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Abstract:  39 

Plants are critical mediators of terrestrial mass and energy fluxes, and their structural and 40 

functional traits have profound impacts on local and global climate, biogeochemistry, 41 

biodiversity, and hydrology. Yet Earth System Models (ESMs), our most powerful tools for 42 

predicting the effects of humans on the coupled biosphere-atmosphere system, simplify the 43 

incredible diversity of land plants into a handful of coarse categories of ‘Plant Functional Types’ 44 

that often fail to capture ecological dynamics such as biome distributions. The inclusion of more 45 

realistic functional diversity is a recognized goal for ESMs, yet there is currently no consistent, 46 

ecologically defensible way to add diversity to models, i.e. to determine what new ‘Functional 47 

Types’ to add and with what data to constrain their parameters. We review approaches to 48 

representing plant diversity in ESMs and draw on recent ecological and evolutionary findings to 49 

present an evolution-based functional type approach for further disaggregating functional 50 

diversity. Specifically, the prevalence of niche conservatism, or the tendency of closely related 51 

taxa to retain similar ecological and functional attributes through evolutionary time, reveals that 52 

evolutionary relatedness is a powerful framework for summarizing functional similarities and 53 

differences among plant types. We advocate that Functional Types based on dominant 54 

evolutionary lineages (‘Lineage Functional Types’) will provide an ecologically defensible, 55 

tractable, and scalable framework for representing plant diversity in next-generation ESMs, with 56 

the potential to improve parameterization, process representation, and model benchmarking. We 57 

highlight how the importance of evolutionary history for plant function can unify the work of 58 

disparate fields to improve predictive modeling of the Earth system. 59 

 60 

Keywords 61 
ecosystem function, evolutionary relatedness, functional diversity, Lineage Functional Types, 62 
PFTs, phylogenetic signal, Plant Functional Types, Vegetation models 63 
 64 

Plain Language Summary: 65 

Land plants exhibit enormous functional variation across the globe, and this variation strongly 66 

influences water, energy, and carbon transfers between the land surface and the atmosphere and 67 

vegetation responses to disturbances and climate. However, it is extremely difficult to capture 68 

the vast diversity of land plants in state-of-the-art global Earth System Models, which synthesize 69 

understanding of ecological, physical, and biogeochemical processes, to predict the effects of 70 
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human activities on the Earth system. Because ecological and physiological function tend to be 71 

conserved in closely related species through evolutionary time, evolutionary relatedness can help 72 

summarize plant functional diversity into a tractable number of ‘Lineage Functional Types’ that 73 

represent the most functionally distinct and logically consistent vegetation groupings on the land 74 

surface.   75 
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Introduction 76 

 There are over 400,000 described vascular plant species on Earth, which collectively 77 

represent a profound diversity of form, function, and life history (IPBES, 2019). Decades of 78 

research into plant functional ecology, ecophysiology, and community ecology have revealed 79 

many causes and consequences of this diversity. At the same time, sophisticated representations 80 

of physiological, ecological, hydrological, and biogeochemical plant processes have been 81 

codified in the terrestrial processes of Earth System Models (ESMs) that simulate key aspects of 82 

ecosystem function (e.g., energy, water, and CO2 fluxes). However, even as mechanistic realism 83 

increases in these models, the representation of actual plant diversity remains quite simplistic. 84 

Vegetation models use a small number of vegetation ‘Functional Types’ (e.g., five to twenty) to 85 

represent archetypal end members of plant functional variation that most strongly influence 86 

ecosystem processes (DeFries et al., 1995). Each Functional Type is represented by a set of 87 

parameter values (e.g., photosynthetic capacity, canopy roughness, nutrient uptake efficiency, 88 

rooting depth, etc.), and the variation in these parameters, combined with differences in process 89 

representations (e.g., C3 vs. C4 photosynthesis, cold hardening, drought deciduousness), gives 90 

rise to modeled plant functional diversity (FD). In most modern models, multiple Functional 91 

Types can exist in the same grid cell, and often these Functional Types compete for shared water 92 

and nutrient resources (Riley et al., 2018). Moreover, advances in the representation of size- and 93 

age-structure with ‘vegetation demographic models’ (Fisher et al., 2018) allow cohorts of 94 

different Functional Types to compete for light. 95 

The historic Functional Type paradigm has been highly successful in modeling 96 

biosphere-atmosphere interactions, and yet significant modeling efforts to add trait distributions 97 

and species level information suggest that increasing ecological realism is an important area for 98 
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model improvement. However, the current Functional Types in ESM land models remain 99 

extremely coarse, rooted in a classic biome and growth-form based concept of ‘Plant Functional 100 

Types’ or PFTs (Bonan et al., 2003; D. B. Clark et al., 2011; Lawrence et al., 2019; Sitch et al., 101 

2003). Fundamentally, these PFTs have their origins in correlative climate-vegetation models 102 

(Köppen, 1936), ecological ‘functional guilds’ (Root, 1967), and biome concepts (Raunkiær et 103 

al., 1934; Whittaker, 1975). Although they were the result of much careful thought (Smith et al., 104 

1997), most current models contain fewer than 20 PFTs to represent all land plants, and the PFTs 105 

boil down to growth form (e.g., trees, shrubs, grasses, forbs),  phenology (evergreen vs 106 

deciduous), photosynthetic pathway, and sometimes climate (temperate vs tropical). This 107 

combination of factors are thought to capture first-order global variations in plant function 108 

(DeFries et al., 1995), though they necessarily assume that widespread biomes such as savannas 109 

and hyper-diverse biomes like tropical rainforests can be represented by one or two PFTs each.  110 

It is widely accepted that current PFTs do not capture the majority of variation along key 111 

plant functional axes (e.g., Wright et al., 2004), and that better representation of diversity is 112 

needed (i.e. more or different functional types) in order for models to move beyond simulating 113 

short-term ecosystem fluxes to predicting long-term vegetation shifts and their associated 114 

vegetation-climate feedbacks (Fisher et al., 2015). Indeed, even in the early 1990s it was 115 

recognized that PFTs suffered both philosophical and practical challenges that have yet to be 116 

addressed (Box, 1996; Smith et al., 1997). Copious observations and experiments have proven 117 

just how critical real-world diversity is for ecosystem function (Isbell et al., 2012; Liang et al., 118 

2016; Tilman, 1996). For example, diversity significantly increases ecosystem resistance to and 119 

recovery from climate variability and extreme events (W. R. L. Anderegg et al., 2018; Isbell et 120 

al., 2015). Yet many open questions remain about how to increase the diversity of Functional 121 
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Types in models. How many Functional Types are needed to adequately represent functional 122 

diversity within communities and across the landscape? Which new Functional Types are most 123 

important? What observations should be used to parameterize new Functional Types? And how 124 

do these answers change with model spatial extent or resolution (e.g., for fine-scale regional 125 

versus coarse-scale global simulations)?  126 

 ‘Tree thinking’, or approaches informed by plant phylogeny that consider evolutionary 127 

relatedness, have been influential in a broad range of fields and have been suggested for further 128 

nuancing how models represent diversity (Edwards et al., 2007). For example, new ‘Lineage 129 

Functional Types’ (LFTs) representing three dominant global grass clades can capture 130 

considerable variation in physiology, morphology, and response to disturbance that the two 131 

classic grass PFTs—which differentiate only C3 vs C4 photosynthetic mechanisms – cannot 132 

(Griffith et al., 2020). Here, we summarize the evidence for why evolutionary lineages provide a 133 

natural backbone for future Functional Type delineation, and discuss the potential benefits of 134 

‘tree thinking’ for constraining model parameters, guiding model process development, and 135 

expanding model benchmarking options. Closely related species share a large proportion of their 136 

ancestry, such that their genomes are very similar. Consequently, when integrating across all 137 

plant functions coded by their genomes, functional similarity is likely to be very high. Because 138 

of this, many key aspects of plant function are evolutionarily conserved, meaning closely related 139 

species are more functionally similar than distantly related species (Wiens et al., 2010). This 140 

critical pattern can help the research community leverage burgeoning trait databases, community 141 

surveys, biogeographic observations, remote sensing data, and ever-improving plant phylogenies 142 

to inform both model process and parameter uncertainty.  143 

 144 
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The parameterization problem 145 

Part of the issue limiting the proliferation of Functional Types lies in the delicate balance 146 

that land models must strike between realism and parsimony (Prentice et al., 2015). While more 147 

sophisticated representations of biodiversity (i.e., more Functional Types) are needed to simulate 148 

ecological processes such as competition, land models already suffer from fundamental issues of 149 

equifinality (many different parameter sets yield similar predictions, making more complicated 150 

models more difficult to parameterize to the point where added complexity decreases model 151 

predictive ability, Tang & Zhuang, 2008). It therefore remains paramount to constrain model 152 

parameters to avoid the ‘complexity trap’ (Prentice et al., 2015). The question of how much 153 

process complexity to include in vegetation models is often treated separately from the question 154 

of how to represent functional diversity in those processes, but they are inextricably linked as the 155 

parameterization challenge increases with both the number of model parameters and the number 156 

of Functional Types (or more, if interactions between Functional Types are themselves 157 

parameterized).  158 

To address this parameterization challenge, ecologists have made a major push to 159 

constrain models with real-world observations of ‘plant functional traits’ that theoretically 160 

relate to model parameters (Dietze et al., 2014) that affect vegetation responses to environmental 161 

change. Indeed, one of the main motivations for the creation of TRY, the largest plant trait 162 

repository in the world (Kattge et al., 2011), was to improve model Functional Types. However, 163 

without a rigorous, internally consistent, scalable, and ecologically motivated framework for 164 

defining what Functional Types should represent, model developers and users are often forced to 165 

make arbitrary decisions about which observations should inform the parameter values of newly 166 

developed Functional Types.  167 
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 168 

Existing PFT alternatives 169 

One alternative to current PFTs is ‘trait-based modeling’, where Functional Types are not 170 

prescribed based on a limited number of pre-defined PFTs but either emerge from a modeled 171 

competitive search through potential parameter space (Pavlick et al., 2013; Sakschewski et al., 172 

2015; Scheiter et al., 2013) or are completely absent and parameter values are applied based on 173 

empirical trait-environment relationships (van Bodegom et al., 2011; Verheijen et al., 2015). 174 

However, these two approaches face fundamental limitations to their implementation in ESM 175 

land models. Approaches based on competitive algorithms are limited by the fact the key 176 

physiological traits invoked as model parameters are not necessarily the traits that explain real, 177 

ecological niche differences (Fisher et al., 2018; Kraft et al., 2015). This is a problem for all 178 

dynamic vegetation models simulating competition and co-existence, but is made greater when 179 

parameters are constrained purely by trait theory rather than observations. It is difficult to 180 

simulate co-existence de novo in land models based on partially understood physiological and 181 

ecological tradeoffs, when true co-existence is likely a ‘high-dimensional’ ecological problem (J. 182 

S. Clark et al., 2010), with multiple stabilizing mechanisms not included in models (van 183 

Bodegom et al., 2011). In short, unconstrained (i.e., purely ‘trait-based’ or Functional Type free) 184 

competitive algorithms are extremely useful ecological tools, but it remains hugely challenging 185 

for relatively simple physiologically-based models to solve what the entire field of community 186 

ecology is still working hard to explain (coexistence and the maintenance of biodiversity) in 187 

order to predict global ecosystem function in a changing environment. 188 

Meanwhile, approaches based on empirical trait-climate relationships face their own 189 

problems, chief among them being that trait-climate relationships are extremely elusive when 190 
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looking across land plants as a whole (rather than among closely related species). Extensive 191 

research into leaf economic traits such as leaf mass per area (LMA), nutrient concentrations, and 192 

maximum assimilation rates have found that: (1) a diversity of economic strategies are present in 193 

essentially all ecosystems worldwide (Wright et al., 2004); (2) average trait values show very 194 

weak relationships with environmental variables (Maire et al., 2015; Ordoñez et al., 2009); and 195 

(3) trait-environment relationships are not consistent across taxonomic and ecological scales (L. 196 

D. L. Anderegg et al., 2018). Ultimately, trait-based approaches have greatly furthered ecological 197 

knowledge are currently limited in their scalability and applicability to ESM land models.  198 

 199 

Box 1: Glossary 200 

Ecosystem function – Processes and properties that mediate fluxes of energy and matter such as 201 

gross primary productivity (photosynthesis), net primary productivity (photosynthesis minus 202 

respiration), evapotranspiration, cycling of macro and micro nutrients, etc. 203 

PFT – Plant Functional Types, the current standard method of representing the diversity of plant 204 

form and function in land models based on growth form, climate, and phenology. 205 

Phylogeny – The evolutionary history of a group of organisms, represented via a phylogenetic 206 

tree that depicts the evolutionary relatedness of various lineages of organisms. ‘Dated’ 207 

phylogenies also estimate the time since evolutionary divergence of lineages based on fossils, the 208 

rate of accumulation of genetic mutations, or both. 209 

Functional diversity (FD) – The amount of functional distinctiveness in a community, often 210 

quantified based on the univariate or multivariate distribution of one or more functional traits 211 

among community members. 212 
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Equifinality – an issue in model parameterization and structure where different 213 

parameterizations yield equally accurate (probable) model predictions based on available training 214 

data. 215 

Plant functional traits – measurable morphological, chemical, phenological, and physiological 216 

plant attributes that influence fitness by affecting growth, survival, and reproduction. Many 217 

model parameters are related to or sometimes explicitly designed to represent measurable plant 218 

functional traits such that the parameters can be constrained by observations. We note that a trait, 219 

as defined in this way, need not be static or unchanging for an individual plant or species through 220 

time or in response to environmental variation. Whether a model considers a particular trait to be 221 

static is an important indicator of underlying model assumptions. Example functional traits used 222 

in the text include: Nmass – leaf nitrogen content per unit mass, Narea – leaf nitrogen per unit area, 223 

LeafLife – leaf lifespan, LMA – leaf mass per unit area, WD – wood density, xylem P50 – the 224 

xylem pressure causing 50% loss of hydraulic conductance due to embolism, Ks – xylem 225 

hydraulic conductance (inverse of hydraulic resistance) per unit sapwood area, R:S – root 226 

biomass to shoot (leaf + stem) biomass ratio. 227 

LFT – Lineage Functional Types, a method of representing plant functional diversity based on 228 

niche conservatism (i.e., the functional relatedness of closely related evolutionary lineages). 229 

Niche Conservatism – A widely observed pattern across many taxa that close relatives maintain 230 

similar ecological niches – (the combination of abiotic and biotic factors that determine where a 231 

species can exist) – through evolutionary time. This ecological similarity implies that closely 232 

related species have similar functional traits. 233 

Phylogenetic scale – The breadth of evolutionary relatedness, and thus time since most recent 234 

common ancestor, considered in an analysis. Genetic differences among populations within a 235 
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species (e.g., microevolution) or sister species within a genus would represent a finer 236 

phylogenetic scale than variation among more distantly related taxa such as plant genera or 237 

families (e.g., macroevolution). 238 

Phylogenetic signal – The tendency of related species to more closely resemble each other than 239 

species drawn at random from the same evolutionary tree. 240 

Community weighted mean (CWM) – Effective trait value for a plant community, averaged 241 

across species and weighted proportionally to each species’ dominance in the community (often 242 

given by % of basal area or % of leaf area). 243 

 244 

Letting evolution be our guide 245 

 We outline below how lineage-based Functional Types present an ecologically defensible 246 

and scalable method for integrating data on organismal abundance, functional diversity, remote 247 

sensing and evolutionary relatedness in order to define, parameterize and test the next generation 248 

of Functional Types for vegetation modeling. We argue that explicitly making evolutionary 249 

lineage the organizing principle behind future functional types will facilitate efforts to add 250 

diversity to Functional-Type based land models. 251 

Plant function is phylogenetically linked 252 

 Eco-evolutionary theory and observations have come a long way since the development 253 

of the PFT concept. In particular, ‘Niche Conservatism’ (NC), or the tendency for species or 254 

clades to retain their niches and related ecological traits over time (Fig. 1a), has emerged as a 255 

dominant theme of macroevolution (Crisp & Cook, 2012; Wiens et al., 2010). While adaptive 256 

radiation within lineages is well documented, at broad phylogenetic scales members of a lineage 257 

tend to be more similar ecologically and physiologically to each other than to members of other 258 
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lineages (Cavender-Bares et al., 2006). Some aspects of species’ niches are particularly strongly 259 

conserved; for instance, the thermal niche is a highly conserved niche axis that leads to 260 

widespread ‘biome conservatism’ or the tendency for clades to remain in their ancestral biome 261 

and switch to new biomes only rarely (Crisp et al., 2009). NC appears to underpin many 262 

ecological interactions, including competitive dynamics (Burns & Strauss, 2012) and pathogen 263 

susceptibility (Gilbert & Webb, 2007). 264 

Importantly, ecological similarity among related taxa translates into functional similarity, 265 

providing a powerful framework for summarizing and ultimately parameterizing the functional 266 

attributes of entire clades. Indeed, many plant traits that are related to model parameters show 267 

phylogenetic signal (Ackerly, 2009; Swenson, 2013). Variance decomposition of numerous leaf 268 

and stem traits attributing the percent of total variation to levels of the taxonomic hierarchy 269 

typically reveal that most variation occurs at broad phylogenetic scales (among plant families), 270 

with decreasing variation within families, genera, and species (Fig. 1c, see SI Methods for 271 

variance decomposition). This pattern even appears to hold for less well sampled hydraulic traits 272 

that are increasingly incorporated into models (e.g., xylem P50 and Ks in Fig. 1c, see Box 1, 273 

Sanchez Martinez et al., 2020).  274 

While the taxonomic hierarchy is a coarse stand-in for well-supported and dated 275 

phylogenies, the explanatory power of deep evolutionary divergences supports lineage as a 276 

defensible approach to assign trait values for a group of plants. The evolutionary null hypothesis 277 

that closely related species are more functionally similar than distantly related species is rarely 278 

disproven. Indeed, 20th century ecology has a long history of describing the clade-based 279 

ecological characteristics of plant families (a simplification still employed in the hyperdiverse 280 

tropics where species-specific natural history knowledge is rare), implicitly acknowledging the 281 
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power of niche conservatism. In fact, the strength of phylogenetic signal in many traits has led 282 

some to use phylogeny to ‘gap fill’ missing trait values in trait databases (e.g., Swenson, 2013; 283 

Schrodt et al., 2015).  284 

Niche conservatism can arise from a number of ecological and evolutionary processes 285 

(Crisp & Cook, 2012), and thus phylogenetic signal in functional traits does not necessarily 286 

imply anything about trait lability or canalization (how evolvable a trait is). But the widespread 287 

phylogenetic signal does suggest that evolutionary history is a strong predictor of modern 288 

ecology. Indeed, in community ecology, functional niche conservatism has been so widely 289 

accepted that phylogenetic diversity is often used as a proxy for hard-to-measure functional 290 

diversity (Srivastava et al., 2012).  291 

The implications of niche conservatism for vegetation modeling are twofold. First, 292 

Functional Types rooted in evolutionary relationships could defensibly allow estimation of 293 

model parameters from sparse observations (essentially leveraging phylogenetic signal to ‘gap 294 

fill’ model parameterization). Second, lineage-based Functional Types probably won’t need to be 295 

revisited every time a new functional axis is incorporated into model structure, because 296 

evolutionary relatedness likely ensures functional similarity within a lineage even for functions 297 

that we do not yet fully understand or have implemented in vegetation models. For instance, 298 

acclimation responses such as those involved in cold tolerance are a modeling challenge but 299 

show strong phylogenetic signal (Lancaster & Humphreys, 2020), and life history traits that 300 

might inform ‘demographic functional types’ in size-structured models (Rüger et al., 2020) are 301 

likewise probably phylogenetically conserved. 302 

Some important traits are conspicuous exceptions to this rule. For example, leaf nitrogen 303 

per unit leaf area (Narea) and allometric traits such as root to shoot biomass ratio (R:S) or leaf area 304 
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to sapwood area ratio (AL:AS) vary enormously within species and over time (Fig. 1). Indeed, the 305 

extent to which a trait shows phylogenetic signal may indicate whether it is appropriate as a 306 

‘parameter’ in land models. Traits that consistently show little phylogenetic signal and large 307 

within-species variation may well be dynamic properties that can vary through time for an 308 

individual (e.g., through acclimation) or across environments for a species. Such traits are 309 

unlikely to maintain the same value for a model Functional Type through space and time, and 310 

should be treated as emerging from underlying physical and physiological processes. Allocation 311 

for instance, which can vary enormously across ontogeny, may best be simulated to emerge from 312 

economic optimization (Fisher et al., 2018) or a combination of gradient-based carbon and 313 

nutrient concentrations, plant transport, and plants’ nutrient acquisition-related traits (Mekonnen 314 

et al., 2019; Thornley, 1997; Zhu et al., 2019). These underlying processes themselves may have 315 

phylogenetically conserved parameters linked to evolutionary history, and a lack of phylogenetic 316 

signal may highlight critical areas for future research.  317 

Tree thinking to inform process as well as parameterization 318 

 One important trait that illustrates the utility of tree thinking for model development is 319 

leaf habit (evergreen vs deciduous). Deciduousness has long been recognized as a central trait for 320 

capturing annual variation in biosphere-atmosphere interactions (DeFries et al., 1995). Thus, leaf 321 

habit is a key component of all current PFT schemes. In some instances, a lineage-based 322 

Functional Type may result in lumping together deciduous and evergreen species in a way that 323 

classic PFTs do not. However, closer investigation of leaf lifespan reveals a number of 324 

interesting modeling-relevant observations. First, across the tree of life, leaf lifespan varies 325 

primarily among deep evolutionary nodes (see Fig 1), so LFTs will naturally capture much 326 

variation in leaf habit even without considering it as an explicit grouping criterion. Second, 327 
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patterns of leaf lifespan as a function of temperature reveal family-specific responses to cold 328 

stress. Moving into colder climes, the most well sampled families in the GLOPNET global trait 329 

database (Wright et al., 2004) appear to follow one of two strategies: increasing longevity with 330 

decreasing temperature (Pinaceae, Ericaceae and Myrtaceae, Fig. 2a), or increasing 331 

deciduousness (e.g. Asteraceae, Fig. 2a). This pattern largely holds true at the genus level (Fig. 332 

2b), with members of most genera that live at mean annual temperatures below 10ºC typically 333 

being either all evergreen or all deciduous, and at the species level, at least in conifers (Fig. 2c, 334 

L. D. L. Anderegg et al., 2018; Reich et al., 2014).  335 

Where cold stress is absent in the tropics, deciduousness is more variable within clades. 336 

However, leaf phenology in the tropics is linked to plant hydraulic strategy (Xu et al., 2016), and 337 

exciting developments with dynamic leaf allocation in plant hydraulics models have 338 

demonstrated the ability to predict drought deciduousness and semi-deciduousness purely from 339 

the interaction between hydraulic traits and the environment (Trugman et al., 2019). Thus, we 340 

believe that deciduousness may eventually be predicted from lineage-specific responses to cold 341 

stress and hydraulic optimizations and need not be an overriding consideration for FT 342 

delineation.  343 

In another example of evolutionary insights informing model development, Griffith et al. 344 

(2020) demonstrated both the parametric and process importance of a new LFT classification for 345 

grasses worldwide. Classic grass PFTs differentiate only between C3 and C4 photosynthetic 346 

pathway types. Yet most grasslands are dominated by three major lineages (one C3-only and two 347 

C4-only lineages), which inhabit distinct parts of the globe and differentiate physiologically, 348 

morphologically, and in their responses to disturbances (Edwards & Still, 2008; Griffith et al., 349 

2020; Lehmann et al., 2019). Thus, evolutionary lineage provides a straightforward and efficient 350 
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means to improve representation of grasses in land models using existing data to guide 351 

parameterization. But perhaps more importantly, the two dominant C4 lineages show marked 352 

differences in hydraulic traits and fire-related traits, suggesting that both hydraulics and fire may 353 

be critical processes to include in models in order to simulate grassland fluxes and biogeography 354 

(Griffith et al., 2020). 355 

 356 

Evolution as a scalable guide for disaggregating functional diversity 357 

Evolutionary lineages provide a major benefit to vegetation modelers over growth-form 358 

and biome-based approaches: they provide a theoretically consistent approach to spatial scaling. 359 

Modeling studies at different spatial scales (e.g., plot, regional, global) require different levels of 360 

granularity to represent functional diversity. Currently, modelers must rely on expert opinion, 361 

empirical classification algorithms, and ‘gut instincts’ to determine how many and which 362 

functional types to simulate and which data to use to constrain parameters for those functional 363 

types. Classic PFTs sometimes de facto represent lineages, but explicitly tying functional types 364 

to evolutionary lineage provides a scalable and theoretically defensible approach to further 365 

disaggregate functional diversity. Unlike biome or growth form, which are categorical, 366 

evolutionary relatedness is a continuous variable that can be as coarse or granular as needed.  367 

Two patterns from community and ecosystem ecology highlight the tractability of scaling 368 

plot-level functional diversity to a relatively small number of Functional Types even at the site or 369 

landscape level using evolutionary lineage-based approaches. First, supporting Grime’s ‘biomass 370 

ratio hypothesis’ (Grime, 1998), many ecosystem functions appear to be influenced by plant 371 

community members roughly in proportion to their biomass (e.g. Garnier et al., 2004; Finegan et 372 

al., 2014). This observation does not imply that diversity does not matter. But it does imply that 373 
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true ‘keystone’ plant species are relatively rare when considering only ecosystem fluxes, and that 374 

dominant species tend to influence ecosystem function in proportion to their dominance (Avolio 375 

et al., 2019). Thus, much of the variation in plant function between communities can be 376 

explained by the biomass-weighted or community-weighted mean (CWM) functional traits of 377 

the communities. Meanwhile, functional diversity within communities is typically determined by 378 

functional diversity among the most dominant species in that community. These two scales 379 

(functional variation among communities across space versus functional diversity within 380 

communities) roughly translate to functional differences across ESM grid cells versus the 381 

diversity of Functional Types within a grid cell (e.g., Functional Types that directly compete for 382 

light, water and nutrients, depending on the specific vegetation model). The utility of the 383 

biomass ratio hypothesis suggests that a tractable number of Functional Types should suffice to 384 

capture first order functional variation across modeling scales, both within and among 385 

communities. 386 

Second, most plant communities are comprised of a few abundant and many rare species. 387 

This foundational pattern in community ecology (e.g., in the ‘niche vs. neutral’ debate (Hubbell, 388 

2001; Tilman, 2004)) holds true even in the hyper-diverse tropics, where ‘hypderdominance’ of a 389 

few taxa (10s to 100s rather than 1000s) emerges across large geographic areas (ter Steege et al., 390 

2013). Together, these two observations (that ecosystem function is largely controlled by the 391 

dominant species and that most communities are composed of a few dominant species) greatly 392 

simplify the challenge of representing plant functional diversity within and among communities 393 

in land models. We can simultaneously acknowledge that biodiversity really matters for 394 

ecosystem function and yet not despair about needing to model all ½ million plant species to 395 

capture the influences of diversity on ecosystem function.  396 
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A practical example of describing new FTs 397 

Based on the logic above, defining new Functional Types requires balancing functional 398 

distinctiveness (to capture as much functional diversity as possible) and a focus on dominant 399 

plant types (to capture the most important groups for ecosystem function).  The forests of the 400 

Pacific Northwest, USA provide an illustration of how a phylogenetic approach informed by 401 

abundance data can guide the disaggregation of coarse PFTs into finer LFTs. A network of 256 402 

plots was explicitly designed to measure forest productivity and modeling-relevant traits across 403 

Oregon and northern California for parameterizing ESMs for regional simulations (Berner & 404 

Law, 2016; Law & Berner, 2015). Stand surveys extensively quantified community composition, 405 

and trait measurements such as leaf mass per area (LMA), Leaf Lifespan, and nitrogen content 406 

per unit mass (Nmass) were collected from 37 woody species in these plots, approximately in 407 

proportion to their abundance. Yet two species (Pseudotsuga menziesii and Pinus ponderosa), 408 

and more generally two clades of the Pinaceae family (the abietoides and pinoids), represent the 409 

vast majority of the biomass in the region (Fig. 3). Because site-specific traits were extensively 410 

sampled, we calculated the true variation in functional diversity across plots based on observed 411 

community-weighted mean traits (L. D. L. Anderegg et al., 2018). We also calculated the 412 

functional diversity within plots using functional diversity metrics that incorporate elements of 413 

functional richness, evenness, and occupied niche space (here we average results using 414 

Functional Dispersion (Laliberté & Legendre, 2010) and Rao’s quadratic entropy (Botta‐Dukát, 415 

2005), which can be weighted by relative abundance and can be calculated for communities with 416 

fewer than three species). We then compared the efficacy of Functional Type groupings by 417 

comparing observed FD within and among communities with FD calculated using a single mean 418 
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trait value per Functional Type (see SI “Methods for Pacific North West Functional Diversity 419 

analysis”). 420 

Traditionally, all of the woody species in the region would be represented by at most 421 

three PFTs, which together capture an average of only 6% of the CWM variation in LMA, Leaf 422 

Lifespan, and Nmass among communities and an average of 16% of the FD within communities 423 

(Fig. 3). A similar categorization based on evolutionary lineage (at the family level for the 424 

gymnosperms and lumping all angiosperms together—termed ‘Deep LFT’ in Fig. 3 for how 425 

deeply the phylogenetic tree is trimmed) captures slightly more of the variation in CWM traits 426 

among communities (9% on average) and slightly less diversity within communities (12%). This 427 

result is expected, as classic PFTs and ‘Deep LFTs’ are quite similar (Table S1). LFTs guided by 428 

abundance prioritize the functional distinction among gymnosperms, while classic PFTs 429 

prioritize the leaf habit distinction among angiosperms that happen to be quite rare in this 430 

system. And ultimately, no 3-group FT scheme can be expected to capture the true FD of even 431 

low diversity systems. However, the LFT approach provides an obvious framework for further 432 

disaggregation.  433 

By splitting the most evolutionarily divergent angiosperms (acknowledging extreme 434 

evolutionary and therefore functional distinctiveness) and dividing the Pinaceae family into the 435 

abeitoid and pinoid subfamilies (acknowledging that Pinaceae dominate 95% of the biomass), a 436 

lineage-based division with only five functional types captures 20% (‘Mid LFT’) of the variation 437 

in CWM traits and 21% of the variation within communities (Fig. 3). Further division focusing 438 

on the most abundant lineages (breaking the Pinaceae into genera) captures an average of 37% 439 

(‘Shallow LFT’) of the between-community variation and a startling 84% of the within-440 

community functional diversity with nine LFTs. The ‘Mid’ and ‘Shallow’ LFT examples 441 
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presented here are based on qualitative weighting of evolutionary distinctiveness and abundance, 442 

but development of a quantitative weighting scheme would be feasible with appropriate 443 

abundance data and a dated phylogeny. 444 

Low diversity temperate forests, while tractable for calculating true functional diversity 445 

from extensive observations, are admittedly a relatively simple example system. However, the 446 

ability of lineage- and abundance-guided FTs to capture within- and among-site functional 447 

variation in a system where intraspecific trait variation is important (L. D. L. Anderegg et al., 448 

2018) and where rare evolutionary outlier species such as the deciduous conifer Larix 449 

occidentalis could be particularly troublesome provides hope for using LFTs in more diverse 450 

systems. 451 

Are LFTs ‘better’ than alternative FT methods? One of the many difficulties in 452 

answering this question is the general lack of alternative a priori FT delineation methods to 453 

compare against. A posteriori empirical clustering of observed traits can capture more trait 454 

variation than essentially any a priori classification technique. However, the Pacific Northwest 455 

forest example illustrates the limitations of empirical clustering in terms of interpretability and 456 

applicability for determining model FTs. The ‘Shallow LFT’ captures an average of 59% of the 457 

total variation in LMA, Nmass, and Leaf Lifespan when applied to the entire database of all 458 

individual trait measurements (rather than plot-level CWM traits). With nine clusters, 459 

agglomerative Ward clustering can capture an average of 78% of variation in the same traits and 460 

k-means clustering can capture an average of 79% of the variance. However, empirical clustering 461 

approaches yield widely different groups depending on algorithm type (e.g. Table S2 for Ward 462 

vs k-means clustering) and are fundamentally limited by interpretability. Clustering on the full 463 

trait database invariably places measurements from most species, even rare species, in multiple 464 
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clusters (e.g. Table S3), meaning the clusters do not have a taxonomic interpretation and could 465 

serve as ‘trait-based Functional Types’ only if one knows all the traits. A regional simulation 466 

using these empirical FTs could not map the FTs for initialization or model validation, and the 467 

FTs could not be employed for site-based simulations outside the training sites. Meanwhile, 468 

clustering on CWM traits could capture more spatial variation in traits than LFTs, but could not 469 

capture within-community FD (because the algorithm is classifying sites, rather than 470 

individuals).  471 

Finally, a useful example of how lineage naturally captures multiple (often unknown) 472 

axes of functional diversity: the Shallow LFT predicts the climate-of-origin of trait 473 

measurements in the PNW trait dataset, because lineages tend to have conserved biogeographic 474 

niches. Empirical clustering algorithms on traits alone explain similar variation in temperature-475 

of-origin but considerably less variation in climate-of-origin along any water-related climate axis 476 

compared to LFTs (Table S4). Thus, even though none of the clustering methods explicitly 477 

considered biogeography, a lineage-based approach naturally captures biogeographic patterns 478 

resulting from niche conservatism. 479 

 480 

Implications for benchmarking model biogeography 481 

 One key goal of dynamic vegetation models in ESMs is to predict vegetation shifts and 482 

their attendant vegetation-climate feedbacks under climate change. We believe that evolution-483 

based Functional Types could help predict shifting functional traits across the landscape without 484 

relying on the empirical climate envelopes that have long been the crutch of ‘Dynamic Global 485 

Vegetation Models’ (Fisher et al., 2015; Sitch et al., 2003). To judge our success at simulating 486 

biogeography without climate envelopes, the FTs used in dynamic models need be relatable to 487 
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observational biogeographic datasets. Paleoclimate records from pollen reconstructions are 488 

typically already aggregated to the genus or higher (e.g. Jackson et al., 2000), making them 489 

useful benchmarking datasets if functional types are also grounded in evolutionary lineage. 490 

Species-level biogeographic observations (e.g., of post-industrial range shifts) can also easily be 491 

aggregated up to the relevant scale to provide model benchmarks if functional types have a 492 

taxonomic basis. Thus, LFTs naturally lend themselves to biogeographic benchmarking. 493 

One particularly exciting feature that may both make Lineage Functional Types easier to 494 

operationalize and useful for benchmarking longer-term vegetation model dynamics is that they 495 

can potentially be remotely sensed by satellite. There is considerable evidence that the spectral 496 

properties of plant canopies are phylogenetically conserved, similar to physiological traits 497 

(Cavender-Bares et al., 2016, 2017; Meireles et al., 2020; Schweiger et al., 2018). Whether 498 

serendipitously or mechanistically linked to ecological niche conservatism, the phylogenetic 499 

conservatism of plant spectra (Meireles et al., 2020) could allow rapidly proliferating 500 

hyperspectral data to be used to map LFTs. The combination of plant or plot-scale hyperspectral 501 

data from experiments (Cavender-Bares et al., 2016; Schweiger et al., 2018), landscape-scale 502 

data from aircraft hyperspectral platforms such as the U.S. National Ecological Observatory 503 

Network’s Airborne Observation Platform (NEON, n.d.), and ultimately satellite data, hold great 504 

promise for linking evolutionary relatedness to large-scale patterns of lineage presence and 505 

abundance. There are many challenges for scaling from phylogenetic relationships of plants with 506 

canopies of ~0.1-10 m size to satellite remote sensing pixels (e.g., ~30 m resolution for 507 

upcoming hyperspectral satellites) to model grid cells (~10-100 km for most current ESMs) (Fig. 508 

4). However, if approaches such as spectral unmixing can enable downscaling of sufficient 509 

resolution to capture the dominant LFTs of a model grid cell, hyperspectral satellite data—soon 510 
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to be available from Germany’s DESIS, Japan’s HiSUI, and NASA’s EMIT sensors on the 511 

International Space Station and planned Surface Biology and Geology (SBG) satellite (Schimel 512 

et al., 2020)— could be harnessed for global LFT mapping. While the use of these data to 513 

directly map functional traits is promising for initializing trait-based models, the actual identity 514 

of taxa at a location can tell us considerably more information about many important unobserved 515 

or unobservable traits than single traits themselves (J. S. Clark, 2016), and could potentially 516 

(through spectral unmixing) inform trait and LFT diversity within a grid cell. Moreover, remote 517 

sensing of lineage presence and abundance through time could provide model benchmarking data 518 

independent of the short-term (seasonal to interannual) flux measurements often used for model 519 

benchmarking (e.g., iLAMB,Collier et al., 2018). 520 

 521 

Conclusion: Future Opportunities & Challenges 522 

Actualizing a lineage-based Functional Type representation of plant diversity requires 523 

merging multiple sources of phylogenetic, trait, and diversity data to address three key 524 

challenges: 525 

1) Find where niche conservatism breaks: Identify which model-relevant traits show little 526 

phylogenetic signal and develop theoretically defensible ways to simulate the underlying 527 

processes determining these traits. Allometric traits and area-based leaf traits are 528 

important current model parameters that probably fall into this category. Both groups of 529 

traits are likely determined by the interactions of multiple underlying processes and 530 

properties. Improved understanding of the ecological and evolutionary forces driving 531 

niche conservatism and phylogenetic signal in functional traits, and functional ecology 532 
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studies comparing the phylogenetic signal in a diversity of traits in a diversity of taxa are 533 

needed.  534 

2) Test phylogenetic conservatism of plant function in hyper-diverse systems such as 535 

the tropics: Comparative ecophysiology such as congeneric contrasts is a staple of 536 

tropical ecology, yet even in the tropics, functional traits show at least some phylogenetic 537 

signal at broad phylogenetic scales (Baraloto et al., 2012). Can the habitat preference or 538 

successional strategy of dominant lineages (e.g., the ‘hyperdominants’ like Eschweilera, 539 

ter Steege et al., 2013) be generalized at large enough phylogenetic scales based on the 540 

traits of their most dominant members? We suspect so, but rigorous empirical tests are 541 

required. Given the coarse representation of tropical plants in current global models 542 

(often comprising only 1-3 PFTs), new ways of identifying and parameterizing tropical 543 

FTs are greatly needed. If hyperspectral remote sensing can capture phylogenetic 544 

information, backbone phylogenies can be used to identify, map, and parameterize 545 

tropical LFTs that capture dominant lineages using limited existing functional data. This 546 

approach would leverage the power of evolutionary relatedness to overcome data 547 

scarcity, and may prove more tractable and possibly more effective than trying to create 548 

new PFTs from a priori ecological strategies in the tropics.  549 

3) Identify and map global LFTs: Functional type maps are prescribed model inputs for 550 

some models, and are critical benchmarks for the emergent structure of dynamic 551 

vegetation models that allow functional types to compete. Defining these maps for LFTs 552 

poses the dual challenge of identifying the globally most dominant evolutionary lineages 553 

and determining how to map those lineages. The growing coverage and quality of large-554 

scale inventories (e.g., national forest inventories such as the US Forest Inventory and 555 
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Analysis, global plot networks (Liang et al., 2016)) and prevalence of well-resolved 556 

phylogenies makes the identification of dominant lineages increasingly tractable. Paleo-557 

ecological data and theory could also help identify the phylogenetic lineages whose 558 

dominance is consistent through time and pinpoint potentially important lineages that 559 

may not be dominant today but have previously been dominant and thus could be 560 

dominant in future climates (Birks, 2019; Jackson et al., 2000; Mekonnen et al., 2019). In 561 

many cases, mapping LFTs may actually be tractable with existing phylogeographic 562 

knowledge (e.g., for grasses: Griffith et al., 2020), and from bottom-up syntheses of 563 

biodiversity inventories and species distribution maps (Jetz et al., 2012). Finally, the 564 

phylogenetic signal in plant spectra (Meireles et al., 2020) also holds great promise for 565 

using hyperspectral remote sensing data to map LFTs, though numerous scaling 566 

challenges must first be addressed. 567 

 568 

Timely and societally relevant predictions of ecological change in the Anthropocene 569 

require mechanistic models that apply current ecological knowledge to forecast outside the 570 

training domain of today’s world. We advocate for increased collaborations among vegetation 571 

modelers, evolutionary biologists, community ecologists, ecophysiologists, and paleo-ecologists 572 

to generate new and creative ways to represent plant diversity in models. We propose that 573 

evolutionary relatedness can serve as a unifying theme for these efforts. 574 

 575 

 576 
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Figure Captions: 596 

 597 
Figure 1: Plant function is phylogenetically conserved (a) conceptual example of phylogenetic 598 
conservatism of both environmental niches (y-axis) and plant functional traits invoked as 599 
parameters in Land Models (x-axis). Grey lines illustrate evolutionary relatedness (e.g., 600 
phylogeny) for three lineages (colors), with related species being similar in both niche and trait 601 
values. (b) The less common alternative example of a niche axis and associated functional trait 602 
that are not phylogenetically conserved. (c) Taxonomic variance decomposition of example 603 
‘plant functional traits’ that are sometimes considered model parameters, or less frequently are 604 
predicted as emergent features resulting from underlying ‘lower-level’ traits. Many leaf and 605 
stem traits vary primarily at broad taxonomic scales (e.g., among plant families, grey bars), 606 
suggesting that lineage is a good predictor of trait values. However, some plant traits such as 607 
root to shoot biomass ratio (R:S) are less strongly conserved and may be best modeled as 608 
emergent properties from underlying processes. See Box 1 for trait descriptions and SI Variance 609 
Decomposition Methods for data descriptions.  610 
 611 
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Figure 2: Lineage-specific leaf 617 
lifespan responses to temperature. 618 
Leaf lifespan in months plotted against 619 
the Mean Annual Temperature (ºC) of 620 
the sampling location. Gray points 621 
show all species-level observations, 622 
Leaf lifespan is log12-transformed so 1 623 
= one year. (a) Within-family patterns 624 
in the seven most well-sampled 625 
families, showing either increased 626 
longevity or increased winter 627 
deciduousness at colder temperatures. 628 
(b) Within-genus patterns are similar to 629 
family-level patterns, with genera 630 
outside the tropics typically adopting 631 
either a universal evergreen or 632 
deciduous strategy. (c) Qualitative 633 
schematic of the two cold response 634 
strategies and the area where plant 635 
hydraulics plus water availability likely 636 
dictate leaf habit in the absence of cold 637 
stress; within-species patterns in 638 
conifers are plotted in colored lines. 639 
Data from (Law & Berner, 2015; 640 
Wright et al., 2004). 641 
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662 
Figure 3: Example of Functional Types in the PNW U.S.A. Phylogeny of woody plants present 663 
in a network of 256 forest plots in the Pacific NW, USA (Law & Berner, 2015), with four 664 
example disaggregation schemes, and the distribution of total biomass across the species 665 
showing hyperdominance of a small number of species. Percentages indicate the average 666 
amount of variation in Functional Diversity (FD) explained among sites (variance in community-667 
weighted mean LMA, Leaf Lifespan, and Nmass (see Box 1)) and within sites (variance in 668 
Functional Dispersion and Rao’s quadratic entropy) explained by each disaggregation scheme. 669 
The ‘Classic PFT’ scheme used in many land models and a coarse Lineage Functional Type 670 
(LFT) approach (‘Deep’, because it is divided deep in the phylogenetic tree) explain similarly 671 
low amounts of variance, while further disaggregation breaking up the major angiosperm 672 
lineages present and the lineages of the dominant Pinaceae family (‘Mid LFT’) and then dividing 673 
Pinaceae into genera (‘Shallow LFT’) explain an increasing fraction of FD within and among 674 
sites. See SI Methods for full analysis description. 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
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 684 
 685 

 686 
Figure 4: Scaling LFTs from canopy to landscape. Even a relatively low species richness forest 687 
in the Pacific Northwest, USA poses challenges both to the remote sensing of diversity with 688 
satellites with the resolution of 10s of meters (Canopy Scale panel) and to the representation of 689 
diversity in ESM grid cells that range from 0.05° (~5.5km in the temperate zone) to 1°. However, 690 
the phylogenetic signal in plant spectra may facilitate the identification of dominant lineages in 691 
pixels representing multiple plant canopies, and ultimately the identification of the dominant 692 
Lineage Functional Types at continental scales. The explanatory value of lineages, and our 693 
ability to detect them, may vary with scale. Dividing vegetation based on large phylogenetic 694 
differences (Deep LFT) may be more appropriate for broader scales whereas vegetation might 695 
be best differentiated using shorter phylogenetic distances (Shallow LFT) at high resolution. 696 
Images from Google Earth Pro©.  697 
 698 
 699 
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