
UCSF
UC San Francisco Previously Published Works

Title

Genome-scale methylation analysis identifies immune profiles and age acceleration associations 
with bladder cancer outcomes

Permalink

https://escholarship.org/uc/item/3xb3r5dv

Journal

Cancer Epidemiology Biomarkers & Prevention, 32(10)

ISSN

1055-9965

Authors

Chen, Ji-Qing
Salas, Lucas A
Wiencke, John K
et al.

Publication Date

2023-10-02

DOI

10.1158/1055-9965.epi-23-0331
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xb3r5dv
https://escholarship.org/uc/item/3xb3r5dv#author
https://escholarship.org
http://www.cdlib.org/


CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION | RESEARCH ARTICLE

Genome-Scale Methylation Analysis Identifies Immune
Profiles and Age Acceleration Associations with Bladder
Cancer Outcomes
Ji-Qing Chen1, Lucas A. Salas1, John K. Wiencke2, Devin C. Koestler3, Annette M. Molinaro2,
Angeline S. Andrew4, John D. Seigne5, Margaret R. Karagas1, Karl T. Kelsey6, and Brock C. Christensen1,7

ABSTRACT
◥

Background: Immune profiles have been associatedwith bladder
cancer outcomes and may have clinical applications for prognosis.
However, associations of detailed immune cell subtypeswith patient
outcomes remain underexplored and may contribute crucial prog-
nostic information for better managing bladder cancer recurrence
and survival.

Methods: Bladder cancer case peripheral blood DNA meth-
ylation was measured using the Illumina HumanMethylatio-
nEPIC array. Extended cell-type deconvolution quantified 12
immune cell-type proportions, including memory, na€�ve T and
B cells, and granulocyte subtypes. DNA methylation clocks
determined biological age. Cox proportional hazards models
tested associations of immune cell profiles and age accelera-
tion with bladder cancer outcomes. The partDSA algorithm
discriminated 10-year overall survival groups from clinical
variables and immune cell profiles, and a semi-supervised
recursively partitioned mixture model (SS-RPMM) with DNA

methylation data was applied to identify a classifier for 10-year
overall survival.

Results:Higher CD8T memory cell proportions were associated
with better overall survival [HR ¼ 0.95, 95% confidence interval
(CI) ¼ 0.93–0.98], while higher neutrophil-to-lymphocyte ratio
(HR ¼ 1.36, 95% CI ¼ 1.23–1.50), CD8T na€�ve (HR ¼ 1.21, 95%
CI ¼ 1.04–1.41), neutrophil (HR ¼ 1.04, 95% CI ¼ 1.03–1.06)
proportions, and age acceleration (HR¼ 1.06, 95%CI¼ 1.03–1.08)
were associated with worse overall survival in patient with bladder
cancer. partDSA and SS-RPMM classified five groups of subjects
with significant differences in overall survival.

Conclusions: We identified associations between immune cell
subtypes and age acceleration with bladder cancer outcomes.

Impact: The findings of this study suggest that bladder cancer
outcomes are associated with specific methylation-derived immune
cell-type proportions and age acceleration, and these factors could
be potential prognostic biomarkers.

Introduction
Bladder cancer is a malignant urogenital neoplasm and is clas-

sified into non–muscle-invasive bladder cancer (NMIBC) and
muscle-invasive bladder cancer. In 2022, an estimated 81,000 new
cases of bladder cancer and 17,000 deaths from the disease occurred
in the United States (1). The common risk factors of bladder cancer
are age, sex, and smoking. Bladder cancer is four times more
common in men compared with women (2). About 90% of patients
with bladder cancer are age 55 or older, and patients younger than

60 have a higher 10-year overall survival (OS) rate than patients
older than 60 (3). Around 50% to 60% of new cases are attributed to
smoking, and current smoking has a positive association with the
risk of recurrence (4). The conventional treatment for bladder
cancer is surgery or surgery in combination with chemotherapy
drugs or intravesical immunotherapy [Bacillus Calmette-Gu�erin
(BCG)] (5). Even though transurethral resection and immunother-
apy generally control the disease (1, 6), the tumor recurrence rate is
about 40% after treatment (7, 8). Predictive biomarkers that alert
clinicians to recurrence would help to improve the clinical man-
agement of bladder cancer.

Circulating immune cell profiles have been associated with out-
comes in patients with bladder cancer. For example, CD8þ cell
proportions were associated with a decreased risk of tumor recur-
rence (9). Also, an elevated neutrophil-to-lymphocyte ratio (NLR) has
been associated with worse OS and higher recurrence rate (10, 11).
Previously (12), we measured peripheral blood DNA methylation
profiles of patients with NMIBC and applied cell-type deconvolution
to estimate the proportions of six immune cell types (13). CD4T and
CD8T cell proportions were associated with decreased risk of death
and recurrence. Yet, there have been limited studies investigating the
relationship of circulating immune profiles in bladder cancer with
disease outcomes. Furthermore, subtypes of each major cell type have
been shown to affect cancer development distinctly. For instance,
cytotoxic CD4þT cells can kill the bladder tumor cells, and in contrast,
regulatory CD4þ T can suppress the activity of cytotoxic CD4þ T cells
and lead to tumor growth indirectly (14). To broaden the scope of the
effects of circulating immune profiles on bladder cancer outcomes, it is
necessary to investigate the association between leukocyte subtypes
and bladder cancer outcomes.
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Recently, our group developed an enhanced method to perform
high-resolution cell mixture deconvolution to resolve 12 immune cell
types in blood using DNA methylation measures [na€�ve and memory
B, CD4T, and CD8T, as well as regulatory T, monocyte, natural killer
(NK) cells, neutrophils, basophils, and eosinophils; ref. 15]. Because
DNA methylation involves gene regulation for cell lineage specifica-
tion (16), cell-specific differentially methylated regions can be utilized
todistinguishcell typeswithreference-baseddeconvolution(13,17,18).
Also, DNA methylation cytometry is more efficient for immune
profiling with high accuracy than flow cytometry and can be applied
to archival specimens.

Epigenetic clocks have been developed to estimate chronologic age
or physiologic age in regard to aging outcomes, such as cancers and all-
cause mortality (19–21). Age acceleration derived from these clocks
has been associated with prospective risk in lung, kidney, and pan-
creatic cancer (22–24). Moreover, age acceleration has been associated
with outcomes in other cancers (25, 26). Though only a few studies
have reported the association of age acceleration with bladder cancer
risk, they have not exhibited consistent results nor mentioned the
subtype of bladder cancer they investigated. For example, one study
showed that Pheno and Grim age acceleration were positively asso-
ciated with the prospective risk in bladder cancers (22). Another study
reported that Horvath and Hannum age acceleration was not associ-
ated with bladder cancer risk (27). Because aging is one of risks of
bladder cancer (28), we investigated the association of age acceleration
with bladder cancer outcomes.

Here, we hypothesized that DNAmethylation-derived immune cell
proportions and age acceleration are associated with bladder cancer
outcomes. We applied our new methylation cytometry approach for
extended immune cell resolution to DNA methylation profiles of
archival blood samples from a population-based study containing
NMIBC (N ¼ 601) patients. We then tested the association of cancer
outcomes with each leukocyte subtype proportion and age accelera-
tion. We also used partDSA (29), a classification and regression trees
method, and a semi-supervised recursively partitioned mixture model
(SS-RPMM; ref. 30), to group/cluster our subjects based on cancer
outcomes, patients’ demographics, tumor characteristics, and meth-
ylation profiles of specific CpG loci.

Materials and Methods
Study subjects and samples

A detailed description of subjects who participated in the current
study is available in prior studies (31–33). Briefly, bladder cancer
subjects were recruited from three phases of a New Hampshire
population-based case–control study (34). The first phase collected
blood samples from 331 individuals diagnosed between July 1994 and
June 1998 (phase I). The second phase collected blood samples from
243 individuals diagnosed between July 1998 and December 2001
(phase II). The third study phase collected blood samples from 194
individuals diagnosed between July 2002 and December 2004 (phase
III). Patients with bladder cancer were identified using the New
Hampshire State Cancer Registry and hospital cancer registry (patients
in phase III were identified using the hospital cancer registry only).
Patients’ OS data were from the National Death Index, and tumor
recurrence data were ascertained through chart review.We performed
four comprehensiveNationalDeath Index (NDI) searches for the years
2008, 2010, 2014, and 2018 to identify cases of death. In addition, the
New Hampshire State Cancer Registry had previously reported some
deaths to us through their conducted searches. During each NDI
search, we included all bladder cancer case–control study participants

who had not been previously matched with an NDI death. To ensure
accurate matching, we followed the NDI-recommended method and
utilized the code and algorithms provided by the NDI to score the
matches. Furthermore, we applied the NDI score interpretation using
the recommended NPCR algorithm (35) to enhance the accuracy of
our findings. Subjects without histopathology re-review, muscle-
invasive status, tumor grade, or smoking status were excluded from
the study. The remaining 601 patients with NMIBC were used in
downstream statistical analyses. In addition, 40 patients received BCG
in phase I, 30 received BCG in phase II, and 19 received BCG in phase
III. All patients with BCG treatment had their blood drawn after BCG
treatment, and all blood samples were taken after the initial diagnosis.
This study was approved by the Dartmouth Human Research Pro-
tection Program (Institutional Review Board; approval number
STUDY00010107). The written informed consent was obtained from
the patients and the studies were conducted in accordance with
Belmont Report.

DNA extraction, qualification, and bisulfite modification
After the blood draw, blood samples were kept at 4�C and frozen

within 24 hours. DNA was extracted from blood samples using the
QIAamp DNA Blood Kit (Qiagen) according to the manufacturer’s
protocol. Extracted DNA quantity and quality were assessed with
Qubit 3.0 Fluorometer (Life Technologies) and Fragment Analyzer
(Advanced Analytical). Then, extracted DNA underwent bisulfite
conversion using EZ DNA Methylation Kit (Zymo Research) accord-
ing to the manufacturer’s protocol. Approximately 750 ng of bisulfite-
modified DNA was used as input for the DNA methylation array.

DNA methylation profiling
After DNA extraction, quantification, and bisulfite modification,

Infinium MethylationEPIC Bead Chips (Illumina, Inc.) were used to
measure the DNA methylation status of bisulfite-modified DNA
samples. Raw probe intensity data, iDAT files, from the methylation
array were processed through preprocessNoob using minfi (RRID:
SCR_012830; ref. 36), and quality control was performed using
ENmix (37)R package. To distinguish frombackgroundnoise, samples
with more than 5% of probes with a detection P > 1.0� 10�6 were not
included. In addition, we dropped 32,713 probes thatwere not detected
in more than 10% of the samples. Then, the bias of type-2 probe values
was corrected using BMIQ (RRID:SCR_003446; ref. 38) from water-
melon (RRID:SCR_001296; ref. 39) R package, and theComBat (RRID:
SCR_010974; ref. 40)was used to adjust for batch effects. Next, 106,522
probes previously reported to be cross-reactive, SNP-associated, non-
CpG (CpH) methylation, and sex-specific were excluded (41). After
these exclusions, 726,856 CpGs remained for downstream statistical
analysis. The annotation for CpG sites was from IlluminaHuman-
MethylationEPICanno.ilm10b4.hg19.

Statistical analysis
Methylation agewas estimatedwith the functionmethyAge from the

ENmix (37) R package implementation of the methylation age esti-
mation. Age acceleration was defined as the residual from a regression
of methylation age on chronologic age. Cell-type proportions were
estimated with the projectCellType_CP from the FlowSorted.Blood.
EPIC (RRID:SCR_022540; ref. 13) R package. The NLR was calculated
according to the ratio of neutrophil proportion to lymphocyte
proportion.

Ten-year OS was defined as the time interval from the date of initial
diagnosis to death. Patients alive or lost to follow-up were censored at
the last follow-up. Similarly, 10-year recurrence-free survival (RFS)
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was defined as the time interval from the date of initial diagnosis to the
first tumor recurrence or death, whichever occurred first, and patients
alive and without tumor recurrence or lost to follow-up were censored
at the last follow-up. For OS and RFS, survival times were truncated
at 10 years. In univariate and multivariable analyses, coxph from
the survival (RRID:SCR_021137) R package was used to fit Cox
proportional hazards models to evaluate the association between
bladder cancer outcomes and each variable. Only immune cell profiles
significantly associated with bladder cancer outcomes in the univariate
Cox model were subjected to multivariable analyses. Cox.zph from the
survival R package was employed to test the proportional hazards
assumption. Predictors with assumption violations were included
as strata in the Cox models. The linearity assumption was examined
with the ggcoxfunctional from the survminer (RRID:SCR_021094) R
package. We conducted 2% winsorization on immune cell profiles
identified to violate the linearity assumption. FDR-corrected P value
of < 0.05 was the significance threshold on multivariable analysis.

To explore interactions between clinical variables and immune cell
proportions in survival analysis, we applied a partitioning deletion/
substitution/addition algorithm [partDSA (29, 42); R package] for
model building employing the inverse probability censoring weighted-
L2 loss function. Those variables (age, Hannum or Pheno age accel-
eration, sex, tumor grade, smoking status, BCG treatment status, and
immune cell type proportions) associated with 10-year OS were
included in the multivariable model as input. The partDSA approach
resulted in three groups of subjects that were based on neutrophil and
CD8 na€�ve cell proportions. After the model was built, corresponding
Kaplan–Meier curves were generated, and HRs and 95% confidence
intervals (CI) were calculated using the Cox model.

To identify a novel set of bloodDNAmethylation profiles associated
with cancer outcomes, we applied a SS-RPMM algorithm (30). This
method uses the recursive partitioning mixture model (RPMM),
demonstrating an effective and efficient unsupervised clustering pro-
cedure for methylation data (43–46). To avoid overfitting and provide
for validation of themodel, we randomly split the total population into
a training and testing set at a 2:1 ratio, stratified by deceased status
(whether subjects were deceased or censored within 10 years) to
balance the distribution of outcome status between sets. We used the
10% most variable CpG loci in methylation beta values across all
samples. After splitting subjects and subsetting CpGs, a series of Cox
proportional hazards models were fit using the training set for each
selected CpG loci adjusted for age, age acceleration, sex, tumor grade,
smoking status, BCG treatment status, and immune cell-type propor-
tions associated with 10-year OS of patients with NMIBC. Next, Cox-
scores (|b|/se(b), where b ¼ the proportional hazards estimate of the
log-HR, and se ¼ the standard error) were computed for each of the
selected CpG loci, and Cpg loci were ranked based on the Cox scores.
Subsequently, the top M (range: 5–50) loci with the largest absolute
Cox scores were chosen using a x-fold cross-validationRPMMwith the
smallest median P value of the log-rank test for each potentially
optimal number (M) of CpG loci in the training set. Then, RPMM
was fit to the testing set for clustering subjects using the optimal M-
selected CpG loci with the largest absolute Cox score, predicting the
methylation class membership for the subjects. Then, all patients with
NMIBCwere clustered usingRPMM based on themethylation levels of
the optimal CpG sites. Finally, we evaluated the association of RPMM
class membership with OS using Cox proportional hazards models.

Data availability
All datasets generated and analyzed during this current study are

available in the Gene Expression Omnibus repository at GSE183920.

Results
Characteristics of subjects

DNAmethylation profiles were obtained from 601 peripheral blood
samples from patients with NMIBC using the Human Methylatio-
nEPIC array. The study group was 455 (75.7%) men, 306 (50.9%)
former-smokers, 192 (32.0%) current-smokers, 89 (14.8%) with BCG
treatment, and had a median age of 66 (Table 1). The distribution of
chronologic age, methylation age, and age acceleration is shown in
Supplementary Fig. S1A. Cell-type proportions were estimated for
each patient using methylation cytometry (Supplementary Fig. S1B).
Stratifying on median time from diagnosis to blood draw, patient and
tumor characteristic summary statistics showed similar distributions.
Furthermore, we observed no significant associations of immune
profile variables with time from diagnosis to blood draw. To assess
the potential modification of results by time to the blood draw, we
performed an analysis testing the relation of immune profile variables
with patient outcome, stratifying patients into two groups based on
median time to the blood draw. We did not observe differences
between associations of immune variables with outcomes between
the groups based on time to blood draw.

Risk of bladder cancer outcomes
First, we examined associations of three major methylation age

clocks,Horvath age (19),Hannumage (21), andDNAmPhenoAge (20),

Table 1. Characteristics of subjects.

NMIBC (n ¼ 601)

Age
Median (IQR) 66 (57–71)

Pheno age acceleration
Median (IQR) �0.41 (�4.28 to 3.65)

Hannum age acceleration
Median (IQR) �0.10 (�2.53 to 2.54)

Sex
Male 455 (75.7%)
Female 146 (24.3%)

Tumor grade
Low grade 450 (74.9%)
High grade 151 (25.1%)

Smoking status
Never 103 (17.1%)
Former 306 (50.9%)
Current 192 (32.0%)

BCG: Immunotherapy
No 512 (85.2%)
Yes 89 (14.8%)

Time from diagnosis to blood draw (days)a

Median (IQR) 319 (176–569)
NLR

Median (IQR) 1.96 (1.38–2.86)
10-year survival status

Alive 413 (68.7%)
Deceased 178 (29.6%)
Censored 10 (1.7%)

10-year recurrence-free statusb

Alive and no tumor recurrence 224 (37.3%)
Tumor recurrence or deceased 371 (61.7%)
Censored 6 (1.0%)

aAll blood samples were taken after the diagnosis.
bWhether patient with tumor recurrence or deceased within 10 years.
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with bladder cancer outcomes. Our findings showed that Horvath age
acceleration was not associated with 10-year OS (Supplementary
Table S1). Because the Horvath clock was developed using data from
a subset of CpG loci on the IlluminaHumanMethylation27 (27K) CpG
BeadChip (�27,000 features) compared with the Hannum and Phe-
noAge clocks (whichwere developed using 20 timesmore featureswith
data from CpGs on the Illumina HumanMethylation450 (450K) and
EPIC (850K) BeadChips), we focused on Hannum and Pheno age
acceleration in subsequent analyses. Then, we fit multivariable Cox
proportional hazards models for demographic and tumor character-
istic variables to investigate associations with 10-year OS and RFS. For

patients with NMIBC, age, age acceleration, smoking, and high tumor
grade were associated with worse RFS and OS. Women had a better
survival outcome compared with men (Table 2; Supplementary
Table S2).

Next, the association between immune cell-type proportions and
bladder cancer patient outcomeswas investigated.We fit multivariable
Cox models for immune cell-type proportions associated with bladder
cancer outcomes in Cox univariate models (Table 3; Supplementary
Table S3). CD4T memory, CD8T memory, and NK cell proportions
were associated with a decreased risk of death. Whereas NLR, CD8T
na€�ve, and neutrophil cell proportions were each associated with an
increased risk of death. In analyses of RFS, CD4T memory was
associated with a decreased risk of tumor recurrence, and NLR,
monocyte, and regulatory T cell proportions were associated with an
increased risk of tumor recurrence (Table 3; Supplementary Table S3).
Hazard estimates for associations of demographic and tumor char-
acteristic variables with outcomes were similar after adjusting for cell
composition. Because there was a stronger (smaller P value) associ-
ation of immune cell profiles with 10-year OS compared with 10-year
RFS, subsequent analyses are focused on 10-year OS of patients with
NMIBC. Because BCG treatmentmay affect immune cell composition,
we performed a sensitivity analysis limiting our analysis to patients not
receiving BCG treatment and observed results consistent with those
obtained for all patients with NMIBC (Table 3; Supplementary
Table S4).

Clinical and immune profiles recursive partitioning analysis
To partition the covariate space and explore interactions of clinical

variables with immune cell proportions in 10-year OS, we applied a
partitioning deletion/substitution/addition [partDSA (29)] algorithm
for model building (Fig. 1A). partDSA is an analytic algorithm
employing recursive partitioning. It uses loss functions to build
clinically interpretable predictors of risk for a given event based on
the covariate information. In brief, this method divides the covariate
space into mutually exclusive regions and stratifies patients into
distinct risk groups with respect to an outcome. As a result, it can
make guidelines for estimating a patient’s prognosis from clinical and
biological information (42). Age, Hannum or Pheno age acceleration,

Table 2. Cox proportional hazards multivariable models for
demographic and tumor characteristics of 601 patients with
NMIBC (for Pheno age acceleration).

10-year
overall survival
HR (95% CI)

10-year
recurrence-free survivala

HR (95% CI)

Age 1.08 (1.06–1.10) 1.02 (1.01–1.03)
Pheno age acceleration 1.06 (1.03–1.08) 1.02 (1.00–1.03)
Sex

Male
Female 0.50 (0.33–0.78)

Tumor grade
Low grade
High grade 1.58 (1.15–2.17) 1.49 (1.18–1.88)

Smoking status
Non-smoker
Former-smoker 1.35 (0.82–2.22) 1.56 (1.13–2.15)
Current-smoker 1.87 (1.10–3.16) 1.69 (1.20–2.38)

BCG treatment
No
Yes 0.89 (0.58–1.34)

Abbreviations: CI, confidence interval; HR, hazard ratio; NMIBC, non–muscle-
invasive bladder cancer.
aStratification was used on sex and BCG treatment status for proportional
assumption.

Table 3. Cox proportional hazards models of immune cell proportions and NMIBC patient outcomes (for Pheno age acceleration).

10-year overall survival 10-year recurrence-free survival
Univariate model Multivariablea model Univariate model Multivariableb model
HR (95% CI) HR (95% CI) FDR HR (95% CI) HR (95% CI) FDR

NLR 1.49 (1.37–1.62) 1.36 (1.23–1.50) 6.9 � 10�9 1.14 (1.06–1.22) 1.10 (1.01–1.18) 0.046
Memory B cell 0.82 (0.72–0.94) 0.89 (0.78–1.02) 0.13 0.94 (0.87–1.03)
Na€�ve B cell 0.86 (0.79–0.94) 0.93 (0.86–1.00) 0.09 0.99 (0.94–1.04)
Memory CD4T cell 0.92 (0.90–0.95) 0.95 (0.93–0.98) 3.8 � 10�3 0.97 (0.96–0.99) 0.98 (0.96–0.99) 0.046
Na€�ve CD4T cell 0.87 (0.82–0.93) 0.98 (0.92–1.04) 0.48 0.95 (0.92–0.99) 0.99 (0.95–1.02) 0.46
Memory CD8T cell 0.96 (0.94–0.99) 0.95 (0.93–0.98) 3.8 � 10�3 0.99 (0.97–1.01)
Na€�ve CD8T cell 0.84 (0.73–0.96) 1.21 (1.04–1.41) 0.03 0.93 (0.86–1.02)
Monocyte 1.06 (1.02–1.11) 1.01 (0.96–1.06) 0.74 1.05 (1.02–1.08) 1.03 (1.00–1.07) 0.07
Neutrophil 1.06 (1.05–1.08) 1.04 (1.03–1.06) 2.0 � 10�6 1.01 (1.00–1.02) 1.01 (0.99–1.02) 0.31
Regulatory T cell 1.27 (1.08–1.49) 1.16 (0.98–1.36) 0.12 1.20 (1.06–1.35) 1.17 (1.03–1.32) 0.046
NK cell 0.92 (0.87–0.98) 0.92 (0.86–0.98) 0.03 0.98 (0.94–1.02)
Basophil 1.51 (1.24–1.85) 1.26 (1.01–1.56) 0.07 1.16 (0.99–1.35)
Eosinophil 1.02 (0.95–1.10) 1.03 (0.98–1.08)

Note: Winsorization was used on the top 2% or the last 2% (only Neu) values for fitting linearity assumption.
Abbreviations: CI, confidence interval; HR, hazard ratio; NLR, neutrophil to lymphocyte ratio; NMIBC, non-muscle-invasive bladder cancer.
aThe model controlling for age, sex, tumor grade, smoking status, BCG treatment status, and Pheno age acceleration.
bThe model controlling for age, stratified sex, tumor grade, smoking status, stratified BCG treatment status, and Pheno age acceleration.
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sex, tumor grade, smoking status, BCG treatment status, and immune
cell type proportions associated with 10-year OS were included in the
model as input. The outcome was 10-year OS. The partDSA analysis
divided subjects into three groups based on neutrophil and CD8 na€�ve
cell proportions. The patients with NMIBC with neutrophil propor-
tion >76.46 had the worst 10-year OS (Group 2, n ¼ 17, HR ¼ 4.93,
95% CI ¼ 2.78–8.71) compared with Group 1 patients (patients with
neutrophil cell proportions ≤76.46 and CD8 na€�ve cell proportions
≤1.76; n ¼ 454; Fig. 1B). Although the 10- and 5-year OS rates
(Fig. 1C) for Groups 1 and 3 were not statistically significantly
different, we observed that their corresponding Kaplan–Meier curves
separated after 5 years. To further investigate the difference between
10-year OS in Group 1 and Group 3, we selected the patients with

NMIBC in Groups 1 and 3 whose time intervals from the date of initial
diagnosis to death or the last follow-up were greater than 5 years
(sample size: Group 1¼ 401; Group 3¼ 117), using the Kaplan–Meier
method to observe 10-year OS. As we expected, for patients with time
intervals from the date of initial diagnosis to death or last follow-up of
more than 5 years, Group 3 patients (neutrophil proportion ≤76.46,
CD8T na€�ve proportion >1.76) had better 10-year OS (HR¼ 0.37, 95%
CI ¼ 0.19–0.71) compared with Group 1 patients (Fig. 1D). Next, we
examined the distribution of immune cell-type proportions, methyl-
ation age, and age acceleration in the three groups. Among the groups,
patients with NMIBC in Group 2 had lower B na€�ve, eosinophil,
monocyte, NK, CD4T memory, CD4T na€�ve, CD8T memory, and
CD8T na€�ve proportions compared with other groups. Also, patients

A B

C D

Figure 1.

Clinical and immune profiles recursive partitioning analysis, and 10-year OS Kaplan–Meier curves stratified by the grouping result from partDSA in patients with
NMIBC: A, partDSA model setting and analysis results. For 601 patients with NMIBC, the neutrophil cell proportion in peripheral blood was the primary node, with
the CD8 na€�ve cell proportion as the secondary node. Patients with NMIBC fell into one of three risk groups. Group 1 consisted of the 454 patients who had neutrophil
cell proportions ≤76.46 and CD8 na€�ve cell proportions ≤1.76. Group 2 consisted of the 17 patients who had neutrophil cell proportions >76.46. Group 3 consisted of
the 130 patients who had neutrophil cell proportions ≤76.46 and CD8 na€�ve cell proportions >1.76. CD4T memory, CD8T na€�ve, CD8T memory, NK cells, and
neutrophils cell proportionswere employed in themodel using Pheno age acceleration; Bmemory, CD4Tmemory, CD8T na€�ve, CD8Tmemory, regulatory T, NK cells,
neutrophils, and basophils cell proportions were employed in the model using Hannum age acceleration. Both models generated the same partitioning results.
B, Kaplan–Meier curves are shown based on clinical and immune profiles recursive partitioning analysis. C, 5-year OS Kaplan–Meier curves in patients with NMIBC
in Groups 1 and 3. D, Five- to 10-year OS Kaplan–Meier curves in patients with NMIBC in Groups 1 and 3 who were deceased or censored after 60 months. P values
for log-rank tests are shown. All Kaplan–Meier curves are univariate analyses without adjusting for other variables. CI, confidence intervals; HR, hazard ratio;
Neu, neutrophil.
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in Group 2 had higher neutrophil proportion, NLR, chronologic age,
methylation age, and age acceleration compared with other groups
(Supplementary Fig. S2).

SS-RPMM for 10-year OS
To investigate whether we could identify a blood DNAmethylation

profile associated with NMIBC survival, we applied a SS-RPMM
method. The workflow is illustrated in Fig. 2A and Supplementary
Fig. S3A. The subjects in the testing set were assigned to cluster
membership using the methylation profiles of the optimal CpG sites
[Supplementary Table S5A (Pheno) and Supplementary Table S5B
(Hannum)]. Then, all patients with NMIBC were clustered using
RPMM based on the methylation levels of the optimal CpG sites,
resulting in two classes, rR and rL [“R” and “L” corresponded with
branches in the dendrogram; r stands for root; Fig. 2B (Pheno);
Supplementary Fig. S3B (Hannum)]. Methylation class membership
was significantly associated with 10-year OS; patients in cluster rR had

a more favorable 10-year OS compared with those in cluster rL in
both the testing set [HR¼ 0.35, 95% CI¼ 0.20–0.60; Fig. 2C (Pheno);
HR¼ 0.38, 95% CI¼ 0.21–0.68; Supplementary Fig. S3C (Hannum)]
and when using all patients with NMIBC [HR¼ 0.35, 95% CI¼ 0.25–
0.48;Fig. 2D (Pheno);HR¼ 0.37, 95%CI¼ 0.27–0.52; Supplementary
Fig. S3D (Hannum)]. Then, we compared the distribution of
immune cell-type proportions, chronologic age, methylation age,
and age acceleration. Consistent with the models in Table 3 and
Supplementary Table S3, we observed that patients in cluster rR
(n ¼ 288) had significantly higher B memory, B na€�ve, CD4T
memory, CD4T na€�ve, CD8T memory, and NK cell proportions
and had significantly lower basophil, eosinophil, monocyte, neu-
trophil cell proportions, NLR, chronologic age, methylation age,
and age acceleration compared with patients in cluster rL (n ¼ 313;
Supplementary Fig. S4A and S4B). The model using Hannum age
acceleration had similar results shown in Supplementary Fig. S4C
and S4D.

A B

DC

Select the 10% most variable CpGs (72,685 CpGs)

Randomly split the data set into training (2/3) and tes�ng set (1/3)

1. Fit Cox-propor�onal hazards models for OS to each CpG in Training Set samples with age, Pheno age 
accelera�on, Sex, Tumor grade, Smoking status, BCG treatment, Memory CD4T, Memory CD8T, naïve 
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Figure 2.

SS-RPMM for 10-year OS in patients with NMIBC (for Pheno age acceleration): A, Data analysis schematic of SS-RPMM used for identification of blood DNA
methylation profiles associated with NMIBC. B, Heat map of predicted class memberships for the observations in all patients with NMIBC using the average beta
values of the 15 CpG loci with the largest absolute Cox scores. C, Kaplan–Meier curves of 10-year OS stratified by the SS-RPMM classification of 202 patients with
NMIBC in the testing set by the 15 CpG loci.D, Kaplan–Meier analysis of 10-year OS. Ten-year OS curves stratified by the grouping result from SS-RPMM in all patients
with NMIBC. P values for log-rank tests are shown. All Kaplan–Meier curves are univariate analyseswithout adjusting for other variables; CI, confidence intervals; HR,
hazard ratio; SS-RPMM, semi-supervised recursively partitioned mixture model.
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Combined results from immune cell proportions and
methylation profile groups

The twomethods above used immune profiles (partDSA) and DNA
methylation profiles (SS-RPMM) to explore the association of these
profiles with OS, respectively. We were curious whether we could
combine immune andmethylation information to produce a guideline
for estimating a patient’s prognosis. To gain a deeper understanding of
interactions between clinical variables, immune cell proportions, and
blood DNA methylation profiles in 10-year OS, we allocated patients
with NMIBC based on clustering results from partDSA and SS-RPMM
analyses in five groups (Supplementary Table S6). Groups 1 and 3,
from the partDSA analysis, were divided into two subgroups based on
the SS-RPMM analysis (Fig. 3A; Supplementary Fig. S5A). In Kaplan–
Meier analysis, patients in Group 2 still had the worst 10-year OS rate
among all groups. Within the Group 1 patients, the group G1_rR had
better 10-year OS than the group G1_rL [HR ¼ 0.40, 95% CI¼ 0.27–
0.58; Fig. 3B (Pheno); HR¼ 0.45, 95%CI¼ 0.31–0.65; Supplementary
Fig. S5B (Hannum)]. Consistent with Group 1 patients, in Group 3
patients, the group G3_rR had better 10-year OS compared with
the group G3_rL [HR ¼ 0.42, 95% CI ¼ 0.18–0.95; Fig. 3B (Pheno);
HR¼ 0.35, 95% CI¼ 0.15–0.79; Supplementary Fig. S5B (Hannum)].

Discussion
This study aimed to test the relation of bladder cancer outcomes

with high-resolution immune profiles using methylation cytometry
and cell-independent methylation states in blood. In prior work, we
observed that CD4T and CD8T proportions were associated with the
decreased risk of death and tumor recurrence in patients with
NMIBC (12); however, the results were not generalizable to na€�ve
andmemory subtypes of CD4T and CD8T cells. With recent advances
in methylation cytometry for immune profiling (15), we were able to

examine the association between the proportions of regulatory T cells,
eosinophils, basophils, na€�ve and memory subtypes of CD4T, CD8T,
and B cell and bladder cancer outcomes. Consistent with our previous
study, NLR was associated with an increased risk of death and tumor
recurrence in patients with NMIBC. For CD4T and CD8T cell subsets,
CD4T memory and CD8T memory cell proportions were associated
with a decreased risk of death. However, only CD4T memory cell
proportion was associated with a reduced risk of death and tumor
recurrence. One possible explanation for the different observations is
that we introduced age acceleration into the models. This might
confound the association between CD8T cell proportions subtypes
and bladder cancer outcomes.Here, we identified associations between
immune cell subtypes and age acceleration with bladder cancer out-
comes. These factors could be potentially prognostic biomarkers of
bladder cancer.

Few studies have shown age acceleration frommultiple age clocks to
be associatedwith bladder cancer outcomes, and even then, they donot
show consistent results (22, 27). In our study, the direction of hazard
estimates among cell type proportions was similar. However, outcome
associations with immune profile differed in Coxmultivariablemodels
controlling for Pheno and Hannum age acceleration. The observed
difference was potentially due to the trainingmethods of clocks. Unlike
Hannum age using chronologic age as a surrogate, Pheno age mainly
focuses on aging outcomes, such as cancers, diet, and all-cause
mortality, hence, Pheno age can capture age-related outcomes and
perform well in predicting survival compared with chronologic meth-
ylation clocks, such as Hannum and Horvath clocks. Horvath age
acceleration was not associated with bladder cancer outcomes. One
potential explanation is that theHorvath clockwas builtmainly using a
subset of CpGs on the 27K methylation array platform, which had
approximately 20 times fewer CpGs than the 450K and EPIC array
platforms used for the developing of the Hannum and PhenoAge

BA

Figure 3.

Kaplan–Meier analysis of 10-year OS based on the grouping results from both partDSA and SS-RPMM in all patients with NMIBC (for Pheno age acceleration):
A, contingency table based on the grouping results from both partDSA and SS-RPMM in all patients with NMIBC. B, Ten-year OS curves of all five groups. P values for
log-rank tests are shown. All Kaplan–Meier curves are univariate analyseswithout adjusting for other variables. CI, confidence intervals; HR, hazard ratio; NMIBC, non–
muscle-invasive bladder cancer; partDSA, partitioning deletion/substitution/addition algorithm; SS-RPMM, semi-supervised recursively partitioned mixture model.
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clocks. Furthermore, various cell and tissue types were used to develop
theHorvath clock.However,HannumandPhenoAge clockswere built
based on data from blood DNA measures.

Our findings suggest that elevated NLR, neutrophil, basophil,
regulatory T, and decreased CD4Tmemory cell proportions increased
the risk of death and tumor recurrence in patients with bladder cancer.
These findings met our expectations, consistent with previous studies
demonstrating that peripheral blood NLR levels were associated with
an increased risk of NMIBC recurrence after surgery (47–49). More-
over, basophil count was significantly associated with an increased risk
of recurrence in patients with BCG-treated bladder cancer (50). One
study indicated that peripheral (neutrophil � platelet)/(lymphocyte)
was inversely correlated with a high risk of tumor recurrence in
NMIBC (51). Even though some peripheral immune profiles we found
had not been revealed to be associated with bladder cancer outcomes,
these immune profiles in the tumor microenvironment had been
reported to be associated with bladder cancer outcomes. For instance,
higher regulatory T cell infiltration in the tumor microenvironment
was associated with a shorter RFS (52), and regulatory T cell frequency
within the tumor was inversely correlated with RFS in patients with
NMIBC (53). Future work that integrates the assessment of cell-type
proportions in the tumor microenvironment and periphery associated
with bladder cancer outcomes would be of value.

The optimal 15 CpG loci selected by SS-RPMM using the model
adjusting for Pheno age acceleration, and the optimal 50 CpG loci
selected by SS-RPMM using the model adjusting for Hannum age
acceleration track to several genes that have been reported to be
involved in bladder cancer development. Sprouty-related EVH1
domain-containing protein 2 (SPRED2), is a negative regulator of the
ERK-MAPK pathway, and has been reported to have increased mRNA
and protein expression in NMIBC compared with carcinoma in situ
and infiltrating urothelial carcinoma (54). In addition, patients with
higher SPRED2 mRNA levels had better OS compared with low
expression group (54). Peroxisome proliferator-activated receptor
gamma (PPARG) high-activation has been reported to promote
cell-cycle G2 arrest and apoptosis, leading to suppression of tumor
growth and better prognosis in patients with bladder cancer (55).
Fibrous sheath interacting protein 1 (FSIP1) was overexpressed in
protein and mRNA levels of bladder tumor tissues and cancer cell
lines (56, 57). Besides, FSIP1 overexpression was associated with worse
outcomes (56). Phosphorylated MAPK 14 (MAPK14) was overex-
pressed in bladder cancer cell lines and tissues (58). Furthermore,
phosphorylatedMAPK14 could combine and regulate RUNX2, which
was identified in our previous study through epigenome-wide asso-
ciation study (12), to promote the proliferation and migration of
bladder cancer (58). Consistent with our findings, patients with a
worse survival rate (rL group) had lowermethylation levels in the CpG
site, cg16145324, located in theMAPK14 gene region (Supplementary
Table S5B).

To further investigate the interactions between clinical variables,
immune profiles, and DNA methylation levels, we performed both
partDSA and SS-RPMM. Though patients with NMIBC were divided
into three groups using partDSA, theKaplan–Meier curves forGroup 1
and 3 patients were not significantly different. Interestingly, when we
applied the optimal CpG loci selected by SS-RPMM, patients inGroups
1 and 3 were grouped into two groups, with a significant difference in
10-year OS. This finding illustrated the importance of methylation
levels of specific CpG sites in evaluating bladder cancer prognosis.

While this study carefully evaluated the association of cancer out-
comes with peripheral immune cell type proportions, there were
potential study limitations. For instance, BCG treatment has been

reported to affect immune cell composition (50, 51, 59) and methyl-
ation profiles (60). We do not have detailed information, such as cycle
numbers or responsiveness for each patient, though only a few patients
(14.8%) in our study received BCG treatment. In addition, our
sensitivity analysis that limited to patients who did not receive BCG
treatment demonstrated consistent results with the overall NMIBC
group. In addition, case ascertainment for our population-based study
resulted in a median time from diagnosis to study blood draw is
319 days in our dataset. Furthermore, some confounding factors,
such as obesity (61), alcohol consumption (62), and type 2 diabe-
tes (63), have been reported to affect peripheral immune cell distri-
bution. However, we had incomplete information on these potential
covariates.

Taken together, our analysis applied the latest differentially meth-
ylated region library and highlighted several peripheral immune
profiles that were associated with bladder cancer outcomes. We
assessed interactions between clinical variables, immune cell propor-
tions, and blood DNA methylation profiles in 10-year OS using
partDSA and SS-RPMM analyses, clustering patients with NMIBC
into five groups according to themethylation levels of the optimal CpG
loci, neutrophil, and CD8T na€�ve cell proportions. While few studies
have investigated the association between bladder cancer outcomes
and peripheral immune profiles, our findings provide insight into the
potential of peripheral immune profiles to serve as prognostic bio-
markers in bladder cancer. Future work examining immune profiles in
tumor tissues as well as DNA methylation profiles of patients with
bladder cancer is needed to integrate interactions between bladder
cancer outcomes, methylation levels, peripheral immune environ-
ment, and tumor microenvironments to further validate the feasibility
of methylation-derived immune profiles for epigenetic biomarkers of
bladder cancer.
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