# Lawrence Berkeley National Laboratory 

 Recent WorkTitle
THE MOLECULAR-BEAM ELECTRIC RESONANCE SPECTRA OF NaCl AND NaBr

## Permalink

https://escholarship.org/uc/item/3xb9q2ww

## Authors

Melendres, C.A.
Hebert, A.J.
Street, K.
Publication Date
1967-11-01

## University of California

## Ernest O. Lawrence Radiation Laboratory

THE MOLECULAR-BEAM ELECTRIC RESONANCE SPECTRA OF NaCl AND NaBr
C. A. Melendres, A. J. Hebert and K. Street Jr.

November 1967


## DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

# UNIVERSITY OF CALTFORNIA <br> Lawrence Radiation Laboratory <br> Berkeley, California <br> AEC Contract No. W-7405-eng-48 

THE MOIECULAR-BEAM EIECTRIC RESONANCE SPECTRA OF NaCl AND NaBr
C. A. Melendres, A. J. Hebert and K. Street Jr.

November 1967

Printed in the United States of America Available from
Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U.S. Department of Commerce Springfield, Virginia 22151
Price: Printed Copy $\$ 3.00$; Microfiche $\$ 0.65$

## I. INTRODUCTION

Over the past years, the molecular beam electric resonance technique of radio-frequency spectroscopy ${ }^{l, 2}$ has become established as a very accurate method for determining molecular dipole moments and studying interactions between nuclear moments and the molecular fields. The work described here forms part of a series of investigations on the radio-frequency spectra of the alkali halides. More accurate values of dipole moments and quadrupole coupling constants provide the test for a polarizable ion model for these molecules. ${ }^{3}$

The radio-frequency Stark spectra of $\mathrm{Na}{ }^{23} \mathrm{Cl}{ }^{35}$ has been studied by Gold. ${ }^{4}$ He obtained values of dipole moments for the first three vibrational states of the molecules. The quality of the spectra, however, did not permit an accurate determination of the hyperfine interaction constants. An approximate value of 5.6 MHz was given for the quadrupole coupling constant (eqQ) of both the $\mathrm{Na}{ }^{23}$ and Cl ${ }^{35}$ nucleus.

A number of studies have been conducted to determine hyperfine interactions in $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ by the molecular beam magnetic resonance (MBMR) method. $5,6,7,8$ The widely different values of the $\mathrm{Na}^{23}$ coupling constant.in $\mathrm{Na}^{23}{ }_{\mathrm{C}}{ }^{35}$, however, lead one to doubt the accuracy of the method.

Up until the present work, the spectra of the isotopic molecule $\mathrm{Na}^{23}{ }_{\mathrm{Cl}} 37$ have not been studied. The radio-frequency stark spectra of $\mathrm{Na}^{23} \mathrm{Br}^{79}$ and $\mathrm{Na}^{23} \mathrm{Br}{ }^{81}$ have not been studied before. Microwave measurements ${ }^{9}$ gave a value of $58 \pm 2 \mathrm{MHz}$ for (eqQ) $\mathrm{Br}^{79}$ and magnetic (MBMR) measurements ${ }^{7,10}$ indicate a value of 4.7 to 4.9 MHz for (eqQ) $\mathrm{Na}^{23}$ in $\mathrm{Na}^{23_{\mathrm{Br}} 79}$.

The incorporation of a signal averaging system to the molecular beam spectrometer in this laboratory has permitted the re-examination of the radiofrequency spectra of these molecules. From an analysis of the hyperfine
components of the Stark spectra, more accurate values of dipole moments and (eqQ)'s have been obtained as a function of vibrational state. An assignment of the (eqQ)'s in $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ to the respective nuclei was made possible after a determination of (eqQ) 37 from the $\mathrm{Na}^{23} \mathrm{Cl}$ spectra. Values of dipole moments of the two NaBr isotopes have been measured for the first time together with the (eqQ) of the various nuclei.
II. EXPERIMENTAL APPARAIUS AND PROCEDURES
A. Molecular Beam Spectrometer

The experimental apparatus used in this work is that built by Hebert 11 and has been used in a number of previous investigations carried out in this laboratory. 3,12 since it has been described in detail before, only a brief summary will be given here.

The spectrometer consists essentially of four high vacuum chambers which house an oven, a state-selecting inhomogeneous electric field (A-field), an extremely homogeneous electric field (C-field), a refocusing inhomogeneous electric field (B-field), a surface ionization detector, a $60^{\circ}$ sector magnet mass spectrometer and a 14-stage electron multiplier. A schematic diagram of the apparatus is shown in Fig. 1.

The source ovens used in these experiments were $3 / 8^{\prime \prime}$. diam $\times 0.010^{\prime \prime}$ wall $\times 6-1 / 2^{\prime \prime}$ long tubes of Platinum-Iridium alloy ( $80 \%-20 \%$ ), with 0.25 " long by $0.005^{\prime \prime}$ wide slit at the middle. Sample is placed in the oven and heated to about $850^{\circ} \mathrm{C}$ for NaCl and $800^{\circ} \mathrm{C}$ for NaBr by resistance heating. Sample effuses from the source to a buffer chamber and on to a main chamber which houses the deflecting fields and the detector. The inhomogeneous A and B fields are of the

THE MOLECULAR-BEAM ELECTRIC RESONANCE SPECTRA OF NaCl AND NaBr*
C. A. Melendres, A. J. Hebert, and K. Street Jr.

Lawrence Radiation Laboratory and
Department of Chemistry
University of California
Berkeley, California

- November 1967

ABSIRACT

The radio-frequency Stark spectra of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}, \mathrm{Na}^{23} \mathrm{Cl}{ }^{37}, \mathrm{Na}^{23} \mathrm{Br}{ }^{79}$ and $\mathrm{Na}^{23} \mathrm{Br}^{81}$ have been observed by the molecular beam electric resonance method of molecular spectroscopy. Analysis of spectral lines obtained by observing transjtions of the type $J=1, M_{J}= \pm 1 \rightarrow J=1 M_{J}=0$ at strong electric fields yielded molecular dipole moments and nuclear hyperfine interaction constants for the different vibrational states of the molecules.

[^0]
Buffer or separoting $\frac{\text { chamber }}{3^{\prime \prime} \times 10^{\prime \prime} \times a^{\prime \prime}}$
\[

$$
\begin{array}{lll}
I_{0}=12.3 \mathrm{~cm} & I_{4}=7 \mathrm{~cm} & I_{A}=30.5 \mathrm{~cm} \\
I_{1}=20.6 \mathrm{~cm} & I_{5}=55 \mathrm{~cm} & I_{B}=30.5 \mathrm{~cm} \\
I_{2}=4 \mathrm{~cm} & I_{6}=69 \mathrm{~cm} & I_{C}=25.4 \mathrm{~cm}
\end{array}
$$
\]

Fig. 1. Schematic diagram (top view) of the electric resonance apparatus. Field lengths and chambers are to scale. Field gaps and beam displacements are exaggerated. Unshaded areas in chamber walls represent access ports.
(Dimensions refer to internal chamber sizes.)
(1) Hot wire and ion accelerator
(2) Glass port cover for optical alignment
(3) Permanent magnet, $60^{\circ}$, I-cm gap.
(4) Outlet, 4 in. diam, to liquid nitrogen trap and oil-diffusion pump
(5) Outlet, 5 in. diam, to liquid nitrogen trap and oil-diffusion pump
(6) Outlet, 4 in. diam, to gate valve, liquid nitrogen trap, and oildiffusion pump
(7) Outlet, 6 in. diam, to gate valve, liquid nitrogen trap, and oildiffusion pump
(8) Gate valve and beam flag.
dipole type, 30.5 cm long, and permit the selection of a certain ( $J, M_{J}$ ) quantum state and refocusing of the same state ("flop-out" experiments) or another ("flop-in" experiment). ${ }^{1} J$ is the rotational angular momentum quantum number for the molecule and $M_{J}$ is its component in the direction of the electric field. The homogeneous Stark field (C-field) consists of 2 parallel plate electrodes 25.4 cm long and separated by $1.000001 \pm 0.000001 \mathrm{~cm}$ at $20^{\circ} \mathrm{C}$. Field homogeneity is within 7 ppm. Field measurement is made via a Guildline ratio box with a Leeds and Northrup Guarded Potentiometer calibrated with a bank of unsaturated standard cells. Uncertainty in the C-field voltage measured is about 2 parts in 10.5 Radiofrequency voltage is introduced in the C-field region in a manner first introduced by Trischka. ${ }^{13}$ The ribbon beam is detected by surface ionization on a $0.010^{\prime \prime}$ wide $\times 0.001^{\prime \prime}$ thick Tungsten filament heated to about $1650^{\circ} \mathrm{K}$. The ions evaporating from the hot filament are accelerated, mass analyzed using a $60^{\circ}$ sector magnet and focussed on a 14 -stage electron multiplier. The ion current is then amplified to drive a chart recorder for visual display of the spectra or the ion pulses from the multiplier amplified and counted for a digitalized output.

## B. Signal Averaging System

Spectra of sufficient quality to enable the accurate determination of dipole moments and coupling constants for the sodium halides were made possible only by the incorporation of a signal averaging system for the recovery of weak signals buried in noise. The resonance signals from both NaCl and NaBr molecules are considerably weaker compared to that of the lighter alkali halides. This is due to an intrinsic reduction in beam intensity brought about by the size or
mass of the molecule ${ }^{14}$ and the large residual noise level due to Na impurities evaporating from the hot wire detector. With NaCl, line measurements obtained without using the signal averaging system have at best a signal to noise ratio of 3:1; for NaBr , about 1:1. With signal averaging, considerable enhancement of the signal to noise ratio is obtained.
A. block diagram of the signal averaging system used is shown in Fig. 2. This system will be described in greater detail elsewhere ${ }^{15}$ and only a brief description will be given here. A list of the electronic equipment used is given in Table A-I of the Appendix. The principle of the method is based on the fact that in counting statistics, the fluctuation about the average number of counts is equal to the square root of the number of counts, for one standard deviation. The signal, on the other hand, grows in time in direct proportion to the number of counts accumulated. Thus if one could repeatedly scan the region of the spectrum in which a resonance line appears, store and average the signal intensities over long periods, one in effect obtains an enhancement of the signal to noise ratio over that obtainable by just a single sweep.

The system shown is used to produce a linear frequency or voltage sweep to scan the spectral region of interest several times a second. Basically, a synchronizer (Hewlett Packard 8708A) is used to phase lock the frequency of the signal generator (Hewlett Packard 608F) and a ramp voltage of variable frequency and amplitude used to sweep over a certain frequency range by modulating the signal generator view the synchronizer. With this mode of operation, sweep widths of a few hundred KHz were obtained. In exact step with this repetitive frequency. sweep, is an "intensity counts" sweep provided by a switch programned time base oscillator. This "intensity vs. time" sweep is designed to store and accumulate the count information in a multi-channel analyzer (Norther Scientific NS-610).


Fig. 2. Block diagram of signal averaging system.
A. triggering signal from the pulse generator (Electronics Inc., Model 301) starts both the frequency and multi-channel analyzer sweeps and ensures their synchronization.
A. frequency vs. channel number correlation is then made using the program coincidence scaler in conjunction with the reference voltage generator and oscilloscope. This gives the frequency corresponding to any desired channel of the multi-channel analyzer.

By operating the system for about 1.5 to 2.5 hours a signal to noise ratio of about 5:1 was obtained for most of the lines measured.

## C. Radio-frequency Spectra of NaCl and NaBr .

The spectral lines observed were produced by transitions of the type $\left(J=1, M_{J}= \pm 1\right) \rightarrow\left(J=1, M_{J}=0\right)$. The $J=1$ level is three-fold degenerate in the absence of external fields and nuclear hyperfine interactions. However, due to the spin of $3 / 2$ in both the Na and $C 1$ nuclei, the rotational angular momentum of the molecule is coupled to the spin angular momenta of the nuclei through the nuclear electric quadrupole and spin-rotation interactions. The application of an electric field causes further splitting of the energy levels due to the Stark effect. At a field of $600 \mathrm{v} / \mathrm{cm}$, in which the spectra were taken, the Stark effect is the dominant interaction (Strong field) ${ }^{16}$ and the hyperfine interactions can be treated as perturbations on the Stark levels. An energy level diagram. for $\mathrm{Na}^{23} \mathrm{Cl} \mathrm{I}^{35}$ at strong fields is shown in Fig. 3 .

The hyperfine components of the $\left(J=1, M_{J}= \pm 1\right) \rightarrow\left(J=1, M_{J}=0\right)$ transition were also investigated in the NaBr molecules at a field strength


XBL681-1502

Fig. 3. Energy level diagram ${ }^{a}$ for $\mathrm{Na}^{23} \mathrm{Cl}^{35}$ at strong fields.
of $600 \mathrm{v} / \mathrm{cm}$. The two Br isotopes have spins equal also to $3 / 2$. A radiofrequency voltage of about 1 volt rms was used to induce transitions between the various levels of the molecules.
III. RESUITS AND DISCUSSION

The spectra of the molecules were interpreted using the Hamiltonian: ${ }^{17,18}$

$$
\begin{aligned}
H= & B J^{2}-\underline{\mu} \cdot E-e q_{1} Q_{1} \frac{\left[3\left(I_{1} \cdot J\right)^{2}+3 / 2\left(I_{1} \cdot J\right)-\left(I_{1}^{2} \underline{J}^{2}\right)\right]}{2 I_{1}\left(2 I_{1}-I\right)(2 J-I)(2 J+3)} \\
& -q_{2} Q_{2} \frac{\left[3\left(I_{2} \cdot I\right)^{2}+3 / 2\left(I_{2} \cdot J\right)-\left(I_{2}^{2} I^{2}\right)\right]}{2 I_{2}\left(2 I_{2}-1\right)(2 J-I)(2 J+3)}+c_{1}\left(I_{1} \cdot J\right)+c_{2}\left(I_{2} \cdot \underline{J}^{2}\right) \\
& +c_{3} \frac{\left[3\left(I_{1} \cdot J\right)\left(I_{2} \cdot I\right)+3\left(I_{2} \cdot J\right)\left(I_{1} \cdot J\right)-2\left(I_{1} \cdot I_{2}\right) J(J+1)\right]}{(2 J-1)(2 J+3)}+c_{4}\left(I_{1} \cdot I_{2}\right) .
\end{aligned}
$$

The first term in the above expression represents the rotational energy of the molecule, where $B$ is the rotational constant and $J$ the rotational angular momentum operator. The second term represents the interaction of the permanent electric dipole moment $\mu$ with the externally applied electric field E. The third and fourth terms represent the interaction of the nuclear quadrupole moments $\left(Q_{1}\right.$ and $Q_{2}$ ) with the field gradients at the nuclei ( $q_{1}$ and $q_{2}$ ). $I_{1}$ and $I_{2}$ are the nuclear spins, $e$ is the electronic charge and $e q_{1} Q_{1}$ and $\mathrm{eq}_{2} \mathrm{Q}_{2}$ are the quadrupole coupling coupling constants. The fifth and sixth terms represent the magnetic coupling of the nuclear spins with the molecular angular momentum, where $c_{1}$ and $c_{2}$ are the spin-rotation interaction constants. The seventh and eighth terms represent the tensor and scalar spin-spin interactions respectively, with $c_{3}$ and $c_{4}$ the respective interaction constants. ${ }^{19}$
A. computer program was used to calculate the matrix elements of the ${ }^{\text {r }}$ above Hamiltonian using a ( $J, I_{1}, I_{2}, M_{J}, M_{I_{1}}, M_{I_{2}}$ ) representation, where $M_{J}, M_{I_{1}}$ and $M_{I_{2}}$ are the projections of $J, I_{1}$ and $I_{2}$ respectively in the direction of the field $E$. The program calculates the energy eigenvalues by diagonalizing this matrix and then calculates the spectral line positions and intensities, corresponding to the given set of input parameters $B, J, I_{1}, I_{2}, e q_{1} Q_{1}, e q_{2} Q_{2}$, $c_{1}, c_{2}, c_{3}, c_{4}$ and $\underline{\mu}$, according to the selection rules $\Delta M_{F}=0, \pm 1, \pm 2 \ldots$ where $M_{F}$ is the projection of the total angular momentum in the direction of the field. The line intensities are calculated from the matrix $\epsilon$ lements of the dipole moment operator using the calculated wave functions. The unknowa interaction constants are varied to obtain the best fit to the observed spectra.

## A. Spectra of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ and $\mathrm{Na}^{23} \mathrm{Cl} \mathrm{l}^{37}$

-The spectra of $\mathrm{Na}^{23} \mathrm{C} 1^{35}$ at $600 \mathrm{v} / \mathrm{cm}$ consist of 13 groups of lines for each vibrational state. All of these were observed for the $v=0,1$, and ? vibrational states and a few for the $v=3$ state. Each group is a composite of several overlapping lines giving a full width at half maximum (FWHM) of about 30 to 60 KHz . Some separation of the components of these lines was evident as the vibrational state increased. The compound lines appear somewhat broader than that calculated based on the average transit time of the molecules in the C-field region and taking into account C-field inhomogeneities. This is probably due to power broadening of the lines cause by using a radiofrequency voltage of about 1 volt rms. The spectra for the $v=0$ state of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ is shown in Fig. 4. The observed line positions are shown in :


Fig. 4. $V=0$ spectra of $\mathrm{Na}^{23} \mathrm{Cl} 35$.

x8L681-1503

Fig. 5. $V=0$ spectra of $\mathrm{Na}^{23} \mathrm{Cl} 37$.
N.B. -Dotted lines have been overlapped by $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ lines or have not been observed inadvertently.

Tables A-II, A-III, A-IV ana $A-V$ of the Appendix. The predicted or calculated line frequencies are also given. Most of the lines have been measured individually. The observed line positions for the $v=0$ state represent an average of two or more measurements. The NaCl beam was very stable for long periods of time. Fluctuations in beam intensity and oven bursts, as experienced by Gold, have been eliminated by using as oven material sticks of Na Cl obtained from previous runs.

In fitting the observed unresolved muitiplets, calculated composite line positions were obtained by graphicaliy adaing component lines of Caussian line shapes, with $F W H M=25 \mathrm{KFz}$ and having the calculated frequencies and relative intensities. The centers of these calculated compound lines were then compared with the observed lines until a best fit was obtained. Values of rotational constants used in fitting the spectra were derived from the data of Clouser and Gordy. ${ }^{29}$ A. sufficiently good fit was obtained using only the dipole moments and the (eqQ)s of the two nuclei. The accuracy of the line measurements did not warrent the use of the small magnetic interaction constants. Magnetic resonarice experiments indicate $c_{\mathrm{Na}} 23$ to be approximately $1 \mathrm{KHz} .{ }^{6} \mathrm{c}_{\mathrm{C}} 35$ is probably of the same order of magnitude as that of Cl 35 in TlCl i.e. about $1.4 \mathrm{kHz}{ }^{6}$ This would cause shifts in the spectral lines of 1 to 1.5 KHz at $600 \mathrm{v} / \mathrm{cm}$, which are indeed small, compared to the observed spectral frequencies which ranged from 165 to 171 MHz for the $\mathrm{v}=0$ state.

Values of the dipole momerts and quadrupole coupling constants obtained for a best fit are given in Tables I and II respectively. The dipole moments obtained, in the present work are an order of magnitude more accurate than those of Gold. They agree with those of the latter within his error limits. The variation of $\mu$ with vibrational state for $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ has been fitted with a

Table I. Dipole Moments of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ and $\mathrm{Na}^{23} \mathrm{Cl}^{37}$
$\mathrm{Na}^{23} \mathrm{Cl}^{35}$

Present Work

$$
\begin{aligned}
& \mu_{0}=9.00195 \pm 0.00045 \mathrm{D} \\
& \mu_{i}=9.06190 \pm 0.00046 \mathrm{D} \\
& \mu_{2}=9.12226 \pm 0.00050 \mathrm{D} \\
& \mu_{3}=9.18290 \pm 0.00097 \mathrm{D}
\end{aligned}
$$

Gold $\mathrm{a}^{4}$

$$
\begin{aligned}
& 9.000 \pm 0.004 \mathrm{D} \\
& 9.061 \pm 0.004 \mathrm{D} \\
& 9.122 \pm 0.004
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{e}=8.97208 \pm 0.00065 \mathrm{D} \\
& \mu_{I}=0.05963 \pm 0.00020 \mathrm{D} \\
& \mu_{I I}=0.00017 \pm 0.00010 \mathrm{D}
\end{aligned}
$$

$\mathrm{Na}^{23} \mathrm{Cl}^{37}$

$$
\begin{aligned}
& \mu_{0}=9.0017 \pm 0.00069 \mathrm{D} \\
& \mu_{1}=9.0610 \pm 0.00071 \mathrm{D}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{e}=8.97205 \pm 0.00130 \mathrm{D} \\
& \mu_{I}=0.05930 \pm 0.00060 \mathrm{D}
\end{aligned}
$$

Table II. manmpale Comping Constants in $\mathrm{Na}^{23} \mathrm{Cl}^{35}$


$$
(0 \mathrm{OQ})_{I}=0.133 \pm 0.005 \mathrm{MHz}
$$

$$
(\mathrm{egQ})_{I I}=-0.003 \pm 0.001 \mathrm{MHz}
$$

$$
\begin{aligned}
& \frac{\mathrm{cI}}{}{ }^{35} \\
& (\mathrm{eqQ})_{0}=-5.575 \pm 0.020 \mathrm{muz} \\
& (\mathrm{egQ})_{1}=-5.820 \pm 0.020 \mathrm{MHz} \\
& (\mathrm{egQ})_{2}=-6.060 \pm 0.025 \mathrm{MHz} \\
& (\operatorname{cog})_{3}=-6.300 \pm 0.030 \mathrm{MHz} \\
& (\operatorname{cog})_{C}=-5.4 .52 \pm 0.025 \mathrm{MHz} \\
& (\operatorname{coQ})_{I}=-0.217 \pm 0.003 \mathrm{Mzz} \\
& (\operatorname{coQ})_{I I}=0.001 \pm 0.007 \mathrm{MHz}
\end{aligned}
$$

Values obtained by Molecular Beam Magnetic Resonance method; excopt for those of Zeizer and Bolef, these values are averaged over the vibrational states of the molecule.

$$
\begin{aligned}
& (\mathrm{eqQ})_{0}=-5.720 \pm 0.020 \mathrm{NHz}-5.6 \pm 0.1 \mathrm{MHz}-5.328 \pm 0.08^{*} \mathrm{NHz}-5.1 .00^{*} \mathrm{MHz}-5.520 \pm 0.02^{*} \mathrm{HHz} \quad-5.670^{*} \mathrm{Miz} \\
& (\mathrm{eqQ})_{1}=-5.590 \pm 0.020 \mathrm{mlz} \\
& (\operatorname{cog})_{2}=-5.470 \pm 0.025 \mathrm{Minz} \\
& \left(\operatorname{cog}_{3}=-5.350 \pm 0.030 \mathrm{MHz}\right. \\
& (\mathrm{eqQ})_{e}=-5.785 \pm 0.025 \mathrm{MHz} \\
& -5.608 \pm 0.02 \mathrm{MHz}
\end{aligned}
$$

Table III. Quadrupole Coupling Constants in $\mathrm{Na}^{23} \mathrm{Cl}^{37}$
$\mathrm{Na}^{23}$

$$
\begin{aligned}
& (\mathrm{eqQ})_{0}=-5.720 \pm 0.010 \mathrm{MHz} \\
& (\mathrm{eqQ})_{1}=-5.590 \pm 0.010 \mathrm{MHz} \\
& (\mathrm{eqQ})_{e}=-5.785 \pm 0.016 \mathrm{MHz} \\
& (\mathrm{eqQ})_{I}=0.130 \pm 0.015 \mathrm{MHz}
\end{aligned}
$$

$C^{37}$

$$
\begin{aligned}
& (\mathrm{eqQ})_{0}=-4.370 \pm 0.010 \mathrm{MHz} \\
& (\mathrm{eqQ})_{1}=-4.565 \pm 0.010 \mathrm{MHz} \\
& (\mathrm{eqQ})_{\mathrm{e}}=-4.273 \pm 0.016 \mathrm{MHz} \\
& (\mathrm{eqQ})_{I}=-0.195 \pm 0.015 \mathrm{MHz}
\end{aligned}
$$

quadratic equation in the vibrational quantum number ${ }^{11}$ i.e.

$$
\mu_{v}=\mu_{e}+\mu_{I}(v+I / 2)+\mu_{I I}(v+I / 2)^{2}
$$

The coefficients $\mu_{e}, \mu_{I}$ and $\mu_{I I}$ were obtained by the method of least squares. Observation of the spectra of $\mathrm{Na}{ }^{23} \mathrm{Cl} 37$ permitted the assignment of the coupling constants in $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ to the respective nuclei. Since the values (eqQ) in $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ are significantly different, that which gives a ratio of (eqQ) ${ }_{C 1} 35$ to (eqQ) ${ }_{C 1} 37$ closest to the value of 1.268 , observed in many chlorine substituted molecules, ${ }^{20}$ corresponds to the Cl ${ }^{35}$ coupling.

Results of magnetic resonance measurements, themselves at variance with each other, are somewhat lower than (eqQ) ${ }_{\mathbb{N a}} 23$ observed in this work. Oachs' value for (eqQ) 35 is in agreement with the present work. Gold indicated that his $V=0$ spectra is best fitted with coupling constants of 5.5 and 5.7 MHz , with no assignment to the respective nucleus. Within accuracy of his data, however, he concluded that a value of $5.6 \pm 0.1 \mathrm{MHz}$ was more likely after making an examination of the calculated values of field gradients in $\mathrm{Na}^{23}$ and $\mathrm{Cl}^{35}$ in various molecules.

Spectra of only the $v=0$ and 1 vibrational states of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{37}$ were obtained. Most of the lines were overlapped by the $\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ lines. The lines observed were mostly singlets, the (eqQ) of the two nuclei being now sufficiently different to cause large separations between the components of each unresolved multiplet line in $\mathrm{Na}^{23} \mathrm{Cl} 35$. The intensities compared with those of the $\mathrm{Na}^{23} \mathrm{Cl} 35$ lines correspond to that expected for the $25 \%$ natural abundance of $\mathrm{Cl}^{37}$. The observed spectrum for the $v=0$ state of $\mathrm{Na}^{23} \mathrm{Cl}{ }^{37}$ is shown schematically in Fig. 5.

Dipole moments derived from the spectra are shown in Table $I$. These are somewhat smaller than those of $N a^{23} \mathrm{Cl}$ 35. These were fitted with the equation $\mu=\mu_{e}+\mu_{I}(v+1 / 2)$. The equilibrium dipole moments are in excellent agreement. The coefficients $\mu_{I}$ in the dipole moment function for both molecules follow the isotopic dependence as predicted by theory, ${ }^{19}$ being proportional to $B_{e} / \omega_{e}$.

The coupling constants for $\mathrm{Na}^{23}$ in $\mathrm{Na}^{23} \mathrm{Cl}{ }^{37}$ are essentially the same as those in $\mathrm{Na}^{23} \mathrm{Cl}$ 35. This attests to the correctness of the (eqQ) assignment discussed already. After correcting the chlorine coupling in both NaCl molecules to a common vibrational state the ratio obtained is:

$$
\frac{\left(e q Q_{e}\right)_{C 1} 35}{\left(e q Q_{e}\right)_{C 1} 37}=1.2761 \pm 0.0075
$$

This value if in good agreement with the observed coupling constants in molecules containing chlorine. $22,23,24,25$ It is, however, somewhat higher than more recent microwave measurements ${ }^{26}$ on $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{ClCN}, \mathrm{GeH}_{3} \mathrm{Cl}$ and the measurements by Wang, et al. 27 These give an average value of 1.268 . A much closer comparison, however, cannot be made in view of our large error limits brought about by the fact that our spectra had been obtained at strong fields where the line positions are rather insensitive to small changes in the values of the quadrupole interactions.
A. weak field experiment whould permit a much more accurate determination of these quantities. This will probably be undertaken in this laboratory in the near future.
B. Spectra of $\mathrm{Na}^{23} \mathrm{Br}^{79}$ and $\mathrm{Na}^{23} \mathrm{Br} \mathrm{r}^{81}$

The radio-frequency spectra for the $J=1$ and different vibrational states were obtained for $\mathrm{Na}^{23} \mathrm{Br}^{79}$ and $\mathrm{Na}{ }^{23} \mathrm{Br}$. The spectra for each vibrational state consisted of 12 groups of lines as shownin Figs. 6 and 7. Each group is again a composite of a number of lines giving total widths at half maximum of 60 to 80 KHz . Measurements of the Iine positions are given in Tables A.-VIII to A-XIV of the Appendix. Fitting of these spectra was done in the same manner as that of NaCl . Rotational constants used were derived from the data of Rusk and Gordy. 28 Values of dipole moments obtained from an analysis of the spectra are given in Table IV. Quadrupole coupling constants are given in Tables $V$ and VI for $\mathrm{Na}^{23} \mathrm{Br}^{79}$ and $\mathrm{Na}^{23} \mathrm{Br}{ }^{81}$ respectively. No essential differences could be observed between the dipole moments of the two isotopic molecules. The low signal to noise level of about $2: 1$ to $3: 1$ after two hours run time limited the accuracy of the line frequency measurements. The variation of dipole moment with vibrational state is linear within experimental errors. No values for the dipole moments of these molecules have been reported before and no comparison could be made here. The values are, however, what may be expected on the basis of the dipole moments of the other. Na-halides. (eqQ) $\mathrm{Na}^{23}$ are the same in both $\mathrm{NaBr}^{79}$ and $\mathrm{NaBr}^{81}$. Our values are fairly close to those obtained by Magnetic resonance (MBMR) methods 7,10 as shown in Table V. The values found for (eqQ) Br 79 are in excellent agreement with those obtained by microwave spectroscopy. 9 . We have obtained more accurate values, however, and determined the variation of (eqQ) with vibrational state. A linear variation is obtained. This is also true for (eqQ) $\mathrm{Br}^{81}$ in $\mathrm{Na}^{23} \mathrm{Br}^{81}$. From the equilibrium values of this quantity we obtain:


Fig. 6. $\mathrm{V}=0$ spectra of $\mathrm{Na}^{23} 3_{\mathrm{Br}} 79$.


XBL681-1504

Fig. 7. $V=0$ spectra of $N{ }^{23} 3_{B r}{ }^{81}$.

Table IV. Dipole Moments of $\mathrm{Na}^{23} \mathrm{Br}^{79}$ and $\mathrm{Na}^{23} \mathrm{Br}{ }^{81}$

$$
\begin{aligned}
& \frac{\mathrm{Na}^{23} \mathrm{Br}^{79}}{} \\
& \mu_{0}=9.1183 \\
& \mu_{1}=9.1715 \\
& \mu_{2}=9.2246 \\
& \pm 0.00056 \mathrm{D} \\
& \mu_{3}=9.2779
\end{aligned}
$$

$$
\mu_{e}=9.09177 \pm 0.00127 \mathrm{D}
$$

$$
\mu_{I}=0.05308 \pm 0.00070 \mathrm{D}
$$

$$
\mu_{I I}=-0.0001 \pm 0.0004 \mathrm{D}
$$

$\mathrm{Na}^{23} \mathrm{Br}^{81}$
$\mu_{0}=9.1183 \pm 0.00059 \mathrm{D}$
. $\mu_{1}=9.1715 \pm 0.00060 \mathrm{D}$
$\mu_{2}=9.2245 \pm 0.00082 \mathrm{D}$

$$
\begin{aligned}
& \mu_{e}=9.01978 \mathrm{D} \\
& \mu_{I}=0.05310 \mathrm{D} \\
& \mu_{I I}=-0.0001 \mathrm{D}
\end{aligned}
$$

Table V. Quadrupole Coupling Constants in $\mathrm{Na}^{23} \mathrm{Br}^{79}$

Present Work

$$
\begin{aligned}
& \frac{\mathrm{Na}^{23} \text { in } \mathrm{Na}^{23} \mathrm{Br}^{79}}{(\mathrm{eqQ})_{\mathrm{O}}=-4.820 \pm 0.078 \mathrm{MHz}} \\
& (\mathrm{eqQ})_{1}=-4.770 \pm 0.078 \mathrm{MHz} \\
& (\mathrm{eqQ})_{2}=-4.720 \pm 0.090 \mathrm{MHz} \\
& (\mathrm{eqQ})_{3}=-4.670 \pm 0.100 \mathrm{MHz} \\
& (\mathrm{eqQ})_{\mathrm{e}}=-4.845 \mathrm{MHz} \\
& (\mathrm{eqQ})_{I}=0.050 \mathrm{MHz} \\
& (\mathrm{eqQ})_{I I}=0.0
\end{aligned}
$$

$$
\mathrm{Br}^{79} \text { in } \mathrm{Na}^{23} 3_{\mathrm{Br}}{ }^{79}
$$

$$
(\mathrm{eqQ})_{0}=58.060 \pm 0.080 \mathrm{MHz} \quad 58.000 \pm 2.000 \mathrm{MHz}(\text { Microwave })^{9}
$$

$$
(\mathrm{eqQ})_{I}=59.160 \pm 0.110 \mathrm{MHz}
$$

$$
(\mathrm{eqQ})_{2}=60.300 \pm 0.100 \mathrm{MHz}
$$

$$
(\mathrm{eqQ})_{3}=61.400 \pm 0.150 \mathrm{MHz}
$$

$$
(\mathrm{eqQ})_{\mathrm{e}}=57.498 \pm 0.130 \mathrm{MHz}
$$

$$
(\mathrm{eqQ})_{I}=1.116 \pm 0.037 \mathrm{MHz}
$$

$$
(\mathrm{eqQ})_{I I}=0.0 \quad \pm 0.009 \mathrm{MHz}
$$

$$
\begin{aligned}
& -4.880 \mathrm{MHz} \text { (Mol. Beam Mag. Resonance) }{ }^{7} \\
& -4.680 \mathrm{MHz}(. \quad . \quad . \quad . \quad)^{10}
\end{aligned}
$$

Table VI. Quadrupole Coupling Constants in $\mathrm{Na}^{23} \mathrm{Br}^{81}$ $\mathrm{Na}^{23}$ in $\mathrm{Na}^{23} \mathrm{Br}{ }^{81}$

$$
\begin{aligned}
& (\mathrm{eqQ})_{0}=-4.820 \pm 0.065 \mathrm{MHz} \\
& (\mathrm{eqQ})_{1}=-4.770 \pm 0.075 \mathrm{MHz} \\
& (\mathrm{eqQ})_{2}=-4.720 \pm 0.080 \quad \mathrm{MHz} \\
& (\mathrm{eqQ})_{e}=-4.845 \quad \mathrm{MHz} \\
& \left({ }^{(e q Q}\right)_{I}=0.050 \quad \mathrm{MHz} \\
& (\mathrm{eqQ})_{I I}=0.0 \quad \mathrm{MHz}
\end{aligned}
$$

$\mathrm{Br}^{81}$ in $\mathrm{Na}^{23} \mathrm{Br}^{81}$

$$
\begin{aligned}
& (\mathrm{eqQ})_{0}=448.550 \pm 0.090 \mathrm{MHz} \\
& (\mathrm{eqQ})_{1}=49.700 \pm 0.090 \mathrm{MHz} \\
& (\mathrm{eqQ})_{2}=50.850 \pm 0.110 \mathrm{MHz} \\
& \left(\text { eqQ }_{e}=47.975 \quad \mathrm{MHz}\right. \\
& (\mathrm{eqQ})_{I}=1.150 \quad \mathrm{MHz} \\
& (\mathrm{eqQ})_{\text {II }}=0.0 \quad \mathrm{MHz}
\end{aligned}
$$

$\frac{(\mathrm{eqQ})_{\mathrm{Br}^{79}}}{(\mathrm{eqQ})_{\mathrm{Br}}{ }^{81}}=1.1985 \pm 0.0039$

This is in agreement, within our experimental error, with values of the ratio observed previously. 30

The accuracy of the line position measurements did not warrant including the magnetic interactions in fitting the spectra. Line shifts due to these are expected to be insignificant.

APPENDIX
Table A-I. Electronic Equipment for Signal Averaging System.
Table A-II. $\quad V=0$ Spectra of $\mathrm{Na}^{23} \mathrm{Cl} 35$
Table A-III. $V=1$ spectra of $\mathrm{Na}^{23} \mathrm{Cl} 35$
Table A-IV. $\quad \mathrm{V}=2$ Spectra of $\mathrm{Na}^{23} \mathrm{Cl}^{35}$
Table A-V. $\quad V=3$ spectra of $\mathrm{Na}^{23} \mathrm{Cl} 35$
Table A-VI. $\quad \mathrm{V}=0$ Spectra of $\mathrm{Na}{ }^{23} \mathrm{Cl} 37$.
Table A-VII. $\quad V=1$ spectra of $\mathrm{Na}^{23} \mathrm{Cl}^{37}$
Table A-VIII. $\quad \mathrm{Na}^{23} \mathrm{Br}^{79}$ Spectra $\mathrm{V}=0$
Table A-IX. $\quad \mathrm{Na}^{23} \mathrm{Br}{ }^{79}$ Spectra $V=1$
Table A.-X. $\quad \mathrm{Na}^{23} \mathrm{Br}^{79}$ Spectra $\mathrm{V}=2$
Table A.-XI. $\quad \mathrm{Na}^{23}{ }^{\mathrm{Br}}{ }^{79}$ Spectra $V=3$
Table A-XII. $\quad \mathrm{Na}^{23} \mathrm{Br}^{81}$ Spectra $\mathrm{V}=0$
Table A-XIII. $\therefore \quad \mathrm{Na}^{23} \mathrm{Br}^{81}$ Spectra $\mathrm{V}=1$
Table A-XIV. $\quad \mathrm{Na}^{23_{\mathrm{Br}}}{ }^{81}$ Spectra $\mathrm{V}=2$

Table A-I. Electronic Equipment for Signal Averaging System.

| Unit | Model No. | Manufacturer |
| :---: | :---: | :---: |
| Transistorized linear pulse amplifier |  | LRL ${ }^{\text {a }}$ Plan No. $15 \times 4845$ |
| Inverting amplifier (gain 1-10X, zero offset) |  | LRL ${ }^{\text {a }}$ Plan No. $13 \times 1450$ |
| Frequency or pulse scaler ( 0 to $10^{8}$ counts per second; with 5253A and 5253B plug-ins the counting range is extended to 500 MHz .) | 5245L | Hewlett-Packard Co., Palo Alto, Calif. |
| Radio frequency signal generators: <br> a) 50 kHz to 65 MHz . <br> b) 10 MEz to 455 MHz . | $\begin{aligned} & 606 \mathrm{~B} \\ & 608 \mathrm{~F} \end{aligned}$ | Hewlett-Packard Co., Palo Alto, Calif. |
| Digital recorder with analog output | 562A. | Hewlett-Packard Co., Palo Alto, Calif. |
| Frequency synchronizer (iocks 6063 and 608 F signal generators and allows modulation) | 8708A | Hewlett-Packard Co., Palo Alto, Calif., |
| Frequency mixer ( 50 kHz to 450 MHz .) | 10514A. | Hewlett-Packard Co., |
| Stark field voltage supply ( $1-6000 \mathrm{~V}$ at 20 mA ) | HV-1556 | Power Designs Pacific, Inc., Palo Alto, Calif. |
| Reference voltage supply (0-10 volts) |  | LRL ${ }^{\text {a }}$ Plan No. $13 \times 1470$ |
| Ramp voltage generator |  | LRL ${ }^{\text {a }}$ Plan No. $13 \times 1430$ |
| Start pulse function generator | 301 | Electronics, Inc. Portland, Oregon |
| Single channel analyzer | NC-11 | Hammer Electronics Co. Inc., Princeton, New Jersey |
| Multichannel analyzer ( 1024 channels in quadrants, $2 \times 10^{-5} \mathrm{sec}$ dead time per channel) | NS-610 | Northern Scientific Madison, Wisconsin |
| Data processor | 460 | Northern Scientific Madison, Wisconsin |
| Switch programed time based oscillator |  | LRL ${ }^{\text {a }}$ Plan No. $15 \times 8410$ |
| Programed coincidence scaler (0-9999 channels) |  | LRL ${ }^{\text {a }}$ Plan No. $13 \times 1310$ |

$$
\text { Table A-II. } \begin{aligned}
V & =0 \text { Spectra of } \mathrm{Na}^{23} \mathrm{CI} 35 \\
\mathrm{~S} & =600 \mathrm{v} / \mathrm{cm}
\end{aligned}
$$

| Observed Line ${ }^{\text {a }}$ Positions | Calculated Line Positions |  |  | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc'd Freq. | Intensity | Composite Line F'requency |  |
| 1. $165,433.7 \mathrm{KHz}$ | $165433.3^{\circ} \mathrm{KIz}$ | 59.85 | $165,433.5 \mathrm{KHz}$ | -0.2 KHz |
| 2: $165,634.2$ | 165.628 .7 | 23.84 |  |  |
|  | 165,628.7 | 24.09 | 165,632.0 | -2.2 |
|  | 165,635.4 | 23.37 |  |  |
|  | 165,635.4 | 23.41 |  |  |
| 3. $166,548.8$ | $166,531 \cdot 7$ |  |  |  |
|  | $166,546.5$ | $20.41$ | 166,550.0 ${ }^{\text {b }}$ | 1.2 |
|  | 166,559.5 | 100.00 |  |  |
| 4. $166,736.5$ | 166,725.2 | 4.25 |  |  |
|  | 166,731.9 | 38.89 | 166,737.5 | 1.0 |
|  | 166,743.8 | 38.40 |  |  |
|  | 166,750.4 | 4.25 |  |  |
| 5.167,115.2 | 167,089.9 | 15.53 |  |  |
|  | 167,096.6 | 15.49 |  |  |
|  | 167,104.7 | 24.44 |  |  |
|  | $167,110.7$ $167,210.7$ | 26.48 17.37 | 167,116.0 ${ }^{\text {b }}$ | 0.8 |
|  | $167,111.5$ | 17.37 24.39 |  |  |
|  | 167,137.4 | 16.65 |  |  |
|  | 167,137.4 | 25.33 |  |  |
| 6. $167,835.9$ | 167,840.3 | 4.71 |  |  |
|  | 167,840.3 | 4.67 | 167,343.5 | 7.6 |
|  | 167,846.9 | 5.07 | 167,343.5 | 7.6 |
|  | 167,846.9 | 4.98 |  |  |
| 7. $168,230.6$ | 168,203.2 | 20.01 |  |  |
|  | 168,207.2 | 13.51 |  |  |
|  | 168,209.8 | 20.10 |  |  |
|  | 168,213.6 | 98.64 |  |  |
|  | 168,219.5 | 51.43 |  |  |
|  | 1.68,219.8 | 24.27 |  |  |
|  | 168,2.27.6 | 1.35 |  |  |
|  | 168,230:9 | 24.27 |  |  |
|  | 168,232. 1 | 1.34 | 168,230.0 | -0.6 |
|  | 168,234.3 | 48.55 |  |  |
|  | 168,234.6 | 25.72 |  |  |
|  | 168,245.8 | 25.71 |  |  |
|  | 168,246.1 | 98.63 |  |  |
|  | 168,252.5 | 13.51 |  |  |
|  | 168,253.2 | 40.13 |  |  |

Table A.-II. (cont'd)

| Observed Line ${ }^{\text {a }}$ Positions | Calculated Line Positions |  |  | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc ${ }^{\text {d Freq. }}$ | Intensity | Composite Line Frequency |  |
| 8. $168,516.6 \mathrm{KHz}$ | 168,612.7 KHz | 4.98 | $168,616.0 \mathrm{KHz}$ | -0.6 |
|  | 168,612.7 | 5.07 |  |  |
|  | 158,619.4 | 4.67 |  |  |
|  | 168,619.4 | 4.72 |  |  |
| 9. $169,346.7$ | 169,322.3 | 25.32 | 169,343.5 ${ }^{\text {b }}$ | -3.2 |
|  | 169,322.3 | 16.64 |  |  |
|  | 169,349.0 | 17.36 |  |  |
|  | 169,349.0 | 26.47 |  |  |
|  | 169,351.6 | 28.84 |  |  |
|  | 169,366.4 | 31.02 |  |  |
| 10. $169,723.5$ | 169,709.3 | 4.26 | 169,721.5 | -2.0 |
|  | 169,715.9 | 38.41 |  |  |
|  | 169,727.8 | 38.89 |  |  |
|  | 169,734.4 | 4.25 |  |  |
| 11. 169,916.6 | .169,900.2 | 99.95. | 169,905.5 ${ }^{\text {b }}$ | -7.1 |
|  | $169,911.0$ $169,915.4$ | 10.19 10.23 |  |  |
|  | $169,915.4$ $169,925.8$ | 10.23 9.83 |  |  |
|  | 169,930.2 | 9.88 |  |  |
| 12. $170,826.4$ | 170,824.3 | 23.40 | 170,827.5 | 1.1 |
|  | 170,824.3 | 23.37 |  |  |
|  | 170,830.9 | 24.09 |  |  |
|  | 170,830.9 | 23.84 |  |  |
| 13. 171,025.5 | 171,024.2 | 29.97 | 171,026.0 | 0.5 |
|  | 171,028.6 | 29.88 |  |  |
| ${ }^{\text {a }}$ Average error in observea line positions $=2.4 \mathrm{KHz}$ <br> ${ }^{\mathrm{b}}$ Center of composite line, does not necessarily coincide with peak. |  |  |  |  |
|  |  |  |  |  |  |  |

```
Table A-III. \(V=1\) Spectra of \(\mathrm{Na}^{23} \mathrm{Cl}{ }^{35}\)
\(\mathrm{E}=600 \mathrm{v} / \mathrm{cm}\)
```

| Observed Line ${ }^{\text {a }}$ Positions | Calculated Line Positions |  |  | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc'd Freq ${ }_{\text {d }}$ | Intensity | Composite Line Frequency |  |
| 1. $168,868.1 \mathrm{KHz}$ | $168,870.5 \mathrm{kHz}$ | 59.86 | $168,870.5 \mathrm{KHz}$ | 2.4 KHz |
| 2. $169,072.7$ | 169,066.0 | 24.02 | 169,071.5 | -1.2 |
|  | 169,066.0 | 24.24 |  |  |
|  | 169,076.3 | 23.17 |  |  |
|  | 169,076.3 | 23.25 |  |  |
| 3. $169,969.0$ | 169,971.4 | 19.51 | 169,971.4 | 2.4 |
| 170.006 .8 | 170,002.3 | 20.61 | 170,007.5 | 0.7 |
|  | 170,008.3 | 100.00 |  |  |
| 4. $170,185.2^{\text {b }}$ | 170,165.9 | 1.25 | 170,187.5 | 2.3 |
|  | 170,176.2 | 42.06 |  |  |
|  | 170,198.8 | 41.26 |  |  |
|  | $170,209.1$ | 1.25 |  |  |
| 5. $170,563 \cdot 5^{\text {b }}$ | $170,534.9$ $170,541.7$ | 15.85 25.11 | 170,570.0 ${ }^{\text {c }}$ | 6.5 |
|  | $170,557.3$ $170,565.9$ | 19.27 14.12 |  |  |
|  | 170,572.6 | 14.06 |  |  |
|  | 170,599.6 | 18.03 |  |  |
|  | 170,599.6 | 23.43 |  |  |
| 6. 171,299.1 | 171,298.7 | 4.62 | 171,304.5 | 5.4 |
|  | 171,298.7 | 4.57 |  |  |
|  | $\begin{aligned} & 171,309.0 \\ & 171,309.0 \end{aligned}$ | 5.16 5.08 |  |  |
| 7. $171,668.6$ | 171,657.2 | 13.99 | $\cdots$ |  |
|  | 171,666.8 | 20.01 |  |  |
|  | 171,667.4 | 99.79 | 171,671.5 |  |
| 171,693.2(ctr) | $171,673.5$ $171 ; 676.1$ | 20.10 52.28 |  | 2.9 |
|  | 171,677.0 | 23.84 |  |  |
|  | 171,688.1 | 23.85 | 171,695.0(ctr) | 1.8(ctr) |
| 171,724.2 ${ }^{\text {b }}$ | 171,707.0 | 47.70 | 171,718.5 | -5.7 |
|  | 171,707.9 | 26.15 |  |  |
|  | 171,719.0 | 26.13 |  |  |
|  | 171,719.5 | 40.13 |  |  |
|  | 171,722.3 | 99.78 |  |  |
|  | 171,732.3 | 24.00 |  |  |

Tebie A-III, (cont'd)

| Observed Line ${ }^{a}$ Positions | Ciloujated Ifre Positions |  |  | Ditference |
| :---: | :---: | :---: | :---: | :---: |
|  | Caje'ci Freq. | Intensity | Composite line Frequency |  |
| 8. $172,090.6 \mathrm{kHz}$ | 172,080.5 kHz | 5.09 | $172,085.5$ | $-5.2$ |
|  | 172,080.5 | 5.17 |  |  |
|  | 172,090.8 | 4.58 |  |  |
|  | 17, 090.8 | 4.53 |  |  |
| 9. $172,818.5$ | 172,790.0 | 23.43 | $172.819 .5^{\text {c }}$ | 2.0 |
|  | 172,790.0 | 18.01 |  |  |
|  | $172,820.4$ | 28.19 |  |  |
|  | 172.832.3 | 19.27 |  |  |
|  | 172.832.3 | 25.10 |  |  |
|  | 172,85土.3 | 31.67 |  |  |
| 10. $173,200.3^{\text {b }}$ | 173,180.5 | 1.25 | 173,202.5 | $-6.8$ |
|  | 173,190.8 | 4.297 |  |  |
|  | 173,213.3 | 42.06 |  |  |
|  | 273,223.6 | 1.25 |  |  |
| 11. $173,383.4{ }^{\text {d }}$ | 373,381.3 | 99.95 |  | -0.9 |
|  | 173,385.1 | 10.29 | 173,382.5 |  |
|  | 173,389.5 | 20.33 |  |  |
|  |  | 9.73 | $173,425.5^{b}$ |  |
|  | $273,420.4$ | 9.78 |  |  |
| 12. 274.314 .6 | $274,313.3$ | 23.24 | 174,318.5 | 3.9 |
|  | 274,313.3 | 23.18 |  |  |
|  | 174.323 .5 | 24.23 |  |  |
|  | 174,323.5 | 24.02 |  |  |
| 13. 174.513 .8 | 174,516.9 | 29.97 | 174,519.0 | 5.2 |
|  | 174.521.3 | 29.88 |  |  |

$\varepsilon_{\text {Average line errow }}=3.2 \mathrm{KHz}$
Boverlaps with $V=0 \mathrm{Na}^{23} \mathrm{OL} 37$ Lines.



Table A.IV. $V=2$ Spectra of $N{ }^{23} \mathrm{Cl} 35$
$\mathrm{E}=600 \mathrm{v} / \mathrm{cm}$

| Observed Line Positions | Calculated Line Positions |  | Composite Line ${ }^{a}$ Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc ${ }^{\text {d }}$ Freq. | Intensity |  |  |
| 1. $172,376.1 \mathrm{KHz}$ | $173,377.5 \mathrm{KHz}$ | 59.87 | 172,377.5 KHz | 1.4 KHz |
| 2. $172,584.5$ | 172,576.1 | 24.72 |  |  |
|  | 172,567.1 | 24.88 | 172,579.5 | -5.0 |
|  | 172,592.7 | 22.36 |  |  |
|  | 172,592.7 | 22.49 |  |  |
| 3. $173,539.2^{\text {b }}$ | 173,454.3 | 18.67 |  |  |
|  | 173,527.9 | 100.00 | $173,538.5^{2}$ | -0.7 |
|  | 173,555.0 | 21.42 |  |  |
| 4. 173,670.4 | 273,669.2 | 43.87 | 173,669.2 | -1.2 |
| 173,739.3 | 173,744.9 | 41.79 | 173,744.9 | 5.6 |
| 5. $174,048.5$ | 174,021.2 | 17.23 |  |  |
|  | 174,027.7 | 17.21 | 174,037.5 | -11.0 |
|  | $174,049.7$ | 24.55 |  |  |
|  | 174,049.7 | 22.16 |  |  |
| 174,110.6 | 174,121.9 | 12.77 | 174,125.5 | 14.9 |
|  | 174,128.5 | 12.69 |  |  |
| 174, $155.4^{\text {c }}$ | 174,158.3 | 18.64 | 174,158.3 | 12.9 |
|  | 174, 158.3 | 20.60 |  |  |
| 6. $174,830.3$ | 174,821.5 | 4.25 |  |  |
|  | 174,821.5 | 4.19 | 174,835.0 | 4.7 |
|  | 174, 84.7 .0 | 5.60 |  |  |
|  | $174,847.0$ | 5.53 |  |  |
| 7. 175,180.1 | 175,126.2 | 14.03 |  |  |
|  | 175,151.7 | 99.98 |  |  |
|  | 175,174.9 | 55.84 |  |  |
|  | 175,181.2 | 22.04 | 175,171.5 | -8.6 |
|  | 175,192.2 | 22.06 |  |  |
|  | 175,198.7 | 19.98 |  |  |
|  | 175,205.3 | 20.07 |  |  |
| 175,231.1(ctr) |  |  | 175,231.0(ctr) | -0.1 |
| 175,277.7 | 175,260.4 | 40.08 |  |  |
|  | 175,275.7 | 44.10 |  |  |
|  | 175,281.9 | 27.94 | 175,290.5 | 12.8 |
|  | 175,292.9 | 27.90 |  |  |
|  | 175,310.7 | 99.97 |  |  |
|  | 175,336.2 | 14.04 |  |  |

Table A-IV. (cont'd)

| Observed Line Positions | $\frac{\text { Calculated } L}{\text { Calc }^{\top} \text { Freq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line ${ }^{a}$ Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 8. $175,633.6$ | $\begin{aligned} & 175,615.3 \mathrm{KHz} \\ & 175,615 \cdot 3 \\ & 175,640.9 \\ & 175,640.9 \end{aligned}$ | $\begin{aligned} & 5.53 \\ & 5.61 \\ & 4.1 .9 \\ & 4.25 \end{aligned}$ | 175,627.0 | -6.6 |
| 9. -- d | $\begin{aligned} & 176,304.1 \\ & 176,304.1 \\ & 176,337.2 \end{aligned}$ | $\begin{aligned} & 20.60 \\ & 18.63 \\ & 25.47 \end{aligned}$ | 176,319.0 ${ }^{\text {a }}$ | -- |
| 176,413.3 | $\begin{aligned} & 176,412 \cdot 7 \\ & 176,412.7 \\ & 176,437 \cdot 9 \end{aligned}$ | $\begin{aligned} & 22.15 \\ & 24.54 \\ & 34.45 \end{aligned}$ | 176,424.0 ${ }^{\text {a }}$ | 10.7 |
| 10. 176,718.1 | 176,717.4 | 41.81 | 176,717.4 | -0.7 |
| 176,791.2 ${ }^{\text {c }}$ | 176,793.2 | 43.88 | 176,793.2 | 2.0 |
| 11. $176,921.3^{\text {f }}$ | $\begin{aligned} & 176,905.2 \\ & 176,909.5 \\ & 176,934.4 \end{aligned}$ | $\begin{aligned} & 10.69 \\ & 10.74 \\ & 99.95 \end{aligned}$ | 176,925.0 ${ }^{\text {a }}$ | 3.7 |
| 177,011.3 | $\begin{aligned} & 177,005.9 \\ & 177,010.3 \end{aligned}$ | $\begin{aligned} & 9.31 \\ & 9.36 \end{aligned}$ | 177,007.5 | -3.6 |
| 12. 177,877.7 | $\begin{aligned} & 177,869.7 \\ & 177,869.7 \\ & 177,895.2 \\ & 177,895.2 \end{aligned}$ | $\begin{aligned} & 22.48 \\ & 22.36 \\ & 24.88 \\ & 24.72 \end{aligned}$ | 277,882.5 | 4.8 |
| 13. $178,082.9$ | $\begin{aligned} & 178,082.7 \\ & 178,087.1 \end{aligned}$ | $\begin{aligned} & 29.98 \\ & 29.89 \end{aligned}$ | $178,084.5$ | 1.6 |
| Average line error $=5.1 \mathrm{KHz}$ |  |  |  |  |
| ${ }^{\text {a }}$ Composite line center does not necessarily coincide with peak(s). |  |  |  |  |
| ${ }^{\text {coverlap with } V}=0 \mathrm{Na}^{23} \mathrm{Cl}{ }^{37}$ lines. |  |  |  |  |
| $\mathrm{d}_{\text {Overlap with } \mathrm{V}}=3 \mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ line. |  |  |  |  |
| ${ }_{\text {Overlap with }} \mathrm{V}=1 \mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ line. |  |  |  |  |
| $\mathrm{f}_{\text {Overlap with } \mathrm{V}}=1 \mathrm{Na}$. ${ }^{23} \mathrm{Cl}{ }^{37}$ line. |  |  |  |  |

Table A-V. $V=3$ Spectra of $\mathrm{Na}^{23} \mathrm{Cl} 35$
$E=600 \mathrm{v} / \mathrm{cm}$

| Cbserved I.ine <br> Positions | Calculated Linc Positions |  | Composite Iine Frequency ${ }^{\text {a }}$ | Diifierence |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc ${ }^{\text {d }}$ Preg. | Interisity |  |  |
| 1. $175,959.2 \mathrm{KHz}$ <br> 2. $176,155.7^{\text {b }}$ | $1.75,951.8 \mathrm{KHz}$ | 59.91 | $175,951.8 \mathrm{KHz}$ | $-7.4 \mathrm{KHz}$ |
|  | 176,135.2 | 25.35 |  |  |
|  | 176,135.2 | 25.49 | 176,155.0 | -0.7 |
|  | 176,175.8 | 21.54 |  |  |
|  | 176,175.8 | 21.68 |  |  |
| 3. $177,013.6$ | 177,004.5. | 17.85 | 177,004.5 | -9.1 |
| 177,138.0 | 177,115.6 | 100.00 | 177,115.6 | -22.4 |
| 177,170.3 | 177,174.9 | 22.22 | 177,174.9 | 4.6 |
| 4. $177,251.6$ | 177,228.3 | 44.68 | 277,228.3 | -23.3 |
| 177,359.3 | 177,358.6 | 41.35 | 177,358.6 | -0.7 |
| 5. |  |  |  |  |
| 6. |  |  |  |  |
| 7. |  |  |  |  |
| 8. |  |  |  |  |
| 9. |  |  |  |  |
| 10. $180,315 \cdot 9$ | 180,312.1 | 41.36 | 180,312.1 | -3.8 |
| 180,441.5 | 180,442.4 | 44.68 | 180,442.4 | 0.9 |
| 11. $180,493.4$ | $\begin{aligned} & 180,493 \cdot 6 \\ & 180,497 \cdot 9 \end{aligned}$ | $\begin{aligned} & 11.10 \\ & 11.13 \end{aligned}$ | 180,495.5 | 2.1 |
| 180,556.9 | 180,555.2 | 99.95 | 180,555.? | $-1.7$ |
| 180,664.9 | $\begin{aligned} & 180,664.0 \\ & 180,668.4 \end{aligned}$ | $\begin{aligned} & 8.89 \\ & 8.95 \end{aligned}$ | 180,666.0 | 1.1 |
| 12. 181,491.9 | $\begin{array}{r} 181,494.9 \\ 181,494.9 \end{array}$ | $\begin{aligned} & 21.67 \\ & 21.54 \end{aligned}$ | 181,494.9 | 3.0 |
|  | $\begin{aligned} & 181,535.5 \\ & 181,535.5 \end{aligned}$ | $\begin{aligned} & 25.49 \\ & 25.34 \end{aligned}$ | 181,535.5 | -- |
| 13. $181,713.2$ | $\begin{aligned} & 181,716.8 \\ & 181,721.2 \end{aligned}$ | $\begin{aligned} & 29.99 \\ & 29.90 \end{aligned}$ | 181,719.0 | 5.8 |

Average line error $=6.5 \mathrm{KHz}$
${ }^{\text {a }}$ Composite line center does not necessarily coincide with peak(s).
${ }^{\text {b Overlap with } V}=1 \mathrm{NaCl} 37$ Iine.
${ }^{c}$ Lines have not been observed; calculated line positions have thus been onitted.

Table A-VI. $\begin{aligned} V & =0 \text { Spectra of } \mathrm{Na}^{23} \mathrm{Cl} 37 \\ E & =600 \mathrm{v} / \mathrm{cm}\end{aligned}$

| Cbserved Iine ${ }^{\text {a }}$ Positions | $\frac{\text { Calculated L }}{\text { Calc'd Freq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 1. $169,303.0 \mathrm{KHz}$ | 169,302.1 KHz | 60.01 | 169,302.1 KHz | -0.9 KHz |
| 2. $269,450.6$ | $\begin{aligned} & 169,448.4 \\ & 169,448.4 \end{aligned}$ | $\begin{aligned} & 26.33 \\ & 26.45 \end{aligned}$ | 169,44.8.4 | -2-2 |
| 3. $169,501.8$ | $\begin{aligned} & 169,504.9 \\ & 169,504.9 \end{aligned}$ | $\begin{aligned} & 20.03 \\ & 20.16 \end{aligned}$ | 169,504.9 | 3.1 |
| 4. -- b | 170,162.5 | 16.41 | 170,162.5 |  |
| 5. $170,316.9$ | 170,313.3 | 100.00 | 170,313.3 | -3.6 |
| 6. $170,365.4$ | 170,354.3 | 46.06 | 170,365.3 | -0.1 |
| 7. 170,407.0 | 170,413.9 | 23.56 | '170,413.9 | 6.9 |
| 8. -- | 170,560.4 | 40.55 | 170,560.4 |  |
| 9. $170,649.1$ | $\begin{aligned} & 170,643 \cdot 1 \\ & 170,647 \cdot 9 \end{aligned}$ | $\begin{aligned} & 20.74 \\ & 20.77 \end{aligned}$ | 170,645.5 | -3.6 |
| 10. 170,708.2 | $\begin{aligned} & 170,693 \cdot 7 \\ & 170,693.7 \end{aligned}$ | $\begin{aligned} & 27.05 \\ & 26.13 \end{aligned}$ | 170,693.7 | $-24.5$ |
| 11. $170,889.9$ | $\begin{aligned} & 170,894.5 \\ & 170,899.3 \end{aligned}$ | $\begin{aligned} & 9.42 \\ & 9.33 \end{aligned}$ | 170,897.0 | 7.1 |
| 12. $170,931.7$ | $\begin{aligned} & 170,940.5 \\ & 170,940.5 \end{aligned}$ | $\begin{aligned} & 16.47 \\ & 17.01 \end{aligned}$ | 270,940.5 | 8.8 |
| 13. -- | $\begin{aligned} & 171.420 .8 \\ & 171,420.8 \end{aligned}$ | $\begin{aligned} & 3.34 \\ & 3.29 \end{aligned}$ | 171.420 .8 |  |
| 14. -- c | $\begin{aligned} & 171,477 \cdot 3 \\ & 171,477 \cdot 3 \end{aligned}$ | $\begin{aligned} & 6.89 \\ & 6.83 \end{aligned}$ | 171,477.3 |  |
| 15. -- c | 171,554.1 | 13.33 | 171,554.1 |  |
| $\text { 16. } 171,607.7$ | 171,610.6 | 99.98 | 171,610.6 | 2.9 |
|  | 171,656.7 | 64.82 | 171,656.7 | ¢ |
| 18. -- b | $\begin{aligned} & 171,694.4 \\ & 171,702.5 \end{aligned}$ | $\begin{aligned} & 17.43 \\ & 17.48 \end{aligned}$ | 171,698.5 |  |
| 19. $171,762.9$ | $\begin{aligned} & 171,754.9 \\ & 171,759.8 \end{aligned}$ | $\begin{aligned} & 19.82 \\ & 19.89 \end{aligned}$ | 171,757.5 | -5.4 |
| 20. 171,850.8 | 171,849.2 | 39.72 | 171,849.2 | -1.6 |
| 21. 171,908.9 | 171,908.2 | 34.91 | 1.71,908.2 | -0.7 |

Table A-VI. (cont'd)

| Observed Line Positions | $\frac{\text { Calculated L }}{\text { Calc }^{1} \text { d Freq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 22. $171,951.4 \mathrm{KHz}$ | $\begin{aligned} & 171,945.8 \mathrm{KHz} \\ & 171,953.9 \end{aligned}$ | $\begin{aligned} & 32.43 \\ & 32.38 \end{aligned}$ | 171,950.0 KHz | $-1.4 \mathrm{KHz}$ |
| 23. 171,993.5 | 171,996.1 | 99.97 | 171,996.1 | 2.6 |
| 24. 172,042.0 | 172,052.5 | 13.33 | 172,052.5 | 10.5 |
| 25. $172,133.7$ | $\begin{aligned} & 172,129.3 \\ & 172,129.3 \end{aligned}$ | $\begin{aligned} & 6.83 \\ & 6.70 \end{aligned}$ | 172,129.3 | -4.4 |
| 26. $172,194.3$ | $\begin{aligned} & 172,185.8 \\ & 172,185.8 \end{aligned}$ | $\begin{aligned} & 3.29 \\ & 3.34 \end{aligned}$ | 172,185.8 | -8.5 |
| 27. 172,674.3 | $\begin{aligned} & 172,666.0 \\ & 172,666.0 \end{aligned}$ | $\begin{aligned} & 17.01 \\ & 16.46 \end{aligned}$ | 172,666.0 | -8.3 |
| 28. $172,715.3$ | 172,709.6 | 18.76 | 172,709.6 | -5.7 |
| 29. 172,903.5 | $\begin{aligned} & 172,912.9 \\ & 172,912.9 \end{aligned}$ | $\begin{aligned} & 26.13 \\ & 27.03 \end{aligned}$ | 172,912.9 | 9.4 |
| 30. 172,961.7 | 172,961.1 | 41.51 | 172,961.1 | -0.6 |
| 31. 173,051.2 | 173,046.2 | 40.56 | 172,046.2 | -5.0 |
| 32.0 -- | $\begin{aligned} & 173,190.9 \\ & 173,194.3 \end{aligned}$ | $\begin{aligned} & 11.77 \\ & 11.79 \end{aligned}$ | 173,192.5 |  |
| 33. 173,245.9 | 173,241.3 | 46.07 | 173,241.3 | -4.6 |
| 34. 173,294.1 | 173,293.3 | 99.96 | 173,293.3 | -0.8 |
| 35. -- b | $\begin{aligned} & 173,442.4 \\ & 273,445.8 \end{aligned}$ | $\begin{aligned} & 8.18 \\ & 8.23 \end{aligned}$ | 173,444.0 |  |
| 36. -- d | $\begin{aligned} & 174,101.7 \\ & 174,101.7 \end{aligned}$ | $\begin{aligned} & 20.15 \\ & 20.02 \end{aligned}$ | 174.101 .7 |  |
| 37. -- d | $\begin{aligned} & 174,158.1 \\ & 174,158.2 \end{aligned}$ | $\begin{aligned} & 26.45 \\ & 26.32 \end{aligned}$ | 174,158.2 |  |
| 38. -- b | $\begin{aligned} & 174,302.9 \\ & 174,306.2 \end{aligned}$ | $\begin{aligned} & 30.04 \\ & 29.96 \end{aligned}$ | 174,304.5 |  |

$a_{\text {Average line error }}=8.8 \mathrm{KHz}$.
${ }^{\mathrm{b}}$ Lines overlap with $\mathrm{V}=1 \mathrm{Na}{ }^{23} \mathrm{Cl}{ }^{35}$ Iines.
${ }^{c}$ Lines have not been observed, inadvertentiy.
${ }^{\text {averlap with } V}=2 \mathrm{Na}^{23} \mathrm{Cl} 35$ Iines.

Table A-VII. $\begin{aligned} V & =1 \text { Spectra of } \mathrm{Na}{ }^{23} \mathrm{Cl} 37 \\ \mathrm{E} & =600 \mathrm{v} / \mathrm{cm}\end{aligned}$

| Observed Tine Positions | $\frac{\text { Calculated }}{\text { Calc:d Ireq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 1. -- a | 172,785.8 KHz | 59.95 | 172,785.8 KHz |  |
| 2. -- ${ }^{\text {f }}$ | $\begin{aligned} & 172,941.1 \\ & 172,941.1 \end{aligned}$ | $\begin{aligned} & 25.73 \\ & 25.86 \end{aligned}$ | 172,941.1 |  |
| 3. -- f | $\begin{aligned} & 172,984.6 \\ & 172,984.6 \end{aligned}$ | $\begin{aligned} & 20.99 \\ & 21.12 \end{aligned}$ | 172,984.6 |  |
| 4. -- b | 173,684.3 | 17.31 | 172,684.3 |  |
| 5. 173,795.1 | 173,801.5 | 100.00 | 173,801.5 | : 6.4 |
| 6. $173,870.4$ | $\begin{aligned} & 173,871 \cdot 7 \\ & 173,882 \cdot 9 \end{aligned}$ | $\begin{aligned} & 22.72 \\ & 45.19 \end{aligned}$ | 173,879.0 | 8.6 |
| 7. | 174,027.0 | 41.05 | 174,027.0 |  |
| 8. | $\begin{aligned} & 174,175.9 \\ & 174,180.8 \end{aligned}$ | $\begin{aligned} & 19.38 \\ & 19.39 \end{aligned}$ | 174,178.5 |  |
| 9. $174,212.2$ | $\begin{aligned} & 174,214.4 \\ & 174,214.4 \end{aligned}$ | $\begin{aligned} & 25.85 \\ & 24.71 \end{aligned}$ | 174,214.4 | 2.2 |
| 10. -- c | $\begin{aligned} & 174,363.2 \\ & 174,368.2 \end{aligned}$ | $\begin{aligned} & 10.70 \\ & 10.61 \end{aligned}$ | 174,366.0 |  |
| 11. $174,407.6$ | $\begin{aligned} & 174,402.6 \\ & 174,402.6 \end{aligned}$ | $\begin{aligned} & 17.49 \\ & 18.26 \end{aligned}$ | 174,402.6 | -5.0 |
| 12. -- d | $\begin{aligned} & 174,925.4 \\ & 174,925.4 \end{aligned}$ | $\begin{aligned} & 3.68 \\ & 3.63 \end{aligned}$ | 174,925.4 |  |
| 13. -- d | $\begin{aligned} & 174,968.9 \\ & 174,968.9 \end{aligned}$ | $\begin{array}{r} 6.35 \\ 6.29 \end{array}$ | 174,968.9 |  |
| 14. -- b | 175,112.8 | 13.68 | 175,112.8 |  |
| 15. -- b | 175,156.3 | 99.98 | 175,156.3 |  |
| 16. --. b | 175,194.1 | 61.36 | 175,194.1 |  |
| 17. -- b | $\begin{aligned} & 175,224.0 \\ & 175,215.7 \end{aligned}$ | $\begin{aligned} & 19.26 \\ & 19.21 \end{aligned}$ | 175,219.0 |  |
| 18. -- b | $\begin{aligned} & 175,261.7 \\ & 175,266 \cdot 6 \end{aligned}$ | $\begin{aligned} & 19.90 \\ & 19.97 \end{aligned}$ | 175,264.0 |  |
| 19. -- b | 175,337.1 | 39.89 | 175,337.1 |  |
| 20. -- | 175,381.4 | 38.47 | 175,381.4 |  |

Table A-VII. (cont'd)

| Obiserved line Positions | $\frac{\text { Calculated I }}{\text { Calc }{ }^{\prime} \text { Freq. }}$ | $\frac{\text { Positions }}{\text { Intenci.ty }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 21. $175,406.1 \mathrm{KHz}$ | $\begin{aligned} & 175,403.1 \mathrm{KHz} \\ & 175,411.3 \end{aligned}$ | $\begin{aligned} & 30.69 \\ & 30.66 \end{aligned}$ | 175,407.0 KHz | 0.9 |
| 22. $175,439.0$ | 175,445.0 | 99.98 | 175,445.0 | 6.0 |
| 23. | 175,488.5 | 13.69 | 175,488.5 | -8.3 |
| 24. .- a | $\begin{aligned} & 175,632.4 \\ & 175,632.4 \end{aligned}$ | $\begin{aligned} & 6.29 \\ & 6.36 \end{aligned}$ | 175,632.4 |  |
| 25. - d | $\begin{aligned} & 175,675.9 \\ & 175,675.9 \end{aligned}$ | $\begin{aligned} & 3.63 \\ & 3.68 \end{aligned}$ | 175,675.9 |  |
| 26. 176,192.7 | $\begin{aligned} & 176,198.7 \\ & 176,198.7 \end{aligned}$ | $\begin{aligned} & 18.26 \\ & 17.48 \end{aligned}$ | 176,198.7 | 6.0 |
| 27. 176,235.4 | 176,235.6 | 21.31 | 176,235.6 | 0.2 |
| 28. .- b | $\begin{aligned} & 176,386.8 \\ & 176,386.8 \end{aligned}$ | $\begin{aligned} & 24.70 \\ & 25.84 \end{aligned}$ | 176,386.8 |  |
| 29. -- b | 176,422.9 | 38.79 | 176,422.9 |  |
| 30. 176,570.2 | 276,574.2 | 41.06 | 176,574.2 | 4.0 |
| 31. -- b | $\begin{aligned} & 176,718.3 \\ & 176,727.9 \\ & 176,731.3 \end{aligned}$ | $\begin{aligned} & 45.19 \\ & 11.35 \\ & 11.38 \end{aligned}$ | 176,721.0 |  |
| 32. -- b | 176,799.7 | 99.96 | 176,799.7 |  |
| 33. - - | $\begin{aligned} & 176,915.3 \\ & 176,918.6 \end{aligned}$ | $\begin{aligned} & 8.63 \\ & 8.68 \end{aligned}$ | 176,917.0 |  |
| 34. .- e | $\begin{aligned} & 177,616.6 \\ & 177,616.6 \end{aligned}$ | $\begin{array}{r} 21.12 \\ 20.99 \end{array}$ | 177,616.6 |  |
| 35. -- e | $\begin{aligned} & 177,660.1 \\ & 177,660.1 \end{aligned}$ | $\begin{aligned} & 25.86 \\ & 25.73 \end{aligned}$ | 177,660.1 |  |
| 36.177,812.9 | $\begin{aligned} & 177,813.7 \\ & 177,817.1 \end{aligned}$ | $\begin{aligned} & 30.01 \\ & 29.93 \end{aligned}$ | 177,815.5 | 2.6 |

Average line error $=7.3 \mathrm{KHz}$
${ }^{\text {a }}$ Overlap with $V^{\prime}=1 \mathrm{Na}{ }^{23} \mathrm{Cl}{ }^{35}$ line (s).
b Overlap with $V=2 \mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ ine(s).
coverlap with $V=1 \mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ and $\mathrm{V}=0 \mathrm{Na}^{23} \mathrm{Cl}{ }^{37}$ lines.
$d_{\text {Lines }}$ have not been observed.
O Overlap with $V=3 \mathrm{Na}^{23} \mathrm{Cl}{ }^{35}$ line(s).
$f_{\text {Overlap with } V}=0 \mathrm{Na}^{23} \mathrm{Cl} 37$ line(s).

Table A-VIII, $\mathrm{Na}^{23}{ }_{\mathrm{Br}}{ }^{79}$ Spectra $\mathrm{V}=0$ $\left(J=1, M_{J}= \pm 1, \quad \because=0 \xrightarrow{E=600 \mathrm{v} / \mathrm{cm}} J=1, M_{J}=0, V=0\right)$

| $\begin{gathered} \text { Obserred Line } \\ \text { Positions } \end{gathered}$ | Calculated Line Positions |  | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc ${ }^{\text {d }}$ Freq. | Intensity |  |  |
| 1. $228,954 \mathrm{KHz}$ | $\begin{aligned} & 228,952 \mathrm{KHz} \\ & 228,988 \end{aligned}$ | $\begin{aligned} & 63.99 \\ & 64.03 \end{aligned}$ | 228,970 KHz | 16 KHz |
| 2. 230,357 | $\begin{aligned} & 230,352 \\ & 230,395 \\ & 230,398 \\ & 230,398 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.96 \\ & 31.98 \\ & 32.01 \end{aligned}$ | 230,375 | 18 |
| 3. 236,706 | $\begin{aligned} & 236,694 \\ & 236,734 \\ & 236,745 \end{aligned}$ | $\begin{array}{r} 100.00 \\ 49.53 \\ 49.49 \end{array}$ | 236,720 | 14 |
| 4.238,121 | $\begin{aligned} & 238,106 \\ & 238,139 \\ & 238,139 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.64 \\ & 49.54 \end{aligned}$ | 238,123 | 2 |
| 5. 239,924 | $\begin{aligned} & 239,915 \\ & 239,915 \\ & 239,951 \end{aligned}$ | $\begin{aligned} & 17.64 \\ & 17.62 \\ & 35.73 \end{aligned}$ | 239,933 | 9 |
| 6. 241,339 | $\begin{aligned} & 241,315 \\ & 241,322 \\ & 241,361 \end{aligned}$ | $\begin{aligned} & 17.56 \\ & 17.58 \\ & 35.73 \end{aligned}$ | 241,338 | - 1 |
| 7. 249,964 | $\begin{aligned} & 249,937 \\ & 249,980 \end{aligned}$ | $\begin{aligned} & 36.08 \\ & 35.49 \end{aligned}$ | 249,958 | -6 |
| 8. -- b |  | $\begin{aligned} & 18.03 \\ & 18.03 \\ & 17.78 \\ & 17.81 \end{aligned}$ | 251,364 | + |
| 9. 253,156 | $\begin{aligned} & 253,158 \\ & 253,158 \\ & 253,191 \end{aligned}$ | $\begin{aligned} & 49.53 \\ & 49.63 \\ & 99.97 \end{aligned}$ | -253,175 | 19 |
| 10. 254,566 | $\begin{aligned} & 254,559 \\ & 254,604 \end{aligned}$ | $\begin{aligned} & 98.98 \\ & 99.95 \end{aligned}$ | 254,581 | 15 |
| 11. 260,934 | $\begin{aligned} & 260,899 \\ & 260,899 \\ & 260,941 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.91 \\ & 63.73 \end{aligned}$ | 260,921 | -13 |
| 12. 262,330 | $\begin{aligned} & 262,308 \\ & 262,312 \\ & 262,346 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.92 \\ & 63.80 \end{aligned}$ | 262,327 | - 3 |

${ }^{a}$ Average line error $=19 \mathrm{KHz}$.
${ }^{\mathrm{b}}$ Line has not been observed inadvertently.

Table A-IX. $\mathrm{Na}^{23} \mathrm{Br}^{79}$ Spectra $\mathrm{V}=1$

$$
\left(J=1, M_{J}= \pm 1, \quad V=L \xrightarrow{E=600 \mathrm{v} / \mathrm{cm}} J=1, M_{J}=0, V=1\right)
$$

| Observed Line ${ }^{\text {a }}$ Positions | $\frac{\text { Calculated L }}{\text { Calc }{ }^{\prime} \text { Ireq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 1. $232,931 \mathrm{KHz}$ | $\begin{aligned} & 232,944 \mathrm{KHz} \\ & 232,979 \end{aligned}$ | $\begin{aligned} & 63.99 \\ & 64.04 \end{aligned}$ | 232,962 KHz | 31 KHz |
| 2. 234,312 | $\begin{aligned} & 234,329 \\ & 234,337 \\ & 234,373 \\ & 234,373 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.97 \\ & 31.99 \\ & 32.01 \end{aligned}$ | 234,351 | 39 |
| 3. 240,841 | $\begin{aligned} & 240,830 \\ & 240,868 \\ & 240,879 \end{aligned}$ | $\begin{array}{r} 100.00 \\ 49.56 \\ 49.52 \end{array}$ | 240,855 | 14 |
| 4. 242,232 | $\begin{aligned} & 242,227 \\ & 242,259 \\ & 242,259 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.66 \\ & 49.56 \end{aligned}$ | 242,243 | 10 |
| 5. 244,084 | $\begin{aligned} & 244,099 \\ & 244,099 \\ & 244,134 \end{aligned}$ | $\begin{aligned} & 17.65 \\ & 17.63 \\ & 35.73 \end{aligned}$ | 244,117 | 33 |
| 6. 245,485 | $\begin{aligned} & 245,484 \\ & 245,491 \\ & 245,528 \end{aligned}$ | $\begin{aligned} & 17.59 \\ & 17.59 \\ & 35.73 \end{aligned}$ | 245,507 | 22 |
| 7. $254,369{ }^{\text {b }}$ | $\begin{aligned} & 254,321 \\ & 254,361 \end{aligned}$ | $\begin{aligned} & 36.08 \\ & 35.53 \end{aligned}$ | 254,341 | -28 |
| 8. 255,701 | $\begin{aligned} & 255,714 \\ & 255,717 \\ & 255,749 \\ & 255,749 \end{aligned}$ | $\begin{aligned} & 18.04 \\ & 18.03 \\ & 17.79 \\ & 17.82 \end{aligned}$ | 255,732 | 31 |
| 9. 257,582 | $\begin{aligned} & 257,589 \\ & 257,589 \\ & 257,621 \end{aligned}$ | $\begin{aligned} & 49.55 \\ & 49.64 \\ & 99.96 \end{aligned}$ | 257,606 | 24 |
| 10. 258,981 | $\begin{aligned} & 258,977 \\ & 259,019 \end{aligned}$ | $\begin{aligned} & 99.03 \\ & 99.94 \end{aligned}$ | '258,998 | 17 |
| 11. 265,464 | $\begin{aligned} & 265,476 \\ & 265,476 \\ & 265,516 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.91 \\ & 63.74 \end{aligned}$ | 265,496 | 32 |
| 12. -- c | $\begin{aligned} & 266,869 \\ & 266,872 \\ & 266,905 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.92 \\ & 63.81 \end{aligned}$ | 266,887 |  |
| ${ }^{\text {a Average line error }}=30 \mathrm{KHz}$. <br> ${ }^{\text {b }}$ Overlap with $\mathrm{V}=\mathrm{Na}{ }^{23} \mathrm{Br}^{81}$ line. <br> $c_{\text {Line has not been observed inadvertently }}$ |  |  |  |  |

$$
\begin{gathered}
\text { Table A-X. } \mathrm{Na}^{23_{B r} 79} \text { Spectra } \mathrm{V}=2 \\
\left(\mathrm{~J}=1, \mathrm{M}_{\mathrm{J}}= \pm 1, \mathrm{~V}=2 \xrightarrow{\left.\mathrm{E}=600 \mathrm{v} / \mathrm{cm} J=1, M_{J}=0, \mathrm{~V}=2\right)}\right.
\end{gathered}
$$

| Cbserved Line ${ }^{a}$ Positions | $\frac{\text { Calculated. I }}{\text { Calc } \mathrm{P}^{\prime} \mathrm{req}}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 1. $236,965 \mathrm{KHz}$ | $\begin{aligned} & 236,976 \mathrm{kHz} \\ & 267,009 \end{aligned}$ | $\begin{aligned} & 64.00 \\ & 64.04 \end{aligned}$ | 236,993 KHz | 28 KHz |
| 2. 238,411 | $\begin{aligned} & 238,346 \\ & 238,353 \\ & 238,389 \\ & 238,389 \end{aligned}$ | $\begin{aligned} & 31.94 \\ & 31.97 \\ & 31.99 \\ & 32.01 \end{aligned}$ | 238,368 | $-43$ |
| 3. 245,014 | $\begin{aligned} & 245,011 \\ & 245,048 \\ & 245,058 \end{aligned}$ | $\begin{array}{r} 100.00 \\ 49.59 \\ 49.55 \end{array}$ | 245,035 | 21 |
| 4. 246,423 | $\begin{aligned} & 246,393 \\ & 246,424 \\ & 246,424 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.68 \\ & 29.58 \end{aligned}$ | 246,408 | -15 |
| 5. -- b | $\begin{aligned} & 248,331 \\ & 248,331 \\ & 248,364 \end{aligned}$ | $\begin{aligned} & 17.66 \\ & 17.64 \\ & 35.72 \end{aligned}$ | 248,347 |  |
| 6. -- b | $\begin{aligned} & 249,701 \\ & 249,708 \\ & 249,743 \end{aligned}$ | $\begin{aligned} & 17.60 \\ & 17.61 \\ & 35.73 \end{aligned}$ | 249,722 |  |
| 7. $258,797^{\text {c }}$ | $\begin{aligned} & 258,759 \\ & 258,798 \end{aligned}$ | $\begin{aligned} & 36.08 \\ & 35.57 \end{aligned}$ | 258,778 | -19 |
| 8. 260,140 | $\begin{aligned} & 260,136 \\ & 260,140 \\ & 260,171 \\ & 260,171 \end{aligned}$ | $\begin{aligned} & 18.04 \\ & 18.04 \\ & 17.81 \\ & 17.83 \end{aligned}$ | 260,154 | 24 |
| 9. 262,086 | $\begin{aligned} & 262,078 \\ & 262,078 \\ & 262,109 \end{aligned}$ | $\begin{aligned} & 49.57 \\ & 49.66 \\ & 99.96 \end{aligned}$ | 262,093 | 7 |
| 10. 263,462 | $\begin{aligned} & 263,450 \\ & 263,491 \end{aligned}$ | $\begin{aligned} & 99.08 \\ & 99.94 \end{aligned}$ | 263,471 | 9 |
| 11. -- b | $\begin{aligned} & 270,113 \\ & 270,113 \\ & 270,152 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.91 \\ & 63.75 \end{aligned}$ | 270,133 |  |
| 12. 271,503 | $\begin{aligned} & 271,491 \\ & 271,494 \\ & 271,526 \end{aligned}$ | $\begin{aligned} & 31.93 \\ & 31.92 \\ & 63.82 \end{aligned}$ | 271,508 | 5 |

[^1]Table A-IX. $\quad \mathrm{Na}^{23}{ }_{\mathrm{Br}}{ }^{79}$ Spectra $V=3$

$$
\left(J=1, M_{J}= \pm 1, \quad V=3 \xrightarrow{E=600 \mathrm{v} / \mathrm{cm}} \mathrm{~J}=1, M_{J}=0 ; \quad \mathrm{V}=3\right)
$$

| Observed Line Positions | Calculated Line Positions |  | Composite Iine Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc ${ }^{\text {d }}$ Freq. | Intersity |  |  |
| 1. $241,097 \mathrm{KHz}$ | $\begin{aligned} & 241,086 \mathrm{KHz} \\ & 241,118 \end{aligned}$ | $\begin{aligned} & 64.01 \\ & 64.05 \end{aligned}$ | 241,102 KHz | 5 KHz |
| 2. 242,459 | $\begin{aligned} & 242,441 \\ & 242,448 \\ & 242,481 \\ & 242,482 \end{aligned}$ | $\begin{aligned} & 31.95 \\ & 31.98 \\ & 31.99 \\ & 32.02 \end{aligned}$ | 242,462 | 3 |
| 3. -- b | $\begin{aligned} & 249,265 \\ & 249,300 \\ & 249,310 \end{aligned}$ | $\begin{array}{r} 100.00 \\ 49.61 \\ 49.58 \end{array}$ | 249,288 |  |
| 4. - b | $\begin{aligned} & 250,631 \\ & 250,661 \\ & 250,661 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.69 \\ & 49.61 \end{aligned}$ | 250,646 |  |
| 5. 252,654 | $\begin{aligned} & 252,631 \\ & 252,631 \\ & 252,663 \end{aligned}$ | $\begin{aligned} & 17.67 \\ & 17.65 \\ & 35.72 \end{aligned}$ | 252,647 | -7 |
| 6. -- b | $\begin{aligned} & 253,987 \\ & 253,993 \\ & 254,027 \end{aligned}$ | $\begin{aligned} & 17.62 \\ & 17.62 \\ & 35.72 \end{aligned}$ | 254,007 |  |
| 7. -- | $\begin{aligned} & 263,260 \\ & 263,297 \end{aligned}$ | $\begin{aligned} & 36.09 \\ & 35.60 \end{aligned}$ | 263,278 |  |
| 8. 264,652 | $\begin{aligned} & 264,623 \\ & 264,626 \\ & 264,656 \\ & 264,656 \end{aligned}$ | $\begin{aligned} & 18.04 \\ & 18.04 \\ & 17.82 \\ & 17.86 \end{aligned}$ | 264,639 | $-13$ |
| 9. 266,619 | $\begin{aligned} & 266,626 \\ & 266,626 \\ & 266,656 \end{aligned}$ | $\begin{aligned} & 49.59 \\ & 49.67 \\ & 99.95 \end{aligned}$ | 266,641 | 22 |
| 10. 268,010 | $\begin{aligned} & 267,984 \\ & 268,023 \end{aligned}$ | $\begin{aligned} & 99.12 \\ & 99.93 \end{aligned}$ | 268,004 | -6 |
| 11. -- b | $\begin{aligned} & 274,805 \\ & 274,805 \\ & 274,842 \end{aligned}$ | $\begin{aligned} & 31.94 \\ & 31.92 \\ & 63.77 \end{aligned}$ | 274,824 |  |
| 12. -- b | $\begin{aligned} & 276,168 \\ & 276,171 \\ & 276,201 \end{aligned}$ | $\begin{aligned} & 31.94 \\ & 31.93 \\ & 63.82 \end{aligned}$ | 276,185 |  |

[^2]Table A-XII. $\mathrm{Na}^{23} \mathrm{Br}^{81}$ Spectra $\mathrm{V}=0$

$$
\left(J=1, M_{J}= \pm 1, V=0 \xrightarrow{E=600 \mathrm{v} / \mathrm{cm}} J=1, M_{J}=0, V=0\right)
$$

| Observed Inine ${ }^{\text {a }}$ Positions | $\frac{\text { Calculated Lir }}{\text { Calc }^{\mathrm{t}} \text { Freq. }}$ | $\frac{\text { Positions }}{\text { Intensity }}$ | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
| 1. $232,800 \mathrm{KHz}$ | $\begin{aligned} & 232,765 \mathrm{KHz} \\ & 232,807 \end{aligned}$ | $\begin{aligned} & 63.84 \\ & 63.78 \end{aligned}$ | 232,786 KHz | $-14 \mathrm{KHz}$ |
| 2. 234,187 | $\begin{aligned} & 234,162 \\ & 234,169 \\ & 234,217 \\ & 234,217 \end{aligned}$ | $\begin{aligned} & 31.79 \\ & 31.83 \\ & 31.88 \\ & 31.91 \end{aligned}$ | 234,190 | 3 |
| 3. 239,254 | $\begin{array}{r} 239,242 \\ 239,291 \\ 239,302 \end{array}$ | $\begin{array}{r} 100.00 \\ 49.32 \\ 49.27 \end{array}$ | 239,272 | 18 |
| 4. 240,676 | $\begin{aligned} & 240,654 \\ & 240,693 \\ & 240,693 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.49 \\ & 49.36 \end{aligned}$ | 240,674 | - 2 |
| 5. 241,956 | $\begin{aligned} & 241,927 \\ & 241,927 \\ & 241,969 \end{aligned}$ | $\begin{aligned} & 17.61 \\ & 17.58 \\ & 35.86 \end{aligned}$ | 241,948 | -8 |
| 6. 243,370 | $\begin{aligned} & 243,324 \\ & 243,332 \\ & 243,379 \end{aligned}$ | 17.51 <br> 17.52 <br> 35.87 | 243,352 | -18 |
| 7. 250,367 | $\begin{aligned} & 250,332 \\ & 250,383 \end{aligned}$ | $\begin{aligned} & 36.14 \\ & 35.30 \end{aligned}$ | 250,358 | -9 |
| 8. 251,755 | $\begin{aligned} & 251,740 \\ & 251,744 \\ & 251,784 \\ & 251,784 \end{aligned}$ | $\begin{aligned} & 18.07 \\ & 18.06 \\ & 17.71 \\ & 17.74 \end{aligned}$ | 251,762 | 7 |
| 9. 253,020 | $\begin{aligned} & 253,018 \\ & 253,018 \\ & 253,057 \end{aligned}$ | $\begin{aligned} & 49.34 \\ & 49.46 \\ & 99.94 \end{aligned}$ | 253,036 | 16 |
| 10. 254,425 | $\begin{aligned} & 254,416 \\ & 254,470 \end{aligned}$ | $\begin{aligned} & 98.51 \\ & 99.92 \end{aligned}$ | 254,443 | 18 |
| 11. 259,512 | $\begin{aligned} & 259,495 \\ & 259,495 \\ & 259,546 \end{aligned}$ | $\begin{aligned} & 31.85 \\ & 31.82 \\ & 63.51 \end{aligned}$ | 259,521 | 9 |
| 12. 260,934 | $\begin{aligned} & 260,902 \\ & 260,906 \\ & 260,946 \end{aligned}$ | $\begin{aligned} & 31.86 \\ & 31.85 \\ & 63.65 \end{aligned}$ | 260,924 | -10 |

[^3]Table A-XIII. $\mathrm{Na}^{23} \mathrm{Br}^{81}$ Spectra $\mathrm{V}=1$
$\left(J=1, M_{J}= \pm 1, \quad V=1 \xrightarrow{E=600 \mathrm{v} / \mathrm{cm}} J=1, M_{J}=0, \quad V=1\right)$

| Observed Line ${ }^{\text {a }}$ Positions | Calculated Line Positions |  | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 1. $236,706^{\mathrm{b}} \mathrm{KHz}$ | $\begin{aligned} & 236,691 \mathrm{kHz} \\ & 236,731 \end{aligned}$ | $\begin{aligned} & 63.80 \\ & 63.86 \end{aligned}$ | 236,711 KHz | 5 KHz |
| 2. $238,121^{\text {b }}$ | $\begin{aligned} & 238,073 \\ & 238,080 \\ & 238,126 \\ & 238,126 \end{aligned}$ | $\begin{aligned} & 31.81 \\ & 31.85 \\ & 31.89 \\ & 31.92 \end{aligned}$ | 238,100 | -21 |
| 3. $243,370^{\text {c }}$ | $\begin{aligned} & 243,318 \\ & 243,364 \\ & 243,375 \end{aligned}$ | $\begin{array}{r} 100.00 \\ 49.36 \\ 49.32 \end{array}$ | 243,347 | -23 |
| 4. -- d | $\begin{aligned} & 244,715 \\ & 244,752 \\ & 244,752 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 4.52 \\ & 49.40 \end{aligned}$ | 244,734 | - |
| 5. -- d | $\begin{aligned} & 246,058 \\ & 246,058 \\ & 246,098 \end{aligned}$ | $\begin{aligned} & 17.63 \\ & 17.60 \\ & 35.86 \end{aligned}$ | 246,078 | -- |
| 6. --d | $\begin{aligned} & 247,440 \\ & 247,447 \\ & 247,493 \end{aligned}$ | $\begin{aligned} & 17.53 \\ & 17.55 \\ & 35.86 \end{aligned}$ | 247,465 | -- |
| 7. 254,718 | $\begin{aligned} & 254,667 \\ & 254,716 \end{aligned}$ | $\begin{aligned} & 36.14 \\ & 35.36 \end{aligned}$ | 254,692 | -26 |
| 8. 256,100 | $\begin{aligned} & 256,060 \\ & 256,063 \\ & 256,102 \\ & 256,102 \end{aligned}$ | $\begin{aligned} & 18.07 \\ & 18.06 \\ & 17.73 \\ & 17.76 \end{aligned}$ | 256,081 | -19 |
| 9. 257,443 | $\begin{aligned} & 257,408 \\ & 257,408 \\ & 257,445 \end{aligned}$ | $\begin{aligned} & 49.38 \\ & 49.49 \\ & 99.93 \end{aligned}$ | 257,427 | -16 |
| 10. $258,797^{\text {e }}$ | $\begin{aligned} & 258,791 \\ & 258,843 \end{aligned}$ | $\begin{aligned} & 98.60 \\ & 99.91 \end{aligned}$ | 258,817 | 20 |
| 11. 264,049 | $\begin{aligned} & 264,034 \\ & 264,034 \\ & 264,083 \end{aligned}$ | $\begin{aligned} & 31.86 \\ & 31.83 \\ & 63.54 \end{aligned}$ | 264,059 | 10. |
| 12. $265,464^{\text {f }}$ | $\begin{array}{r} 265,427 \\ 265,430 \\ 265,469 \end{array}$ | $\begin{aligned} & 31.87 \\ & 31.85 \\ & 63.67 \end{aligned}$ | 265,448 | -16 |
| $\begin{aligned} & a_{\text {Average }} \text { line error }=25 \mathrm{kHz} \text {. } \\ & \mathrm{b}_{\text {Overlap with } \mathrm{V}=0 \mathrm{Na}}{ }^{23} \mathrm{Br} 7^{79} \text { line } \\ & c_{\text {Overlap with } \mathrm{V}=0 \mathrm{Na}^{23} \mathrm{Br}^{81} \text { line }} \end{aligned}$ |  | ${ }^{\text {Line }}$ has not been observed suffic well. <br> ${ }^{\text {O Overlap with }} \mathrm{V}=2 \mathrm{Na}^{23} \mathrm{Br}^{79}$ line. |  |  |

> Table A-XIV. $\mathrm{Na}^{23} \mathrm{Br}{ }^{81}$ Spectra $V=2$ $\left(J=1, M_{J}= \pm 1, V=2 \xrightarrow{\mathrm{E}=600 \mathrm{~V} / \mathrm{cm}} \mathrm{J}=1, M_{J}=0, \mathrm{~V}=2\right)$

| Observed Line ${ }^{a}$ Positions | Calculated Line Positions |  | Composite Line Frequency | Difference |
| :---: | :---: | :---: | :---: | :---: |
|  | Calc'd Freq. | Intensity |  |  |
| 1. $240,636 \mathrm{KHz}$ | $\begin{aligned} & 240,589 \mathrm{KHz} \\ & 240,628 \end{aligned}$ | $\begin{aligned} & 63.82 \\ & 63.87 \end{aligned}$ | 240,609 KHz | $-27 \mathrm{KHz}$ |
| 2. 241,956 | $\begin{aligned} & 241,957 \\ & 241,964 \\ & 242,007 \\ & 242,007 \end{aligned}$ | $\begin{aligned} & 31.82 \\ & 31.86 \\ & 31.90 \\ & 31.92 \end{aligned}$ | 241,981 | 25 |
| 3. 247,322 | $\begin{array}{r} 247,366 \\ 247,410 \\ 247,834 \end{array}$ | $\begin{array}{r} 100.00 \\ 49.41 \\ 49.37 \end{array}$ | 247,393 | 71 |
| 4. 248,738 | $\begin{aligned} & 248,747 \\ & 248,783 \\ & 248,783 \end{aligned}$ | $\begin{aligned} & 99.98 \\ & 49.55 \\ & 49.44 \end{aligned}$ | 248,765 | 27 |
| 5. -- b | $\begin{aligned} & 250,160 \\ & 250,160 \\ & 250,198 \end{aligned}$ | $\begin{aligned} & 17.64 \\ & 17.62 \\ & 35.85 \end{aligned}$ | 250,179 |  |
| 6. -- b | $\begin{aligned} & 251,529 \\ & 251,535 \\ & 251,578 \end{aligned}$ | $\begin{aligned} & 17.56 \\ & 17.57 \\ & 35.85 \end{aligned}$ | 251,553 |  |
| 7. $258,981{ }^{\text {c }}$ | $\begin{aligned} & 258,974 \\ & 259,021 \end{aligned}$ | $\begin{aligned} & 36.14 \\ & 35.42 \end{aligned}$ | 258,998 | 17 |
| 8. 260,314 | $\begin{aligned} & 260,352 \\ & 260,355 \\ & 260,392 \\ & 260,392 \end{aligned}$ | $\begin{aligned} & 18.07 \\ & 18.06 \\ & 17.74 \\ & 17.78 \end{aligned}$ | 260,372 | 58 |
| 9. -- b | $\begin{aligned} & 261,769 \\ & 261,769 \\ & 261,805 \end{aligned}$ | $\begin{aligned} & 49.40 \\ & 49.51 \\ & 99.93 \end{aligned}$ | 261,787 |  |
| 10. -- b | $\begin{aligned} & 263,138 \\ & 263,188 \end{aligned}$ | $\begin{aligned} & 98.68 \\ & 99.91 \end{aligned}$ | 263,163 |  |
| 11. 268,522 | $\begin{aligned} & 268,545 \\ & 268,545 \\ & 268,592 \end{aligned}$ | $\begin{aligned} & 31.87 \\ & 31.84 \\ & 63.57 \end{aligned}$ | 268,568 | 46 |
| 12. 270,018 | $\begin{aligned} & 269,923 \\ & 269,926 \\ & 269,963 \end{aligned}$ | $\begin{aligned} & 31.87 \\ & 31.86 \\ & 63.68 \end{aligned}$ | 269,943 | -75 |

[^4]1. P. Kusch and V.W. Hughes, in Handbuch der Physik (Springer-Verlag, Berlin, 1959) vol $37 / 1$
2. J.W. Trischka, in Methods of Experimental Physics (Academic Press, New York, 1962) vol 3, p. 589
3. C.D. Hollowe11. The Molecular Beam Electric Resonance Spectra of LiF, NaF and KCl, (Ph.D. Thesis),UCRL 17019, Nov. 1966
4. L.P.Gold, The Molecular Beam Electric Resonance Spectra of Some Alkali Halides, (Ph.D. Thesis), Harvard University, $\mathrm{C}_{\mathrm{a}} \mathrm{mbridge}$, Mass, Nov. 1961
5. W.A. Nierenberg and N.F. Ramsey, Phys. Rev. 72, 1075 (1947)
6. H.J. Zeiger and D. I. Bolef, Phys. Rev. 85, 788 (1952)
7. R.E. Cote and P. Kusch, Phys. Rev. 20, 103 (1953)
8. S.A. Oachs, R.E. Cote, and P. Kusch, J. Chem. Phys. 21, 459 (1953)
9. A. Honig, M. Mandel, M. Stitch and C. H. Townes, Phys. Rev. 26, 269 (1954)
10. R. A. Logan, R.E. Cote and P. Kusch, Phys. Rev. 86, 280 (1952)
11. A.J. Hebert, "A Molecular Beam Electric Resonance Spectrometer and the Radiofrequency Spectra of LiF,(Ph.D. Thesis),UCRL 10482, Sept. 1962
12. F.W. Breivogel, The Radiofrequency and Microwave Spectra of LiBr and LiI, (Ph.D. Thesis),UCRL 11665, Sept. 1964
13. R. Braunstein and J. W. Trischka, Phys. Rev. 98, 1092 (1955)
14. F. Lovas, (University of California, Berkeley), Private Communication, June 1967
15. F. Lovas, Radiofrequency Stark Spectra of $\mathrm{RbF}, \mathrm{RbCl}, \mathrm{CsF}, \mathrm{CsCl}$ and NaI , (Ph.D. Thesis), UCRL 17909, Nov. 1967
16. C.H. Townes and A.I. Schawlow, Microwave Spectroscopy, (McGraw-Hill Book Co., New York, 1955) Ch. 10
17. G. Graff, W. Paul and Ch. Schlier, Z. Physik 153, 38, (1958) 18. N.F. Ramsey, Molecular Beams, (Clarendon Press, Oxford, 1956)
18. N.F. Ramsey, Phys. Rev. 21, 303, (1953)
19. V. Jaccarino and Jo King, Phys. Rev. 81,471, (1951)
20. N.A. Schuster and G.E. Pake, Phys. Rev. 81, 157 (1951)
21. Davis, Feld, Zabel and Zacharias Phys. Rev. 76, 1076 (1949)
22. Gordy, Simmons and Smith, Phys. Rev. 74; 243 (1948)
23. Gilbert, Roberts and Griswold, Phys. Rev. 76, 1723 (1948)
24. Smith, Tidwell and Williams, Phys. Rev. 79, 1007(1950)
25. S. Geshwind, R. Gunther-Mohr and C. H. Townes, Phys. Rev. 81, 288 (1951)
26. T. C. Wang, C.H. Townes, A. L .Schawlow, and A. N. Holden, Phys. Rev. 86, 809 (1952)
27. J. R. Rusk and W. Gordy, Phys. Rev. 127, 817 (1962)
28. P.I. Clouser and W. Gordy, Phys. Rev. 134, A863 (1964)
29. A.J. Hebert, F.W. Breivogel Jr., and K. Street Jr., J.Chem. Phys. 4], 2368 (1964)
30. Ch. Schlier, Z. Physix, 154, 460, (1959)

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method; or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.


[^0]:    This work was done under auspices of the U. S. Atomic Energy Commission.

[^1]:    ${ }^{\text {a Average line error }}=26 \mathrm{KHz}$.
    ${ }^{\mathrm{b}}$ Line has not been observed, inadvertently or sufficiently well.
    coverlap with $\mathrm{V}=1 \mathrm{Na}^{23_{\mathrm{Br}}}{ }^{81}$ line.

[^2]:    ${ }^{\text {a }}$ Average line error $=39 \mathrm{KHz}$.
    ${ }^{\mathrm{b}}$ Line has not been observed inadvertantly or sufficiently well.

[^3]:    ${ }^{a}$ Average line error $=25 \mathrm{KHz}$.

[^4]:    ${ }^{\text {a }}$ Average line error $=30 \mathrm{KHz}$
    ${ }^{\mathrm{b}}$ Line has not been observed inadvertantly or sufficiently well.
    ${ }^{c}$ Overlap with $\mathrm{V}=1 \mathrm{Na}^{23} \mathrm{Br}^{79}$ line.

