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The Relationship Between Decision and Action:  

Simulating Response Dynamics in Categorization 
 

Rick Dale (radale@memphis.edu) 
Department of Psychology, University of Memphis, Memphis, TN, 38152 

 

 

Abstract 

A neural network simulation of taxonomic categorization is 
presented. Parameters of the model permit exploration of 
different interactivity between cognitive processing and a 
simple output component. By matching the simulation with 
human data, the model reveals that fluid interaction between 
cognition and action may be what produces graded response 
dynamics observed in human categorization experiments.  

Keywords: Neural network, categorization, action, dynamics. 

Introduction 

Cognition is often thought to happen in places between the 

sensors and effectors, with sharp delineations at these 

boundaries (e.g., Fodor, 1983; Pylyshyn, 2000). This 

common account envisages cognition collapse its decisions 

onto the effectors, directing various motor systems in an all-

or-none fashion. For example, well-known theories of 

attention posit central processing separate from systems 

responsible for guiding action (e.g., Posner & Petersen, 

1990). In rapid, frequent, and metabolically cheap motor 

output, such as the ballistic saccades of the eyes, this 

perspective seems most apt. When the eyes are drawn by an 

external stimulus, the processing that has led to the saccade 

is programmed over a couple hundred milliseconds, and 

once it reaches premotor regions responsible for saccadic 

movement, fires off a motor instruction that may differ from 

moment to moment only because of noise. In other words, 

once the command has been issued, and the eyes instructed 

on their movement, a ballistic, linear motion to the target 

should be observed (e.g., Becker, 1991).  

Recently, however, a growing body of research has shown 

that motor systems interact more richly with cognitive 

processes. Even in oculomotor systems, the trajectory of a 

saccade may vary in curvature depending on stimulus 

context (e.g., Sheliga, Riggio, & Rizzolatti, 1994). Perhaps 

more compelling is evidence that manual responses exhibit 

a range of dynamic characteristics that reveal processing. 

For example, force and velocity of responses after initiation 

vary concomitantly with frequency in a lexical decision task 

(e.g., Balota & Abrams, 1995), and response and stimulus 

probability in simple reaction-time tasks (Mattes, Ulrich, & 

Miller, 2002; see also Tipper, Howard, & Jackson, 1997). 

More recently, Dale, Kehoe, and Spivey (in press; see also 

Spivey, Grosjean, & Knoblich, 2005) show that computer-

mouse trajectories indicate competition between categories 

when classifying atypical animal exemplars. The dynamic 

characteristics of the response, in the form of mouse 

trajectories, revealed an attraction towards a featurally-

similar category label (e.g., fish) for atypical exemplars 

(e.g., whale) compared to control trials (e.g., cat).  
These results show that processing flows in systematic 

ways into motor behavior, rather than simply collapsing 

onto them to generate a categorical response. They may 

indeed recommend a “cascadic flow” perspective on 

cognition that sees information flow continuously from 

sensors to effectors (McClelland, 1979; Spivey et al., 2005). 

Such an account naturally predicts the appearance of these 

“post-decision” response dynamics, where the purported 

“decision” event is defined as the point at which motor 

movement is initiated. 

These discoveries of dynamic response characteristics 

suggest numerous lines of inquiry. One such question, and 

the focus of the present paper, is the following: What kind 

of interaction between cognition and action gives way to 

dynamic post-decision characteristics of responses? In this 

paper, we employ a neural network model of taxonomic 

categorization to explore this question. We aim to further 

elaborate the possible relationship and interaction between 

cognition and action using a localist attractor network that 

categorizes animal exemplars.  

In what follows, we briefly review research on 

categorization and the role typicality plays in common 

accounts of categorization. We then present a neural 

network simulation that permits comparison of different 

relationships between internal processing of animal 

exemplars, and an output component that models an explicit 

response. We explore this by investigating a parameter 

space that specifies the network’s decision-action 

relationship. Network conditions that vary this relationship 

are compared in how well they fit with human experiments 

that show these graded action dynamics.  

Categorization and Typicality 

In the current study, we make use of the graded nature of 

category structure: Categories, whatever their origin, have 

members that lie along typicality gradients. For example, an 

animal can be more or less typical as a member of an animal 

category, such as of mammals. The members of the 

mammal category thus reveal a typicality gradient, with cats 

being typical, and whales being considerably less typical. 

This results in a variety of experimental effects. Typical 

members are recognized faster, more consistently, have 

many features in common, and can facilitate language 

comprehension (see Murphy, 2002, for an excellent review).  

Dale et al. (in press) make use of this property of category 

structure to uncover post-decision response dynamics in 

human participants. Computer-mouse trajectories were 
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recorded during a simple categorization task. Participants 

categorized an animal exemplar by clicking the mouse on 

one of two category choices. Mouse-movement trajectories 

consisted of a movement from the bottom-center of the 

screen, to the correct target on the left or right (beside which 

was a competing category label). Target trials used atypical 

animals (e.g., whale) and included an incorrect competitor 

category that had considerable overlap in terms of semantic 

and visual features (e.g., fish). Though participants 

responded by clicking the appropriate category (mammal), 
mouse-movement trajectories exhibited substantial 

attraction toward the competitor category.  

This taxonomic categorization task may be a particularly 

good cognitive process to continue exploring these 

properties of motor output. While many previous studies of 

action involve very simple processes (e.g., cued fixation or 

reaching, Sheliga et al., 1994; Tipper et al., 1997), 

categorization is a relatively “higher-order” process, 

involving more processing of exemplars prior to the manual 

response. More importantly for the present paper, theories 

of category structure have often made use of feature-based 

explanations. With very few exceptions, theories of 

categorization have proposed evaluation of object features, 

and in some manner comparing these features to prototypes 

or exemplars in memory (Medin, 1989). This aspect of 

categorization theories makes this cognitive process 

amenable to constraint-based neural network architectures. 

Before setting forth the current simulation, it is important 

to note that there exist a number of quantitative models for 

categorization, including basic retrieval and recognition 

mechanisms (e.g., Nosofsky, 1987), category learning and 

organization (e.g., Love, Medin, & Gureckis, 2004), and 

even typicality (e.g., Hirahara & Nagano, 2003) and the 

time course of categorization (Nosofsky & Palmeri, 1997; 

Lamberts, 2000). Despite such a broad range of models and 

their application, none makes a distinction between the 

decision mechanism and a component that implements the 

overt response. For example, Nosofsky and Palmeri (1997) 

and Lamberts (2000) offer prominent models for the time 

course of the decision leading up to the response, but not the 

dynamics of the response itself. We make use of a relatively 

transparent neural network model that facilitates the 

inclusion of a motor-response component – the response 

dynamics of the model is a natural extension of the 

architecture of the system itself. The model includes 

decision and response components that are very similar in 

their operation, permitting manipulation of parameters to 

explore the relationship between the categorization process, 

and the response dynamics it generates. 

A second important point about the model is that it 

finesses some debate about the nature of categorization. In 

particular, exemplar-based and prototype-based theories of 

categorization are in ongoing competition (e.g., recently, 

Smith & Minda, 2000). We avoid these issues, and for 

simplification assume a basic prototype for each animal 

category used: Mammals, fish, etc., are assumed to have 

ideal, familiar, frequent, etc. features that define a 

prototypical exemplar. While this simplifies the presentation 

of the model here, the way we integrate a response 

component in the model may be extended to previous 

models discussed above. 

Simulation 

Network Architecture 

We use normalized-recurrence to simulate the time course 

of categorization. This hand-coded localist attractor 

architecture has been used to model a range of cognitive 

processes, including phoneme perception, spoken-word 

recognition, online sentence processing, and in modeling the 

time course of visual search (Spivey & Dale, 2004; Spivey 

et al., 2005). This architecture is localist because individual 

units stand for specific features of the animal exemplars. For 

example, when having the network categorize cat, one unit 

in the network might be active to represent the feature 

representing the animal’s habitat, <land>. The architecture 

is an attractor network because iterated updates of its unit 

activations lead the network towards a stable state. By 

applying a set of activation-update rules, the activations of 

the network’s units are expected to asymptote on particular 

Figure 1: The hand-coded normalized-recurrence 

model for categorization, with 6 banks of 5 features 

feeding into the integration (category) layer. 
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values, usually with one unit obtaining maximal activation, 

and competing units approaching minimal activation. 

The network functions according to two basic 

computational principles. First, multiple feature units 

simultaneously constrain the network’s behavior. Second, 

this parallel feature processing is integrated in a layer of 

units representing alternative outcomes of the model, in 

which one unit achieves maximal activation over time. Fig. 

1 presents the current model. It consists of an array of 

feature layers, in which each unit represents a particular 

property of animal exemplars. These layers feed into an 

integration layer, in which the outcome of categorization is 

assessed by iterated parallel processing of the constraints. 

To further illustrate how the model captures the time 

course of categorization, we can present an exemplar to the 

model by setting the appropriate features in the layers to an 

activation of 1, and all those not relevant to 0. For example, 

when setting features representing the exemplar whale, the 

values for LIMBS features would have 1 for <fins>, and 0 

for all other units. The activity of all these layers serves as 

input at the integration layer by taking a sum over all 

relevant nodes. For the processing of whale features, the net 

input to the mammal node would be the sum of the 

activation levels of the units representing mammalian 

features – in this case, 0 for <legs>, but 1 for <air> as 

source of oxygen, and so on. When processing whale, the 

fish node will thus receive some net input from the <fins> 

feature unit. 

The integration layer is then updated by normalization: 

The units are made to sum to 1 all together by dividing these 

net input values by the total net input to the integration layer 

across all units. This normalized activation then feeds back 

into the feature layers, these are then normalized, and the 

cycle is continued until the integration layer becomes stable. 

Fig. 2 represents such a simulation run for whale, in which 

repeated iteration results in stable and maximal activation of 

the unit for mammal in the integration layer. 

 

 
Figure 2: Integration node activation when 

categorizing whale. 
 

Formal presentation of this model’s functioning is 

straightforward. Net activation into the i-th integration unit 

is the total sum of its relevant feature units across all the 

feature layers (the i-th unit in each layer). From this net 

input, the output from this integration unit is obtained by 

dividing this input activation by the total sum of activation 

into all integration units. With Fk representing the k-th 

feature layer in the set of layers F, and I the integration 

layer,  
 

! 

net
I, i, t

= a
F
k

, i, t"1
F

k

#
    

! 

a
I, i, t

= net
I, i, t

/ net
I, j, t

I

j

"
 

 

where net.,i,t and a.,i,t represent net input and activation of 

the i-th unit of the given layer at time step t. The value 

netI,2,t  is the net input to the second unit of the integration 

layer, receiving input from the second feature unit of all 6 

layers of F. The subsequent activation of a feature unit is 

determined by the sum of its previous activation and that 

activation multiplied by the corresponding input from the 

integration layer. Each feature layer then outputs a 

normalized activation, as in the integration layer. This 

process continues until one unit in the integration layer (or 

motor layer) reaches criterion activation (see below). 
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There are a number of benefits to this simple architecture. 

First, its inner-workings are directly scrutable. While it is 

important to seek scaled-up systems that fit data from 

categorization (e.g., Love et al., 2004), simple models that 

capture core theoretical principles may serve as explicit and 

transparent accounts for basic patterns of behavioral data. 

One such core theoretical principle, a second benefit of this 

model, is conceiving cognitive processes as subject to 

simultaneous informational constraints. This constraint-

based approach to the time-course of categorization fits with 

perspectives on related cognitive phenomena, particularly 

semantic phenomena (e.g, among many, McRae, de Sa, & 

Seidenberg, 1997). Finally, this transparency and theoretical 

property are implemented in a simple system that operates 

through iterated updates of its activations. This makes 

normalized-recurrence particularly suitable for capturing 

temporal properties of cognition, an important goal for 

models of a cognitive process such as categorization 

(Nosofsky & Palmeri, 1997). 

In order to map this categorization model onto a 

simulated response, we supplement it with an additional 

bank of nodes that receives input from the integration layer. 

This “motor” bank of units, denoted M, represents the 

outcome response, and also exhibits a time course over 

iterations of the model (see Fig. 1). Just as the integration 

layer approaches a stable decision through input from 

feature layers, the motor layer does so through input from 

the integration layer. At a given time t!, some number of 

time steps over which integration and feature layers have 

interacted, these M units begin to receive activation from 

the integration layer in a manner similar to how the feature 

layers receive integration activation.  
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The activation of the i-th unit aM,i ,t is then similarly 

normalized. The parameter t! may be varied, allowing M to 

receive input from the categorization decision at different 

points in time. We choose to vary this parameter by 
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observing the “confidence” of the categorization decision – 

the maximal activation found in the integration layer, 

denoted here as !. The integration and feature layers may 

therefore be permitted to interact for a period of time (up to 

iteration t!) before M receives input from the integration 

layer when the maximal activation in the integration layer is 

! or higher. 

As outlined further below, this allows a number of 

parameters specifying the interaction between I and M to be 

modified. Firstly, the point in time at which M begins to 

receive input from I, and begins to update its activation 

towards a stable output response, can be modified. 

Secondly, M may be included in the set of layers F that feed 

into the integration layer. This allows the process of 

categorization to be influenced by available responses in the 

task. 

Procedure 

In this simulation, we compared three different initial 

network conditions. 3 atypical-competitive conditions 

involved initializing a non-prototypical exemplar (whale, 

penguin, bat), and a featurally-similar competing response 

possibility (fish, fish, bird). 9 atypical-noncompetitive 

conditions were different only in activating a less saliently 

competing response unit (e.g., bird for whale). Finally, 8 

composed a typical condition, (proto)typical feature values 

were activated, with a randomly selected competing 

response option. Each trial in the conditions was selected to 

have some overlap with Dale et al. (in press), in which 

human participants were subjected to similar trial types. 

The beginning of a simulation run involved setting feature 

layer units to their relevant values, and turning the two 

relevant response units to .5 to have equibiased initial 

response options.
1
 According to the equations above, 

activation then feeds into the integration layer, and back, 

until the motor layer reached criterion activation (.95).  

As mentioned above, the parameters of this attractor 

network may be modified so as to vary the relationship 

between the categorization units in I and the output units M. 

Two separate sets of runs using these network conditions 

were conducted to explore this relationship. Each of these 

conditions is outlined individually below. 

 

Varying !. The point in time at which activation flows from 

I to M can also be varied. This can be accomplished by 

varying the confidence threshold (!) at which the integration 

layer begins to influence the motor layer. As mentioned, t! 
is defined as the point at which one integration layer unit 

has activation of ! or greater in each subsequent iteration. 

We do this while maintaining the non-integral activation 

values in layer I. We chose three levels of threshold ! that 

span a reasonable range of possible activation of the 

                                                             
1
 To match human experiments in Dale et al. (in press), where 

parameters permitted, activation flowed in for 3 time steps from 

response options (since these were shown first to subjects). 

integration units: 0, .4, and .8. This parameter will reveal in 

the model the amount of processing that may lead to or 

diminish dynamic post-decision dynamics in the activation 

of M. We hold the interaction parameter (!; see next 

section) constant at 1 while modifying t!. 
 

Varying Interaction between I and M. Finally, we 

examine whether interaction between integration and motor 

layers contributes to graded output in the model, and as 

observed in human experiments. To do this, we add a term 

to the net input to unit i in I: 
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This permits activation in M, set at the beginning of the 

simulation run, to impinge on the time course of the 

categorization decision – activation in I. The interaction 

parameter " permits variable interaction from M to I, and 

we use a broad range of values again: 0, .5, and 1. We hold 

t! constant using a threshold of ! = 0. 

Results 

 
Figure 3: Dynamic profile of response activation (M) 

when modifying the point at which categorization flows 

into output (cross = atypical-competitive; triangle = 

atypical-noncompetitive; circle = typical). 

 

Varying !. All run conditions were normalized into 10 time 

steps so they could be overlaid (Spivey et al., 2005; Dale et 

al., in press). Figures present the iteration after competing 

response units are set at .5, showing the subsequent 9 

normalized time steps before the motor units reach criterion 

of .95 or greater. Fig. 3 presents the effect of increasing or 

decreasing the threshold at which I begins to feed into M. 

The normalized time course of run conditions becomes 

more similar as this threshold increases. The earlier the 

integration layer feeds into motor, the greater the 

competition effect seen in the atypical-competitive 

activation change. As an additional check of this pattern, we 

ran two further parameter values having t! established at 

integration thresholds 0, .2, .4, .6, and .8. The average 

difference between atypical-competitive and typical 

trajectories in the three middle time steps diminishes 

significantly as this parameter is increased (r = -.97, p < 

.005). 

 

Varying Interaction between I and M. Fig. 4 shows that 

feedback from M into I is not required to generate the 
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graded patterns in the atypical-competitive condition. 

However, increasing feedback from M generates a slight 

competition in the atypical-noncompetitive runs. Again, we 

ran another two parameter values (" = .25 and .75), and 

tracked the average difference between the middle three 

time steps for atypical-noncompetitive and typical 

conditions. This difference increases significantly with " (r 

= .98, p < .005). In other words, there emerges a disparity in 

the output dynamics of typical and atypical-noncompetitive 

runs when one allows motor and integration layers to more 

fluidly interact. 

 

 
Figure 4: Dynamic profile of correct response (M) 

when modifying the feedback it receives from output 

units. 

 

Mapping to Human Data.  To investigate the relationship 

between the simulation and human data, we analyzed x-

coordinates in manual trajectories drawn from Dale et al. (in 

press). A number of measures may be used, such as y-

coordinate and Euclidean distance to target. However, the x-

coordinate more closely represents proximity to correct or 

incorrect target (since, in the experiment, y-coordinates are 

the same for each category response label). In addition, 

differences in x-coordinates have served as the basis for 

comparing response dynamics in previous work (Spivey et 

al., 2005; Dale et al., in press).  

 

 
Figure 5a: Dynamic profile of x-coordinate change (in 

proportion to final, correct target) in human experiment. 

5b: As the interaction parameter "  (dotted line) is 

increased, a better fit is achieved with normalized 

human data. As the required confidence threshold ! 

(solid line) is increased, the opposite holds. 

 

Data from the lexical categorization tasks in Dale et al. (in 

press) are shown in Fig. 5a. This graph depicts similarly 

normalized time courses of the same trial types in human 

experiments as the manual response’s x-coordinate reaches 

its target. The figure bears resemblance to network 

conditions that involve interaction between integration and 

motor layers in both directions. In fact, in both perceptual 

(i.e., pictures) and lexical categorization, Dale et al. (in 

press) observed curved motor trajectories in trials akin to 

atypical-noncompetitive network conditions here, along 

with the more intuitive effect of atypical-competitive 

conditions. In a correlation of corresponding time steps, 

these normalized x-coordinate proportions show a strong 

relationship with M activation in the high interaction (" = 

1) and early motor input condition (! = 0; r = .99, p < 

.0001). When conducting the same regression analysis over 

the other parameter values, one obtains increases in fit in the 

expected directions (see Fig. 5b). The best fit with human 

data is obtained when interaction between integration and 

motor layers is maximized: When " is large (high 

interaction between I and M), and ! is small (early input to 

M). 

General Discussion 

Normalized-recurrence provides a simple yet ideal arena for 

exploring the interaction among constraints that underlie 

taxonomic categorization. These constraints involve the 

parallel processing of features, and an accumulation of 

information that guides the categorization decision and 

resultant response. This model indeed resembles several 

recent simulations that also seek to characterize the time 

course of categorization (e.g., Lamberts, 2000). While the 

current model is simple, it offers some explicit insight into 

the possible relationship between the categorization 

decision, and the resultant response itself. In the model, 

patterns of competition observed in human data are obtained 

when both the decision process and the motor output 

concurrently and continuously interact. The kind of 

approach used here may suggest ways in which existing 

models (e.g., Nosofsky & Palmeri, 1997; Lamberts, 2000) 

might integrate action parameters, thereby providing a fuller 

picture of the cognitive process: Accounting for not just the 

hypothesized internal processes, but information 

accumulation all the way into the observable response 

behavior and its time course. For example, the Nosofsky 

and Palmeri (1997) model involves a random-walk process 

where exemplars race each other to help categorize a test 

exemplar. Including a motor component may simply involve 

integrating a second random-walk process in which possible 

category responses race each other for selection. Interactive 

parameters could then be similarly explored.  

One possible promissory note about such models is a 

synthesis of “pre-decision” process models, and the 

experimentally observed relationship between process and 

response characteristics. Growing research on the 

embodiment of cognition (e.g., Barsalou, 1999) shows that 

parameters of action can impinge on the cognitive 

processing eventually leading into it (e.g., Glenberg & 

Kaschak, 2002). The current model provides some simple 

means by which computational mechanisms of these effects 

can be devised. 

The current model has some obvious limitations. Firstly, 

it is extremely simple. The model simply embodies basic 
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computational principles regarding constraint-based feature 

processing, and the continuous integration of this 

information. However, it is perhaps surprising that such 

simple assumptions can succeed in generating the kind of 

response patterns observed in the human experiments: Both 

competitive and noncompetitive trials and their graded 

response characteristics can be captured in this system.  

Secondly, as discussed earlier, the model does not seek to 

resolve current debate regarding opposing theories of the 

categorization process. While the model may prima facie 

have difficulty fitting knowledge-based results of 

categorization, its properties serve as an exploration of the 

time course of categorization given certain conditions. 

Those assumed here are at least sufficient to model basic 

categorization tasks. While this is promising, others seek to 

scale up computational models of categorization and 

category learning (Love et al., 2004). The current model 

may again provide some motivation for integrating output-

based dynamics to model responses.  

Thirdly, the model’s parameters clearly cannot be directly 

mapped to neurophysiology. Nevertheless, substantial 

evidence from the neurophysiology of the motor system 

reveals both simultaneous and continuous competition 

between possible actions – properties similar to this paper’s 

normalized-recurrence network (Spivey & Dale, 2004, for 

some review).  

Despite these limitations, rather than intricately capturing 

categorization and its underlying neural substrate, the model 

provides an idealized computational system that explores 

the effects of two interacting systems. One system acts 

through informational constraints to gradually decide on a 

relevant category; another acts through this decision 

component at a given later time to mediate between only 

two possible stable states (the correct vs. incorrect end-point 

actions). In this model’s context, fluid interaction between 

these components is what generates the response dynamics 

observed in human experiments. 
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