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ORIGINAL RESEARCH

Atherogenic Lipoprotein(a) Increases Vascular 
Glycolysis, Thereby Facilitating Inflammation  
and Leukocyte Extravasation
Johan G. Schnitzler, Renate M. Hoogeveen, Lubna Ali, Koen H.M. Prange, Farahnaz Waissi, Michel van Weeghel,  
Julian C. Bachmann, Miranda Versloot, Matthew J. Borrelli, Calvin Yeang, Dominique P.V. De Kleijn, Riekelt H. Houtkooper,  
Marlys L. Koschinsky, Menno P.J. de Winther, Albert K. Groen, Joseph L. Witztum, Sotirios Tsimikas, Erik S.G. Stroes, Jeffrey Kroon

RATIONALE: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial 
wall on positron emission tomography/computed tomography, indicative of a proinflammatory state.

OBJECTIVE: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism.

METHODS AND RESULTS: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized 
phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. 
Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory 
pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-
biphosphatase (PFKFB)-3–mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to 
be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory 
signature with concomitant attenuation of transendothelial migration.

CONCLUSIONS: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, 
leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic 
agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease.

VISUAL OVERVIEW: An online visual overview is available for this article.

Key Words:  endothelial cell ◼ glycolysis ◼ inflammation ◼ lipoprotein(a) ◼ metabolism

Lipoprotein(a) [Lp(a)] is an LDL (low-density 
lipoprotein)-like particle characterized by covalently 
bound apo(a) (apolipoprotein(a)) to apoB (apolipo-

protein B-100) of LDL. On an equimolar basis, Lp(a) is 
considered more atherogenic than LDL due to the pres-
ence of phosphocholine containing oxidized phospho
lipids (OxPLs) bound to apo(a).1,2 OxPLs are recognized 
as endogenous danger-associated molecular patterns.3 
Bound to Lp(a), OxPLs are capable of activating circu-
lating monocytes, rendering them highly inflammatory 
leading to enhanced monocyte transendothelial migration 

(TEM).4 Lp(a) elevation (≥50 mg/dL, >125 nmol/L) is a 
highly prevalent condition5,6 that is associated with a 2- to 
4-fold increase in cardiovascular morbidity and mortal-
ity.7,8 Lp(a) levels are inversely correlated to the number of 
kringle repeats found in the apo(a) entity of Lp(a).9,10 The 
mechanisms by which Lp(a) mediates enhanced arterial 
inflammation and accelerated atherogenesis may com-
prise accumulation of Lp(a) in atherosclerotic plaques, 
enhanced thrombogenic potential, and proinflammatory 
effects from its content of OxPLs.2 Whereas we and oth-
ers have focused on the interaction of Lp(a) with immune 
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cells and coagulation,4,11 functional data on the impact of 
Lp(a) on the endothelium—the first line of defense against 
atherosclerosis—remain scarce.12–18

In the context of atherosclerosis, it became evident 
that monocytes rewire their metabolism as a common 

mechanism required to provide energy and building blocks 
for inflammatory reactions.4,19–21 In contrast, the impact of 
Lp(a) on endothelial cells (ECs) with respect to changes in 
metabolism has not been studied. Since tumor angiogenesis 
has been found to coincide with EC metabolic alterations,22 
we hypothesize that Lp(a) induces EC activation fueled by 
metabolic alterations to sustain a proinflammatory state.

In the present study, we reveal a novel role of Lp(a) 
and in particular, Lp(a)-bound OxPLs in driving EC 
inflammation. Targeting these Lp(a)-induced endothe-
lial metabolic alterations provides a fruitful strategy to 
reverse EC inflammation, which may eventually help to 
reduce the atherogenic risk in patients.

METHODS
A detailed description of the Methods is available in the Data 
Supplement.

The RNA sequencing data generated in this study are 
available at the National Center for Biotechnology Information 
Gene Expression Omnibus database under accession No. 
GSE145898.

RESULTS
Lp(a) Elicits a Proinflammatory Response in ECs
To determine whether Lp(a) elicits EC activation leading 
to increased transmigration of monocytes, we stimulated 

Nonstandard Abbreviations and Acronyms

2-NBDG	� 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]
amino)-2-deoxyglucose

apo(a)	 apolipoprotein(a)
apoB	 apolipoprotein B-100
EC	 endothelial cell
GLUT1	 glucose transporter 1
HIF1α	 hypoxia inducible factor 1α
HK2	 hexokinase 2
ICAM-1	 intercellular adhesion molecule 1
IL	 interleukin
LDL	 low-density lipoprotein
LDL-c	 low-density lipoprotein cholesterol
Lp(a)	 lipoprotein(a)
MCP-1	 monocyte chemoattractant protein 1
OxPL	 oxidized phospholipid
PFKFB3	  �6-phophofructo-2-kinase/

fructose-2,6-biphosphatase
TEM	 transendothelial migration

Novelty and Significance

What Is Known?
•	 Genetic and observational data have demonstrated 

that elevated lipoprotein(a) [Lp(a)] is a causal risk fac-
tor for cardiovascular disease.

•	 Patients with elevated levels of Lp(a) are noted to have 
increased metabolic activity in the arterial wall on posi-
tron emission tomography/computed tomography.

•	 Glycolysis is an important source of energy for endo-
thelial cells.

What New Information Does This Article  
Contribute?
•	 Lp(a) and its associated oxidized phospholipids induce 

endothelial cell inflammation and thereby facilitate 
leukocyte transendothelial migration—a hallmark of 
atherosclerosis.

•	 Lp(a) activates the endothelium by enhancing 6-pho-
phofructo-2-kinase/fructose-2,6-biphosphatase 
(PFKFB3)–mediated glycolysis—the main glycolytic 
orchestrator of Lp(a)-induced endothelial inflammation.

•	 Carotid endarterectomy patients with elevated levels of 
Lp(a) show increased endothelial PFKFB3 and ICAM 
(intercellular adhesion molecule)-1 expression.

•	 Inhibition of PFKFB3 abolishes the inflammatory 
potential of oxidized phospholipids associated with 
Lp(a).

•	 Selective endothelial targeting of PFKFB3-mediated 
glycolysis may offer a new target for future anti-
inflammatory therapy in patients at increased cardio-
vascular risk.

Lp(a) and its associated oxidized phospholipids induce 
endothelial cell inflammation leading to increased leu-
kocyte transendothelial migration. Endothelial cells 
must alter their metabolic pathways so as to meet the 
energy demand required to facilitate an inflammatory 
state. As a pivotal driver of glycolysis, the glycolytic 
enzyme PFKFB3 mediates Lp(a)-induced endothelial 
cell inflammation. Blocking PFKFB3 activity dimin-
ishes endothelial inflammation and markedly reduces 
leukocyte migration through the vessel wall. From a 
clinical perspective, our findings suggest that selec-
tive targeting of endothelial metabolism, in particular, 
PFKFB3-mediated glycolysis, may offer a new prom-
ising strategy for anti-inflammatory therapy in patients 
at increased cardiovascular risk.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCRESAHA.119.316206
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Original





 R
esearch





Schnitzler et al� Lp(a) Induces Inflammation by Enhancing Metabolism

1348    May 8, 2020� Circulation Research. 2020;126:1346–1359. DOI: 10.1161/CIRCRESAHA.119.316206

human aortic ECs for 18 hours with a physiological rel-
evant concentration of 100 mg/dL of Lp(a). Subsequently, 
healthy monocytes were added to ECs incubated with 
Lp(a) [Lp(a)-ECs] or unstimulated ECs. The rate of adhe-
sion of monocytes to the endothelium doubled in Lp(a)-
ECs compared with control ECs (Figure 1A and 1B), with 
a concomitant 5-fold increase in TEM of monocytes in 
the Lp(a)-EC condition (Figure  1A and 1C). To visualize 
transcriptional changes in Lp(a)-ECs, we incubated human 
aortic ECs with either low (5 mg/dL) or high Lp(a) (100 
mg/dL) and performed RNA sequencing. Heat map analy-
sis of Lp(a)-ECs upregulated transcripts revealed an acti-
vated EC phenotype, with clustering of genes involved in 
leukocyte chemotaxis and migration (Figure 1D; Figure IA 
in the Data Supplement). Furthermore, 2 distinct groups 
were separated by principle component analysis (Figure 
IB in the Data Supplement). Volcano plot analysis showed 
270 differentially expressed genes (134 genes upregu-
lated and 136 genes downregulated; Figure IC in the Data 
Supplement). Validation of key molecules involved in TEM 
(Figure  1E) by targeted quantitative polymerase chain 
reaction confirmed significantly increased expression of 
SELE, ICAM1, and VCAM1 in Lp(a)-ECs (Figure  1F). In 
addition, expression of MCP1 (monocyte chemoattractant 
protein 1) showed a 3-fold increase; cytokines IL6 and 
IL8 revealed a 2- and 20-fold increase, respectively (Fig-
ure 1G). Functionally, this resulted in increased secretion 
of IL (interleukin)-6 and IL-8 (Figure 1H) and a 3.5-fold 
increase in ICAM (intercellular adhesion molecule)-1 pro-
tein (Figure 1I). ICAM-1 is essential for efficient monocyte 
TEM as a knockdown of ICAM-1 in human aortic ECs led 
to decreased TEM of monocytes (Figure ID in the Data 
Supplement). Secretion of MCP-1, IL-6, and IL-8 signifi-
cantly increased over time as well (Figure IE in the Data 
Supplement). In addition, the observed effects of Lp(a) 
were independent of factors present in human serum (Fig-
ure IIA in the Data Supplement). Together these data show 
that Lp(a) induces a proinflammatory signature of ECs.

OxPLs Carried by Lp(a) Drive Endothelial 
Inflammation
In view of the recently reported role of OxPLs in Lp(a) and 
its effects on immune cells,3 we investigated which moiety 
of the Lp(a) particle mediates the inflammatory response 
in the endothelium. To this end, we used either the 17-krin-
gle recombinant apo(a) species 17K r-apo(a), containing 
OxPLs, or 17KΔLBS r-apo(a), which lacks OxPL-binding 
capacity due to a mutation in the lysine-binding site (Figure 
IIB in the Data Supplement).4,23 Gene expression revealed 
that TEM-associated expression of SELE, MCP1, ICAM1, 
VCAM1, IL6, and IL8 was increased if ECs were exposed 
to 17K r-apo(a) treatment (Figure 2A; red bars). In contrast, 
17KΔLBS r-apo(a) had no significant effect on inflamma-
tory gene expression (Figure 2A; green bars). To function-
ally assess these changes, we determined adhesion and 

migration of healthy monocytes and found that monocyte 
adhesion was significantly increased when ECs were 
incubated with 17K apo(a), whereas no significant differ-
ence was found between unstimulated and 17KΔLBS-
stimulated ECs (Figure  2B and 2C). Furthermore, 17K 
apo(a) significantly increased TEM 7-fold compared with 
17KΔLBS apo(a) (Figure  2B and 2D), underlining the 
importance of OxPL-Lp(a) in mediating the proinflam-
matory responses. To validate the importance of OxPLs 
carried by Lp(a), both OxPL-apoB and OxPL-apo(a) lev-
els were measured in the isolated Lp(a) fraction of used 
donors. The OxPL-apo(a) content was similar between 
donors, and correspondingly, the OxPL-apoB levels were 
comparable in different donors (Figure IIC in the Data Sup-
plement). To confirm whether OxPLs bound to Lp(a) are 
driving EC activation, we coincubated Lp(a)-ECs with the 
murine IgM monoclonal antibody E06 (100 μg/mL), which 
binds the phosphocholine moiety of OxPLs.24,25 Blocking 
E06-detectable OxPLs abolished Lp(a)-induced ICAM1, 
VCAM1, IL6, and IL8 gene expression (Figure 2E). Block-
ing OxPLs by the antibody E06 led to a significant reduc-
tion in both monocyte adhesion and TEM (Figure 2F and 
2G). In contrast, isolated LDL did not significantly change 
endothelial phenotype compared with the same concen-
tration of Lp(a) based on apo(a) (Figure IID in the Data 
Supplement). However, incubation of LDL based on apoB 
levels did lead to a small, albeit significant increase in IL-8 
expression compared with control ECs (Figure IIE and IIF 
in the Data Supplement). Collectively, these data indicate 
that the activated state of ECs needed for monocyte TEM 
is primarily orchestrated by OxPLs present on Lp(a).

PFKFB3-Mediated Glycolysis Drives Lp(a)-
Induced Endothelial Inflammation
Next, we evaluated the metabolic changes in ECs after 
17K r-apo(a) or Lp(a) stimulation (Figure  3A). Expres-
sion of the glycolytic enzymes SLC2A1 (GLUT1 [glucose 
transporter 1]), 6-phophofructo-2-kinase/fructose-
2,6-biphosphatase (PFKFB3), and PFKM increased 
2- to 4-fold, whereas HK2 (hexokinase 2) expression 
remained unaltered after 18-hour incubation with 17K, 
when compared with EC under control conditions (Fig-
ure 3B; red bars). No significant differences were found 
for these glycolytic genes between unstimulated cells 
and 17KΔLBS (Figure  3B). Since PFKFB3 acts as 
an important glycolytic regulator, we investigated the 
upstream regulators of PFKFB3, HIF1α (hypoxia induc-
ible factor 1α), and KLF2.26 As expected, HIF1α protein 
expression increased (Figure IIG in the Data Supplement) 
and the expression of the negative regulator of HIF1<, 
KLF2,27 was decreased after 17K stimulation (Figure IIH 
in the Data Supplement). The increase in glycolytic gene 
expression coincided with enhanced glucose uptake in 
Lp(a)-ECs, as assessed with labeled 2-(N-[7-nitrobenz-
2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose (2-NBDG; 
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Figure  3C and 3D), and increased lactate production 
(Figure 3E). Whereas aforementioned cytokine secretion 
occurred as early as in 2 hours in Lp(a)-ECs (Figure IE in 
the Data Supplement), the increase in lactate secretion, 
observed from 6 hours onward (Figure III in the Data Sup-
plement), coincided with a steep increase in second-wave 

cytokine secretion. This suggests an increase in glycoly-
sis downstream of inflammation and substantiates the 
correlation between inflammation and metabolic repro-
gramming. Seahorse flux analysis corroborated these 
findings, revealing an increase in both glycolysis and gly-
colytic capacity following Lp(a) stimulation (Figure  3F). 

Figure 1. Increased inflammation in Lp(a) (lipoprotein(a))-vs endothelial cells (ECs) facilitates excessive monocyte transmigration.
A, Representative differential interference contrast images of transendothelial migration (TEM) in unstimulated ECs (left) compared with Lp(a)-
stimulated ECs [Lp(a)-EC] for 18 h. Transmigrated monocytes are visualized as black cells with a red asterisk and adhered monocytes as white 
cells. White bar=200 μm. B, Quantification of adhered (n=6; P=0.0466) and (C) transmigrated monocytes (n=6; P=0.0014). Data were analyzed 
using 2-tailed Student unpaired t test. D, Heat map of selected genes involved in TEM and leukocyte chemotaxis of 5 mg/dL Lp(a)-EC compared 
with 100 mg/dL Lp(a)-EC (6 h stimulation; n=4). E, Schematic overview of the key steps and molecules involved in leukocyte TEM. F, Genes 
important in rolling and tethering of leukocytes are upregulated in Lp(a)-ECs relative to unstimulated ECs. Data were analyzed using 2-tailed 
Student unpaired t test (6 h stimulation; n=5; P=0.0253 for E-selectin; P=0.0008 for ICAM1; P=0.0333 for VCAM1). G, Chemotactic gene 
expression is elevated in Lp(a)-ECs compared with unstimulated ECs. Data were analyzed using 2-tailed Student unpaired t test (6 h stimulation; 
n=3 for IL6 and rest is n=5; P=0.0030 for MCP1; P=0.0025 for IL6; P=0.0368 for IL8). H, IL (interleukin)-6 and IL-8 cytokine secretion in cell 
medium increased in Lp(a)-ECs (n=4) vs unstimulated ECs (n=6). Data were analyzed using 2-tailed Student unpaired t test (P<0.0001 for IL-6; 
P<0.0001 for IL-8; 18 h stimulation). I, Representative immunoblot revealing increased EC ICAM (intercellular adhesion molecule)-1 protein 
expression after incubation with 100 mg/dL Lp(a) compared with unstimulated ECs (18 h stimulation). All data are mean±SEM. MCP-1 indicates 
monocyte chemoattractant protein 1; and VCAM-1, vascular adhesion molecule 1. *P<0.05, **P<0.005, ***P<0.0005, ****P<0.00005.
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In accordance, 17K r-apo(a)–stimulated ECs induced a 
similar response in extracellular acidification rate, where 
the 17KΔLBS r-apo(a) construct showed no signifi-
cant increase in endothelial glycolysis (Figure 3G). This 
increase in glycolysis coincided with only minor changes 

in endothelial respiration, as reflected by the minimal dif-
ference in oxygen consumption rate (Figure  3H). The 
findings were substantiated by stable isotope 13C-glucose 
tracer experiments (Figure 3I), where an Lp(a)-induced 
increase in glycolytic metabolic fluxes was observed with 

Figure 2. Oxidized phospholipids induce a 
proinflammatory EC phenotype and thereby 
facilitate monocyte transendothelial migration 
(TEM).
A, Recombinant 17K apo(a) (apolipoprotein(a)) induces 
increased expression of TEM-associated genes (50 μg/mL; 
red bars). No differences were observed in ECs stimulated 
with 17KΔLBS (50 μg/mL; green bars). Data were analyzed 
using 1-way ANOVA with Tukey correction (for E-selectin, 
P<0.0001 for unstimulated vs 17K, P<0.0001 for 17K vs 
17KΔLBS; for MCP1, P<0.0001 for unstimulated vs 17K, 
P<0.0001 for 17K vs 17KΔLBS; for ICAM1, P<0.0001 
for unstimulated vs 17K, P<0.0001 for 17K vs 17KΔLBS; 
for VCAM1, P<0.0001 for unstimulated vs 17K, P<0.0001 
for 17K vs 17KΔLBS; for IL6, P=0.037 for unstimulated vs 
17K, P=0.0156 for 17K vs 17KΔLBS; for IL8, P<0.0001 
for unstimulated vs 17K, P<0.0001 for 17K vs 17KΔLBS 
6 h stimulation; n=4). B, Representative differential 
interference contrast (DIC) images of unstimulated ECs, 
17K-stimulated ECs, and 17KΔLBS-stimulated HAECs. 
Transmigrated monocytes are visualized as black cells with 
a red asterisk and adhered monocytes as white cells (18 
h stimulation; n=6; white bar=200 μm). C, Quantification 
of adhered monocytes. Data were analyzed using 1-way 
ANOVA with Tukey correction. P=0.0049 for unstimulated 
vs 17K (17K, red bars; 17KΔLBS, green bars) and (D) 
transmigrated monocytes. Data were analyzed using 
1-way ANOVA with Tukey correction. P<0.0001 for 
unstimulated vs 17K, P<0.0001 for 17K vs 17KΔLBS (18 
h stimulation; n=6). E, Monoclonal antibody E06 (100 μg/
mL), decreased expression of ICAM1, VCAM1, IL6, and 
IL8 in Lp(a) (lipoprotein(a))-ECs (green bars) vs Lp(a)-ECs 
(red bars). Data were analyzed using 1-way ANOVA with 
Tukey correction. For ICAM1, P=0.0059 for unstimulated 
vs Lp(a), P=0.0173 for Lp(a) vs Lp(a)+E06; for VCAM1, 
P=0.0187 for unstimulated vs Lp(a), P=0.0099 for Lp(a) 
vs Lp(a)+E06; for IL6, P=0.0162 for unstimulated vs Lp(a), 
P=0.0070 for Lp(a) vs Lp(a)+E06; for IL8, P=0.0324 for 
unstimulated vs Lp(a), P=0.0431 for Lp(a) vs Lp(a)+E06 
(6 h stimulation; n=5). F, ECs incubated with 100 mg/
dL Lp(a) increased monocyte adhesion (red bars) but 
coincubation with E06 diminished Lp(a)-induced adhesion 
(green bars). Data were analyzed using 1-way ANOVA 
with Tukey correction. P=0.0342 for unstimulated vs Lp(a), 
P=0.0324 for Lp(a) vs Lp(a)+E06 (18 h stimulation; n=5). 
G, Monocyte TEM was increased when ECs were incubated 
with 100 mg/dL Lp(a) (red bars) and decreased after 
coincubation with E06 (green bars). Data were analyzed 
using 1-way ANOVA with Tukey correction. P=0.0014 for 
unstimulated vs Lp(a), P=0.0095 for Lp(a) vs Lp(a)+E06 
(18 h stimulation; n=5). All data are mean±SEM. 17K 
indicates 17K recombinant apolipoprotein(a); 17KΔLBS, 
17K recombinant apolipoprotein(a) with a mutation in the 
lysine-binding site; E06, murine IgM monoclonal antibody 
E06 that binds the PC moiety of oxidized phospholipids; 
ICAM-1, intercellular adhesion molecule 1; IL, interleukin 6; 
MCP-1, monocyte chemoattractant protein 1; and VCAM-
1, vascular adhesion molecule 1. *P<0.05, **P<0.005, 
***P<0.0005, ****P<0.00005.
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Figure 3. Glycolysis drives inflammation in Lp(a) (lipoprotein(a))-ECs.
A, Schematic overview of the EC glycolytic pathway and its key enzymes in blue. B, Glycolytic gene expression profiles of unstimulated EC 
(gray bars) vs 17K- (red bars) vs 17KΔLBS-stimulated ECs (green bars). Data were analyzed using 1-way ANOVA with Tukey correction. For 
SLC2A1, P=0.0204 for unstimulated vs 17K; for PFBFB3, P=0.0002 for unstimulated vs 17K, P=0.0013 for 17K vs 17KΔLBS; for PFKM 
(6-phosphofructokinase, muscle), P=0.0332 for unstimulated vs 17K (18 h incubation; n=5). C, Representative image of unstimulated ECs (left) 
and Lp(a)-ECs (right), incubated with 50 μM 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose (2-NBDG) for 2 h (18 h incubation 
with Lp(a); n=4; white bar=200 μm). D, Flow cytometric analysis of 2-NBDG uptake (2 h) of unstimulated (gray bar) and (Continued )
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a moderate but significant rise in the appearance of tri-
carboxyl acid cycle intermediates succinate and fumarate 
(Figure 3J). When ECs migrate and proliferate, they pre-
dominantly rely on glycolysis22; therefore, we confirmed 
that the observed increase in glycolytic activity could not 
be attributed to increased migration or proliferation of 
Lp(a)-ECs (Figure IIJ in the Data Supplement).

In an ex vivo setting in murine aortas, we subsequently 
assessed whether Lp(a) affects the enzyme PFKFB3, 
acting as a key driver in endothelial glycolysis.22 In line 
with our in vitro data, ex vivo addition of Lp(a) increased 
aortic EC PFKFB3 protein expression compared with 
control aortas, whereas ICAM-1 expression was mildly 
affected (Figure 4A and 4B). To validate this in vivo, we 
used transgenic mice expressing both apo(a) and human 
apoB, which assemble to form Lp(a) [Lp(a)-Tg], and mice 
that express apoB and mutant apo(a) with 2 key point 
mutations in its lysine-binding site lacking OxPL-binding 
capacity (LBS-Lp(a)-Tg)23 and analyzed aortic PFKFB3 
expression. A significant increase in endothelial PFKFB3 
expression was found in Lp(a)-Tg mice compared with 
LBS-Lp(a)-Tg mice (Figure 4C and 4D), further underlin-
ing the importance of PFKFB3 in EC OxPL signaling.

Finally, to also validate this increase in glycolytic 
activity and inflammatory burden in humans, we investi-
gated human plaques of patients following carotid end-
arterectomy, included in the Athero-Express Biobank 
(UMCU  [Universitair Medisch Centrum Utrecht], the 
Netherlands). We measured Lp(a) in 1506 subjects and 
included subjects with high levels of Lp(a) (>140 mg/dL; 
n=7) versus low Lp(a) (<20 mg/dL; n=7), matched for 
body mass index, age, systolic blood pressure, and year 
of surgery (Table). Subsequently, we analyzed plaques 
and carotid ECs of Lp(a) patients displayed increased 
endothelial PFKFB3 expression (Figure  4E and 4F). 
Moreover, endothelial ICAM-1 expression increased, fur-
ther substantiating the inflammatory-metabolic axis in 
patients (Figure 4E and 4F). Together, these data sug-
gest that Lp(a) activates ECs, coinciding with PFKFB3-
mediated increased glycolysis.

Inhibiting PFKFB3 in Lp(a)-ECs Reverses the 
Inflammatory Signature
Next, we investigated whether inhibition of glycolysis 
leads to a decrease in EC inflammation following Lp(a) 
stimulation. To this end, we tested and used the com-
mercially available glycolysis inhibitor PFK158 (Figure 
IVA and IVB in the Data Supplement).28 RNA sequenc-
ing analysis revealed that PFK158 suppressed tran-
scription of genes in Lp(a)-ECs involved in monocyte 
TEM (Figure 5A; Figure IIIA and IIIB in the Data Supple-
ment). Validation of EC PFKFB3 knockdown experi-
ments showed that decreased PFKFB3 levels lowered 
the inflammatory gene expression in Lp(a)-ECs (Fig-
ure 5B). PFK158 treatment of Lp(a)-ECs resulted in a 
decrease of MCP-1 and IL-6 secretion, while IL-8 levels 
were unaffected (Figure  5C). In agreement, PFK158 
decreased GLUT1 and ICAM-1 protein expression com-
pared with control ECs (Figure  5D and 5E). PFK158 
treatment did not result in significantly decreased 
PFKFB3 protein expression as observed both in vitro 
(Figure 5D and 5E) and ex vivo (Figure 5F). However, 
PFK158 was able to functionally reverse the increased 
glycolytic rate observed in Lp(a)-ECs (Figure 5G), lead-
ing to decreased lactate production (Figure IVC in the 
Data Supplement). More importantly, our results dem-
onstrate that inhibition of PFKFB3 activity reverses 
the Lp(a)-induced increase in monocyte migration by 
reducing PFKFB3-mediated glycolysis (Figure 5H and 
5I). Together, these data imply that inhibiting increased 
glycolysis by suppressing PFKFB3 activity in Lp(a)-EC 
leads to a decrease in inflammation and TEM.

Lp(a) Lowering by Antisense Therapy in 
Humans Partly Reduces Endothelial Glycolysis 
and Inflammation
To investigate the potential of Lp(a)-lowering strategies 
in patients to reduce the proinflammatory effects of 
Lp(a), serum from participants of the IONIS-APO(a)Rx 

Figure 3 Continued. Lp(a)-stimulated ECs (red bar). Data were analyzed using 2-tailed Student unpaired t test, P=0.0001 (18 h incubation 
with Lp(a); 2 h incubation with 50 μM 2-NBDG; n=4). E, Lactate production of unstimulated ECs (gray bars) compared with Lp(a)-ECs. Data 
were analyzed using 2-tailed Student unpaired t test, P=0.0052 (red bars; n=4). F, Glycolytic flux measurement by Seahorse Flux Analysis of 
unstimulated ECs (gray line) and Lp(a)-ECs (red line) by recording extracellular acidification rate (ECAR) after injection of glucose, oligomycin, 
and 2-deoxyglucose (2-DG). Glycolytic rate plotted in a bar graph comparing unstimulated ECs (green bars) with Lp(a)-ECs (red bars). Data 
were analyzed using 2-tailed Student unpaired t test. For glycolysis, P=0.0075; for glycolytic capacity, P=0.0043 (18 h incubation; n=4). G, 
Graph (left) and bar graph of glycolytic flux of unstimulated (gray line; gray bars), 17K (red line; red bars), and 17KΔLBS (green line; green 
bars). Data were analyzed using 1-way ANOVA with Tukey correction. For glycolysis, P=0.0494 for unstimulated vs 17K; for glycolytic capacity, 
P=0.0139 for unstimulated vs 17K, P=0.0354 for 17K vs 17KΔLBS (18 h incubation; n=3). H, Oxidative phosphorylation parameters assessed 
by recording oxygen consumption rate (OCR) after injection of oligomycin, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), and 
rotenone. Unstimulated (gray line; gray bars), 17K (red line; red bars), and 17KΔLBS (green line; green bars; 18 h incubation; n=3). I, Schematic 
overview of 13C-glucose flux analysis in ECs. J, Bar graphs showing the 13C metabolic flux analysis with and without 100 mg/dL Lp(a) 
stimulation after 30-min incubation with isotopically labeled glucose. Arrows indicate the flux. Normalized fractional contribution of intracellular 
glucose, glucose-6-phosphate (G6P), pyruvate, lactate, α-ketoglutarate (α-KG), succinate, malate, and fumarate. Data were analyzed using 
2-tailed Student unpaired t test. For succinate, P=0.0047; for fumarate, P=0.0149; for lactate, P<0.0001 (18 h incubation with Lp(a); n=3). All 
data are mean±SEM. 17K indicates 17K recombinant apolipoprotein(a); 17KΔLBS, 17K recombinant apolipoprotein(a) with a mutation in the 
lysine-binding site; GLUT1, glucose transporter 1; HK2, hexokinase 2; MFI, mean fluorescent intensity; and PFKFB3, 6-phophofructo-2-kinase/
fructose-2,6-biphosphatase. *P<0.05, **P<0.005, ***P<0.0005.
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Figure 4. 6-Phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3) expression is increased in murine vessels upon Lp(a) 
(lipoprotein(a)) stimulation.
A, Representative images of murine WT (wild type) aortas ex vivo stimulated with (lower images; n=5) and without (upper images; n=6) 100 mg/
dL Lp(a) stimulation. Nuclei were stained with DAPI (4′,6-diamidino-2-phenylindole; blue); ECs are stained with PECAM-1 (platelet endothelial 
cell adhesion molecule 1; red), PFKFB3 (green), and ICAM (intercellular adhesion molecule)-1 (magenta; 18 h incubation; white bar=200 μm). 
B, Quantification of A. Data were analyzed using 2-tailed Student unpaired t test, P=0.0004. C, Representative images of aortas derived from 
Lp(a) mice [Lp(a)-Tg; n=4] and mice lacking the lysine-binding site, which, therefore, cannot carry oxidized phospholipids (LBS-Lp(a)-Tg; n=6) 
stained for PECAM-1 (red) and PFKFB3 (green); nuclei were stained with DAPI (blue; white bar=200 μm). D, Quantification of C; EC PFKFB3 
expression in aortas of Lp(a)-Tg and LBS-Lp(a)-Tg mice on a chow diet. Data were analyzed using 2-tailed Student unpaired t test, P=0.0354. E, 
Images representing human carotid plaques derived from patients with low Lp(a) vs high Lp(a) levels. Nuclei were stained with DAPI (blue); ECs 
are stained with vWF (von Willebrand factor; red), PFKFB3 (green), and ICAM-1 (magenta; n=6 per group; white bar=200 μm). F, Quantification 
of E. Data were analyzed using 2-tailed Student unpaired t test; for PFKFB3, P=0.0206; for ICAM-1, P=0.0134. All data are mean±SEM. 
*P<0.05, ***P<0.0005.
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trial with elevated Lp(a) (mean, 203.5 mg/dL) were 
collected before, after 12 and 24 weeks of apo(a) anti-
sense administration (100–300 mg dose).29 ECs were 
incubated with serum samples obtained at baseline, 
at day 85 of peak drug effect, and after a washout 
period at day 190 when drug effect was mostly but 
not completely abolished. Clinically, patients showed a 
reduction of ≈80% of plasma Lp(a) levels at day 85, 
which coincided with an overall reduction of 9% to 
35% in key EC inflammatory markers compared with 
baseline. However, VCAM1 and IL8 did not significantly 
decrease upon treatment (Figure  6A). Expression of 
key glycolytic genes, including PFKFB3, SLC2A1, and 
PFKM, decreased at day 85 compared with base-
line (Figure 6B). After the washout period (day 190), 
expression of MCP1 and SLC2A1 returned to base-
line levels, whereas others remained downregulated 
(Figure 6A and 6B). In parallel to the changes in gene 
expression levels, cytokine secretion of MCP-1 and 
IL-6 decreased in supernatant of ECs incubated with 
day 85 samples compared with baseline, whereas no 
significant difference was observed in IL-8 secretion 
(Figure 6C). Finally, a concomitant decrease in endo-
thelial lactate secretion was observed (Figure 6D). Col-
lectively, these data support that selective potent Lp(a) 
lowering in patients reduces increased EC glycoly-
sis and EC inflammation without achieving complete 
reversal of the inflammatory activation.

DISCUSSION
Metabolic pathways are not only crucial in controlling 
energy balance but also act as critical determinants in sig-
naling pathways and hence cellular phenotype.21,30–32 In this 
study, we demonstrate that Lp(a) and particularly OxPLs 
induce EC inflammation, leading to increased adhesion 
and transmigration of monocytes. In parallel, we observed 
a marked increase of glycolytic activity in ECs exposed 
to Lp(a), mainly orchestrated via the glycolytic activa-
tor PFKFB3. Inhibition of PFKFB3 not only reverses the 
increased glycolytic activity in Lp(a)-ECs but also dampens 
the inflammatory response and monocyte migration. Finally, 
using human serum samples from patients who received 
apo(a) antisense therapy to lower Lp(a), we find a signifi-
cantly reduced inflammatory signature in ECs ex vivo.

OxPLs bound to Lp(a) were shown to induce inflam-
mation in ECs and monocytes.4,13 Monocytes derived from 
patients with elevated levels of Lp(a) showed increased 
TEM compared with monocytes derived from healthy 
subjects. Our data indicate that in vivo Lp(a) not only acti-
vates monocytes but also ECs.4 Lp(a) consists of different 
components, comprising an LDL-like particle, apo(a), and 
variable amounts of OxPLs present in Lp(a), chiefly on the 
apo(a) and apoB components.1,2 We show that the absence 
of Lp(a)-OxPL signaling, using either the OxPL-deficient 
17KΔLBS apo(a) construct or the E06 OxPL-blocking 
antibody, markedly decreases the inflammatory potential 
of Lp(a). In a similar manner, it was previously shown that 
E06 could block the ability of OxPL on apoptotic cells to 
similarly activate ECs.24 In line, 17K apo(a) lacking OxPLs 
does not evoke an inflammatory response, which is similar 
to LDL alone. These data substantiate that OxPLs, rather 
than the apo(a) or the apoB moiety of the Lp(a) particle, 
are the main drivers of Lp(a)’s ability to activate ECs.

Lp(a)-OxPLs also induce a profound glycolytic activa-
tion in ECs. This increase in glycolysis was manifested by 
enhanced expression of glycolytic genes and increased 
glycolytic flux. Aortas from apo(a)-overexpressing mice 
and murine aortas incubated with exogenous Lp(a) 
displayed increased EC PFKFB3 expression; however, 
Lp(a)-induced PFKFB3 expression was also altered in 
other cell types (ie, smooth muscle cells), indicating that 
glycolytic activation is not restricted to only ECs.33 In sup-
port, Feng et al34 also reported increased levels of HK2, 
GLUT1, and PFKFB3 in atheroprone areas in hyper-
cholesterolemic Apoe−/− mice. Mechanistically, we found 
that Lp(a) triggered HIF1α stabilization, which acts as 
an upstream regulator of PFKFB3 and GLUT1, suggest-
ing that the HIF1α-PFKFB3 axis fuels inflammation.35,36 
Interestingly, our data show that Lp(a) enhances inflam-
matory cytokine secretion before an increase of lactate 
secretion, suggesting that the increase in glycolysis is 
downstream of EC activation. Collectively, this implies 
that excessive ATP consumption and nucleotide bio-
synthesis due to EC activation leads to increased ATP 

Table.  Clinical Characteristics of Included Patients of 
Athero-Express Biobank

Lp(a), Low 
(n=7)

Lp(a), High
 (n=7) P Value

Age, y 75.3±6.3 69.0±7.1 0.107

Men 7 (100%) 7 (100%) 1.000

Systolic blood pressure, 
mm Hg

143±25 152±28 0.541

BMI, kg/m2 23.6±1.7 24.5±3.6 0.589

Current smoker, yes (%) 2 (28.6%) 3 (42.9%) 0.500*

Cholesterol-lowering 
medication, yes (%)

0 (0%) 0 (0%) 1.000

Antihypertensive drugs, 
yes (%)

1 (14.3%) 1 (14.3%) 1.000

Antiplatelet drugs, yes (%) 1 (14.3%) 1 (14.3%) 1.000

Total cholesterol, mmol/L 4.1±1.3 5.4±0.8 0.046

HDL cholesterol, mmol/L 0.9±0.2 1.3±0.3 0.019

LDL cholesterol, mmol/L 2.2±0.8 3.1±0.6 0.032

Triglycerides, mmol/L 1.6 (1.0–2.0) 1.2 (1.0–1.8) 0.805

Lipoprotein(a), nmol/L 7.6 (7.6–12.0) 197.9 (170.2–229.0) 0.001

Lipoprotein(a), mg/dL† 3.2 (3.2–5.0) 82,5 (70.9–95.4) 0.001

Glucose, mmol/L 6.2±1.0 5.6±0.9 0.415

BMI indicates body mass index; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; Lp(a), lipoprotein(a); max, maximum; and min, minimum.

*χ2 test, 1 sided. Data are presented as mean±SD, n (%), or median (min–max).
†To convert Lp(a) in nmol/L to approximate levels in mg/dL, divide by 2.4.
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Figure 5. Inhibition with PFK158 suppresses the glycolytic tone of Lp(a) (lipoprotein(a))-ECs and thereby inflammation.
A, Heat map of transendothelial migration (TEM)–associated genes in Lp(a)-ECs with (n=3) and without (n=4) inhibition by 5 μM PFK158 
(6 h incubation). B, Gene expression of Lp(a)-ECs knocked down for 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3; n=6) 
and treated with siCtrl (n=7). Data were analyzed using 2-tailed Student unpaired t test. For PFKFB3, P<0.00001; for ICAM1, P<0.00001; 
for IL6, P<0.00001; for IL8, P<0.0003 (100 mg/dL Lp(a); 6 h incubation). C, Cytokine production of unstimulated (gray bars) and 100 mg/
dL stimulated ECs (red bars) with and without 5 μM PFK158. Data were analyzed using 2-way ANOVA with Tukey correction. For MCP-
1 (monocyte chemoattractant protein 1), P=0.0004 0 vs 100 mg/dL Lp(a) (−PFK158); P=0.0170 0 (−PFK158) vs 0 (+PFK158) mg/
dL Lp(a); P<0.0001 100 (−PFK158) vs 0 (+PFK158) mg/dL Lp(a); P<0.0001 100 (−PFK158) vs 100 (+PFK158) mg/dL Lp(a). For IL 
(interleukin)-6, P=0.0044 0 vs 100 mg/dL Lp(a) (−PFK158); P=0.0039 100 (−PFK158) vs 0 (+PFK158) mg/dL Lp(a); P=0.0353 100 
(−PFK158) vs 100 (+PFK158) mg/dL Lp(a). For IL-8, P<0.0001 0 vs 100 (−PFK158) mg/dL Lp(a); (Continued )
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generation via glycolysis to maintain a state of inflam-
mation. We observed minor changes in glucose oxidation 
fluxes, although we mainly focused on glycolysis, as ECs 
rely predominantly on glycolysis (>200-fold higher glu-
cose fluxes as compared with oxidative phosphorylation 
fluxes).22

We validated our findings in human carotid plaques 
obtained from the Athero-Express database. In line with 
our in vitro and ex vivo data, plaques derived from subjects 
with high levels of Lp(a) showed a profound increase 
of EC PFKFB3 and ICAM-1 protein levels, suggesting 
increased activation, despite an advanced atheroscle-
rotic environment in both low and high Lp(a) groups. Of 
note, the patients with Lp(a) elevation also had increased 
levels of LDL cholesterol (LDL-c) compared with low 
Lp(a) patients (3.1 versus 2.2 mmol/L). However, this 
increase largely disappears after correction for the Lp(a) 
elevation, which falsely leads to higher LDL-c laboratory 
values (LDL-c corrected: ≈2.5 mmol/L).37 Whereas theo-
retically this minor LDL-c difference may have contrib-
uted to a small inflammatory effect, our recent findings 
in the ANITSCHKOW study make this highly unlikely.38 
Thus, in patients with marked Lp(a) elevation, treatment 
with a PCSK9 (proprotein convertase subtilisin/kexin 
type 9) antibody resulting in 60% LDL-c reduction and 
14% Lp(a) reduction did not result in a reduction of the 
enhanced inflammatory activity in the arterial wall of 
these patients. In fact, the persistent inflammatory activa-
tion was attributed to the marked residual Lp(a) elevation 
despite PCSK9 antibody treatment.38 To substantiate the 
overriding impact of Lp(a) on inflammatory activation 
as compared with LDL-c, we confirmed the increased 
inflammatory potency of Lp(a) compared with LDL-c on 
ECs ex vivo, on equimolar basis.

Several observations in humans underlie the valid-
ity of our findings. Thus, Tomas et al found that human 
unstable atherosclerotic plaques were characterized by 
an increased glycolytic activity. These unstable plaques 
displayed increased expression of glycolytic genes HK2, 

GLUT1, and PFKM, comparable with our findings. The 
activated metabolic state in patients with elevated Lp(a) 
was corroborated using 18F-fluorodeoxyglucose/com-
puted tomography scans,4 showing a significantly higher 
glucose uptake in the arterial wall of subjects with Lp(a) 
elevation. In vitro data in human umbilical vein ECs show 
that oxygen-deprived activated ECs show increased 
HIF1α-mediated glycolysis and accumulate more 
18F-fluorodeoxyglucose as compared with control EC.39 
This further indicates that ECs are able to accumulate 
glucose and increase glycolysis when activated as we 
observed in human carotid plaques of Lp(a) patients.

In our ex vivo incubation experiments, using serum 
samples of patients with profoundly elevated Lp(a) lev-
els before and after treatment with apo(a) antisense, we 
showed a marked proinflammatory and glycolytic rise in 
ECs. Serum obtained from patients after apo(a)-antisense 
treatment (80% Lp(a) reduction) showed a markedly 
reduced potential in glycolytic and inflammatory responses 
in human aortic ECs. This attenuation disappeared using 
serum obtained after a 185-day washout in these patients, 
resulting in glycolytic and inflammatory responses com-
parable to the pretreatment serum samples. These data 
imply that potent Lp(a) lowering may reduce endothelial 
inflammation and enhanced glycolytic activity in patients 
with Lp(a) elevation. However, since Lp(a) lowering only 
partially inhibited the inflammatory responses, interven-
tions beyond Lp(a) lowering may still be required.

Reducing glycolysis via inhibition of PFKFB3 
decreased endothelial secretion of IL-6 and MCP-1, with 
a concomitant decrease of monocyte TEM. Importantly, 
endothelial knockdown of PFKFB3 does not result 
in hypometabolism as ECs generate ATP at a normal 
rate compared with control.40 Additionally, we show that 
PFK158 treatment reduces lactate production. Uptake 
of extracellular lactate stabilizes HIF1α, which in turn 
increases EC activation in tumor ECs.36 Thus, Lp(a)-
induced lactate production could potentially increase 

Figure 5 Continued. P=0.0476 0 (−PFK158) vs 0 (+PFK158) mg/dL Lp(a); P<0.0001 0 (−PFK158) vs 100 (+PFK158) mg/dL Lp(a); 
P<0.0001 100 (−PFK158) vs 0 (+PFK158) mg/dL Lp(a); P<0.0001 0 (+PFK158) vs 100 (+PFK158) mg/dL Lp(a) (18 h incubation; n=4 
for MCP-1; n=5 for IL-6 and IL-8). D, Representative immunoblots of ICAM (intercellular adhesion molecule)-1, Glut1, PFKFB3, and HIF1α 
(hypoxia inducible factor 1α) protein expression. E, Quantification of immunoblots of ICAM-1 (upper left graph), GLUT1 (glucose transporter 1; 
lower left graph), PFKFB3 (upper right graph), and HIF-1α (lower right graph) in Lp(a)-ECs (red bars) and 5 μM PFK158-treated Lp(a)-ECs 
(light gray bars). Actin was used as loading control (100 mg/dL Lp(a); 18 h incubation; n=3). Data were analyzed using 1-way ANOVA with 
Tukey correction. For ICAM-1, P=0.0315 unstimulated vs Lp(a); for PFKFB3, P=0.0226 unstimulated vs Lp(a) and P=0.0416 unstimulated vs 
Lp(a)+PFK158; for GLUT1, P=0.0065 unstimulated vs Lp(a) and P=0.0040 Lp(a) vs Lp(a)+PFK158; for HIF-1α, P=0.0021 unstimulated vs 
Lp(a) and P=0.0026 Lp(a) vs Lp(a)+PFK158. F, Aortas of WT (wild type) mice ex vivo incubated with 100 mg/dL Lp(a) and 100 mg/dL Lp(a)+5 
μM PFK158 (nuclei were stained with DAPI [4′,6-diamidino-2-phenylindole; blue], ECs with PECAM-1 [platelet endothelial cell adhesion molecule 
1; red], and PFKFB3 was stained [green]; 18 h incubation; n=5; white bar=100 μm). G, Extracellular acidification rate (ECAR) of unstimulated 
ECs (gray line/bar), Lp(a)-ECs (red line/bar), Lp(a)-ECs+PFK158 (light gray line/bar), and ECs stimulated with only 5 μM PFK158 (orange 
line/bar; 100 mg/dL Lp(a); 18 h incubation; n=3). H, Representative DIC images TEM assay with unstimulated ECs (upper left), 100 mg/dL 
ECs (upper right), Lp(a)+PFK158-stimulated ECs (lower right), and ECs incubated with 5 μM PFK158 (lower left; 18 h incubation; white 
bar=200 µm). I, Quantification of H; transmigrated monocytes through Lp(a)-ECs coincubated with and without 5 μM PFK158. Gray bars indicate 
unstimulated ECs, red bar shows Lp(a)-ECs, light gray indicates Lp(a)-ECs coincubated with PFK158, and white bars represent PFK158-
stimualted ECs. Data were analyzed using 2-way ANOVA with Tukey correction. P<0.0001 0 vs 100 (−PFK158) mg/dL Lp(a); P<0.0001 100 
(−PFK158) vs 0 (+PFK158) mg/dL Lp(a); P<0.0001 100 (−PFK158) vs 100 (+PFK158) vs 100 mg/dL Lp(a) (18 h incubation; n=5). All data 
are mean±SEM. 2-DG indicates 2-deoxyglucose. *P<0.05, **P<0.005, ***P<0.0005, ****P<0.00005.
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glycolysis through HIF1α-PFKFB3 and thereby affect 
endothelial inflammation. In summary, inhibiting PFKFB3 
reduces the Lp(a)-induced glycolytic increase rendering 
ECs more quiescent.

CONCLUSIONS
In the present study, we demonstrate that Lp(a) activates 
the endothelium, mainly through its OxPL content, thereby 

Figure 6. A strong Lp(a) 
(lipoprotein(a)) decrease in human 
serum partly reduces inflammatory 
and glycolytic mediators in ECs.
A, Gene expression of ECs incubated 
with serum derived from subjects with 
elevated Lp(a) of the IONIS-APO(a)Rx 
study (1:1 incubation with endothelial 
growth medium). Data were analyzed using 
repeated measures 1-way ANOVA with 
Tukey correction. For ICAM1, P=0.0026 
D01 vs D190; for VCAM1, P=0.0338 
D01 vs D85; for MCP1, P=0.0026 D01 
vs D85 and P=0.0474 D85 vs D190; 
for IL6, P=0.0234 D01 vs D85 and 
P=0.0006 D01 vs D190 (black bars, 
D01; gray bars, D85; anthracite bars, 
D190; n=6; 6 h incubation). B, Glycolytic 
gene expression of PFKFB3, SLC2A1, 
and PFKM (6-phosphofructokinase, 
muscle) revealed a decrease after Lp(a) 
lowering in human serum (1:1 incubation 
with endothelial growth medium). Data 
were analyzed using repeated measures 
1-way ANOVA with Tukey correction. For 
6-phophofructo-2-kinase/fructose-2,6-
biphosphatase (PFKFB3), P=0.0196 
D01 vs D85 and P=0.0276 D01 vs 
D190 (n=6; 6 h incubation). C, MCP 
(monocyte chemoattractant protein 1)-1, 
IL (interleukin)-6, and IL-8 secretion in 
medium of ECs incubated with human 
serum before and after Lp(a) lowering. 
Data were analyzed using repeated 
measures 1-way ANOVA with Tukey 
correction. For MCP-1, P=0.0180 D01 
vs D85 and P=0.0017 D85 vs D190; 
for IL-6, P=0.0238 D01 vs D85 (n=6; 
18 h incubation). D, Lactate secretion in 
medium of ECs incubated with human 
serum before and after Lp(a)-lowering 
therapy. Data were analyzed using 
repeated measures 1-way ANOVA with 
Tukey correction. P=0.0160 D01 vs 
D85 (n=6; 18 h incubation). All data are 
mean±SEM. D01 indicates baseline; 
D85, day 85; D190, day 190; ICAM-1, 
intercellular adhesion molecule 1; and 
VCAM-1, vascular adhesion molecule 1. 
*P<0.05, **P<0.005, ***P<0.0005.
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facilitating increased monocyte transmigration. Persistent 
EC activation is induced via PFKFB3-mediated increase 
of glycolysis. Inhibition of PFKFB3 abolishes the inflam-
matory potential of OxPLs associated with Lp(a). Since 
endothelial activation is a hallmark in several proathero-
genic disease states, including diabetes mellitus, familial 
hypercholesterolemia, and rheumatoid arthritis,41–43 selec-
tive endothelial targeting of PFKFB3-mediated glycolysis 
may offer a new target for future anti-inflammatory therapy 
in patients at increased cardiovascular risk.
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