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Abstract 

Two category-learning experiments were conducted to 
examine the role of category structure and learning regime in 
category learning. We particularly focused on effects of these 
factors on selective attention, which was measured by eye-
tracking methods. Results show that even though supervision 
was weaker than in previous studies, attention optimization 
and cost of attention were observed during category learning 
(Experiment 1). Moreover, there were faster learning and 
stronger attention optimization when statistically denser 
categories were learned (Experiment 2). At the same time, 
there were weaker costs of selective attention when learning 
denser categories than when learning sparser categories.  
Results are discussed in relation to theories of category 
learning. 

Keywords: category learning, cost of selective attention, 
category structure, eye tracking 

Introduction 

Selective attention is one of the key components in category 

learning (Kruschke, 1992; Nosofsky, 1986; Shepard, 

Hovland, & Jenkins, 1961). The ability to selectively attend 

to category-relevant dimensions aids the learner to ignore 

category-irrelevant information and makes learning more 

efficient. For example, when learning how to distinguish 

Siberian Huskies from Alaskan Malamutes, which look very 

similar, the color of the eyes is one of the relevant features 

one should look for (most Huskies have blue eyes and 

Malamutes have brown eyes). Therefore, learning to focus 

on the color of the eyes while ignoring other irrelevant 

features (e.g. color of the fur or markings) would aid 

learning the two categories. Selective attention could be 

captured in category learning tasks that involve eye-tracking 

as attention optimization, where looking to category-

relevant information increases and looking to irrelevant 

information decreases (Hoffman & Rehder, 2010).  

     However, optimizing one’s attention to the current 

category-relevant dimension may result in learning to ignore 

the category-irrelevant dimension, which results in learned 

inattention to the irrelevant dimension (Kruschke & Blair, 

2000). Therefore, if a new to-be-learned category has a 

category-relevant dimension that was previously irrelevant, 

learning may become more difficult, which represents a cost 

of selective attention. For example, when learning to 

distinguish meerkats from prairie dogs, which again look 

very similar, the shape of the ears is one of the good 

dimensions to look. However, if one has previously learned 

how to distinguish Huskies from Malamutes, where eyes 

were attended and ears were ignored, learning to attend to 

the once-ignored ears would be hindered.  

     The close link between attention optimization and the 

cost of selective attention has been demonstrated in previous 

research (e.g., Hoffman & Rehder, 2010). In their study, 

participants were given either a supervised classification 

task (e.g. classifying a stimulus into category A or B) or a 

supervised inference task (e.g. inferring the missing feature 

of a stimulus that belongs to a certain category) and their 

eye movements were recorded.  Since the classification task 

(e.g. focusing on the color of the eyes to classify Huskies 

and Malamutes) required attention optimization to the 

relevant dimension, results showed cost of selective 

attention when learning a new category. On the other hand, 

since the inference task (e.g. figuring out whether a 

Malamute has blue eyes or brown eyes) does not require 

attention optimization, the cost did not occur when learning 

the next category. Therefore, the study showed that (a) the 

characteristics of the task affect allocation of attention and 

(b) when attention optimization occurred, the cost of 

selective attention also followed.  

     Although attention may be affected by the characteristics 

of the task (i.e., classification vs. inference) it can also be 

affected by category structure. Categories that have multiple 

correlated dimensions (or statistically dense categories) may 

be learned without selective attention, whereas categories 

that have few relevant dimensions (or statistically sparse 

categories) may require selective attention (Kloos & 

Sloutsky, 2008; Sloutsky, 2010). For example, when 

learning the category dog, many dimensions are relevant 

(e.g. nose, fur, four-legs, etc.) and therefore it is relatively 

easy to learn. However, when learning abstract concepts 

such as friction, very few dimensions are relevant among 

many irrelevant dimensions (e.g. a car trying to stop at the 

red light and a person trying to open a jar both shows 

friction). Therefore, to learn a sparse category one has to 

“selectively attend” to the relevant dimension among many 

other irrelevant dimensions. 

     Finally, the deployment of selective attention may be 

also affected by learning regime. Since supervised learning 

provides information about the relevant dimension, it is 

more likely to recruit selective attention than unsupervised 
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learning (Kloos & Sloutsky, 2008). Kloos & Sloutsky 

(2008) showed that sparse categories could largely benefit 

from supervision, while it could sometimes hinder dense 

categories. Since selective attention filters irrelevant 

information and allocate attention to the relevant on 

information (Kruschke, 2001; Mackintosh, 1975), trying to 

attend to multiple correlated information (i.e. dense 

categories) could be harder than attending to a few. 
     In the current study, we examined the effects of category 

structure on selective attention in the course of category 

learning. In all experiments, a supervised category learning 

task was used while the participants’ eye movements were 

recorded. Moreover, cost of attention and attention 

optimization were observed to infer the attentional 

mechanism in category learning. 

 

 

 
 

Figure 1. Description of the stimuli structure and 

experimental design. (a) stimuli used in Experiment 1 – 

sparse category, (b) experimental design of Experiment1, 

and (c) stimuli used in Experiment 2 – dense category (note 

that ‘R’ represents the location of the relevant dimension in 

each exemplar which was not visible to the participants) 

 

 

Experiment 1 

Experiment 1 examined the cost of attention when an extra-

dimensional shift occurred between two sparse categories 

with supervision. As shown in previous studies, extra-

dimensional shift maximizes cost of attention, therefore 

making it easy to observe the attentional dynamics during 

category learning (Hall, 1991; Hoffman & Rehder, 2010).  

Methods 

Participants Thirty-three adults with normal or corrected to 

normal vision participated in the experiment for course 

credit. An additional 8 participants were excluded from the 

analysis due to not exceeding the learning criterion (see 

Procedure).  
Stimuli Flower-like artificial categories were used in the 

experiment (see Figure 1a). Each exemplar had a gray 

hexagon in the middle with six colored shapes on every side. 

Among the six colored shapes, five changed their 

color/shape in a binary fashion, whereas one was constant, 

serving as a category relevant dimension. Therefore, there 

were 32 unique stimuli for each category with two 

categories having the relevant feature on the right-bottom 

side of the hexagon (i.e., category A: purple triangle, 

category B: blue semi-circle) and two categories having the 

relevant feature on the left side of the hexagon (i.e., 

category C: yellow pentagon, category D: orange square). 

Therefore, the relationship between A or B and C or D was 

an extra-dimensional shift.  
Procedure The experiment had 2 phases and in each phase 

there were 4 blocks. Within each block there were 8 

learning trails followed by 4 test trials. After the first 4 

blocks (Phase 1), unknown to the participants, the category 

had an extra-dimensional shift (see Figure 1b). Therefore if 

the first half of the blocks were presented with category A, 

the second half of the blocks were presented with category 

C in the learning trials. In the learning trials, exemplars 

were presented for 1.5 seconds, one at a time in the middle 

of the screen. At the beginning of each block, participants 

were told that they would see flowers that have one 

common feature they had to find, which served as a 

supervision signal. 

     In the test trials two category exemplars were presented 

side by side until the participant made a response. One 

exemplar was a novel exemplar from the category that was 

used in the learning trials. The other exemplar was a new 

category where the relevant feature was in the same 

dimension as the learned category but had a different feature 

(e.g. Cat A and Cat B in Figure 1a). Participants were told 

to choose the exemplar that they thought was a member of 

the category they saw in the learning trials by pressing a left 

or right response button. When the response was made, the 

stimuli disappear without any feedback. Also before each 

learning and test trial, a fixation point (i.e. red cross) was 

presented on a random-dot background, and the participants 

were told to look at the fixation to proceed with the 

experiment. Moreover, a Tobii T60 eye tracker was used to 
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collect eye gaze with the sampling rate of 60Hz during the 

whole experiment. 

Results 

Before analyzing the data, participants who did not learn the 

first category were excluded. To be considered as a learner 

one had to have 3 correct responses out of 4 test trials in the 

last block of Phase 1 (i.e. block 4). To determine whether a 

cost was incurred, accuracy, reaction time, and eye gaze 

data were analyzed by block. Especially by comparing the 

blocks before and after the unknown category switch (i.e. 

block 4 vs. block 5). 

The overall accuracy for the test blocks was .90, SD = .21 

(Phase 1: M = .92, SD = .18, Phase 2: M = .87, SD = .23), 

with all test trials being significantly higher than chance 

performance, p < .001 (see Figure 2a). Results of a 2 × 4 

(Phase × Block) within-subjects ANOVA conducted on 

accuracy scores at test showed a main effect for Block, 

F(2.3, 73.61) = 8.14, p < .001, indicating that accuracy 

differed by block, but there was no significant main effect 

for Phase or a interactions (ps > .05). Moreover, a 

significant cost of attention was demonstrated between the 

last block of learning phase 1 (block 4) and the first block of 

learning phase 2 (block 5) by a significant decrease in 

accuracy from block 4 to block 5, t(32) = 5.07, p < .001. 

Before analyzing the reaction time (RT), all incorrect 

responses were excluded, and for each individual the 

median RT for each block were used in the analysis. The 

mean reaction time for all test blocks was 1160 ms, SD = 

892 ms (Phase 1: M = 1199 ms, SD = 922 ms, Phase 2: M = 

1121 ms, SD = 863 ms) (see Figure 2b). A 2 × 4 (Phase × 

Block) within-subjects ANOVA conducted on RT showed a 

main effect for Block, F(1.77, 54.91) = 9.58, p < .001, but 

there was no significant main effect for Phase or a 

interaction (ps > .05). Statistical difference between block 4 

and block 5 were also found, t(32) = 2.78, p < .005, 

demonstrating a cost of attention. 

     Eye gaze data were also analyzed for each block by 

calculating the weighted proportion of looking to the 

relevant spatial dimension. This value was calculated by 

taking looking time (fixation) to the relevant features 

divided by looking time (fixation) to the irrelevant and 

relevant features combined. However, since there was 

greater spatial area for irrelevant features (5 shapes) than the 

relevant features (1 shape), looking time to the relevant 

features was multiplied by five to equate the spatial area. 

Therefore, .50 in the analysis represents an equal amount of 

looking to the relevant and irrelevant features at a given 

block. Fixations were calculated by using an I-DT algorithm 

with a minimum duration threshold of 100 ms and a 

dispersion threshold of 1° of visual angle (Salvucci & 

Goldberg, 2000).  

The overall weighted proportion of looking to the relevant 

dimension was for all test blocks was .63, SD = .30 (Phase 

1: M = .63, SD = .30, Phase 2: M = .64, SD = .31). All 

blocks except the first blocks in each phase (i.e. block1 and 

block 5) showed a significantly higher proportion of looking 

to the relevant spatial dimension (paired t-test, ps < .05). A 

2 × 4 (Phase × Block) within-subjects ANOVA only 

showed a main effect for Block, F(2.68, 80.37) = 5.59, p 

< .001. Moreover, a marginal drop was demonstrated after 

block 4, which indicated a cost of attention, t(30) = 1.83, p 

= .07  (see Figure 2c). 

In sum, both behavioral and eye gaze patterns indicated a 

cost of attention for participants who learned the first 

category. Both phases showed an evidence of attention 

optimization (i.e. increased accuracy, decreased RT, and 

increased looking time to the relevant dimension). The 

indication of attention optimization followed by a cost of 

attention was evident even though supervision was not 

provided as strong as in previous studies. (Note that explicit 

feedback was given after every trial in Hoffman & Rehder 

(2010)). 

 
 

Figure 2. Results from Experiment 1. (a) accuracy at Test, 

(b) reaction time at Test, and (c) looking time during 

Learning. The proportion of looking to the relevant 

dimension are weighted values in that the dotted line at .5 

indicate chance level of equally looking to the relevant and 

irrelevant dimensions. Note that all error bars represent +/- 

one standard error.  

Experiment 2 

Experiment 2 examined the cost of attention when an extra-

dimensional shift occurred between two dense categories 

with supervision.  
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Methods 

Participants Forty-two adults with normal or corrected to 

normal vision participated in the experiment. In addition, 

one participant was excluded from the analysis due to not 

exceeding the learning criterion. 

Stimuli & Procedure The stimuli and procedure were 

identical to Experiment 1 except that dense categories were 

used. In contrast to sparse categories, dense categories had 

two category-relevant spatial dimensions instead of one (see 

Figure 1c). For category A and B, in addition to the bottom-

right relevant dimension, the upper-left location had a 

constant shape/color as the bottom-right location had. For 

category C and D, in addition to the left location, the upper-

right location had a constant shape/color identical as the left 

location. 

Results 

The overall accuracy for the test blocks was .98, SD = .11 

(Phase 1: M = .97, SD = .12, Phase 2: M = .98, SD = .11), 

with all test trials being significantly higher than chance 

performance, p < .001 (see Figure 3a). A 2 × 4 (Phase × 

Block) within-subjects ANOVA did not show any main 

effect or interactions (ps > .05). Moreover, there was no 

significant difference between block 4 and block 5, 

indicating the absence of cost. 

     The mean reaction time for all test blocks was 838 ms, 

SD = 528 ms (Phase 1: M = 860 ms, SD = 385 ms, Phase 2: 

M = 838 ms, SD = 528 ms) (see Figure 3b). A 2 × 4 (Phase 

× Block) within-subjects ANOVA with RT only showed a 

main effect for Block, F(2.26, 90.36) = 6.86, p < .001. Also, 

the difference between block 4 and block 5 was not 

significant (p > .05). 

     In a dense category, there were two relevant dimensions 

and four irrelevant dimensions. Therefore, the weighted 

proportion of looking to the relevant dimension was 

calculated by multiplying two to the numerator instead of 

five as in Experiment 1. The overall weighted proportion for 

all learning blocks was .65, SD = .23 (Phase 1: M = .63, SD 

= .23, Phase 2: M = .65, SD = .23). All blocks showed a 

significantly higher proportion of looking to the relevant 

spatial dimension, paired t-test, ps < .005 (see Figure 3c). A 

2 × 4 (Phase × Block) within-subjects ANOVA did not 

show any main effects or interactions, ps > .05. Also, a 

significant drop was not found between block 4 and 5, p 

> .05. 

     The results show no evidence of cost for the looking time 

data. Also there was no evidence of attention optimization 

(i.e. increased looking to the relevant dimension). However 

the accuracy is very high compared to the sparse condition, 

indicating that learning the dense category was easier than 

learning sparse category. Therefore it is possible that 

attention optimization occurred quickly, and the cost of 

attention was weak early in the block. 

     

 

 
 

Figure 3. Results from Experiment 2. (a) accuracy at Test, 

(b) reaction time at Test, and (c) looking time during 

Learning. The proportion of looking to the relevant 

dimension are weighted values in that the dotted line at .5 

indicate chance level of equally looking to the relevant and 

irrelevant dimensions. Note that all error bars represent +/- 

one standard error.  

 

     To capture the early attention optimization in block 1 a 

moving window of 3 trials were used to calculate the 

proportion of looking to the relevant dimension, instead of 

using the whole block. Then a one-sample t-test was 

conducted against the chance level of .5. Results show that 

attention optimization occurred around the window 3, which 

would be around the 4
th

 trial and lasted throughout the block 

(see Figure 4a). The same method could be applied to Block 

5 where the second category was introduced. Results show 

that attention optimization occurred around the window 3, 

which would be around the 4
th

 trial (see Figure 4b). 

   On the other hand, the cost of attention could be captured 

by comparing the last trial of block 4 and the first trial of 

block 5 instead of comparing the whole block. Results 

showed marginally significant drop from the last trial of 

block 4 (M = .59, SD = .44) to the first trial of block 5 (M 

= .43, SD = .36), p = .068, indicating a cost of attention. 

     In sum, dense categories were learned quicker than the 

sparse categories (faster attention optimization), and the cost 

of selective attention was weaker. 
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Figure 4. Attention optimization of block 1, block 5 in 

Experiment 2. Note that the asterisks represent p < .05, and 

all error bars represent +/- one standard error. 

 

     Then what would have made dense categories have lesser 

cost and stronger attention optimization? One possibility is 

that since dense categories have multiple category-relevant 

dimensions, attention allocation is much more distributed 

than sparse categories. Therefore, with limited amount of 

attention there will be smaller attention allocated to a 

dimension in the dense categories than in the sparse 

categories (Sutherland & Mackintosh, 1971), which would 

lead to an easier/faster attention shift to a newly relevant 

dimension. On the other hand, it could also be possible 

because dense categories have more category-relevant 

dimensions, and thus there is a higher probability of spotting 

a relevant dimension. In this case, one could perfectly learn 

the dense categories with attending only one dimension 

instead of both. 
 

 
Figure 5. The distribution of looking time between the 

two category-relevant dimensions in Experiment 2. Values 

closer to 0 indicate looking equally to the two relevant 

dimensions, whereas values closer to 1 indicate looking to 

only one dimension in a trial. 
 

     To investigate the latter possibility, the distribution of 

looking time between the two relevant dimensions was 

calculated. For each trial, the proportion of looking to one of 

the dimensions was calculated, where .5 represents equal 

looking to both dimensions. Then the absolute difference 

from .5 was taken. Therefore, the value close to .5 

represents looking to only one dimension, and 0 represents 

looking to both dimension. Figure 5 shows the calculated 

values across subjects by block. Results indicate that 

subjects relied on a single dimension in most of the trials 

when learning the dense categories. 

General Discussion 

The current study manipulated category density in the 

course of supervised category learning. Results show that 

even though supervision was weaker than in previous 

studies using sparse categories, attention optimization and 

cost of attention were observed during category learning 

(Experiment 1). Moreover, the dense categories were 

learned faster than sparse categories, and even with a 

stronger attention optimization, dense categories 

(Experiment 2) had a weaker cost of attention. 

     In Experiment 1, sparse categories were learned with 

weaker supervision than in previous studies using similar 

sparse categories. Note that when the sparse categories used 

in the current experiment were presented without 

supervision, participants failed to learn them (Yim, Best, & 

Sloutsky, 2011). Supervision in the current experiment 

consisted of a hint that there is one dimension that is 

consistently relevant. However, the majority of participants 

learned the category. Also compared to previous studies 

where feedback was given on every trial (Hoffman & 

Rehder, 2010; Rehder & Hoffman, 2005), supervision here 

was only given at the start of each block. However, attention 

optimization and cost of attention were observed. 

     First, attention optimization should be closely related to 

the specific supervision signal. Category learning has 

mainly assumed that error signals from feedback mediates 

selective attention (Blair, Watson, & Meier, 2009; Kruschke, 

2001). However, the current task does not provide any 

feedback. A possible explanation would be that the 

supervision helps reduce the hypothesis space for the 

participants. Although knowing that there will be only one 

relevant dimension does not provide direct error signal, it 

drastically reduces the hypothesis space of possible 

category-relevant information. Although the effects of 

supervised and unsupervised learning on category formation 

has been discussed (Gureckis & Love, 2003; Love, 2002), 

the effects of various kinds of supervision has not been 

investigated systematically, which should be examined in 

future research.  

     Second, although it is known that attention optimization 

is a precursor of cost of attention, it is possible that the 

greater cost in the current study originates from the 

difference of density between the current and previous 

research. The stimuli in Hoffman & Rehder (2010) had 2 

out of 3 irrelevant dimensions whereas the current study has 

5 out of 6 irrelevant dimensions. The sparser the category is 

the harder it would be to learn the relevant dimension. 

However, once selective attention is engaged, the cost 

would be greater for sparser categories. This is because 

there are more irrelevant dimensions in a sparser category, 

which means that there will be more unattended dimensions 

3845



during learning (i.e. learned inattention). Therefore, when an 

extra-dimensional shift occurs, the probability of figuring 

out a newly relevant dimension among the previously 

irrelevant dimensions will be lower than in a less sparse 

category. Although it is not possible to directly examine this 

hypothesis from the current study, the relationship between 

category density and cost of attention could be examined 

with controlling the amount of attention optimization 

through manipulating the number of irrelevant dimensions.  

     In Experiment 2, most of the participants optimized to 

one dimension instead of distributing their attention to all 

relevant dimensions (see Figure 5). Although the categories 

used in the current study are deterministic and do not 

require an information integration process (Ashby, Alfonso-

Reese, Turken, & Waldron, 1998), there is evidence that 

adults distribute their attention to all relevant dimensions 

when learning dense categories that had a similar category 

structure as the current one (Kloos & Sloutsky, 2008). One 

main difference between the previous study and the current 

study is the presentation time during learning. In Kloos & 

Sloutsky (2008), participants observed the category 

exemplars in a self-paced maner, whereas the current study 

presented the exemplars for 1.5sec. Since the category could 

be learned by using both distributed and non-distrubuted 

attention, it is highly possible that the fast presentation time 

leaded the participants to  attend to only one dimesion.  

     Finally, the results may have implications for 

understanding the development of category learning. Since 

it is known that children gradually gain the ability to 

selectively attend (Hanania & Smith, 2010), it would be 

hard for them to learn sparse categories, which requires the 

ability to selectively attend to a small number of category-

relevant dimensions. Therefore, the role of supervision 

would be crucial for learning spare categories early in 

development. If the interaction among the category structure, 

learning regime, and category learning is well established, it 

would help to understand the developmental trajectory of 

category learning.  
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