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SUMMARY

Small proteins are traditionally overlooked due to
computational and experimental difficulties in de-
tecting them. To systematically identify small pro-
teins, we carried out a comparative genomics study
on 1,773 human-associated metagenomes from
four different body sites. We describe >4,000
conserved protein families, the majority of which
are novel; �30% of these protein families are pre-
dicted to be secreted or transmembrane. Over 90%
of the small protein families have no known domain
and almost half are not represented in reference ge-
nomes. We identify putative housekeeping, mamma-
lian-specific, defense-related, and protein families
that are likely to be horizontally transferred. We pro-
vide evidence of transcription and translation for a
subset of these families. Our study suggests that
small proteins are highly abundant and those of the
human microbiome, in particular, may perform
diverse functions that have not been previously
reported.

INTRODUCTION

To support the transition of themicrobiome field from descriptive

science to amoremechanistic one, there is an ongoing shift from

16S ribosomal RNA sequencing to whole-metagenome shotgun

(WGS) sequencing projects (Ranjan et al., 2016; Lloyd-Price

et al., 2017; Gilbert et al., 2018). While accumulating WGS

studies have illuminated the remarkable genetic diversity en-

coded by human-associated microbes, our ability to link specific

genes to phenotypes is still lagging behind (Koppel and Balskus,

2016). One of the challenges in linking genes to phenotypes is

that the process of gene annotation overlooks an entire class

of potentially important genes.

Small open reading frames (sORFs) and the small proteins

they encode, here defined as proteins of %50 amino acids in
length, have traditionally been ignored (Duval and Cossart,

2017; Storz et al., 2014; Su et al., 2013). It is difficult to distinguish

protein coding ORFs from the numerous random in-frame

genome fragments, and thusmost prediction tools require amin-

imum ORF length, resulting in incomplete databases. In muta-

tional screens, sORFs are less likely to be targeted and classical

biochemical approaches are usually not optimized to detect

small proteins. Finally, experiments that rely on databases,

such as mass spectrometry, will fail to identify small proteins if

their sequences are not present in reference databases.

Despite this bias, recent studies have elucidated interesting

functions for small proteins in both eukaryotes and prokaryotes

(reviewed in Couso and Patraquim, 2017; Duval and Cossart,

2017; Kemp and Cymer, 2014; Storz et al., 2014; Plaza et al.,

2017). Here, we sought to characterize the small proteins en-

coded by the healthy human microbiome, represented by the

NIH Human Microbiome Project (HMP) dataset (Lloyd-Price

et al., 2017). We leveraged the concept that protein-coding

sORFs likely have protein sequences that are conserved. Our

analysis reveals 4,539 candidate small protein families encoded

by human-associated microbes, very few of which have been

previously described.

For each family, we provide taxonomic classification, preva-

lence across body sites, predicted cellular localization (secreted/

transmembrane), andpredictionof antimicrobial function.Wepro-

vide information about homologs of the families among �6,000

non-human metagenomes. Finally, because in bacteria, gene

context can inform predictions of function, we describe the genes

that are encoded in vicinity of the sORF.Wehighlight several novel

small proteins with diverse predicted functions, including house-

keeping, cell-cell crosstalk, adaptation, aswell as defense against

phage or against other bacteria.

For a subset of small protein families that have homologs in

metatranscriptomic datasets (Abu-Ali et al., 2018; Tropini et al.,

2018), we show that at least 75% are actively transcribed. For

homologs that are found in Bacteroides thetaiotaomicron, we

use ribosome-profiling (Ribo-Seq) to show that at least 40%

are translated.We contribute to building amore complete under-

standing of the full coding potential encoded by the human

microbiome, including the thus far overlooked sORFs. This is a
Cell 178, 1245–1259, August 22, 2019 ª 2019 Elsevier Inc. 1245
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Figure 1. Small Protein Discovery and Characterization Pipeline Applied to HMPI-II Metagenomic Data

(A) Identification of 29 known small proteins in HMPI-II metagenomes. More than 128 million contigs were annotated using MetaProdigal with a lower size limit of

five amino acids. The small proteins were then clustered using CD-Hit based on amino acid similarity and protein length. Representatives of each of the�444,000

clusters were queried against the Conserved Domain Database (CDD), to assign domains to clusters. The list of CDD domains was then queried for the small

known proteins that have an assigned domain. Known small proteins that do not have an assigned domain or that failed the domain search were queried against

HMPI-II small proteins using BLASTp.

(B) Identification and characterization of HMPI-II small proteins. RNAcode was used to assign p values to the �444,000 clusters. The following analyses were

conducted on the �4,000 protein families whose p value was %0.05. (1) Identification of neighboring genes on longest contig associated with each family. (2)

Prediction of secondary structure. (3) Analysis of ribosomal binding sites (RBS) upstream of the small genes. (4) Taxonomic classification of contigs encoding

each of the small protein families. (5) Assignment of small protein families to body sites. M -mouth; V - vagina; G - gut; S - skin. (6) Prediction of signal peptide and

transmembrane domains to assign likely cellular localization. (7) Analysis of expression of the small genes using metatranscriptomic, metaproteomic datasets as

well as Bacteroides thetaiotaomicron transcriptomics and proteomics. (8) Identification of homologs of small protein families in non-human metagenomes.

See also Figures S1, S2, and S7, Tables S1, S2, S3, and S4, and Data S1 and S2.
fundamental step toward understanding of the mechanisms that

underlie the role of the microbiome in health and disease.

RESULTS

Only a Small Subset of Well-Characterized Small
Proteins Are Relevant to the Human Microbiome
Small proteins that have been studied in depth generally origi-

nate from model organisms (for review, see Duval and Cossart,

2017; Storz et al., 2014). To infer their potential relevance to

the human microbiome, we sought to identify those that are

also found in human-associated microbes. To not limit our

search to species that have a reference genome, we undertook

a reference-free approach and conducted our analysis on HMPI-

II metagenomic sequencing data (Lloyd-Price et al., 2017). We

used MetaProdigal (Hyatt et al., 2012) to annotate all open

reading frames, as short as 15 base pairs (bp), on 128,368,337

contigs spanning more than 180 billion bp of sequenced DNA

from 1,773 metagenomes from 263 healthy individuals (Table

S1) sampled from four different major body sites (Figure S1;

Table S1). We filtered out ORFs that encode for proteins that
1246 Cell 178, 1245–1259, August 22, 2019
are >50 amino acids in length, resulting in 2,514,099 sORFs

(Figure 1A).

We queried a set of 29 known small proteins that have been

studied in depth (reviewed by Duval and Cossart, 2017; Storz

et al., 2014) (Tables 1 and S2) as well as a set of small ribosomal

proteins, to identify homologs of these known small proteins

among the predicted�2,500,000 putative small proteins. When-

ever possible, we used a domain-based approach (RPS-BLAST)

that would detect even distant homologs (Altschul et al., 1997),

and we used a sequence-based approach (BLASTp) for small

known proteins that have not been assigned a protein domain.

To reduce computational load associated with analysis of

such large amounts of sequences, we first clustered all

�2,500,000 putative small proteins based on sequence and

length similarity using CD-Hit (Fu et al., 2012), resulting in

444,054 clusters. We then queried each of the 444,054 families

against the Conserved Domain Database (CDD) (Marchler-Bauer

et al., 2011, 2017) (Figure 1A). Only �4.5% (113,693/2,514,099)

of the putative small proteins, spanning �0.5% (2,225/444,054)

of the clusters, could be assigned a known domain (Table S3).

The most common types of domains identified are of diverse



Table 1. Representation of Known Small Proteins in HMPI-II Data

Abundant in HMPI-II Samples Identified at Low Levels in HMPI-II Samples Not Identified in HMPI-II Samples

Ribosomal proteins CydX (Escherichia coli) MciZ (Bacillus subtilis)

AgrD (Gram+ bacteria) AcrZ (Escherichia coli) MgrB (Escherichia coli)

ComC (Streptococcus) Hok (Escherichia coli) SpoVM (Bacillus subtilis)

Phenol soluble modulin (Staphylococcus) KdpF (Escherichia coli) BacSp222 (Staphylococcus pseudintermedius)

TisB (Escherichia coli) AimP (Bacillus subtilis phages)

SgrT (Escherichia coli) FbpA/B/C (Bacillus subtilis)

MntS (Escherichia coli) MgtR (Salmonella typhimurium)

PmrR (Salmonella enterica) Prli42 (Listeria monocytogenes)

SidA (Caulobacter crescentus) CmpA (Bacillus subtilis)

MgtS (Escherichia coli) PepA1 (Staphylococcus aureus)

Blr (Escherichia coli) Listeriolysin S (Listeria monocytogenes)

Streptolysin (Streptococcus pyogenes)

SdaA (Bacillus subtilis)

Known proteins were queried against CDD-assigned domains of all 444,054 representatives whenever they had an assigned domain and against all

protein sequences of the�444,054 representatives using BLASTp (Camacho et al., 2009) when the known protein was not assigned a known domain

(Table S2). Only 12 of the 29 small proteins have an assigned protein domain (AcrZ, CydX, KdpF, AgrD, ComC, MciZ, MgrB, SpoVM, SgrT, Hok, TisB,

phenol-soluble modulins aswell as small ribosomal proteins). Approximately 3.5%of small proteins that were assigned a domain (3,930/113,693) were

homologous to the extensively studied quorum-sensing small protein, Staphylococcal AgrD. ComC, a quorum-sensing signal that enables Strepto-

cocci to regulate DNA uptake and genetic transformation in response to population density as well as environmental queues such as antibiotic stress

(Moreno-Gámez et al., 2017), was found in�2% (2,176/113,693) of small proteins. Homologs of AgrD and ComC were clustered into 153 and 19 clus-

ters, respectively, suggesting rapid evolution of these proteins, in line with what has been previously documented (Hyatt et al., 2012; Allan et al., 2007).

CydX (YbgT) is a small protein required for the function of cytochrome bd oxidase (Sun et al., 2012). KdpF is part of the high-affinity ATP-driven

potassium transport system (Gassel et al., 1999). Hok (Chukwudi and Good, 2015) and TisB (Steinbrecher et al., 2012) are toxins. AcrZ is a multidrug

efflux pump accessory protein (Hobbs et al., 2012). SgrT is a regulator of glucose metabolism (Lloyd et al., 2017). MntS that takes part in manganese

chaperoning (Martin et al., 2015). PmrR, is a regulator of amembrane-bound enzyme (Kato et al., 2012). SidA is an inhibitor of cell division (Modell et al.,

2011). MgtS (formerly known as YneM) modulates intracellular Mg2+ levels to maintain cellular integrity upon Mg2+ limitation (Wang et al., 2017). Blr is

involved in B-lactamase resistance (Karimova et al., 2012). Names of organisms in parentheses indicate themodel organism inwhich small protein was

mainly studied.
small ribosomal proteins, assigned to �64% of all domain-as-

signed small proteins (72,982/113,693). Other well studied pro-

teins that were abundant in our dataset (such as AgrD and

ComC) are encoded by commonly studied organisms that are

often constituents of the healthy microbiome (such as Staphylo-

coccus and Streptococcus, respectively), making it unsurprising

that we identified them in our human-associated microbiome

dataset. Otherwise, we found limited overlap between well char-

acterized small proteins and those that are abundant in human

microbiomes (Tables 1 and S2).

Identification of ~4,000 Small Protein Families of the
Human Microbiome
Intrigued that such a small proportion of previously described

small proteins were present in the human-associated micro-

biomes, we sought to better understand what types of small pro-

teins exist in this unexplored space. First, we revisited the

444,054 clusters (Table S3) of potential small proteins that

were generated in the previous step of our analysis (Figure 1A).

Most were not assigned a known functional domain, which

raised concerns for the potential presence of spurious sORFs.

To enrich for families that are more likely to be protein-coding

families, we usedRNAcode (Washietl et al., 2011), a gene predic-

tor program that distinguishes between coding and non-coding

sequences by evaluating evolutionary signatures. We applied
RNAcode on the 11,715 clusters that contained R8 different

DNA sequences. Using a p value threshold of %0.05, we identi-

fied 4,539 clusters (containing 467,538 small proteins) that are

predicted to be bona fide sORFs (Figure 1A; Table S3). A ribo-

somal binding site (RBS) motif was detected in 91% (426,581/

467,538) of all proteins (Figure S2; Table S3). These 4,539 ‘‘small

protein families’’ are subjected to further analyses hereafter (Fig-

ure 1A; Table S3).

The Majority of the ~4,000 Small Protein Families of the
Human Microbiome Are Novel
Reassuringly, the �4,000 family subset is significantly enriched

for small protein families that were assigned a protein domain

(p < 1 3 10�5 Fisher exact test): among the 4,539 small protein

families, 4% (190/4,539) were assigned a domain (compared

to 0.5%of the 444,054 clusters), (Figures 2A and 2B). These fam-

ilies contain 12% of the 467,538 small proteins (compared to

4.5% of the 2,514,099 in the initial database). Interestingly,

�96% (4,349/4,539) of small protein families were not assigned

a CDD domain, some of which are actually encoded by a large

number of species (Figure 2C; Table S3), emphasizing the

incompleteness of knowledge in the small protein domains

space. We also asked what proportion of the sORF families are

found in reference genome databases such as RefSeq (Pruitt

et al., 2007). We performed sequence similarity searches of all
Cell 178, 1245–1259, August 22, 2019 1247
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Figure 2. Many of the ~4,000 Families, Some

of which Are Very Abundant, Are Not As-

signed a Known Protein Domain nor Are

They Represented in RefSeq Genomes

(A) Pipeline to identify families that do not have an

assigned domain and families that are not repre-

sented in RefSeq genomes. Upper path of the

flow diagram: only a small subset of the �4,000

small protein families were assigned a protein

domain (identified by RPS-blast against CDD po-

sition specific scoring matrices, PSSMs). Lower

path of the flow diagram: representatives of all

�4,000 families were blasted against �3,000,000

small RefSeq annotated proteins originating

from �70,000 RefSeq genomes and against

�7,000,000 putative small proteins that we anno-

tated using Prodigal with adjusted thresholds. The

second step allowed the identification of an addi-

tional set of homologs that are encoded but not

annotated in RefSeq genomes.

(B) Domains identified among �4,000 families.

Domains that were classified toR5 families and/or

R50 species are shown. A complete list of do-

mains can be found in Table S3.

(C) Number of species encoding small proteins of

families with no known domain are shown in

histogram.
4,539 representative proteins against proteins of %50 amino

acids annotated in 69,681 RefSeq bacterial reference genomes.

Only �25% of the small protein families (1,149/4,539) in our da-

taset have annotated homologs in RefSeq genomes (Figure 2A;

Table S3). We postulated that at least some of the small proteins

in our dataset do have homologs that were not annotated. We

therefore re-annotated all 69,681 RefSeq genomes with a

permissive size threshold to include all potential sORFs. Indeed,

this step revealed an additional set of 1,230 (�27%) small protein

families. Still, for 48% (2,164/4,539) of the small protein families,

we could not identify any homologs (Figure 2A; Table S3). This

confirms that any effort to comprehensively identify candidate

novel small proteins of the human microbiome would be very

limited if applied only to genomes from reference databases

that have, generally speaking, a limited representation of hu-

man-associated microbes.

We next looked for evidence of transcription and translation of

the 4,539 small gene families. Analysis of 226 publicly available

human fecal metatranscriptomes (Abu-Ali et al., 2018) (Table

S4) revealed homologs of 689 of the families. Of these, 518

(75%) have at least one actively transcribed homolog (Figure S3).

We then selected two publicly available metaproteomic datasets

and re-analyzed the raw data to determine if any of the predicted
1248 Cell 178, 1245–1259, August 22, 2019
sORFs are found as detectable proteins

(Zhang et al., 2017; Zhang et al., 2018).

Altogether, 25 small protein families

were detected within the two sets. Finally,

we focused on Bacteroides thetaiotaomi-

cron, in which we annotated 35 ‘‘high-

confidence’’ sORFs. We find evidence

that 19 (54%) are transcribed in a publicly
available dataset (Tropini et al., 2018). We performed Ribo-Seq

analysis, which shows that 14 (40%) of the 35 sORFs predictions

are translated; using mass-spectrometry based proteomics, we

find almost 10% of the 35 sORFs (Table S4).

Because most families in our dataset do not have an assigned

protein domain nor do they have well-characterized homologs

from which we can try to infer function, we subsequently used

several approaches to provide insight into the potential functions

of these small proteins (Figure 1B). In the next sections, we focus

on specific classes of small proteins.

Putative Novel ‘‘Housekeeping’’ Small Protein Families
among Human-Associated Microbes
We sought to identify small protein families that could be playing

housekeeping roles. We posited that such families would be

highly prevalent across species. To characterize the taxonomic

distribution of families, we classified each of the contigs that

encode small proteins against a set of 83,701 microbial refer-

ence genomes, consisting of 53,193 bacteria, 27,020 viruses,

1,892 eukaryota, and 1,756 archaea genomes, using the k-mer

based One Codex platform (Minot et al., 2015).

We focused our next analysis on the 14most prevalent families

that are encoded by R100 species (Figure 3A). Whereas most



families in the overall dataset are taxonomically unique to one

(2,353, 52%) or two (1,183, 26%) phyla, there is strong enrich-

ment among the 14 most prevalent families for presence in

multiple phyla (Figure 3B), suggesting a role that is not clade-

specific. In all 14 families, the average percentage of k-mers

that could be classified is >10%, implying that classification is

likely reliable in these families. Second, we determined whether

these families are specific to a particular ecological niche. To do

so, wemapped each family to the body site(s) in which homologs

of the family were identified. Whereasmost small protein families

are identified uniquely in mouth (1,188, 26%) or gut (2,220, 48%)

(Table S3), 13 of the 14 most prevalent families were identified in

R3 body sites, suggesting a role that is not niche-specific (Fig-

ure 3A). Because the HMP data resource we used for this study

has a limited representation of skin and vagina samples (Table

S1), it is possible that families that seemabsent fromone of these

body sites are present but not detected.

Positing that true housekeeping genes are likely to be

conserved among a broad range of ecological niches, we tested

whether these 14 prevalent families are more likely to have ho-

mologs in non-human metagenomes. To do so, we checked

for sequence homology of the �4,000 small proteins within a

set of 5,829 non-human metagenomes, including mammalian

and bird gut metagenomes, as well as environmental samples

of different types (Table S1). While we could not identify homo-

logs in non-human metagenomes for the majority of small pro-

tein families (3,551, 78%), we were able to identify homologs in

at least one non-human environment for all 14 candidate ‘‘house-

keeping’’ families (Figure 3A).

Altogether, the taxonomic abundance and the existence in

multiple niches of these 14 ‘‘housekeeping’’ families suggest a

role that is not clade- or niche-specific. Indeed, among these

14, six encode different ribosomal proteins. Among the remain-

ing eight families, three were assigned a CDD domain and five

were not. Two of the CDD-assigned families were assigned the

‘‘SCIFF’’ domain, which is associated with a small ribosomally

synthesized natural product (Haft and Basu, 2011; Haft and

Haft, 2017). The biological function of this small protein is un-

known. Family 26 was assigned a DUF4295 domain, which we

address below. There are five families that were not assigned a

protein domain, two of which are predicted to be transmem-

brane. Analysis of transcription datasets shows that at least 12

of the 14 are actively transcribed (Figure S3). The three families

that have homologs in Bacteroides thetaiotaomicron (26,

286022, and 220778) were all detected in our Bacteroides the-

taiotaomicron Ribo-Seq (Table S4).

We also asked which small protein families in our dataset

could be playing key roles that are associated with a specific

body niche(s). To identify the body site(s) with which each family

is associated, we mapped all contigs associated with the

�4,000 protein families back to body site from which these con-

tigs were assembled. A total of 458 families (10%, 458/4,539)

were identified in R50% of samples of at least one body site

(‘‘core families’’). In most cases, ‘‘coreness’’ is associated with

a specific body site, suggesting that among the small protein

families there are those that may be ‘‘housekeeping’’ in a spe-

cific body niche and are probably not essential in other body

niches (Figure S4).
Identification of a Putative Novel Ribosome-Associated
Protein Prevalent among Human-Associated Microbes
Family 26 is among the 14 families that are very abundant and

was assigned a domain of unknown function, DUF4295 (Figures

3A and 3C). This 50-amino acid protein was detected in 182 spe-

cies originating from four different phyla. We identified homologs

of this protein in diverse non-human metagenomes and in a high

percentage of gut andmouth samples, as well as in vaginal sam-

ples. It drew our attention because the sORF is located in a

strongly conserved genomic locus, downstream of two known ri-

bosomal proteins, L28 and L33 (Figure 3D). In light of its wide

phylogenetic distribution and genomic localization, we hypothe-

size that this small protein family encodes a novel small ribo-

some-associated protein that has thus far escaped detection.

In the lab strain Bacteroides thetaiotaomicron VPI-5482, the

small gene encoding this protein was not annotated, as is the

case for many small proteins, but nevertheless is encoded in

the intergenic region downstream these two genes (Figure 3D).

In support of the hypothesis that family 26 is probably highly ex-

pressed, we could detect it in all expression datasets described

above (Figure S3; Table S4). DUF4295 domain is also encoded

by family 7858 and displays significant sequence homology to

family 26 (Figure 3E).

Small Proteins that Are Potential Mediators of Cell-Cell
and Cell-Host Communication
We were particularly interested in small proteins that could be

involved in the crosstalk between microbial cells and their

environment (host or other microbial cells). Communication is

typically mediated through direct cell-cell contact or via small

diffusible molecules secreted by cells (Hayes et al., 2010; Mor-

eno-Gámez et al., 2017). We thus postulated that proteins that

are at the cell surface or are secreted are more likely to be

involved in cell-cell communication.

We looked in our dataset for small protein families that are

either transmembrane and/or potentially secreted. To predict

transmembrane and signal peptides, we applied two algorithms,

TMHMM (Krogh et al., 2001) and SignalP-5.0 (Almagro Armen-

teros et al., 2019), on all 467,538 small proteins that constitute

the 4,539 small protein families. We classified a family as pre-

dicted to be transmembrane/secreted ifR80% of the homologs

of the family are predicted to be such. Due to the limitations

associated with prediction of secreted proteins, we believe

that the number of secreted proteins in our dataset is in fact

higher than we predict here.

In addition, we sought to identify small protein families that

could display antimicrobial activity. To do so, we used AmPEP

(Bhadra et al., 2018), which uses a Random Forest algorithm to

identify antimicrobial peptides. By applying the algorithm on

the 4,539 representatives, we identified 39 small protein families

(Table S3) that are potential novel antimicrobial peptides.

Of the 4,539 small protein families, a total of 1,402 families

(30% of the 4,539 families) are predicted to be transmembrane

and/or secreted (Figure S1). Specifically, 1,054 (23%) families,

consisting of 168,165 small proteins (35% of the total 467,538

small proteins) are predicted to be solely transmembrane, 107

(2%) families, consisting of 19,749 small proteins (4% of the total

small proteins) are predicted to be solely secreted, and 241 (5%)
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Figure 3. A Subset of Small Protein Families Is Prevalent across the Tree of Life

(A) Most abundant families. Each row represents one of the 14 families that were identified in R100 species. The taxonomic distribution of the 14 families is

presented in the blue table, the prevalence among body sites is presented in the green table and the number of homologs identified in non-human metagenomes

is presented in the brown table. Potential novel ribosomal is family 26. When multiple homologs were mapped to the same taxa, it is counted as one event in this

table. SCIFF, ‘‘six cysteines in forty-five residues.’’

(B) The fraction of families assigned to different number of phyla for the 14 potential housekeeping (red) and the 4,525 remaining families (blue) is shown. For

example, >50% of the non-housing-keeping families were assigned to one phyla versus zero housekeeping families that were assigned to one phylum.

(C and D) Potential novel ribosomal protein. (C) Phylogenetic tree of family 26. (D) The genomic neighborhood of DUF4295 (family 26) next to two known ribosomal

proteins is illustrated. In Bacteroides thetaiotaomicron VPI-5482 it is encoded in the intergenic region downstream of these genes (locus tags BT0914 and

BT0915).

(legend continued on next page)
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families, consisting of 43,642 small proteins (9% of the total

467,538 small proteins) are predicted to be both transmembrane

and secreted. As expected, 93% (1,207/1,295) of the families

that are predicted to be transmembrane are predicted to adopt

a helical structure, providing support to our prediction of trans-

membrane families (Table S3; Data S2).

To pinpoint small proteins that could be specifically important

to life within themammalian gut, we askedwhich of the predicted

transmembrane/secreted families have homologs in other

mammalian guts but not in other niches (no other human body

sites nor other non-mammalian metagenomes). Our mammalian

gut metagenomes include 86 samples originating from diverse

mammals, including mouse, rat, multiple non-human primates,

panda, and more (Table S1). This narrowed our set from 1,402

to 132 families (transmembrane = 96, secreted = 8, transmem-

brane and secreted = 28; Table S3) that are found in human as

well as other mammalian gut metagenomes.

Family 350024 drew our attention, because it has the highest

number of homologs in other non-human mammalian guts. We

identified 30 homologs of this small protein in 13 different

mammalian gut metagenomic samples. It encodes a 33-amino

acid predicted transmembrane and secreted protein with no an-

notated domain or known function. A homology search of family

350024 against all 1,266 predicted transmembrane families of

the �4,000 small protein families reveals that this small protein

is actually even more abundant: there are 22 additional small

protein families, ranging in size between 24–40 amino acids

(Table S5), that share sequence homology with this family,

although they are divergent enough not to be clustered into

one big protein family, suggesting rapid evolution (Figure 4A).

These predicted transmembrane proteins are often found in

mammalian/bird gut samples and are in most cases encoded

by diverse Bacteroidetes and Firmicutes species (Figure 4B). A

phylogenetic protein tree of homologs of the family, compared

to several known housekeeping genes, supports the hypothesis

that family 350024 undergoes more rapid evolution than the

tested housekeeping or core genes (Figure S5).

The genomic localization of this sORF is also conserved

among homologs, adjacent to a DNA binding protein and an

N-acetylmuramoyl-L-alanine amidase, an enzyme that cleaves

the amide bond between N-acetylmuramoyl and L-amino acids

in bacterial cell walls (Figure 4C). Interestingly, the product of

an amidase was recently shown to mediate channel formation

between bacterial cells that express them (Zheng et al., 2017).

In addition, we often observe within close vicinity of these three

genes, virulence-related genes as VirE and/or genes encoding

for the Rhs protein, a DNase that is delivered to neighboring cells

during contact dependent inhibition, as well as the immunity pro-

tein that protects the encoding cell from the Rhs’ toxic effect

(Koskiniemi et al., 2013). In the proteomic analysis ofBacteroides

thetaiotaomicron VPI-5482 described above, we show that a

distant homolog (Figure S5) of family 350024, encoded in the in-

tergenic region between an N-acetylmuramoyl-L-alanine
(E) Homology between family 26 and family 7858, two potential novel ribosome-

different phyla and did not pass the required ‘housekeeping’ threshold (which requ

ribosomal proteins; it is found in 85% of mouth samples (but not in any gut sam

See also Figures S3 and S4 and Tables S1 and S3.
amidase (locus tag BT4031) and a DNA binding protein (locus

tag BT4032), is expressed. Altogether, we hypothesize that this

small proteinmay be involved in crosstalk with other cells, poten-

tially as part of a novel secretion/inhibition mechanism.

We were intrigued by the genomic neighborhood of family

155173, which was identified in over 40% of gut samples. Ho-

mologs of this potentially secreted protein are recurrently found

upstream of a transmembrane protein annotated as AgrB, a

histidine kinase and a response regulator (Figure 4D). This

composition of genes strongly resembles the composition of

the quorum sensing Agr operon, which consists of the short

signaling peptide (AgrD), a transmembrane protein (AgrB),

and a two-component system composed of a histidine kinase

(AgrC) and a response regulator (AgrA) (Olson et al., 2014).

The small protein identified here was not assigned a domain

in our query against CDD domains. However, the genomic

localization of this secreted protein in addition to the similarity

in size to AgrD, suggest that these four genes encode a quorum

sensing system, in which the signaling molecule component is

a distant homolog of AgrD. Intriguingly, we also observed that

in at least 51/154 homologs of this family, the small gene is en-

coded in the vicinity of genes that mediate horizontal gene

transfer (see below section about horizontal transfer), suggest-

ing that this cluster of genes is subject to horizontal transfer

(Figure 4D). The potential of the Agr quorum sensing system

to undergo phage-derived horizontal transfer has been sug-

gested before (Hargreaves et al., 2014), and here, we provide

additional support to this model.

Small Protein Families with a Potential Role in Bacterial
Defense against Phage
Bacteria have evolved a variety of defense systems that protect

them from phage attack (Dy et al., 2014; Koonin et al., 2017;

Stern and Sorek, 2011) and these tend to cluster in genomic re-

gions denoted ‘‘defense islands’’ (Koonin et al., 2017). This

notion has been recently used to identify multiple novel defense

systems based on their localization within ‘‘defense islands’’

(Doron et al., 2018). Here, we were interested in identifying small

proteins that could be associated with defense against phage.

Small defense-related proteins are easily missed in bioinformatic

studies, such as the recent systematic study that aimed at

identifying CRISPR-Cas-related genes, which applied an inclu-

sion cutoff of 100 amino acids (Shmakov et al., 2018), or studies

that rely on domain annotation of protein families (Doron

et al., 2018).

To identify small protein families that could be related to bac-

terial defense against phage, we searched for sORFs that are en-

coded in the vicinity (within %10 genes upstream/downstream)

of known defense genes. To identify defense genes, we used a

list that was recently compiled that contains 427 different

COGs/Pfams of known defense genes (Doron et al., 2018). We

were able to identify 869 (869/4,539 = 19%) small protein families

in which at least one homolog is encoded in the vicinity of known
associated families of proteins. Family 7858 is encoded by 26 species from 3

iresR100 species). The family 7858 gene is genomically positioned next to two

ples) as well as in diverse non-human environments.
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Figure 4. Small Proteins that Are Potentially Involved in Cross-Talk

(A–C) Family 350024 is an abundant gut-related predicted transmembrane family potentially involved in bacteria-host or bacteria-bacteria crosstalk. (A) Multiple

sequence alignment of representatives of all families that share amino acid sequence homology with family 350024. The length of the protein sequence is

indicated after each family ID. (B) Phylogenetic spread of family 350024 and 22 other homologous families. (C) Genomic neighborhood, next to a DNA binding

protein and an N-acetylmuramoyl-L-alanine amidase, an enzyme that cleaves the amide bond between N-acetylmuramoyl and L-amino acids in bacterial cell

walls. The locus tag of the small predicted transmembrane protein (red) is Ga0104402_10435 (Bacteroides ovatus NLAE-zl-C500).

(D) Putative signaling molecule that is presumably subject to horizontal transfer. Schematic representation of genes encoded on contigs of family 155173. In

addition to Agr genes, these contigs typically harbor genes that are associated with horizontal transfer.

See also Figure S5 and Tables S3 and S5.
defense gene/s (Table S3). Of these, 132 families are associated

with CRISPR genes.

To increase the confidence that a small protein family is de-

fense-related, we asked whether ‘‘defense-relatedness’’ is

conserved among homologs of the same family. For each family,

we counted the number of homologs that are encoded within 10

genes of known defense genes and calculated the fraction that

are ‘‘defense-related’’ (Table S3). There are 13 families in which

at least half of homologs are ‘‘defense-related,’’ of which 5 fam-

ilies are specifically CRISPR-related. Family 395508 is an

example of a potential CRISPR-related small protein in which
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90% (65/72) of the homologs are encoded within %10 genes

from CRISPR-related genes (Figures 5A and 5B). It encodes a

28-amino acid predicted transmembrane protein (or transmem-

brane and secreted according to the orthogonal Phobius

algorithm). Toxin-antitoxin systems also play role in defense

against phage (Rostøl and Marraffini, 2019). In family 588, the

small gene is encoded immediately upstream of a known

‘‘orphan’’ toxin that encodes a PIN nuclease in 150/191 contigs.

Based on the ‘‘guilt by association approach’’ (Leplae et al.,

2011), we hypothesize that family 588 may encode a novel anti-

toxin protein of a toxin-antitoxin system (Figure 5C).
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Figure 5. Small Proteins that Are Potentially Associated with Defense against Phage

(A and B) Small protein family (395508) possibly associated with a CRISPR anti-phage system. (A) Genomic neighborhood of small protein (red arrow) across 6

different species. Homologs of this small protein are shown in the genomic locus in which they were found among a variety of Veillonella species within HMPI-II

data. (B) Multiple sequence alignment of homologs of the family demonstrates a high level of conservation within small protein family 395508.

(C) Small protein of family 588 is encoded upstream of a known toxin.
Small Proteins that Are Part of the ‘‘Mobilome’’ May Play
a Role in Bacterial Adaptation
The human gut is presumed to serve as a ‘‘melting pot’’ of hori-

zontal genetic material exchange, which bacteria leverage in

evolving to adapt (Liu et al., 2012; Shterzer and Mizrahi, 2015).

This phenomenon mediates transfer of antibiotic resistance

genes, virulence genes, genes involved inmetabolism and stress

response, as well as genes involved in defense against phages

(Ochman et al., 2000; Soucy et al., 2015; Zaneveld et al.,

2008). Phages are among the agents thatmediate HGT of advan-

tageous genes between hosts (Colomer-Lluch et al., 2011; Man-

rique et al., 2017; Virgin, 2014).

Here, we attempted to identify small protein families that could

be part of the bacterial ‘‘mobilome.’’ A hallmark of genomic re-

gions that are subject to horizontal gene transfer (HGT) is the

presence of genes that mediate horizontal transfer (Oliveira

et al., 2017). In addition, because horizontal transfer spreads

genes between potentially distant bacterial lineages, genes

that are subject to horizontal transfer may display a distribution

that is discordant with the organismal tree of life (‘‘patchy distri-

bution’’) (Cordero andHogeweg, 2009).We used these two char-

acteristics to identify families that are potentially subject to HGT.

First, we searched for small protein families whose homologs

are recurrently found in the vicinity (within%10 genes upstream/
downstream) of genes that are known to mediate horizontal

transfer (STAR Methods). This resulted in a set of 2,646 (58%,

2,646/4,539) small protein families in which at least one homolog

is encoded in the vicinity of an HGT-mediating gene (Table S3).

To identify families in which homologs are recurrently found

in mobile regions, we calculated the fraction of HGT-related ho-

mologs from the total number of homologs for each family. Doing

so, we identified 329 small protein families that we are highly

confident are ‘‘HGT-related,’’ because at least 50%of the homo-

logs of the family are encoded in the vicinity of HGT-medi-

ating gene(s).

Next, we sought to characterize the phylogenetic distribution

of these 329 families. Families that display a patchy distribution

are more likely to be horizontally transferred. A patchy distribu-

tion is associated with families that are identified in a relatively

small number of species across multiple clades. However,

because a patchy distribution could be a result of sampling

biases, our approach is more powered to detect HGT events be-

tween higher taxonomic levels, such as between phyla. For a

vertically transmitted gene to have a sporadic distribution across

phyla, multiple deletion events of the gene across the tree would

have occurred, which is less likely. To enrich for small protein

families in which the taxonomic classification is more reliable,

we filtered out small protein families in which the median
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Figure 6. Small Proteins that Are Potentially

Subject to HGT between Phyla

(A) Each dot represents one of 202 families that

were identified in the screen of HGT genes in vi-

cinity of small gene and whose median percentage

of k-mers that were classified is >10%. Families

that are encoded by a small number of species

across a larger number of phyla/class/order are

more likely to be true positives.

(B) Of the 100 families presented in (A), 57 small

protein families that were identified inR2 phyla are

presented. Only phyla that were identified in at

least five different small gene families are shown.

Numbers within boxes indicate the total number of

individual homologs within the family encoded by

the designated phylum. Each row was normalized.

See also Figure S6 and Table S3.
percentage of k-mers on the contig of origin that could be clas-

sified is <10%. This resulted in 202/329 small protein families

(Figures 6A and S6). Firmicutes is the most represented phylum

among the 202 small protein families, identified in 68% of the

families (Table S3), in line with previous observations that this

phylum is a major participant in genetic exchange (Caro-Quin-

tero and Konstantinidis, 2015). Among the 202 small protein

families, 57 families were mapped to at least 2 phyla (Figure 6B),

representing potential inter-phyla HGT events.

Finally, we sought to identify small proteins that are encoded

by phage. By analyzing genomic context and classification of en-

coding contigs we identified 405 small protein families that either

have at least one homolog that was classified as viral or are inte-

grated within a presumable prophage region (Figure S6; STAR

Methods).

DISCUSSION

Accumulating evidence suggests that small proteins play

important roles in bacterial physiology. However, due to

computational and experimental limitations, this class of pro-
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teins is consistently overlooked. Here,

we focused on small proteins encoded

by the human microbiome. We were

interested in small proteins within this

niche for several reasons. In terms of

size, small proteins can represent a

‘‘bridge’’ between the ‘‘natural product’’

world, a rich source of biologically active

molecules such as antibiotics, and the

larger protein world. As such, they are

likely to display a range of activities

that would resemble either class and

thus operate at microbe-host interface.

While natural products have attracted

much attention and investigation (Donia

et al., 2014; Milshteyn et al., 2018; Triv-

ella and de Felicio, 2018; Wilson et al.,

2017), and large proteins are easier to

detect and analyze, small proteins in
the human microbiome have thus far evaded thorough system-

atic analysis.

In this study, we applied a combination of computational ap-

proaches on 1,773 healthy human metagenomes and identified

4,539 conserved small protein families. We show that most fam-

ilies are not represented in traditional reference genomes and/or

do not contain a known protein domain. For a subset of families

that could also be detected in an independent metatranscrip-

tomic study, we show that the vast majority are transcribed. By

classifying the protein families according to their taxonomic dis-

tribution, their prevalence across human body sites and non-

human metagenomes, their predicted cellular localization, their

genomic neighborhood and more, we assign putative functions

to a subset of the families.

Proteins that play housekeeping roles are expected to be un-

related to a specific niche or taxonomic clade. Indeed, among

these 14 potential ‘‘housekeeping’’ families, six encode for

different ribosomal proteins, a known class of housekeeping

proteins. Among the remaining eight families, three were as-

signed a CDD domain and five were not. We show that the one

that contains a domain of unknown function 4295 (DUF4295)



is likely to be a novel small ribosome-associated protein. We

provide evidence that this sORF is indeed transcribed and trans-

lated, most probably at high levels. Onemay wonder how such a

proteinmight escape detection, as ribosomes have been subject

of deep investigation spanning several decades of research. We

believe that this is due to the focus of prior research on a handful

of model organisms (such as E. coli, which lacks this predicted

small protein) and the dismissal of small ORFs from bioinformat-

ics analysis pipelines. Many of the genomes that encode this

small protein are residents of the human microbiome, whose ge-

nomes have mainly been sequenced in the last decade and

whose ribosomes have not been studied, in depth. The experi-

mental laboratory strain Bacteroides thetaiotaomicron VPI-

5482 encodes this small protein but as is the case for many

sORFs, the gene that encodes for this protein remained

unannotated.

The continuous arms race between bacteria and bacterio-

phages has led to the evolution of an arsenal of bacterial

anti-phage systems. Some of these systems have important

biotechnological applications (i.e., restriction enzymes and

CRISPR-Cas), leading to a strong interest in identifying novel

systems. However, bioinformatic studies in the field usually fail

to detect small proteins, as these do not pass the size inclusion

cutoff and are usually devoid of annotation. Using our unbiased

approach, we identified 13 small protein families that are pre-

sumably found on ‘‘defense-islands,’’ five of which are regions

that encode for CRIPSR genes. It is possible that these small

proteins are associated with already known or yet unknown de-

fense systems.

The ability of bacteria to rapidly adapt to changing environ-

mental conditions is strongly associated with the acquisition of

new genes through horizontal gene transfer. A major clinical

challenge is that horizontal gene transfer contributes significantly

to the rapid spread of antibiotic resistance. For example, AcrZ, a

49-amino acid membrane protein, can enhance antibiotic resis-

tance through regulation of amultidrug efflux pump (Hobbs et al.,

2012). Here, we identify 329 small protein families that are likely

horizontally transferred. Of these, 84 families are predicted to be

membrane proteins. This list represents an opportunity to search

for small proteins that may support adaptation, particularly as

regulators of drug pumps.

Because of their short length, small proteins generally consist

of one domain and represent a useful model system for protein

folding simulations (Imperiali andOttesen, 1999) and drug design

(Martin and Vita, 2000). It has recently been suggested that the

number of domains is reaching saturation (Scaiewicz and Levitt,

2018). However, more than 95% of the small protein families

identified in our study do not have any known domains. This

stresses the possibility that the space of small proteins repre-

sents an untapped opportunity for discovery of new building

blocks of proteins. Many studies rely on domains assigned to

proteins (Doron et al., 2018; Shmakov et al., 2018), emphasizing

the benefit of annotating the domains of small proteins, so that

they are not overlooked in future studies of this type.

Transmembrane and secreted proteins mediate most of the

interactions of a bacterium with its environment, making these

classes of proteins relevant targets for medical research. Here,

we identified a total of 1,054 families that are predicted to be
transmembrane and/or secreted. One of the families (350024)

that is presumably very abundant across different mammalian

guts encodes for a predicted transmembrane protein that is en-

coded between a DNA binding protein and an amidase enzyme

that cleaves cell wall. A recent paper showed that a similar

enzyme is involved in formation of channels for material ex-

change between cells (Zheng et al., 2017). We suggest that the

small protein identified is part of a cluster of genes that could

also be involved in channel formation between cells and subse-

quent DNA translocation.

In light of the increased frequency of resistance to conven-

tional antibiotics, there is an interest in developing antimicrobial

peptides as an alternative therapy (Cotter et al., 2013; Lau and

Dunn, 2018). While a large fraction of known antimicrobial pep-

tides cause cell death through transmembrane pore formation,

a growing number of studies show additional mechanism of ac-

tion, such as translation inhibition through interaction with the

ribosome (Seefeldt et al., 2015). Here, we identify 39 potential

novel antimicrobial peptide families that remain to be experimen-

tally validated.

While HGT events within bacteria and archaea are unequivocal

(Soucy et al., 2015; Wagner et al., 2017), the frequency and

importance of HGT between domains of life is less clear (Husnik

and McCutcheon, 2018). Using taxonomic contig classification,

we identified multiple families that were mapped to more than

one domain of life. While misassembly or misclassification of

contigs could possibly account for this, this observation remains

intriguing as it suggests either ancient conservation of sORFs or

true genetic transfer between evolutionarily distant organisms.

Despite the promise that this approach holds for sORF predic-

tion, it is important to note its limitations. First, our analysis filters

out families if they are encoded by <8 different sequences, there-

fore potentially missing genuine small protein families when

these are very rare. Second, small proteins undergoing rapid

evolution may fall into separate families in the sequence-based

clustering step, which may lead to them being filtered out due

to small family size. Third, longer proteins that are undergoing

pseudogenization could falsely appear as small proteins. Fourth,

since we conduct our analysis on contigs, we are also vulnerable

to errors in taxonomic classification that could stem frommisas-

sembly and/or misclassification of contigs. Fifth, our prediction

of secreted proteins relies on the presence of signal peptides.

This is a limited prediction because not all proteins that harbor

a signal peptide are secreted outside of the cell (Green andMec-

sas, 2016), and because signal peptides contain a hydrophobic

region that can be mistaken for a transmembrane region,

implying that a subset of the predicted transmembrane proteins

could actually be secreted (Krogh et al., 2001). Finally, our anal-

ysis of the genomic region of small genes is limited by the num-

ber of genes that are encoded on the encoding contig, which is

variable in metagenomic data.

In our analysis of published metaproteomics datasets (Zhang

et al., 2017, 2018), only a small subset of the predicted small

proteins could be validated. While this analysis demonstrates

that a small subset of predicted small proteins are indeed tran-

scribed and translated, it also highlights that standard proteomic

experimental workflows are limited and there is a need to opti-

mize protocols to enrich for small proteins. In our proteomics
Cell 178, 1245–1259, August 22, 2019 1255



analysis of small proteins in Bacteroides thetaiotaomicron, we

were able to validate 10% of the its high-confidence small pro-

teins. Our analysis was restricted to one standard growth condi-

tion in which we extracted proteins from a saturated culture.

Therefore, it is likely that we failed to detect small proteins that

are expressed in other conditions or earlier growth stages.

To advance from this study, mechanistic studies will be

required. Gene deletion and complementation studies are likely

to be highly informative. In light of the relatively low cost of their

synthesis, it may be feasible to conduct high-throughput studies

in which small genes are synthesized and expressed within cells

to study gain of function phenotypes. Finally, interactions of

small proteins with human proteins could be studied by applying

co-immunoprecipitation protocols.

To facilitate future investigation of these candidate novel

small proteins, a comprehensive resource file is presented in

this manuscript (Table S3; see also Figure S7). This table pro-

vides an exhaustive summary of all attributes associated with

each of the 4,539 families and facilitates others to query the

database of novel sORFs for families that obey specific attri-

butes of interest. Following such queries, one can extract all

DNA/amino acid sequences of homologs from Data S1 and

also all underlying contigs according to the guidelines given

in the STAR Methods.

Knowledge of small peptides encoded by human associated

bacteria is very limited.We hope that the data and computational

approach presented here will open a new frontier in the study of

themicrobiome and enhance our ability to exploit the therapeutic

potential of this previously ignored class of macromolecules.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbe strains
The bacterial strain used in this study is Bacteroides thetaiotaomicron VPI-5482 (ATCC 29148).

METHODS DETAILS

Identification of sORFs from multiple human associated metagenomes
Contigs from 1,773 HMPI-II human-associated metagenomes from 17 body sites that were shotgun sequenced and contained no

less than 5M bp sequenced per sample were downloaded from https://www.hmpdacc.org/hmasm2/. Body sites were collapsed

into four groups (Table S1). For each metagenomic sample, all ORFs were predicted using MetaProdigal (Hyatt et al., 2012) with pa-

rameters adjusted to include ORFs R 15bp. Small ORFs where filtered to include only those that contain a start and stop codon,

resulting in a set of 2,514,099 sORF % 150bp. RBS motifs were extracted from the standard output of MetaProdigal.

Clustering of sORFs into families
Proteins encoded by this set of sORFs were clustered using CD-Hit with the following parameters: -n 2 -p 1 -c 0.5 -d 200 -M 50000 -l

5 -s 0.95 –aL 0.95 –g 1 (the shorter sequenceswere required to beR 95% length of the representative of the cluster and the alignment

must coverR 95%of the longer sequence). This resulted in 444,054 clusters. Each cluster was assigned a ‘cluster representative’ by

CD-Hit that was used in subsequent parts of our analysis.

Domain Analysis
The CDD DB was downloaded from ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/little_endian/Cdd_LE.tar.gz on October 2018. This DB

contains models that are in the default CDD database: CD (alignment models curated at NCBI as part of the CDD project), Pfam,

Smart, COG, PRK and TIGRFAM. The amino acid sequence of each of the cluster representatives from each one of the 444,054 clus-

ters was searched against this DB, using RPS-blast. A hit was considered significant if the e-value % 0.01 (default CDD e-value

threshold) and the small protein aligns to at least 80% of the PSSM’s length. Small protein families were classified according to

the PSSM they hit. The same domain may be assigned to multiple families reflecting distant sequence conservation across families

(e.g., families 263535, 73615 and 209227 that were all assigned the same PSMM of a small ribosomal protein L36), and families may

be assigned multiple domains, reflecting redundancies in CDD (e.g., family 305829, that was assigned two different PSSMs, both of

ribosomal protein L34).

Identification of known proteins among the small protein clusters
Small proteins that were studied in depth were divided into two groups: those that have an assigned sequence domain and those that

do not. The domains that were assigned to the 444,054 clusters were queried for domains of the first group. The known small proteins

that do not have an assigned sequence domain were queried against all 444,054 representative protein sequence, using BLASTp

with word-size 2. Hits were considered significant if: e-value % 0.05, the alignment spans R 90% of the protein and the length of

the hit was 90%–110% of the length of the small protein.

Analysis of publicly available metatranscriptomics data
Assemblies of 226 human gut metagenomes were downloaded from EBI metagenomics (https://www.ebi.ac.uk/metagenomics/

studies/MGYS00003733 and the corresponding metatranscriptomes were downloaded from https://www.ncbi.nlm.nih.gov/

bioproject/354235 (Accession PRJNA354235). For each metagenomic sample, all ORFs were predicted using MetaProdigal (Hyatt

et al., 2012) with parameters adjusted to include ORFsR 15bp. This set was used to define how many reads are mapped to coding

regions. Small ORFs were filtered to include only those that contain a start and stop codon. Representatives of each of the 4,539

small protein families were queried against this set of small proteins, using BLASTpwith word-size 2. Hits were considered significant

if: e-value% 0.05, the alignment spansR 80% of the protein and the length of the hit was 80%–125% of the length of the small pro-

tein. Metatranscriptomic reads (93bp in length) were quality filtered using trim galore version 0.4.0 (Krueger, 2014), a wrapper for cu-

tadapt version 1.8.1 (Martin, 2011) using a default parameters and a quality score cutoff of 30. Reads were mapped to the associated

assemblies using bowtie version 1.1.1 (Langmead et al., 2009), using default parameters except allowing for no mismatches. For

each predicted ORF, mapped reads were counted using bedtools coverage (Quinlan and Hall, 2010) if R 70% of the read mapped

without mismatches to the ORF. To calculate reads per kilobase of transcript, per million mapped reads (RPKM) for each small ORF,

the total number of reads mapping to the combined set of small and regular-sized genes was calculated. A small ORF was consid-

ered transcribed only if its RPKM R 20.

Analysis of publicly available metaproteomics datasets
Two publicly available metaproteomic datasets were selected. The first is a deep metaproteomics dataset consisting of samples

from four children with IBD (Zhang et al., 2017). The second is a random subset of 18 samples from a large pediatric cohort

(n = 71) obtained from IBD patients (Zhang et al., 2018). Raw files were searched in MaxQuant version 1.5.2.8(1) (Cox and Mann,
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2008), using the search engine Andromeda against the MetaPro-IQ database (374,267 entries published in Zhang et al., 2017) con-

sisting of a gut microbial gene catalog and a human database that were combined with all 72,569 non-redundant sequences

composing the�4k families. The enzyme specificity was set to trypsin and a maximum of 2 missed cleavages were allowed. Search

parameters was set to 7-40 amino acids, enzyme specificity: trypsin, max 2 missed cleavages, 4.5 ppm match tolerance for precur-

sor ions and 20 ppm for fragment ions with 1% FDR both at the peptide and protein level. Oxidation on methionine and N-terminal

acetylation were set as variable modifications and carbamidomethylation on cysteine as a fixed modification.

Identification of small proteins in Bacteroides thetaiotaomicron VPI-5482 and homologs to ~4k families
Prodigal (Hyatt et al., 2010) with parameters adjusted to include ORFsR 15bp was used to call genes on Bacteroides thetaiotaomi-

cron VPI-5482 GCF_000011065.1, resulting in 5,071 genes. Small ORFs where filtered to include only those that contain a start and

stop codon, resulting in a set of 215 sORF% 150bp. Homolog of family 26 is 52aa long in this strain andwas addedmanually after this

filtering step. Representatives of families were blasted against the 216 predicted small proteins. Hits were considered significant if: e-

value % 0.05, the alignment spans R 80% of the query protein and the length of the hit is 80%–125% of the length of the small

protein.

Analysis of Bacteroides thetaiotaomicron VPI-5482 transcriptomics data
Transcriptomics data (Tropini et al., 2018) were downloaded from the Stanford Digital Repository (https://purl.stanford.edu/

kw691rt5031). Transcriptomics reads (150 bp in length) were quality filtered using trim galore version 0.4.0 (Krueger, 2014), a wrapper

for cutadapt version 1.8.1 (Martin, 2011) using default parameters and a quality score cutoff of 30. Reads were mapped to the Bac-

teroides thetaiotaomicron VPI-5482 reference genome using bowtie version 1.1.1 (Langmead et al., 2009) using default parameters

except allowing for no mismatches. For each predicted ORF, mapped reads were counted using bedtools coverage (Quinlan and

Hall, 2010) ifR 60% of the read mapped without mismatches to the ORF. If the Bacteroides thetaiotaomicron genome was covered

on average above 20-fold in any given condition, then that condition was included in downstream analyses. To calculate reads per

kilobase million (RPKM) for each small ORF: 1) Metaprodigal with default parameters was applied on Bacteroides thetaiotaomicron

VPI-5482. 2) The set of small ORFs that are homologous to any of the 4,359 small proteins were added. 3) The total number of reads

mapping to the combined set was calculated. A small ORF was considered transcribed only if its RPKM R 20.

Ribo-Seq of Bacteroides thetaiotaomicron VPI-5482
Ribosome profiling was performed in duplicates as previously described (Latif et al., 2015) onBacteroides thetaiotaomicron grown to

saturation. Before harvesting,Bacteroides thetaiotaomicronwas treatedwith 0.1mg of chloramphenicol permL of culture. After 2mi-

nutes, aliquots of culture were centrifuged in 50 mL tubes at 10,000 x g. Cell pellets were resuspended in Ribo-Seq lysis buffer. As

previously described (Latif et al., 2015), the buffer consisted of 25 mM Tris pH 8.0, 25 mMNH4Cl, 10 mMMgOAc, 0.8% Triton X-100,

100 U/mL RNase-free DNase I, 0.3 U/mL Superase-In, 1.55 mM Chloramphenicol, and 17 mM 50-guanylyl imidodiphosphate

(GMPPNP). Lysis was performed using bead beating for 3 minutes in this lysis buffer, using a MiniBeadBeater-16, Model 607 and

1mM zirconia/silica beads. 25 A260 units of RNA were treated with 6000U of MNase using MNase buffer to dilute as necessary.

MNase buffer contained 25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM MgOAc, and 1.55 mM chloramphenicol (Latif et al., 2015). The

MNase reaction was incubated at room temperature for 2 hours. All following steps were performed identically to previous literature

(Latif et al., 2015), except the tRNA removal steps were excluded. Briefly, 500 mL of polysome binding buffer was used to wash the

Sephacryl S400MicroSpin columns (GEHealthcare Life Sciences) three times - spinning the column for 3minutes at 4�C at 600 RPM.

Polysome binding buffer consisted of 100 mL Igepal CA-630, 500 mLmagnesium chloride at 1M, 500 mL EGTA at 0.5M, 500 mL of NaCl

at 5M, 500 mL Tris-HCl pH 8.0. at 1M, and 7.9 mL of RNase-free water. The MNase reaction was applied to the column and centri-

fuged for 5 minutes at 4�C. The flow through was purified further with miRNAeasy Mini Kit (QIAGEN) using manufacture protocols.

Elution was performed at 15 mL volume. rRNA was depleted using RiboZero-rRNA Removal Kit for Bacteria (Illumina) using manu-

facture protocol, except all reaction volumes and amounts were reduced by 50 percent. This was purified with RNAeasy MinElute

Cleanup Kit (QIAGEN), eluting in 20 uL. The reaction, in 18 mL volume, was subjected to T4 PNKReaction (NEBM0201S) with addition

of 1 mL Superase-In (Invitrogen), 2.2 mL 10X T4 PNK Buffer, and 1 mL T4 PNK (10U/mL). This reaction was purified again with RNAeasy

MinElute Cleanup (QIAGEN). The concentration was determined with Qubit RNA HS Assay Kit (Illumina). With 100 ng as input, li-

braries were prepared using NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330), using manufacture protocols. DNA

was purified using Minelute PCR Purification Kit (QIAGEN). Libraries were sequenced using a NextSeq 500/550 v2.5 1x75 kit using

50 cycles.

RNA-Seq of Bacteroides thetaiotaomicron VPI-5482
Aliquots of Bacteroides thetaiotaomicron were centrifuged in 50 mL tubes at 10,000 x g. Cell pellets were resuspended in RNA-Seq

lysis buffer. The buffer consisted of 25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM MgOAc, 0.8% Triton X-100, 100 U/mL RNase-free

DNase I, and 0.3 U/mL Superase-In. We performed RNA-Seq as follows: 15 mL of proteinase K (Ambion, 20 mg/mL) was added to

600 mL of lysate. After incubation for 10 minutes at room temperature, samples were centrifuged at 21,000 x g for 3 minutes and

the supernatant was collected. An equal volume of Phenol/Chloroform/Isoamyl Alcohol 25:24:1 (pH. 5.2) was applied and vortex
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for three minutes. Themixture was centrifuged at 21,000 x g for three minutes. The aqueous phase was extracted. This was repeated

once more. The final aqueous phase was ethanol precipitated. The RNA was further purified using the RNAeasy Mini plus Kit

(QIAGEN) according to manufacturer’s protocols. Any remaining DNA was degraded via Baseline-ZERO-DNase (Epicenter), RNA

was fragmented for 15 minutes at 70�C using RNA Fragmentation Reagent (Ambion), and the fragmented RNA was purified with

miRNAeasy Mini Kit (QIAGEN), all according to the manufacturer’s protocols. Elution was performed at 15 mL. rRNA was depleted

using RiboZero-rRNA Removal Kit for Bacteria (Illumina) using half reactions of the manufacturer’s protocols. This was purified

with RNAeasy MinElute Cleanup Kit (QIAGEN), eluting in 20 uL. The fragments, in 18 mL volume, were subjected to T4 PNK Reaction

(NEBM0201S) with addition of 1 mL Superase-In (Invitrogen), 2.2 mL 10X T4 PNK Buffer, and 1 mL T4 PNK (10U/mL). This reaction was

purified again with RNAeasy MinElute Cleanup (QIAGEN). The concentration was determined with Qubit RNA HS Assay Kit (Invitro-

gen). With 100 ng as input, libraries were prepared using NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330), as per man-

ufacturer’s protocols. DNA was purified using MinElute PCR Purification Kit (QIAGEN). Libraries were sequenced using a NextSeq

500/550 v2.5 1x75 kit using 50 cycles.

Analysis of Bacteroides thetaiotaomicron VPI-5482 RNA-Seq and Ribo-Seq data
Reads (50 bp in length) were quality filtered using trim galore version 0.4.0 (Krueger, 2014), using default parameters and a quality

score cutoff of 30. Reads were mapped to the Bacteroides thetaiotaomicron VPI-5482 reference genome using bowtie version

1.1.1 (Langmead et al., 2009) using default parameters except allowing for no mismatches. For each predicted ORF, mapped reads

were counted using bedtools coverage (Quinlan and Hall, 2010). To calculate reads per kilobase million (RPKM) for each small ORF:

1) Metaprodigal with default parameters was applied on Bacteroides thetaiotaomicron VPI-5482. 2) The set of small ORFs that are

homologous to any of the 4,359 small proteins were added. 3) The total number of reads mapping to the combined set was calcu-

lated. A small ORF was considered transcribed only if its RPKM R 20.

Bacteroides thetaiotaomicron VPI-5482 small protein extraction and analysis
Cell Culture: the culture media contained 37 g of brain heart infusion (BHI), sterilized at 121�C for 20 minutes, and supplemented with

freshly prepared, filter-sterilized L-cysteine to a final concentration of 0.1%, hematin solution (0.5 mg/ml in alkaline water) to a final

concentration of 5 mg/ml, and NaHCO3 to a final concentration of 0.2%. Culture media were reduced in an anaerobic chamber for a

minimum of 6 hours prior to inoculation. The media were inoculated with Bacteroides thetaiotaomicron VPI-5482 and incubated at

37�C under an anaerobic atmosphere for 72 hours until fully saturated. The culture was pelleted by centrifugation at 10,000 rpm for

20 minutes at 4�C, and the pellet was washed with 50 mM Tris-HCl (pH 7.5) to remove residual media and re-pelleted.

Lysis and enrichment for small proteins: cells were lysed on ice for 30 minutes in 80 mL of 50 mM Tris-HCl (pH 7.5), 0.5% SDS,

1 mM EDTA followed by 2 minutes of sonication on ice at output level 8 with a 50% duty cycle. The lysate was clarified by centrifu-

gation at 14,000 rpm at 4�C for 30 minutes. To enrich for small proteins in the lysate, acetic acid was added to the lysate to a final

concentration of 0.25% (v/v) followed by incubation on ice for 30minutes and centrifugation at 14,000 rpm for 20minutes at 4�C. This
addition helps in precipitating larger proteins. A fraction of acid-treated clarified lysate (25 mL) was filtered through a 30-kDa molec-

ular weight cut off (MWCO) filter (Millipore) to further enrich for lower molecular weight proteins in the lysate.

Protein isolation: samples from 3 different preparations were analyzed by LC-MS/MS. First, 10 mL of acid-treated lysate was

treated with 40 mL of acetone and incubated at �20�C for 1 hour to precipitate proteins followed by centrifugation at 14,000 rpm

at 4�C for 30 minutes. Second, 10 mL of acid-treated 30-kDa MWCO filtrate was treated with 40 mL of acetone and incubated at

�20�C for 1 hour to precipitate proteins followed by centrifugation at 14,000 rpm at 4�C for 30 minutes. Third, 1.5 mL of acid-treated

30-kDa MWCO filtrate was dried down in a Vacufuge Concentrator (Eppendorf) at 35�C overnight.

Digestion and Sample Preparation for LC�MS/MS: dried protein pellets were dissolved in 50 mM ammonium bicarbonate in the

presence of 0.02% protease max (Promega) and reduced with 10 mM DTT at 55�C for 30 min. Following reduction, proteins were

alkylated using 30 mM acrylamide for 30 minutes at room temperature. Digestion was performed with Trypsin/LysC (Promega) in

a standard overnight digest at 37�C. After digestion, the reaction was quenched using 1% formic acid and peptides were de-salted

on C18 Monospin reversed phase columns (GL Sciences). The de-salted peptides were dried in a speed vac before reconstitution in

20 mL of reconstitution buffer (2% acetonitrile with 0.1% formic acid); 2 mL of this solution was injected on the instrument.

LC�MS/MS Analysis: mass spectrometry experiments were performed using a Q Exactive HF-X Hybrid Quadrupole - Orbitrap

mass spectrometer (Thermo Scientific, San Jose, CA) with liquid chromatography using a Nanoacquity UPLC (Waters Corporation,

Milford, MA). A flow rate of 450 nL/min was used, wheremobile phase Awas 0.2% formic acid in water andmobile phase Bwas 0.2%

formic acid in acetonitrile. Analytical columnswere prepared in-housewith an I.D. of 100microns packedwithMagic 1.8micron 120Å

UChrom C18 stationary phase (nanoLCMS Solutions) to a length of �25 cm. Peptides were directly injected onto the analytical col-

umn using a gradient (2%–45% B, followed by a high-B wash) of 80 minutes. The mass spectrometer was operated in a data depen-

dent fashion using HCD fragmentation for MS/MS spectra generation. For data analysis, the .RAW data files were processed using

Byonic v3.2.0 (Protein Metrics, San Carlos, CA) to identify peptides and infer proteins using Bacteroides thetaiotaomicron VPI-5482

database from Uniprot and a custom database of the small proteins predicted in Bacteroides thetaiotaomicron VPI-5482 using

Prodigal. Proteolysis was assumed to be semi-specific allowing for N-ragged cleavage with up to two missed cleavage sites.
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Precursor and fragment mass accuracies were held within 12 ppm. Proteins were held to a false discovery rate of 1%, using standard

approaches.

Taxonomic classification of small protein families
1,504,527 contigs encoding the small proteins were classified using the One Codex database 2018 (Minot et al., 2015). Each contig

was compared to a database of 83,701 microbial reference genomes. The platform matches all overlapping k-mers in a given contig

to the most specific organism possible. Since not all k-mers are unique to a specific operational taxonomic unit (OTU), each k-mer

was classified to the lowest common ancestor (LCA). Individual k-mer matches across a given contig were then aggregated to assign

the most specific and consistent OTU to the contig. For each contig, the proportion of 31-mers that were classified out of the total

31-mers (rounded to the nearest whole number), was recorded. For each small protein family, the number of different OTUs, phyla,

classes, orders, families, genera and species in which it was detected was recorded. Of the 1,504,527 total contigs, 69,974 contigs

(4.6%) could not be taxonomically classified. The four families in which all contigs were classified as ‘Homo sapiens’ were excluded

from further analysis.

Analysis of small proteins in RefSeq genomes
Protein sequences from 69,681 RefSeq genomes, were download from ftp://ftp.ncbi.nlm.nih.gov/genomes/RefSeq/bacteria/ on July

2017. Representative protein sequences of 4,539 families were blasted against 3,549,250 RefSeq proteins that are% 50 amino acids

with word_size 2 and Max number of hits = 500. To call for small genes on these RefSeq genomes, Prodigal (Hyatt et al., 2010) with

parameters adjusted to include ORFs R 15bp was run on RefSeq reference genomes. Representatives of families were blasted

against 6,931,965 prodigal-predicted proteins that are % 50 amino acids as described above. In both cases, hits were considered

significant if: e-value% 0.05, the alignment spansR 90% of the query protein and the length of the hit is 90%–110% of the length of

the small protein.

Identification of homologs of small proteins among ‘‘long’’ HMP proteins
MetaProdigal (Hyatt et al., 2012) was used to call for all genes encoded in 1,773 HMPI-II metagenomic samples. The resulting set was

filtered to include only those that encode for proteins of at least 100 amino acids and have a start and stop codon, resulting in

82,947,548 proteins. Representatives of the 4,539 small protein families were blasted against this set with word_size 2 and Max

number of hits = 500. Hits were considered significant if: e-value <=0.05 and the alignment spans 90-110% of the small protein

(no restriction on length of subject sequence).

Analysis of genomic neighborhood of small proteins
MetaProdigal (Hyatt et al., 2012) was used to call for genes on all contigs associated with all 4,539 small protein families. Amino acid

sequence of all the genes on all contigs were searched against CDD, using RPS-blast with an e-value threshold of 0.01. A hit was

considered significant if the e-value % 0.01 (default CDD e-value threshold) and the protein aligns to at least 80% of the PSSM’s

length. Each gene on a contig could have multiple significant domains. All domains of genes identified within 10 genes away from

the small gene were recorded. Table S3 lists the associated genes in the longest contig of each family. For example, for family

111917, the small gene on the longest contig associated with the families is the 14th gene on the contig. The list of genes in vicinity

includes ‘‘10: Phage_holin_4_1, COG4824, holin_tox_secr,’’ meaning that the 10th gene on the contig was assigned these CDD

domains.

To identify small proteins that are in the vicinity of defense genes, domains identified within% 10 genes away of the small protein

were queried against the list of COGs and Pfams downloaded from Table S1 in Doron et al. (2018) as well as against the words

‘CRISPR’, cas1 and cas2. To identify HGT-related contigs, the words ‘recombinase’, ‘integrase’, ‘transposon’ and ‘transposase’

were queried. Since for every family of homologs, only part of the underlying contigs are long enough to be considered ‘informative’

(i.e., encode at least 10 genes downstream and upstream of the small gene), for each family, the number of ‘long enough’ contigs

were counted (presented in Table S3 under the column ‘Number of contigs in which there are at least 10 genes from each side of

the small gene’). To identify contigs that are presumably prophage, the words ‘phage’, ‘terminase’, ‘tail’, ‘caspid’ and ‘portal’

were queried against the CDD ‘short’ domain description. Only families in which the word ‘phage’ as well as one other others in

the list were identified, were recorded as ‘phage’. Table S3 lists all domains found on longest contigs of each family.

Identification of homologs of family 350024
Protein sequence of representative of family 350024 was blasted against all 1,295 amino acid sequences of representatives of pre-

dicted transmembrane families, using a p-value threshold of 0.05. For each of the homologous families, all contigs associated with

the family were annotated using MetaProdigal and proteins on all contigs were subject to RPS-blast against CDD database.
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Identification of species that encode for the small protein adjacent to known toxin (family 588)
All contigs associated with family 588 were annotated with MetaProdigal and proteins were queried against CDD to assign domains.

Contigs in which the small gene is encoded immediately upstream/downstream of PIN domain/COG3744/COG1848 were classified

using the One Codex database, as described above. Number of species in which the small gene and the PIN domain were identified

one next to the other, was recorded.

Mapping of small proteins to body parts
For each member in each of the�4k families, we recorded the human subject and body site from which it originated. A member of a

small protein family that was detected more than once in a specific body site of a specific human subject was counted only once

(even when identified in multiple different sampling visits). For every family, the total number of appearances in each type of body

site was then calculated. The total number of body samples from a specific body site counts multiple samples from the same sub-

ject’s body site, as one.

Search against non-human metagenomes
DNA sequences of each of the cluster representatives was blasted against a set of 5,829 non-humanmetagenomes using blastn with

e-value 1e-05, 50% identity and alignment length coverage of 90%. MetaProdigal, adjusted to small gene finding (see above) was

applied on the contigs that were hit in the previous step. The proteins that were identified by prodigal were then used as a DB against

which protein sequences of all representatives was blasted against. Hits were considered significant if: e-value% 0.05, the alignment

spans R 90% of the query protein and the length of the hit is 90%–110% of the length of the small protein.

Cellular Localization
SignalP-5.0 (Almagro Armenteros et al., 2019) was run with default parameters once with ‘gram +’ and once with ‘gram -‘ mode on all

small proteins encoded by�4k families. TMHMM (Krogh et al., 2001) was run on the same set of proteins with default parameters. For

every family, and for every attribute (transmembrane/signal ‘gram +’/signal ‘gram -‘) the number of transmembrane helices was

counted, and whether the protein is predicted to be secreted. The percentage of family members that were predicted to be trans-

membrane/secreted was calculated and a family was considered transmembrane/secreted if R 80% of the family members were

predicted to be such. Phobius (Käll et al., 2004) was also applied (default parameters) on all small proteins encoded by �4k families.

To assess the fraction of transmembrane and secreted protein in ‘regular sized’ proteins, Prodigal was applied (default parameters)

on all 1,773 metagenomes. Partial proteins were excluded and complete proteins were analyzed with SignalP-5.0 with ‘gram +’ and

‘gram –‘ mode and TMHMM with default parameters.

Secondary Structure Prediction
PSIPRED (McGuffin et al., 2000), was applied on each of the 4,539 representatives. For a given protein sequence, PSIPRED first cre-

ates a position-specific scoringmatrix by identifying homologs of the protein within a given DB. Since typical databases are depleted

of small proteins, a DB was created that contains all 467,538 small proteins of 4,539 families. A small protein was categorized as

‘helix’/’coiled’/’beta’ ifR 50% of its residues are classified accordingly and as ‘mixed’ if at least 40% of the residues were classified

to one category and at least 40% of the residues were classified to another category.

Antimicrobial Peptide prediction
AmPEP (Bhadra et al., 2018) was applied (default parameters) on 4,539 representatives of families.

GUIDELINES FOR EXTRACTION OF ALL CONTIGS ASSOCIATED WITH A SPECIFIC FAMILY OF INTEREST

For the sake of this explanation, family 314163 was chosen. There are 8 homologs in this family. The following four steps can be used

to extract all HMPI-II contigs that encode genes from this specific family.

1. Retrieve all amino acid sequences that follow the header ‘‘Family: 314163’’ from the Supplementary file that contains all family

sequences (Data S1. In this query, all 8 homologs would appear; for simplicity, only the first homolog entry is listed below.

Family: 314163

> 314163*_*32207*_*Rothia*_*97%*_*GGA/GAG/AGG_rbs_spacer = 5-10bp_Tongue_dorsum_SRS064774_764062976_Female_

2_prediction_22054_3

MXTHKRLIDVVDPTPKAVDALMRLDLPADVNIEIKL

2. For each sequence, retrieve the field that indicates the sample number and contig number (both in bold in the sequences

below) according to the following convention:
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> familyID*_*Taxon ID of underlying contig*_*Name of Taxon*_*rbs_motif_rbs_spacer*_*percentage of 31-mers that were classi-

fied*_*Body site from which contig originated _SampleID_PatientID_Female/Male_Visit nummer_’’prediction’’_contig

number_locationOfSmallGeneOnContig

3. Download the relevant sample, according to the Sample ID, from https://www.hmpdacc.org/hmasm2/.

4. Retrieve the contig of interest from the sample file, according to the contig number, which was given by HMPI-II.

In this example, for the first homolog of family 314163, download the sample SRS06477 and retrieve contig number 22054. This

contig encodes the small gene. The small gene is the third gene (‘locationOfSmallGeneOnContig’), if genes are called on this contig

with MetaProdigal with parameters modified to include all ORFs as short as 15bp.

QUANTIFICATION AND STATISTICAL ANALYSIS

Assigning p values to small protein families
RNAcode was shown to perform substantially better when the number of input sequences is R 8 (Washietl et al., 2011). Here it

was applied on all 11,715 clusters that are composed ofR 8 different DNA sequences. Only the 4,539 that were assigned a p-value

of % 0.05 were analyzed in subsequent steps of analysis.

DATA AND CODE AVAILABILITY

The raw sequencing reads generated in this study are available at BioProject: PRJNA540869. The published article includes all data-

sets generated during this study.
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Figure S1. Basic Statistics of Samples and 4,539 Small Protein Families, Related to Figure 1

A. Protein length distribution of 4,539 families. Proteins of > 50 aa or < 5 aawere filtered out. The smallest protein in our dataset is encoded by family 442207 and is

16aa long. B. Distribution of number of encoding taxa per family. If multiple homologs are mapped to the same taxon, they were counted only once. C. Proportion

of samples belonging to different body sites. 128,368,337 contigs were obtained from 1,773 HMPI-II human-associated metagenomes that were shotgun

sequenced, spanning 4 different major body sites from 263 healthy individuals. Samples were obtained from individuals in one, two or three subsequent visits.

Body sites were collapsed into four groups: anterior nares, buccal mucosa, hard palate, keratinized gingiva, palatine tonsils, saliva, subgingival plaque, su-

pragingival plaque, throat and tongue dorsum to ‘mouth’; mid vagina, posterior fornix and vaginal introitus to ‘vagina’; left retroauricular crease, right retro-

auricular crease and right antecubital fossa to ‘skin’; stool samples were renamed ‘gut’ here. D. Transmembrane/secreted proteins among the 4,539 families

as predicted by TMHMM (Krogh et al., 2001) and signalP (Almagro Armenteros et al., 2019), respectively. A family is predicted to be transmembrane/secreted

ifR 80% of the homologs of the family are predicted to be such. In addition to families that passed this threshold, in 180 families, at least one family member, but

less than 80% of the family members are predicted to be transmembrane and in 414 families, at least one family member, but less than 80% of family members

are predicted to be secreted. An alternative algorithm, Phobius (Käll et al., 2004) was also applied on the 4,539 families. Phobius predicted 1002 families (22%) to

be transmembrane. Of these, 965 were also predicted by TMHMM to be transmembrane, providing support to 965/1,295 (75%) of TMHMM predictions. An

additional 211 families (60%of the total 348 families that were predicted to be secreted by SignalP) were also predicted to be secreted by Phobius. Finally, a set of

111 families were predicted to be secreted by Phobius but transmembrane by TMHMM. This could reflect the fact that both secreted and transmembrane

proteins contain a hydrophobic region.
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Figure S2. Ribosomal Binding Site Presence and Conservation, Related to Figure 1

A. Distribution of the fraction of family members in which an RBSmotif was identified. In most families, at least 80% of family members have an RBS. The 40,957

(9%) of all proteins that lack an RBS fromwere not excluded from further analysis since it has been shown that a non-negligible fraction of bacterial genes lack an

RBS (Hockenberry et al., 2017; Omotajo et al., 2015) and that some genes lacking an RBS are still well expressed (Skorski et al., 2006). B. Conservation of RBS

motif in families. For each family, the most abundant RBS motif was identified and the number of family members in which the motif was identified out of the total

number ofmembers is the ‘conservation score’. In 80% (3,634/4,539) of the families, at least half of the family homologs share the sameRBSmotif and in 8% (379/

4,539) of the families, exactly the same RBS motif is found upstream of all homologs (Table S3) C. Diversity of RBS motifs in families with two different phylo-

genetic distribution patterns. Family 127388 codes for a 50S ribosomal protein, identified in 10 different phyla and presents a variety of associated RBSmotifs. In

comparison, family 85442 is Firmicutes-specific and presents substantially less variability in RBS motifs. Only motifs that were identified at least 5 times are

presented.
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Figure S3. Transcription Profile of Selected Genes from Families thatWere Identified inR100 Species (Putative ‘‘Housekeeping’’), Related to

Figure 3

(A-F) Small gene indicated with red star.
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Figure S4. Core Families, Related to Figure 3

A. ‘‘Core’’ families across body sites. Venn-diagram representing the distribution of the 458 ‘core’ (identified in R 50% from total samples of specific body site)

small protein families across different body sites.Whereasmouth and gut share 9 small protein families that are found inR 50%of the samples in both body sites,

other pairs (e.g., skin and gut) do not share core small genes or share a very small number. In line with the fact that 68% of the samples analyzed here are mouth

samples, followed by 26% samples that are gut samples, mouth samples ‘contribute’ the largest amount of ‘core’ families, followed by gut, skin and vagina

(Figure S1). In most cases, ‘coreness’ of a family is associated with a specific body site but families that are not ‘core’ to a specific body site are not necessarily

completely absent from it (Table S3). Only nine families are ‘core’ to both gut and mouth, most of which (8/9) are part of the list of potential housekeeping families

identified based on their wide phyletic occurrence (i.e., inR 100 species). The one family that is core in mouth and in gut but has a relatively narrow phylogenetic

distribution (identified here in 33 species) is family 125536. This family potentially codes for a 46-amino acid protein predicted to be transmembrane; it is

recurrently found downstream of a cluster of genes that includes two transporters and a two-component system (Table S3 and locus tag for example

HMPREF1215_00953), suggesting that it could be involved in environmental sensing. This family is potentially subject to horizontal transfer since the small gene is

found in the vicinity of genes that are known to participate in mobilization of DNA and the family displays a sporadic distribution across multiple Firmicutes

classes. B. Multiple sequence alignment between 3 families that are core to skin and a beta-class phenol-soluble modulin protein. Psm - phenol-soluble modulin.

Three of the families that are core to skin and were classified to multiple Staphylococcus species were assigned a beta class phenol-soluble modulin domain, a

family of toxins that have multiple roles in staphylococcal pathogenesis (Cheung et al., 2014). Among HMPI-II samples, homologs of this protein family could be

detected almost exclusively in skin samples. However, multiple homologs could be detected in environmental microbiomes. In general, families that are core to

skin tend to have homologs in environmental samples (11/20 = 55%) more than mouth (56/282 = 20%) or gut (61/158 = 38%) samples (Table S3).
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Figure S5. Family 350024 Is Predicted to Undergo Rapid Evolution, Related to Figure 4

A. Phylogenetic tree of family 350024 suggests that the family undergoes rapid evolution. Proteins of family 350024 are encoded on contigs that were classified

into 19 different Bacteroides strains. The protein sequences of 3 housekeeping proteins (rpoB, pyrG and nusA) from the same Bacteroides strains were retrieved

from RefSeq whenever available. For each of the 4 sets of proteins, sequences were aligned using T-coffee with default settings and a tree was inferred using

maximum likelihood implemented in the PhyML algorithm. Scale bars indicate number of changes per site. The values at the nodes represent bootstrap values

from 100 replicates. Phylogenetic analysis was done using the web service Phylogeny.fr. B. Multiple sequence alignment between family 350024, family 291377

and a homolog of family #291377 in Bacteroides thetaiotaomicron VPI-5482. Families 350024 and 291377 are distant homologs. A close homolog of 291377 was

identified in the B. theta proteomics analysis. The B. theta homolog is encoded in the intergenic region between BT4031 and BT4032.
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Figure S6. Small Proteins Associated with Mobile Elements, Related to Figure 6

A. Scatterplots of 202 small protein families that are found in the vicinity of HGT-mediating genes. Each dot represents the number of species versus number of

families/genera that encode for each family. Examples of potential transfer within genus: family 57229 was identified in 19 different Prevotella species; potential

transfer within taxonomic family level: family 306379 was identified in 3 different Flavobacteriaceae genera. B. Numbers of small proteins families that were

detected in multiple life domains. Disregarding the unclassified homologs, the vast majority of protein families in the 4,539 set are classified as bacteria (4,189/

4,539, 92%) (Table S3). There are 8 families that are classified to Eukaryotes and 152 families that are classified to multiple life domains. For example, family

241192 was classified to two life domains (bacteria, eukaryote) as well as to virus. In the contig that was classified to Eukaryotes, �50% of the k-mers were

classified as Candida albicans, an opportunistic pathogenic fungus, common in the human microbiome (Sam et al., 2017). C. Small proteins predicted to be of

phage origin. All small-protein encoding contigs were classified against a database that included a set of 19,879 viral genomes. We were able to identify 182

families in which at least one contig was classified as ‘viral’ (green). By far the most common phylogenetic distribution that includes a viral component, observed

in 161 (161/182, 88%) of the viral small protein families, is of bacteria-virus (Table S3). Contigs that harbor prophages, bacteriophages integrated into the host’s

genome, could theoretically be classified as either ‘bacterial’ or viral, depending on whether the viral reference genome database contains their sequence and on

the relative part of sequence that is of viral origin on the contig. To predict prophage regions that were classified as bacterial, we used a common, complementary

approach that is based on detection of known viral genes, such as the terminase, capsid, tail and portal proteins (Roux et al., 2015). We screened for a list of

‘phage genes’ encoded on longest contigs of families. Of the 4,539, we detected 223 families in which none of the homologs-encoding contigs was classified as

‘viral’ (in blue) but nevertheless the longest contig encodes for at least one phage gene. Related to Figure 6.
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Origin of Contig Taxonomy Individual Transmembrane?

Sample 1 Unclassified 1 Y

Sample 2 Unclassified 1 Y

Sample 3 Unclassified 2 Y

Sample 4 Unclassified 2 Y

Sample 5 Actinomyces naeslundii 3 Y

Sample 6 Pepy6virus 4 Y

Sample 7 Unclassified 5 Y

Sample 8 Unclassified 6 Y

Sample 9 Unclassified 7 Y

Sample 10 Unclassified 8 Y

Sample 11 Unclassified 9 Y

Sample 12 Unclassified 10 Y

Sample 13 Unclassified 11 Y

Sample 14 Unclassified 11 Y

Figure S7. Explanation of Numbers Associatedwith Each Family as They Appear in Supplementary Tables through Family 221403, Related to

Figure 1

Small proteins of this family were identified 14 times across samples (hence, number ofmembers in cluster = 14) originating from 14metagenomicmouth samples

that were sampled from 11 individuals: in 2 individuals the small gene was identified in two subsequent visits (red box) and in 1 individual the small gene was

identified in two samples of two different mouth sublocations (Supragingival_plaque and Subgingival_plaque), that were taken from the same individual at the

same visit (blue box). To avoid redundancy, we counted each individual only once, hence ‘Number of times found in Mouth’ = 11. Classification of each of the 14

contigs resulted in 2 known OTUs; as all ‘Unclassified’ were counted as a single OTU the total ‘Number of OTUs’ = 3. All small proteins in this family have a

predicted transmembrane domain, hence ‘% of family members that are predicted to have a transmembrane domain’ = 1.
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