the classical
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formulations of the previous paragraph: the local gradient ∂xuh is replaced
by a global measure of the gradient ∼ U sc/h. In particular, we shall test the
following expression:

Dsc,g = Csch
|R(uh)|

|U sc/h|
1, (123)

where Csc is a constant coefficient. The simulations of the next section clearly
show that this formulation introduces numerical diffusion in much narrower
regions of the computational domain than classical formulations.

4 Representative numerical simulations

In this section we present several simulations of one-dimensional three-phase
flow in porous media, as described by the mathematical model of Section 2.
For the sole purpose of testing the formulation, the capillary diffusion tensor
is taken as a constant isotropic matrix, that is, Equation (37) is replaced by

D =

(
εw 0
0 εg

)

. (124)

As we shall see, the form of the capillary diffusion tensor may affect the
detailed structure of individual shocks, but not the shock location and the
global structure of the solution. The practical importance of this dependency
on the form of the diffusion tensor is minimized by the fact that, because we
are interested in the nearly hyperbolic case —which is the most challenging to
model numerically—, we shall use very small values of the capillary diffusion
coefficients εw, εg.

The following relative permeability functions are used:

krw = S2w,

kro = (1− Sw)(1− Sg)(1− Sw − Sg),

krg = βgSg + (1− βg)S
2
g .

(125)

These functions belong to the simple class of functions (19), where the water
and gas relative permeabilities depend only on their own saturation, and
the oil relative permeability depends on both. The parameter βg is the
endpoint-slope of the gas relative permeability function. The relevance of
this parameter in the context of classical relative permeability models is dis-
cussed in [43, 44]. In the simulations that follow we use the value βg = 0.1.
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Finally, the following values of the fluid viscosity ratios are used:

µw

µo

= 0.4375,
µg

µo

= 0.015. (126)

The simulations presented here reproduce the conditions of the Riemann
problem, which is an initial value problem on an unbounded domain defined
by the system of conservation laws (40), together with piecewise constant
initial data separated by a single discontinuity:

u(x, 0) =

{

ul if x < 0,

ur if x > 0.
(127)

We model conditions (127) numerically by imposing the initial condition
u(x, 0) = ur on a bounded domain 0 < x < 1, and a Dirichlet boundary
condition u(0, t) = ul on the left boundary. The interest in the Riemann
problem is threefold. On one hand, it is particularly challenging to model
numerically, since the initial conditions are already discontinuous. Secondly,
an analytical solution exists for the capillarity-free case, which can be used
to verify the numerical solutions. Finally, it is very valuable in practical
applications, because many laboratory and field experiments reproduce in
fact the conditions of the Riemann problem.

The general analytical solution to the Riemann problem of capillarity-
free three-phase flow is given in [40, 45]. The system of conservation laws
describing three-phase flow is a 2 × 2 system, which is strictly hyperbolic
for all saturation paths of interest [43]. This implies that there are two
separated waves connecting three constant states: ul (left), um (middle), and
ur (right). Therefore, the solution to the Riemann problem of three-phase
flow reduces to finding the intermediate constant state um as the intersection
of an admissible 1-wave W1 (slow wave) and an admissible 2-wave W2 (fast
wave) on the saturation triangle (Figure 3):

ul
W1−→ um

W2−→ ur. (128)

Based on the analysis of the wave structure in [40], a wave of the i-
family connecting two constant states may only be one of the following: an
i-rarefaction (Ri), an i-shock (Si), or an i-rarefaction-shock (RiSi). Since
the full solution to the Riemann problem is a sequence of two waves,W1 and
W2, there are only 9 possible combinations of solutions. A schematic tree
with all possible solution types is shown in Figure 4.
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Figure 3. Schematic representation of the generic solution to the Riemann
problem of three-phase flow. The solution comprises two distinct
waves —slow and fast waves— connecting three constant states.
Each wave might involve traveling discontinuities. On the left
plot we show a possible configuration of the wave curves in the
saturation space. On the right plot we display the corresponding
saturation profile for one of the components (gas saturation, say)
against the similarity variable ζ = x/t.
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Figure 4. Schematic tree with all possible combinations of solutions to the
Riemann problem of three-phase flow.
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Here we study two scenarios: the first one involving oil filtration in a
relatively dry soil —which results in a S1S2 solution—, and the second one
reproducing water-gas injection in an oil reservoir —whose solution is of
type R1S1S2—. Both simulations are transient over a period of time —the
solution displays propagating discontinuities—, and then reach quasi-steady
conditions —boundary layers are present at the outlet face—. For each of
the two problems studied, we compare the exact solution of the capillarity-
free model with the numerical solution obtained using the standard Galerkin
method on a very fine mesh. Then we compare the performance —on a very
coarse mesh— of the classical Galerkin method with the algebraic subgrid
scale method, using different formulations for the matrix of stabilizing co-
efficients. Different discontinuity-capturing formulations are also employed
and contrasted. The comparison of stabilized formulations with the standard
Galerkin method may seem a little unfair, as the test cases involve nearly hy-
perbolic systems, for which the classical Galerkin method is known to have
unstable behavior. The motivation is to show the stabilizing effect of the
new terms in the ASGS formulation, which arise from consideration of the
subgrid scales. It is interesting to note that:

1. The ASGS method is in fact a Galerkin method —the coarse-scale
trial and test functions belong to the same finite element space. The
difference with respect to the classical Galerkin method is that the
subgrid scales are modeled separately and incorporated to the coarse
scale problem.

2. The computational cost of the ASGS method is essentially the same
as that of the standard Galerkin method, as the former involves the
calculation of just a few additional integrals, which are evaluated ele-
mentwise.

4.1 Oil filtration in relatively dry soil

4.1.1 Description of the problem

This example reproduces filtration of a mixture of oil, water and gas through
a relatively dry porous medium with some water and oil, as shown in Figure 5.
The medium has the following initial normalized saturations: Sw = 0.15,
Sg = 0.8, and So = 0.05. Fluids are injected in a proportion such that
the normalized fluid saturations at the inlet face are: Sw = 0.25, Sg = 0.2,
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Figure 5. Sketch of the oil filtration problem. A mixture with high oil
saturation is injected into a medium initially filled with water
and gas.

and So = 0.55. Initial saturations are homogeneous on the entire medium,
and injected saturations are held constant throughout the experiment, so
that the example reproduces the conditions of the Riemann problem. From
a practical viewpoint, this problem could represent a contamination event in
the shallow subsurface, under one-dimensional flow conditions.

4.1.2 Analytical solution

The exact solution to the strictly hyperbolic system of the capillarity-free
problem is of type S1S2, that is, it consists in a sequence of two shocks.
Schematically, we denote the structure of the solution as follows:

ul
S1−→ um

S2−→ ur. (129)

The left state ul = (Sw,l, Sg,l) = (0.25, 0.2) corresponds to the injected satu-
rations, and the right state ur = (Sw,r, Sg,r) = (0.15, 0.8) to the initial satu-
rations. These two states are separated by an intermediate constant state um.
The analytical solution may be understood as a slow shock connecting the
left and intermediate states, and a fast shock joining the intermediate and
right states. Thus, the description of the analytical solution only requires
finding the intermediate constant state um and the speed of propagation σ1
and σ2 of the slow and fast shocks, respectively. For the particular data used
here, they take the following values:

um = (0.615, 0.328), σ1 = 0.156, σ2 = 0.193. (130)

A general and efficient procedure to compute the analytical solution is pre-
sented in [40]. The solution —in saturation space— is shown in Figure 6. It
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Figure 6. Saturation path of the exact solution to the oil filtration problem.
Both waves are shocks (S1S2 solution).

is important to note that dashed lines correspond to the shock curves —set
of saturation states that satisfy the Rankine-Hugoniot condition and the Lax
entropy condition—, and represent discontinuities in the solution. Therefore,
the actual path of the shock curves on the saturation triangle is inconsequen-
tial from the point of view of the saturation profiles, and what matters is the
location of the endpoints of each shock curve.

In Figure 7 we display in a single plot the profiles of water, gas, and oil
saturations against the similarity variable ζ = x/t. The solution at different
times can be obtained from one another by simple stretching. Obviously, the
solution satisfies constraint (10) that states that the sum of all three satu-
rations adds up to one at all points. The saturations at the right boundary
coincide with the initial state, and the saturations at the left boundary cor-
respond to the injected state. This figure clearly illustrates the behavior of
the displacement process: basically, the oil phase displaces the water phase,
which in turn displaces gas out of the porous medium. One of the key features
of the solution is the formation of a water bank —a region where the water
saturation is higher than that of the initial and injected states—, so that the
solution is not monotonic in the traditional sense. It is also interesting to
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Figure 7. Saturation profiles of the exact solution to the oil filtration prob-
lem. Saturations of each phase are plotted against the similarity
variable ζ = x/t.

note that the slow shock involves changes in all three saturations, whereas
the fast shock connects states with approximately the same oil saturation
(see also Figure 6).

4.1.3 Comparison of numerical solutions

We test whether the numerical solution to the three-phase oil filtration prob-
lem with capillarity provides an accurate approximation to the analytical so-
lution of the capillarity-free case above. Since we are interested in the nearly
hyperbolic case, we take small values of the capillary diffusion coefficients in
Equation (124):

εw = 0.0005, εg = 0.001. (131)

We compute a “reference” numerical solution using the standard Galerkin
method on a very fine mesh of 4000 elements. We use a Crank-Nicolson
time integration technique with a constant time step of δt = 10−4. Given
this discretization and the physical parameters of the problem —in particular
the speed of propagation σmax of the fast shock—, we may define the following
dimensionless parameters:

Pe :=
σmax h

εmin
≈ 0.1 (element Peclet number), (132)

Co :=
σmax δt

h
≈ 0.08 (element Courant number). (133)
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Figure 8. Saturation profiles of the standard Galerkin solution to the oil
filtration problem on a fine mesh of 4000 elements, and compari-
son to the analytical solution of the capillarity-free case. Results
are shown at time t = 3.

The space and time discretization have been chosen to obtain small values
of these two key parameters (Pe ¿ 1, Co ¿ 1), so that the reference so-
lution given by the classical Galerkin method is stable and accurate. The
comparison between this solution and the analytical solution described above
is presented in Figure 8 at time t = 3. The “reference” numerical solution
captures correctly the global structure of the capillarity-free solution: the
location of shocks and the magnitude of the intermediate constant state are
predicted accurately. Further numerical simulations —using different values
of the capillary diffusion coefficients and different number of elements— con-
firm that the standard Galerkin solution converges to the entropy solution of
the capillarity-free problem. This essential property of the numerical solu-
tion —which stems from the fact that the conservation form of the equations
is used [49]— is in contrast to the conclusions in [3, 64] for two-phase flow,
where the nonconservation form of the equation is discretized.

An interesting behavior of the numerical solution is illustrated when the
saturation path is plotted on the ternary diagram (Figure 9), where an appar-
ent discrepancy between the numerical and the analytical solutions is readily
observed. This “discrepancy” is restricted to the local structure of the fast
shock S2 and is, therefore, inconsequential. The detailed structure of the
solution around the shock depends in an essential manner on the form of the
diffusion tensor, which is ignored in the capillarity-free model and replaced
by a discontinuous solution.
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Figure 9. Comparison of the saturation path obtained by the standard
Galerkin method on a fine mesh of 4000 elements (dotted curve)
and the exact solution (solid curve) of the oil filtration problem.

Standard Galerkin solution. The same problem is solved using the stan-
dard Galerkin method on a coarse mesh of only 40 elements. The ele-
ment Peclet number is now Pe ≈ 10. A Crank-Nicolson time-stepping
with δt = 0.01 is used. The associated Courant number is still very small
(Co ≈ 0.08), to minimize the numerical error introduced by the time dis-
cretization. The results of this simulation are shown in Figure 10. The solu-
tion obtained with the classical Galerkin method on a fine mesh of 4000 ele-
ments is included for reference. Water and gas saturation profiles are plotted
at two different times: t = 3 (transient conditions), and t = 8 (quasi-steady
conditions). It is apparent that the standard Galerkin solution on a coarse
grid lacks stability, and is polluted with spurious oscillations. The instabil-
ities are especially severe for the long-term solution, where the oscillatory
behavior spreads over most of the computational domain.

Algebraic subgrid scale solutions. We present now the numerical so-
lution to the oil filtration problem obtained with the algebraic subgrid scale
(ASGS) method. We recall that the ASGS formulation —Equation (81)—
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Figure 10. Saturation profiles of the standard Galerkin solution to the oil
filtration problem on a coarse mesh of 40 elements. Results are
shown at times t = 3 and t = 8.

differs from the classical Galerkin method —Equation (49)— in the addition
of a stabilizing term, evaluated element by element. This stabilizing term
involves the subgrid scales, which are modeled analytically using an algebraic
approximation to the subscales —Equation (73)—. Different alternatives for
the definition of the matrix τ of stabilizing coefficients were discussed in
Section 3.5.

In Figure 11 we plot the results obtained with the ASGS method and the
definition of τ given by the eigenvalue problem (108) (formulation proposed
by Hughes and Mallet [29]). The solution is much stabler than the standard
Galerkin solution. The computed saturation profiles do not display global
oscillatory behavior, and capture sharply the transient shocks and the sta-
tionary boundary layers. Some small overshoots and undershoots remain,
however, but they are confined to the vicinity of the sharp features in the
solution.

The ASGS solution obtained with the τ matrix given by the matrix in-
verse (115) (formulation proposed by Codina [11]) is shown in Figure 12. The
solution is virtually identical to that of Figure 11, and the same comments
apply.

Stabilized solutions with shock capturing diffusion. In an attempt
to reduce, or completely eliminate, the localized wiggles that remain in the
solution of the stabilized ASGS method —Figures 11 and 12 above—, we test
several shock-capturing techniques, as described in Section 3.6. We compare
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Figure 11. Saturation profiles of the ASGS solution (τ formulation given
by Hughes and Mallet [29]) to the oil filtration problem on the
coarse mesh.
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Figure 12. Saturation profiles of the ASGS solution (τ formulation given
by Codina [11]) to the oil filtration problem on the coarse mesh.

different expressions of the discontinuity-capturing diffusion applied to the
same ASGS method. In this case, we choose the solution obtained with the
τ matrix of Hughes and Mallet [29] —Figure 11—.

In Figure 13 we plot the results for the “canonical form” of the shock-
capturing diffusion —Equation (117)—. It is found that this formulation is
effective at eliminating the oscillatory behavior (compare with Figure 11),
but at the cost of being a bit too diffusive.

The “quadratic form” of the discontinuity-capturing diffusion, given by
Equation (118), yields the results shown in Figure 14. A single, small over-
shoot remains in the numerical solution: (1) at the downstream end of the
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Figure 13. Saturation profiles of the ASGS solution to the oil filtration
problem. Formulation of τ given by [29]. Shock-capturing dif-
fusion in “canonical form” —Equation (117)—.
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Figure 14. Saturation profiles of the ASGS solution to the oil filtration
problem. Formulation of τ given by [29]. Shock-capturing dif-
fusion in “quadratic form” —Equation (118)—.

fast shock during the transient phase; and (2) at the lip of the boundary layer
for stationary conditions. The solution is significantly less diffusive than that
of Figure 13.

In Figure 15 we plot the numerical solution obtained when the novel
“global-gradient form” of the discontinuity-capturing diffusion is employed
—Equation (123)—, with the following values of the parameters:

U sc = (0.5, 0.5), Csc = 2. (134)

The method is able to remove the localized oscillatory behavior of the ASGS so-
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Figure 15. Saturation profiles of the ASGS solution to the oil filtration
problem. Formulation of τ given by [29]. Proposed formulation
of shock-capturing diffusion —Equation (123)—.

lution but is, for the parameters used, slightly too diffusive.
The reason for considering the novel expression of the shock-capturing

diffusion as a viable alternative to existing formulations stems from the be-
havior of the numerical diffusion that is actually added by each method. In
Figures 16, 17, and 18 we plot the profile of additional diffusion introduced by
the “canonical form”, the “quadratic form”, and the “global-gradient form”,
respectively, at two different simulation times. The key observation is that,
while the existing formulations add a significant amount of diffusion almost
everywhere, the proposed formulation automatically introduces numerical
dissipation only in the neighborhood of the sharp features of the solution.
The latter is precisely the desired behavior of a discontinuity-capturing mech-
anism. Direct comparison of Figures 16 and 17 also explains, at a glance, why
the “linear form” is significantly more diffusive than the “quadratic form”.

4.2 Water-gas injection in a reservoir

4.2.1 Description of the problem

This second application involves simultaneous injection of water and gas into
a porous medium that is initially filled with oil and gas (and a small amount of
water), as shown in Figure 19. Initially, the medium has constant normalized
saturations: Sw = 0.05, Sg = 0.4, and So = 0.55. Gas and water are injected
in such proportion that the normalized water and gas saturations at the
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Figure 16. Profiles of shock capturing diffusion introduced by the “canon-
ical form” —Equation (117)— at two different times.
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Figure 17. Profiles of shock capturing diffusion introduced by the
“quadratic form” —Equation (118)— at two different times.
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Figure 18. Profiles of shock capturing diffusion introduced by the proposed
formulation —Equation (123)— at two different times.
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Figure 19. Sketch of the water-gas injection problem. Water and gas are
injected into a medium initially filled with oil and gas.

inlet are Sw = 0.85 and Sg = 0.15, respectively. The injected saturations
are assumed to be constant throughout the experiment. The values of initial
and injected saturations used in this example are representative of a linear
water-alternating-gas (WAG) injection process in a hydrocarbon reservoir
after primary production [8, 51].

4.2.2 Analytical solution

The analytical solution to the water-gas injection problem described above
is of type R1S1S2, that is, the 1-wave is a rarefaction-shock and the 2-wave
is a single shock. Schematically, we write the solution structure as

ul
R1−→ u∗

1
S1−→ um

S2−→ ur, (135)

where ul, um and ur have the same meaning as in the previous example,
and u∗

1 is the saturation state at which the 1-rarefaction and the 1-shock are
joined —also known as the post-shock value—. The variables that need to be
determined to fully characterize the solution are: the intermediate constant
state um, the shock speeds σ1 and σ2, and the post-shock state u∗

1. In our
particular case,

u∗
1 = (0.478, 0.083), um = (0.052, 0.085), σ1 = 0.712, σ2 = 1.280. (136)

In Figure 20 we plot the analytical solution in saturation space. The solid
line is the rarefaction curve —where the solution is continuous—, and the
dashed lines are the shock curves, which correspond to discontinuities.

The fluid saturation profiles of the analytical solution to the water-gas in-
jection problem are shown in Figure 21. Because the capillarity-free solution
is self-similar, the profiles are plotted against the similarity variable ζ = x/t.
The most relevant features of the solution are:
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Figure 20. Saturation path of the exact solution to the water-gas injection
problem. The 1-wave is a rarefaction-shock and the 2-wave is
a shock (R1S1S2 solution).

1. Oil and gas are produced by a sequence of two waves. The slow wave
involves mainly displacement of oil by injected water, and the fast wave
corresponds to a displacement of gas by oil.

2. An oil bank —intermediate state with higher oil saturations than those
of the initial and injected states— is formed. This is characteristic of
water flood processes in the presence of free gas [46,65].

4.2.3 Comparison of numerical solutions

We compute a “reference” numerical solution to the water-gas injection prob-
lem with small capillary diffusion coefficients:

εw = 0.001, εg = 0.002. (137)

We use the standard Galerkin formulation on a very fine mesh of 4000 el-
ements (h = 2.5 × 10−4), and a Crank-Nicolson time integration scheme



R. Juanes and T. W. Patzek: Stabilized numerical solutions of 3-phase flow 47

PSfrag replacements

water

gas

oil

ζ = x/t

sa
tu
ra
ti
on

s

0
0 0.5 1.5 2

0.2

0.4

0.6

0.8

1

1

Figure 21. Saturation profiles of the exact solution to the water-gas injec-
tion problem. Saturations of each phase are plotted against the
similarity variable ζ = x/t.

with δt = 5 × 10−5. For this space and time discretization, the element
Peclet and Courant numbers are, respectively:

Pe :=
σmax h

εmin
≈ 0.3, (138)

Co :=
σmax δt

h
≈ 0.25. (139)

In Figure 22 we plot the water and gas saturation profiles of the “reference”
numerical solution at t = 0.5, together with the capillarity-free analytical
solution. The numerical solution correctly captures the location and magni-
tude of the shocks, and provides an accurate representation of the rarefaction
fan. As was the case in the oil filtration example, additional simulations with
different space and time discretizations, and different capillary diffusion coef-
ficients, confirm convergence of the standard Galerkin method to the entropy
solution of the problem.

The saturation path of the reference numerical solution is shown in Fig-
ure 23. In this case, the saturation path agrees very well with that of the
capillarity-free solution, not only along the rarefaction, but also along shocks.
The close matching along shock curves is not particularly relevant. It has
to do with the fact that the shocks join states with the similar water or gas
saturation, and that an isotropic capillary diffusion tensor is used.
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Figure 22. Saturation profiles of the standard Galerkin solution to the
water-gas injection problem on a fine mesh of 4000 elements,
and comparison to the analytical solution of the capillarity-free
case. Results are shown at time t = 0.5.
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Galerkin method on a fine mesh of 4000 elements (dotted curve)
and the exact solution (solid curve) of the water-gas injection
problem.
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Figure 24. Saturation profiles of the standard Galerkin solution to the
water-gas injection problem on a coarse mesh of 40 elements.
Results are shown at times t = 0.5 and t = 2.

Standard Galerkin solutions. The water-gas injection problem is solved
with the same physical parameters on a much coarser mesh of 40 elements
and a time step δt = 0.005. The element Peclet number is now Pe ≈ 30,
and the element Courant number remains Co ≈ 0.25. The results are shown
in Figure 24 at two different simulation times (t = 0.5 and t = 2), and com-
pared with the reference numerical solution. Clearly, the standard Galerkin
solution on the coarse mesh is unstable. The Galerkin solution is completely
oscillatory, especially after the process reaches a quasi-steady state.

Algebraic subgrid scale solutions. The numerical solution produced by
the ASGS method with the τ formulation of Hughes and Mallet [29] is shown
in Figure 25. The behavior of the method is remarkable, considering that a
very coarse mesh of only 40 elements was used. The stabilizing term is able
to remove the global oscillatory behavior of the standard Galerkin method.
The solution is also extremely accurate and preserves a sharp definition of
the shocks and boundary layers.

It should be noted, however, that other formulations of the matrix τ of
stabilizing coefficients —such as those proposed in [11,59]— do not yield the
impressive results of Figure 25. In some cases they even fail to converge,
emphasizing the importance of an appropriate choice of τ for each particular
problem.
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Figure 25. Saturation profiles of the ASGS solution (τ formulation given
by Hughes and Mallet [29]) to the water-gas injection problem
on the coarse mesh.

Stabilized solutions with shock capturing diffusion. Despite the ef-
fective stabilization of the ASGS method with the matrix of stabilizing co-
efficients given by Hughes and Mallet [29], some local overshooting is still
present in the solution (see Figure 25). We make use of a discontinuity-
capturing technique to remove the spurious wiggles. In Figure 26 we plot
the numerical solution obtained after using the ASGS method above in con-
junction with the proposed “global-gradient form” of the shock-capturing
diffusion —Equation (123)— with the following parameters:

U sc = (0.5, 0.5), Csc = 2. (140)

The computed solution retains exceptional accuracy in the smooth regions
—the rarefaction fan and the constant saturation states— while effectively
enhancing stability near the sharp gradients.

The profile of additional diffusion introduced by the discontinuity-capturing
term is plotted —at simulation times t = 0.5 and t = 2— in Figure 27. It is
apparent that the amount of artificial diffusion is negligible everywhere, ex-
cept: (1) in the vicinity of both shocks during transient conditions; (2) near
the boundary layer for quasi-steady conditions. All other formulations of
shock-capturing diffusion described in Section 3.6 are either less effective or
even fail to converge.
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Figure 26. Saturation profiles of the ASGS solution to the water-gas in-
jection problem. Formulation of τ given by [29]. Proposed
formulation of shock-capturing diffusion —Equation (123)—.
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5 Conclusions

We have presented a fairly general formulation for the numerical solution
of nonlinear systems of conservation laws, and applied it to the equations
of one-dimensional three-phase flow through porous media. The method is
based on the original framework presented in [26], and entails a multiple-
scale decomposition of the solution into resolved and unresolved scales. It
is precisely the effect of the unresolved —subgrid— scales on the resolved
—grid— scales that introduces a stabilizing term in the formulation. Key
distinctive features of the formulation developed herein are: (1) the multiscale
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split is performed before any linearization of the equations (which are kept
in conservation form); (2) the multiscale solution is not reconstructed from
point values of coarse-scale and subgrid-scale solutions; and (3) a novel shock-
capturing technique is proposed to further enhance stability of the solution
in the neighborhood of strong gradients.

From the results presented in Section 4, we conclude that the proposed
stabilized method yields numerical solutions of exceptional quality to chal-
lenging, highly nonlinear, nearly hyperbolic problems. Solutions computed
on very coarse grids display excellent stability and accuracy. The algebraic
subgrid model employed is quite sensitive, however, to the choice of the ma-
trix of stabilizing coefficients τ . The definition of τ given by Hughes and
Mallet [29], which requires the solution of an eigenvalue problem, seems to
be the most applicable to the type of problems considered in this paper. This
observation is further confirmed by numerical experiments with other one-
dimensional systems that become strictly hyperbolic in the limit of vanishing
diffusion —such as the shallow-water equations and the Euler equations of
gas dynamics—. Application of the methodology to these interesting prob-
lems will be reported in subsequent publications.

The novel formulation of the discontinuity-capturing diffusion —coined
“global-gradient form”— provides an alternative to existing formulations.
The simulations of Section 4 clearly show that, in contrast to the canonical
expressions, the numerical diffusion introduced by the proposed formulation
is confined to the vicinity of discontinuities in the solution.

Several issues deserve further investigation. One of the topics that is
currently being addressed is the study of a different approximation to the
subscales. In particular, we are interested in a numerical approximation
of the subgrid scale problem with appropriate basis functions —high-order
finite elements, wavelets, etc.—, which are potentially capable of capturing
the sharp features of the solution that the coarse mesh is unable to resolve.
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