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Topological Fluid Dynamics: Theory and Applications

Motion of axisymmetric magnetic eddies with swirl

Yuji Hattoria ∗, Stefan G. Llewellyn Smithb

aInstitute of Fluid Science, Tohoku University, Sendai 980–8577, Japan
bDept. of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, 9500 Gilman Drive, La Jolla CA 92093-0411, USA

Abstract

We consider the motion of axisymmetric magnetic eddies with swirl in ideal magnetohydrodynamic (MHD) flow. The magnetic

field is assumed to be toroidal, while the velocity field has both toroidal and poloidal components. The contour-dynamics formu-

lation by Hattori and Moffatt (2006) for the case without swirl is extended to include swirl velocity so that the cross helicity does

not vanish in general. The strength of the vortex sheets that appear on the contours varies with time under the influence of the

centrifugal force due to swirl and the magnetic tension due to the Lorentz force. Numerical simulation using the contour-dynamics

formulation shows that there exist counter-propagating dipolar structures whose radius is given by a balance between the centrifu-

gal force and the magnetic tension. These structures are well described by the steady solutions obtained by perturbation expansion.

The effects of vorticity inside the eddy on the motion of eddies are also investigated.

c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of K. Bajer, Y. Kimura, & H.K. Moffatt.
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1. Introduction

The motion of magnetic eddies, which are compact vortices with magnetic field, is of much interest in astrophysical

fluid dynamics and plasma physics for which magnetohydrodynamics (MHD) is often a good approximation to the

full equations of motion. Although steady structures and coherent structures are frequently encountered in MHD, our

knowledge of these structures is far from sufficient since nonlinearity of the dynamics makes it difficult to find exact

solutions of the equations of motion. It is hence helpful to find new exact solutions which describe magnetic eddies. To

this end Hattori & Moffatt [1] (hereafter referred to as HM06) have found a family of exact solutions which include

Hill’s spherical vortex as a limiting case. They also found a contour dynamics formulation of ideal axisymmetric

MHD. Using contour dynamics quasi-steady structures which are well approximated by the exact solutions were

found to form by numerical simulation.

In the context of topological fluid dynamics the roles of magnetic helicity and cross helicity, both of which have

topological interpretation and are conserved in MHD, are of interest. One of the significant roles is that both helicities
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give bounds for hydrodynamic and magnetic energy. The magnetic helicity HM =
∫
AAA · BBB dV gives a bound

proportional to |HM | [2, 3]. HM06 considered the case HM = 0 so that this bound is zero. It was expected that

magnetic energy decreases to zero since magnetic tension due to the Lorentz force is directed toward the axis of

symmetry so that the eddy collapses to the axis. Magnetic energy, however, could not decrease to zero because the

quasi-steady structures kept a finite amount of magnetic energy. On the other hand the cross helicity HC =
∫
uuu ·BBB dV

gives

ET

2
− 1

2

(
E2

T −H2
C

)1/2 ≤ EX ≤ ET

2
+

1

2

(
E2

T −H2
C

)1/2
, (1)

where X = H,M EH = 1
2

∫ |uuu|2 dV is the hydrodynamic energy, EM = 1
2

∫ |BBB|2 dV is the magnetic energy and

ET = EH + EM . Since the total energy ET is also conserved, the motion of the eddy is constrained by the above

inequality whose bounds are determined by initial conditions. The cross helicity is also zero in HM06 implying that

this inequality is trivial.

Recently we have extended the above work to the magnetic eddies with swirl [4]. We have found a family of exact

solutions which include classical vortex rings with swirl [5]. Exact solutions of spherical shape were classified. The

contour dynamics formulation was also extended to include swirl or toroidal component of velocity. The unsteady

evolution simulated by contour dynamics in the case including both swirl and magnetic field was shown to lead to a

splitting of the initial configuration and the appearance of two counter-propagating vortex dipoles.

In this paper we study the motion of magnetic eddies with swirl. We are particularly interested in two problems.

One is how the bounds determined by cross helicity constrain the motion of the eddies. Since cross helicity does not

vanish for eddies with swirl, the inequality (1) limits the range of hydrodynamic and magnetic energy. The other is

the effects of vorticity inside the eddies. In the previous contour dynamics simulations [1, 4] the vorticity of finite

magnitude inside the eddy is set to zero. In this study we consider the case with non-vanishing vorticity inside the

eddy and see how it affects the motion.

2. Contour Dynamics

We recall the contour dynamics formulation of the motion of magnetic eddies with swirl [4]. We consider an

axisymmetric ideal MHD flow whose magnetic field has only a toroidal component Bθ, while the velocity field has

all three components in general. Then the toroidal components of velocity field uθ, the vorticity ωθ and the magnetic

field Bθ are governed by

D

Dt

(ωθ

r

)
=

1

r2
∂

∂z

(
u2
θ −B2

θ

)
,

D

Dt
(ruθ) = 0,

D

Dt

(
Bθ

r

)
= 0. (2)

The above equations lead us to consider the following type of distribution

ωθ

r
= Γ(r, z, t)δ [f(r, z, t)] |∇f |+ΩcH [f(r, z, t)] , uθ =

C

r
H [f(r, z, t)] , Bθ = κrH [f(r, z, t)] ,

where Γ is the θ-component of the strength of the vortex sheet, C, κ and Ωc are constants and H [·] is the Heaviside

function; ωθ, uθ and Bθ are non-zero only inside a closed region D in rz-plane defined by f(r, z, t) > 0. Then

the motion of the eddy can be specified by the contour f(r, z, t) = 0 and the strength of vortex sheet on it. Let

us parametrize the contour as (r, z) = (R(s, t), Z(s, t)) where s is the parameter along the contour. Introducing

γ = ΓR
[(

∂R
∂s

)2
+
(
∂Z
∂s

)2]1/2
, we obtain the following set of equations which completely determines the motion of
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the contour [4, 6]

∂γ

∂t
=

(
κ2R− C2

R3

)
∂R

∂s
, (3)

∂R

∂t
= ur(R(s,t),Z(s, t),t)+uω,r(R(s,t),Z(s,t),t),

∂Z

∂t
= uz(R(s,t),Z(s,t),t)+uω,z(R(s,t),Z(s,t),t),(4)

ur =
1

r

∮
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∂
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r
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∮
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∮ [
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where

G(r, z|r′, z′) =
1

2π
(rr′)1/2
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2

k
− k

)
K(k)− 2

k
E(k)

]
, k2 =

4rr′
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, (7)

P (r, z|r′, z′) =
r′K(k)

π [(r + r′)2 + (z − z′)2]1/2
, (8)

Q(r, z|r′, z′) =
1

2πr

[
r2 + r′2 + (z − z′)2

[(r + r′)2 + (z − z′)2]1/2
K(k)− [

(r + r′)2 + (z − z′)2
]1/2

E(k)

]
. (9)

Here K and E are the complete elliptic integrals of the first and second kind, respectively.

There are several constants of motion under the above equations, including the total energy ET , the cross helicity

HC and the volume V . In the present formulation cross helicity is related to volume by HC = κCV .

The contour dynamics formulation enables us to numerically simulate the axisymmetric MHD flow by one-

dimensional discretisation in space; we just need to follow the time evolution of a closed curve and a function on

it. This simplification reduces time for numerical simulation. Moreover it is easy to generalise the above formulation

to multiple contours to approximate continuous distributions of uθ and Bθ [4].

3. Numerical Results

3.1. Numerical Methods

The numerical method is similar to that used in HM06. The contour is expressed by a set of discrete points.

The integrands of (5) and (6) have singularities at r = r′. We subtract the contribution by the singular parts whose

principal values are known, calculate the resulting regular parts numerically and add them to obtain numerical values

of (5) and (6). Furthermore as in HM06 we regularise the integrands in (5) to avoid the vortex sheet singularity [7, 8],

while regularisation is not required for uuuω . Re-meshing is applied in order to prevent the distance between the points

from becoming too small or too large.

In order to check the added part uuuω we calculated the steady motion of a vortex ring by setting C = κ = 0 and

Ωc = 1. The speed of the translational motion was in good agreement with the theoretical value [9].

3.2. Motion of eddy and bounds for energy

Here we study time evolution of hydrodynamic and magnetic energies to see how they behave within the bounds

given by cross helicity. We set κ = C = 1 and Ωc = 0. We consider magnetic eddies of a torus type. Initially the

contour in rz-plane is set to be a circle of radius 0.2 with no poloidal component of velocity: γ = 0. Three different

values are chosen for the initial center of the circle or radius of the eddy: R0 = 0.8, 1.0 and 1.2.

The motion of the eddy is driven by two forces: the Lorentz force which is directed toward the axis of symmetry and

the centrifugal force directed radially outwards. There is an equilibrium radius at which the Lorentz and centrifugal

forces balance given by

Rb =

(
C

κ

)1/2

. (10)
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Fig. 1. Time evolution of eddy and energies. Top: contours at the initial (green) and final (red) instants; the dotted lines show the equilibrium

radius r = Rb. Bottom: time evolution of total energy ET (red), hydrodynamic energy EH (blue), magnetic energy EM (purple) and poloidal

component of hydrodynamic energy EHT ; the dotted lines show the bounds for EH and EM in (1). Left: R0 = 0.8, center: R0 = 1, right:

R0 = 1.2.

In r < Rb and r > Rb the outward centrifugal force is larger and smaller than the inward Lorentz force, respectively.

As a result the net force acts as a restoring force that drives the eddy towards the equilibrium radius r = Rb.

Figure 1 shows the time evolution of energy, along with the contour at the initial and final instants of simulation for

the three values of the initial radius of the eddy. In the top figures the initial and final contours are shown by the green

and red lines, respectively. For R0 = 1.0 the eddy splits into two rings which propagate in opposite direction along

r = Rb. For Rb = 0.8 the eddy not only splits but also moves to the equilibrium radius, while a thin thread connecting

the two rings crosses the equilibrium radius. The roll-up observed behind the two rings is due to the regularisation of

the integrand. The two split rings move along r = Rb like those for R0 = 1.0. The same behaviour, with reversed

direction, is observed for R0 = 1.2.

In the bottom panels of Fig. 1, t the time evolution of total energy ET , hydrodynamic energy EH , magnetic energy

EM and poloidal component of hydrodynamic energy EHP = 1
2

∫
(u2

r + u2
z) dV are shown by the red, blue, purple

and green lines, respectively. The dotted lines show the bounds for EH and EM in (1); EH and EM should be between

the bounds, while EHP need not. For R0 = 1.0 all energies are almost unchanged. For R0 = 0.8 and 1.2 the initial

values of EH and EM are close to the bounds. The values approach ET /2 as time proceeds. This is consistent with

the motion since the toroidal component of the hydrodynamic energy EHT = 1
2

∫
u2
θ dV is close to EM near r = Rb.

At large t the poloidal component of the hydrodynamic energy EHP is responsible for the difference between EH

and EM .
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Fig. 2. Motion of magnetic eddies. κ = C = 0.2,Ωc = 1. From left to right: t = 0, 4, 8, 12 and 16.
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Fig. 3. Motion of magnetic eddies. κ = C = 1,Ωc = 1. From left to right: t = 0, 1, 2, 3 and 4.

3.3. Effects of vorticity inside the eddy

Next we investigate the effects of vorticity inside the eddy setting a non-zero value for Ωc. We fix Ωc = 1 and use

two values of κ = C = 0.2 and 1.0. As in the previous section γ is set to zero initially. The initial radius R0 is set to

R0 = Rb = 1.

Figure 2 shows the motion of the eddy for κ = C = 0.2. The eddy propagates with constant speed in +z direction.

The contour deforms into an elliptical shape with its axis rotating around the center of the contour. The motion is

similar to that of a vortex ring which corresponds to κ = C = 0, while the deformation is larger than a vortex ring.

When there is non-vanishing vorticity inside the eddy and κ = C is small, the vortex sheet on the contour cannot

acquire large strength not only because the forces are weak and but also because the contour is rotating so that the rate

of change of γ changes its sign.

Figure 3 shows the motion of the eddy for κ = C = 1.0. In this case the motion is similar with the case Ωc = 0
[4]; the initial single eddy splits into two counter-propagating rings. However, the contour is asymmetric with respect

to z = 0. The mid-point of the two rings moves slowly in +z-direction owing to the self-induced velocity by vorticity

inside the eddy. In addition the radial positions of the centers of the upper and lower rings are larger and smaller

respectively than the equilibrium radius r = Rb. This is explained by the steady solution described in the next

section.
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4. Steady solutions

Steady solutions in the presence of uniform vorticity inside the eddy can be found by a perturbation expansion

assuming the ratio of core to ring radius of the eddy ε be small. We introduce (r̃, z̃) = ((r − R0)/(εR0), z/(εR0)),
where R0 is the ring radius of the eddy. As in the preceding sections we assume

uθ =
C

R0 (1 + εr̃)
, Bθ = κR0(1 + εr̃), (11)

inside the core, and uθ = Bθ = 0 outside. Then the steady MHD equations become

ur
∂ur

∂r̃
+ uz

∂ur

∂z̃
+

∂p∗
∂r̃

= ε

(
u2
θ

1 + εr̃
− B2

θ

1 + εr̃

)
, (12)

ur
∂uz

∂r̃
+ uz

∂uz

∂z̃
+

∂p∗
∂z̃

= 0, (13)

∂ur

∂r̃
+

∂uz

∂z̃
= −ε

ur

1 + εr̃
. (14)

The other variables are expanded as

ur = u(0)
r + εu(1)

r + · · · , uz = u(0)
z + εu(1)

z + · · · , p∗ = p
(0)
∗ + εp

(1)
∗ + · · · . (15)

We fix κ and R0, while C is expanded as C = C0 + εC1 + · · · since in general R0 does not coincide with the

equilibrium radius Rb.

At the leading order the equations coincides with those for two-dimensional steady inviscid hydrodynamic flow

with pressure being replaced by the total pressure. We choose a trivial leading-order solution u
(0)
r = u

(0)
z = 0, p

(0)
∗ =

const. At the next order the equations are

∂p
(1)
∗

∂r̃
=

(
C2

0

R2
0

− κ2R2
0

)
H[1− r̃2 − z̃2],

∂p
(1)
∗

∂z̃
= 0,

∂u
(1)
r

∂r
+

∂u
(1)
z

∂z
= 0, (16)

from which we obtain

C0 = κR2
0, p

(1)
∗ = 0. (17)

At O(ε2) the equations are

u(1)
r

∂u
(1)
r

∂r̃
+ u(1)

z

∂u
(1)
r

∂z̃
+

∂p
(2)
∗

∂r̃
= −4κ2R2

0H[1− r̃2 − z̃2]r̃ + 2κC1H[1− r̃2 − z̃2], (18)

u(1)
r

∂u
(1)
z

∂r̃
+ u(1)

z

∂u
(1)
z

∂z̃
+

∂p
(2)
∗

∂z̃
= 0,

∂u
(2)
r

∂r̃
+

∂u
(2)
z

∂z̃
= 0. (19)

We seek a solution which describes the structures observed in the preceding sections. We set

u(1)
r =

Ωc

2
z̃, u(1)

z = −Ωc

2
r̃, (20)

inside the eddy r̃2 + z̃2 < 1. Then

p
(2)
∗ = p∗,02 − 2κ2R2

0r̃
2 +

Ω2

8
(r̃2 + z̃2) + 2κC1r̃. (21)

Outside the eddy r2 + z2 > 1 the solution is

u(1)
r = κR0

2r̃z̃

(r̃2 + z̃2)2
− β

z̃

r̃2 + z̃2
, u(1)

z = −κR0

(
1 +

r̃2 − z̃2

(r̃2 + z̃2)2

)
+ β

r̃

r̃2 + z̃2
,

p
(2)
∗ = −κ2R2

0

r̃2 − z̃2 + 1
2

(r̃2 + z̃2)2
+ βκR0r̃

(
1

r̃2 + z̃2
+

1

(r̃2 + z̃2)2

)
− β2

2(r̃2 + z̃2)
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Fig. 4. Motion of magnetic eddies. Steady solution. κ = C = 0.25,Ωc = 1. From left to right: t = 0, 2, 4 and 6.

Since the pressure should be continuous we have C1 = β. The θ-component of the strength of the vortex sheet is

Ω(1) = −2κR0 cosϕ+
Ωc

2
+ β, (22)

where ϕ = tan−1(z̃/r̃). If the total circulation is zero then Ω/2 + β = 0 and the center of the cross section differs

from the equilibrium radius by

ΔR = Rb −R0 =
εβ

2κ
= −εΩc

4κ
. (23)

Up to this order the outer solution is the same as the potential flow around a rotating cylinder. The deviation from the

equilibrium radius ΔR is due to the Magnus force. At higher order the boundary should deform.

The steady solutions obtained above are verified by numerical simulation (Fig. 4). As in HM06 a part of the

contour or core boundary moves without deformation at the predicted velocity. An instability is also observed initially

at the rear side (t = 2), while the unstable part rotates clockwise with large deformation (t = 4 and 6).

5. Concluding Remarks

The motion of magnetic eddies with interior vorticity in the presence of swirl is studied by contour dynamics

simulation. First, the bounds for hydrodynamic and magnetic energy determined by cross helicity are checked by

numerical simulation. Starting from the values close to the bounds, both energies become close to a half of the total

energy as the eddy approaches the equilibrium radius where the Lorentz and centrifugal forces balance.

Next, the effects of vorticity inside the eddy are investigated. Depending on the magnitude of the Lorentz and

centrifugal forces two types of motion are observed. For small forces the motion of the eddy is similar to that of

a vortex ring; it propagates with constant speed with its boundary or contour oscillating. For large forces the eddy

splits into two counter-propagating rings. A steady solution which describes these rings is obtained by perturbation

expansion assuming the ratio of core to ring radius be small. Future works would include finding steady solutions

generally without this assumption, using theoretical or numerical methods.
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