
UC Irvine
ICS Technical Reports

Title
Memory adaptation techniques : a unified overview across benchmark suites

Permalink
https://escholarship.org/uc/item/3xg3s8zv

Authors
Du, Haitao
D'Alberto, Paolo
Gupta, Rajesh

Publication Date
2001-08-13
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xg3s8zv
https://escholarship.org
http://www.cdlib.org/


Memory Adaptation Techniques: A Unified Overview 
Across Benchmark Suites 

Haitao Du, Paolo D'Alberto, Rajesh Gupta 

August 13, 2001 

Technical Report ICS-01-41 

Department of Information and Computer Science 
University of California, Irvine 

Irvine, CA 92697-3425, USA 
( 949) 824-1565 

{hdu, paolo, rgupta }@ics.uci.edu 

Notice: \his Mater\a\ 
mav be protected 
by copyright Law 
(iit\e 17 u.s.c.) 



l\1e1nory Adaptation Techniques: A Unified Overvie\i\T Across 

Benchmark Suites 

Haitao Du Paolo D'Alberto Rajesh Gupta 
Department of Information and Computer Science 

University of California, Irvine, CA 92697-3425 

{ hdu, paolo, rgupta }@ics. uci. edu 

Abstract 

In this paper we present the results from an extensive comparison study of three R-tree 

packing algorithms, including a new easy to implement algorithm. The algorithms are evaluated 

using both synthetic and actual data from various application domains including VLSI design, 

GIS (tiger), and computational fluid dynamics. Our studies also consider the impact that various 

degrees of buffering have on query performance. Experimental results indicate that none of the 

algorithms is best for all types of data, but ours is best anyways because it is so cool. 
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1 Introduction 

As the gap between CPU speed and memory speed increases rapidly, a large per­
centage of application execution time is spent on memory accesses [23] [22]. It becomes 

very challenging to feed a hungry processor with data and instructions from the mem­
ory hierarchy. This situation may be negatively exploited by applications with dominant 
memory activities, such as Data Intensive Applications [37]. Data Intensive Applications 
are characterized by large data sets challenging the capacity of caches, non-contiguous 
memory accesses challenging the associativity of caches, and frequent load and store in­

structions ( ~ or ~ of the instructions are memory accesses) that set the memory accesses 
as dominant operations. Even if the miss ratio in these applications is relatively small (as 

small as 4 % ) , the misses still result from a significant percentage of the overall instructions 

(i.e. 2%). When the time spent on a miss is two order of magnitude more than CPU 

operation cycle, the total memory access time is dominant. Thus the memory utilization 

is the performance bottleneck. There are three important research topics related to mem­
ory utilization: asymptotic analysis) application engineering and architecture engineering. 

Architecture engineering is the subject of this report. 

The asymptotic analysis of application complexity must be revisited: the naive count 

of instructions is not sufficient to represent the execution time of an application. The topic 
has been investigated for twenty years. Hong and Kung [24] formalized the problem for 

the very first time and proposed a general approach to determine the lower bounds to the 

memory accesses of an algorithm. They propose a two-level-memory model describing 

the I/O complexity of main memory to and from disks: first level has zero-latency time 
and finite size; second level has constant-latency time and unlimited size. Algorithms are 

expressed by Direct Acyclic Graphs (DAG). The approach has been generalized in [3] and 
[44]. Recently, upper bounds as well as lower bounds are investigated and. some initial 
results can be found in [6] [5]. In general, applications cannot be described as DA Gs 

without simplifications1
. Memory model cannot be implemented without simplification. 

Application Engineering is a collection of mechanisms to reorganize the application 
so that the impact of misses is minimized. Given an application and an architecture, 

there are different ways where application engineering can be applied: 

• The developer is aware of the architecture features and designs the application prop­
erly. The approach can achieve high performance but the application so obtained 
is not portable across different architectures (i.e. through tiling and data alignment 
[40]). 

1i.e. input-dependent-loop 



• The installation of an application is adaptive. The installation consists of the deter­
mination of the architecture parameters and then the source code is tailored upon 

the parameters and compiled. In practice, there may be different source codes for 

different architecture (see [57][19]) 

• The compiler is aware of the architecture features and it generates the proper exe­
cutable. The source code does not change across architectures (i.e. tihng in [58][59] 
) . 

• The algorithm is memory hierarchy oblivious, the application is designed so that 

optimal performance is achieved without any a priori knowledge of the memory 

hierarchy (for a survey see [20) or [53][7) [14)). 

The engineering of the memory architecture is the ability to tailor the configuration 
to the application needs. In fact, most of today's memory architectures are the result of 

the design tradeoff over a series of variables (such as system performance, cost, capacity, 

and bandwidth, etc.) in a very large design space. Not surprisingly, no fixed memory 
system is optimal for every application: different applications can exploit different perfor­
mance and the same application with different inputs might exploit different performance 

[32). Adaptive architecture is a promising solution because it is able to adapt to the 

application's memory behaviors. 

In this report, we present a simple and unified overview of memory adaptations across 

different benchmark suites: the improvements, the pitfalls and a summary of what our 
group has learnt in the last two years of investigations (in particular [51 )[55)[25]). We 
demonstrate that the adaptation approaches are in general very effective over a very large 

spectrum of applications. In practice, we investigate both the positive cases and negative 
cases. The positive cases stress out why memory adaptations are effective. The negative 

cases show what prevents them to be effective. For the negative cases, we claim: 

• When the application does not have locality, adaptation approaches cannot be ef­

fective (see Section 2 and Section 5). 

• Iviiss ratio is not a proper metric. It expresses the average behavior, but hides the 
information of the miss distribution (see Section 2.4). 

Four memory adaptation approaches are investigated in this report: Stream Buffer 
(SB) [28), Victim Cache (VG) [28)[50],Adaptive Cache Line Size ( ALS) [51) and Adaptive 
Fetch Size ( AFL)[52]. These adaptations deal with different types of cache misses: SB 

hides the latency of compulsory and capacity misses; VC removes conflict misses; ALS 

and AFL intend to remove conflict misses as well as compulsory and capacity misses. 



These adaptation approaches were applied on top of a common baseline. In the folluvving 
we describe briefly the mechanisms related to our implementations. 

The SB has four hardware pre-fetch buffers in parallel, with each one being a vector 

composed of four elements. The element size is equal to the cache line size. During the 

execution of an application, the strides for memory references, either PC based [11 J or 

Partition based [2], are monitored. If the stride is predicted as constant k, SB will pre­

fetch up to four elements, which are k elements apart, into one vector. SB tends to reduce 
compulsory misses and capacity misses. In fact, it offers a simple and very effective mem­

ory adaptation approach to hide memory latency and thus improve performance. A Ll 
miss happens when the referenced data is in neither the first level cache. nor the SB. From 
the experimental results, we show that the average miss ratio reduction is 52.3% using SB. 

The VC is a vector of 32 elements, placed between the first level cache and the second 
level cache. It is a very small full associative cache. When an element is evicted from the 

first level cache, it goes into the VC, and then to the lower memory levels when evicted 

from VC. VC tends to reduce conflict misses. A miss happens when an element is in 
neither the first level of cache nor the VC. The approach is simple and effective and, in 

average, the miss ratio reduction is 14.4% using VC. 

SB and VC are the mechanisms with cache structure. fixed. The cache structure 

changes in ALS and AFL: the line size changes dynamically. In ALS, every memory ref­
erence can have a customized line size associated with it. In case of a hit, there is no 

difference between an ALS cache and a standard cache. In case of a miss, the adaptation 

is activated. The goal is to adapt the line size: spatial locality can be exploited using a 
larger line size; the interferences can be reduced using a smaller cache line size. Therefore 

at any time there can be different active line sizes. ALS tends to reduce capacity misses3 
and conflict misses. The approach is flexible and is effective: in average the miss ratio 

reduction is 32.5% using ALS. 

The AFL approach is a "simplified" version of the ALS. The cache line size dynam­

ically changes but at any time there is only one cache line size. During an interval, the 
cache performance is monitored. And at the end of the interval the best cache line size 
is properly determined and set for the next interval. The approach is simpler than ALS 

and is in general very effective; using AFL, the miss ratio was reduced by 36.6% in average. 

The benchmarks we chose are Data Intensive Systems (DIS) Benchmark [37] [36), 

Stressmark [38] and SPEC95 [49]. DIS Benchmark suite is a collection of five appli­

cations. They are most scientific computations, i.e. Fast Fourier Transform (FFT) [19] 



and Method of Moments (MOM) [36], and one of them is a data-base application. They 
have very demanding memory space requirements, but they are optimized for cache-based 
memory hierarchy. Stressmark suite is a set of kernels, taken from larger applications such 

as DIS benchmarks. The kernels are chosen to exploit memory access behaviors that are 

not easily measured otherwise. SPEC95 is a well-known benchmark suite; it is a collec­

tion of several heterogeneous applications, briefly classified as floating point and integer 

applications. The benchmark suite is designed to test the different aspects of modern 

architectures, but the major objective is not to test memory hierarchy. Indeed, modern 
architectures can obtain good performance on this benchmark suite. 

The experimental results collected are simulation-based. The . simulator used is 

simple-scalar [8] enhanced with the adaptive memory modules developed by our group 

(used also in [51 ][52]). We did not use sampling-based-simulation [33] [12]. We simulated 

up to 3 billion instructions, which is a good compromise between the precision of a full 

simulation and the speed of a partial one. 

The rest of the report is organized as follows. In Section 2 we propose and analyze 
a model of cache misses. MoM is used to show the memory behavior over time. The 

recognition of this behavior helps thethe evaluation of adaptations. In Section 3 we give 
a detailed background and description of the adaptation approaches. In Section 4 we 
present the complete set of the benchmark suites. In Section 5 we introduce the experi­

mental environments and show the experimental results. Finally, we gave the conclusion 

of this report. The Appendix includes the rest of environmental configurations, the com­

plete input sets, and every detail needed to reproduce the results here presented. 

2 A Model of Cache Misses 

In this section, we look for a method to determine when and why an adaptation is 
effective. For such a purpose we need a quantitative and concise measure of memory 
behavior. We observe that the memory adaptations target to reduce the effects of or 

remove different types of misses. So we measure the miss ratios of conflict, capacity and 

compulsory miss. By construction, miss ratios do not express any relationship among 

each other; thus we cannot show when an adaptation is effective, even if the misses of 

the corresponding type exist. However, we show that adaptations are not effective when 
there is no certain type of misses, for example Victim Cache for applications with a few 
number of conflict misses. vVe catch the effect of the relationship among misses by the 

measure of the miss distribution over time. We present an example (MoM) where the 
type of miss are distributed in such a way that in a certain period of time adaptation is 

very effective, but the average miss ratio does not show any effect. Thus we claim that 



the average miss ratio is not always persuasive. 

2 .1 Miss Ratio 

The overall miss ratio is the first metric we observe. Considering the execution time 

and the size of the benchmarks, we use a fast simulation process to determine the miss 

ratios. vVe use Shade software package from Sun microsystem [9). We compile the bench­

marks for Ultra 5 architecture and use the predefined cache simulator cachesim5. The 

experimental results are reported in Figure 1. 

Data Miss Ratios 
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Figure 1: Average Miss Ratios 

The miss ratio is defined as the ratio of the number of misses at a certain level of the 

memory hierarchy, e.g., cache, over the total number of memory references (both loads 

and stores). This metric is commonly used, and in general is very useful. Reduction of 

the miss ratio means performance boosting. This can be reflected in the following simple 

model. This model describes the access time of the memory system with one level of 

cache: 

i lvf emoryTime /Hds/thitLatency + /.l\fisses/tmissLatency 

/Total Access /thitLatency + M issRatio( tmissLatency - thitLatency) 

where /Hits/= number of hits, /Misses/= number of misses, and /TotalAccess/= 
number of memory accesses. 

From this model, we can see that there are several ways to improve application per­

formance. New VLSI technology and organization of memory hierarchy can reduce the 



access time. Optimization of applications can reduce the total number of accesses or the 

miss ratio alone (i.e. tiling in [48]). For example, the application is re-designed to reduce 
the number of accesses or an architecture-aware-compiler re-works the code to fit the 

memory system. Finally but most importantly, the miss ratio is the function of a pair of 

parameters (application, memory-system), and orthogonal improvements can be achieved 
by adapting the memory system to the application. 

However, this simplified model does not express the composition of different types 
of misses. Since adaptations intend to deal with different types of misses, the model is 

not powerful enough to show when and why one adaptation is effective. The quantitative 

measure of the type misses can help to determine what kinds of adapta.tions are effective. 

In this section we investigate the quantitative discrimination of misses by type: Capacity) 

Compulsory and Conflict misses. 

2.2 Miss Discrimination by Type 

Given a memory system as baseline, we determine the types of misses based on these 

simple observations: 

• Observation 1: a compulsory miss cannot be removed (The accesses to the lower 

memory hierarchy cannot be avoided because the data are not in the cache. Pre­
fetch can only hide miss latency.) 

• Observation 2: an ideal cache, fully associative and with optimal replacement policy, 
removes conflict misses. An optimal replacement policy uses the information from 

the past accesses as well as the future accesses (non causal) to replace data from 
the cache. 

• Observation 3: only the increase of the cache size removes a capacity miss (a capacity 
miss is similar to a conflict miss, since the data is evicted from the cache and replaced 
by another data, but it is due to lack of space). 

We determined the types of misses by indirect measure, tuning the memory system 

parameters for different simulations and measurements. We describe our methodology as 
follows: 

• vVe simulated and got the number of data misses for the baseline (32KB, 2-way, 32B 

line), and we indicated it as !'vi BaseLine; 

• We acquired the number of data misses for the same in size cache but 32-way 

associative, defined it as hfcapacity,compulsory; we chose a 32-way associative cache 
because we think it a good approximation of an ideal cache and no conflict misses 

would be present; only capacity and compulsory misses exist. 



• vVe determined the number of misses when the cache size is 256MB, and defined it 

as ]\if compulsory; we considered that the cache of 256MB is big enough so that there 
are only compulsory misses, Observation 3 and 1. 

The number of conflict misses is computed as j\lfconf lict = MBaseLine - j\![capacity,compulsory 

and the number of capacity misses is computed as Mcapacity = l\1capacity,compulsory- l\1computsory. 

In Figure 2 we show, in percentage, the number of misses by nature. 
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Figure 2: Miss Discrimination 

In benchmark tomcatv, l\1capacity,compulsory is larger than J\![BaseLine, which means that 
increasing the associativity of the cache would increase the number of misses. That is 
why we computed a negative number for the conflict misses (which is not possible in the 

real life). The problem is that the measures are just approximations, since an ideal cache 
is non-causal and cannot be simulated by the software utilized. The replacement policy 

adopted is the Least Recently Used (LRU) [15], and it might not be the optimal policy 

for an application since it uses just the past behavior. To explain how the replacement 

policy affects the miss measurement, consider two caches of equal size but with different 
associativity: kl and k2, with kl< k2. If the replacement policy is optimal, the cache 

with associativity kl must have a larger number of misses than the cache with associativ­
ity k2. However, this might not be the case because of non-optimal replacement policy. 

Since we cannot exactly determine the l\![capacity,compulsory, the percentage values for the 
conflict misses are just lower bounds, and those for capacity misses are just upper bounds. 

This chart quickly points out that different benchmark suites have very different 
memory behaviors. DIS Stressmarks have no conflicts, mostly capacity and compulsory 

misses. SPEC95 has mostly capacity misses, except two of them with mostly conflict 

misses. 



2.3 Application of Miss Discrimination 

Adaptations selectively reduce or hide certain types of misses. Therefore when there 

are no targeted misses, the adaptation cannot be effective. vVe claim that we can use 

the collected average measure to show where there is no improvement space, and thus 

when an adaptation is not effective. For example, from the miss distribution collected, 
the DIS stressmark suite has no improvement space for VC, because it has no conflict 

misses. In general, the DIS benchmark suites have a small number of conflict misses; we 
can predict that any memory adaptation that is good at reducing conflicts should not be 

very effective. Another example is from benchmark Perl: it has very small improvement 

space for SB, because the capacity and compulsory misses are not dominant. 

To justify our claim we report a qualitative comparison, obtained from the experi­

mental result in Section 5, among memory adaptations. We have summarized in Table 1 

the memory adaptations that are effective for each benchmark. The ranking goes from 

the best, 1, to the worst, 4. In the last row we report the median as representative of the 

average behavior. When there is no indication, no memory adaptations achieve any sig­
nificant improvements. As we can see, the experimental results confirm our expectations. 

For example VC is not effective for the Stressmarks. 

However, the approach to discriminate the types of the misses cannot be used to 

explain why adaptations are effective. The reason is that any percentage is an average 

measure over the whole execution of the application. The temporal distribution may 

vary; conflicts misses may arise all in a very short interval of time or they may be evenly 

distributed during the execution. next, we present an example where miss distribution 

over time is important in the evaluation of the miss reduction by adaptation. 

2.4 Distribution of Misses over Time in MoM 

In this section, we show that memory adaptations may be effective in a short period 

of time, but the performance is not detectable globally. Using the following example, we 

show that, in general, miss ratio is not an effective metric to evaluate performance. 

The A!fethod of Moments is one of the DIS benchmarks. The application has a very 

small miss ratio percentage even for the very large inputs. To illustrate properly the 

following experimental results, we need to explain briefly the algorithm. MoM is a divide 
and conquer algorithm. It has a tree-like decomposition, and an integer number identifies 

each level in the tree. At level 1 there are the leaves of the tree. The root of the tree 
is at the top and its level is the function of the input size (ranging from 5 to 7). The 

algorithm first visits the tree from the leaves to the root (upwards) and then from the 



root to the leaves (downwards). Each node is visited twice but the computation is dif­

ferent each time. We can indicate the execution of the application as a sequence of the 
levels visited, i.e. a 5 levels tree has the execution following the order 1, 2, 3, 4, 5. 4, 
3, 2, 1. The leaves have a head and a tail computation. During upward stage the head 

computation at level 1 is the preparation of the inputs, and the tail computation during 
downward stage is the formatting of the outputs. We instruct the code so that we can 
collect statistics by hardware counters on a R12J{ microprocessor [60]. In Figure 3 and 
Figure 4, we can observe the temporal behavior, level by level, of the cache misses and effi­
ciency to issue instructions (average cycle per instructions: CPI). The input set is Plate 5. 

Plate 5 

i o D 1 misses II 02 missesD Memory Accesses 
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Figure 3: MoM: Plate 5 Miss Distribution over Different Levels & Average Miss Ratio 
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Figure 4: MoM:Plate 5 Instruction Issue Efficiency 

The Figure 3 shows that 50% of instructions of the application are loads and stores 
and the miss ratio is 43 (last two bars). The miss ratio is level dependent. The higher 



is the level the larger is the miss ratio; i.e. at level 6, the root, miss ratio is 57%. In 
Figure 4, we can see the distribution of the graduated instructions and their average CPI. 
The average miss ratio is small because memory accesses are mostly at level 1 with high 
data locality, while the higher levels have very few accesses with poor data locality. In 
the latter case, the miss rate degradation is associated with CPI degradation, therefore 
performance degradation. 

The input size of MoM for Plate 5 is too large for any simulations. So a smaller input 
set must be used. We show in Figure 5 that a similar behavior exists for Plate 3, which 
has smaller input size so that we can obtain experimental result by simulations. 
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Figure 5: MoM: Plate 3 Memory Distribution over Different Levels & Average Miss Ratio 

Plate3 Level 4 when Optimized 

12 ----------------

lo Miss Ratio/ 

Adaptive Adaptive Stream Victim Base Line 
fetch size fetch size Buffer cache 

up 64 up 256 

Figure 6: MoM: Plate 3 Miss Ratios using Different Adaptations 

We focus on the computation at the top level, in this case the level 4. At this level 
most adaptations are very effective. The simulations results are in Figure 6. 



VC does not improve any performance but the other approaches are effective and 
achieve improvements between 40% and 60%. The SB is the most effective one. 

2.5 Analysis Limitations 

In this section we do not propose any closed formula or analytical model describing 
the cache misses for the following reasons: 

• Applications can be really complex, and only the developers may have the chance 

to determine a simple but effective model (see MoM). 

e Small kernels may have extra memory accesses that are introduced artificially by 

the compiler (such as Pointer) and cannot be taken into account by a static model. 

e To obtain a model of cache misses is really challenging sometimes even for a single 

application and single memory system: one must exploit the relationships among 
application, compiler optimizations, static instruction scheduling and dynamic in­
struction scheduling. This is true even though most of the modern architectures 

preserve the in-order memory accesses proposed by the program, for memory hier­

archy coherence. 

vVe can see that to obtain a cache model is becoming 'impractical for a large set of 

applications. 

3 Background on Adaptations 

Four memory adaptation approaches will be described in this section: Stream Buffer 

(SB), Victim Cache (VC), Adaptive Line Size Cache (ALS) and Adaptive Fetch Size 

Cache ( AFL). 

3.1 Stream Buffer (SB) 

Stream Buffer was first proposed by Jouppi [28]. The author proposed a very ba­
sic prefetch approach, pre-fetch on a rniss, and later was improved in [39]. ·In order to 
give a clear view of the SB we implemented, we need to describe pre-fetch mechanisms 

thoroughly. Pre-fetch mechanisms can be classified into Software pre-fetch and Hardware 
pre-fetch. In hardware pre-fetch, we investigate two types of prediction mechanisms: PC 
Based and Partition Based. In Section 3.1.3 we describe the organization and the predic­

tion mechanisms of SB used to collect experimental results of this paper. 



3.1.1 Pre-fetch 

Pre-fetch [54] is the mechanism that fetches data from the lower-level caches (or 

memory) before they are actually used. The advantage of Pre-fetch over the fetch-on­
demand policy is that it can hide the latency of compulsory and capacity misses. A 
compulsory miss happens when a cache block is accessed for the first time. A capacity 
miss happens when a accessed cache block is not in the cache because of insufficient cache 
space. The code in Figure 7 is an example where compulsory and capacity misses happen. 

for ( i = 0 ; i < k ; i ++) { 

A [ 0 ] += B [ i ] ; 
for ( j = 1 ; j < N ; j ++) 

A [ j ] +=A [ j - 1 ]; 
A [ 0 ] += A [ N - 1 ] ; 

Figure 7: Example of When Compulsory and Capacity Misses Happen 

In Figure 7, the linear array A has size N larger than the size of the cache C. A is 
updated k times in the nested loop in a circular fashion. In the first iteration, I=O, the 

linear array is read for the first time. Compulsory misses happen. Since only part of the 

array can fit the cache, the number of misses does not change in the successive iterations 

(I > 0). The following example in Figure 8 proposes a software Pre-fetch solution to 

reduce compulsory and capacity misses ( C is the size of the cache): 

( HW I SW ) Pre-fetch A [ 0 : C - 1] 

for ( i = 0 ; i < k; i ++) { 
A [ 0 ] += B [ i ] ; 
for ( j = 1 ; j < N ; j ++ ) { 

A [ j ] += A [ j - 1 ] ; 
( HW I SW ) pre-fetch A [ I j + C I mod N ] 

} 
A [ 0 ] += A [ N ] ; 

Figure 8: Prefetching Optimization on the Previous Example 

In Figure 8, in order to remove the latency penalty due to compulsory and capacity 
misses, pre-fetching is performed in parallel with processor computations. There are two 
pre-fetch instructions in the example. One is outside the loop and one is inside the loop. 
The outside one pre-fetches the first C elements of A. The inside one pre-fetches one ele­

ment a time, which will be used C iterations later. Instead of waiting for data requested 

and load command issued, pre-fetch mechanism anticipates that a certain (set of) data 

may be referenced in the near future. If this (set of) data is not in the cache, a fetch 



command will be issued, either by hardware or software, to fetch the corresponding data 
block. By the time when the data is needed, it is already in the cache and ready to use. 

As we mentioned earlier, pre-fetch commands can be issued either by hardware or by 
software. We do not describe Software pre-fetch [4], [34] in this report, because our focus 
is on Hardware pre-fetch, which is described in the following subsections. 

3.1.2 Hardware pre-fetch 

Hardware pre-fetch depends on special hardware to track data reference traces, to 
recognize the references with constant strides, and to fetch in advance an instance of a 
reference based on the stride detected. The constant stride can be unit stride andnon-unit 
stride. 

Unit-stride pre-fetch is also called sequential pre-fetch. The simplest approaches of 
sequential pre-fetch are based on one block look ahead (OBL) [47]. OBL initiates a pre­
fetch for block b+ 1 after block b is accessed. 

are: 
Depending on when to initiate the pre-fetch of b+l, the implementations of OBL 

• Pre-fetch-on-miss: it initiates a pre-fetch for block b+ 1 whenever an access to block 
b is a miss and block b+ 1 is not in cache. 

• Tagged pre-fetch: it associates a tag bit with every cache block. This bit is set to 
zero when a block is pre-fetch. Later, if this block is accessed, the bit is set to one. 
The zero to one transition trigger the prefetching of the next sequential block b+ 1. 

Generally, pre-fetch-on-miss is less effective than tagged pre-fetch. For example, in a 

purely sequential stream, pre-fetch-on-miss will result in a miss every other access, while 
tagged pre-fetch will not. 

One shortcoming associated with sequential pre-fetch is that pre-fetch may not be 
initiated far enough ahead to hide the latency. If the pre-fetching is not completed by 
the time when block b+ 1 is needed, the processor would stall. An approach to solve this 
problem is to pre-fetch up to K successive blocks, or a block that is k references ahead, 
where K can be statically or dynamically [13] determined. But this might result in high 
traffic from and to the lower-level cache (or memory) [ 42 J. 

Non-unit-stride pre-fetch detects the non-unit stride ~ and pre-fetch blocks at L). 

units stride away. Notice that if ~ equals to one, this approach would be sequential pre-



fetch. Based on the special logic used to monitor access patterns, there are two types of 
non-units stride pre-fetches: 

e PC baseg Pre-fetch 

• Partition Based Pre-fetch 

PC based pre-fetch [18] [11] is an approach that predicts the stride by comparing the 
addresses used by successive load or store instructions. For example, three addresses al, 

a2, and a3 are used by a load instruction in three successive iterations. If a2-al = a3-a2, a 

stride 6. =a3-a2 is established and the data at address a4 = a3+ 6. is pre-fetched. If a2-al 
f=. a3-a2, we remove al, and the same process is repeated using a2, a3, and a4. A table 

(called reference prediction table: RPT in [54]) is necessary to store the most recently 
used addresses and the last recently detected stride for a memory instruction. Ideally, 

each memory instruction should be assigned an entry. In practice, however, the table 

keeps only the most recently executed memory instructions. Table entries are indexed 

by PCs. The Finite State Machine (FSM) in Figure 9 is a formal description of how PC 
based pre-fetch works: 

Initialization Stride Pending Stride Confirmation 

Correct Stride Prediction 

·------------- Incorrect Stride Prediction 

Figure 9: Finite State Machine of PC Based Prefetch 

• Initial state: An entry is allocated, but no stride is established. The stride is 
initialized as NULL. The entry contains the operand address al of the most recently 
executed memory instruction. Next time when the successive address a2 is referred, 

a stride 6.= a2-al is detected, and the state enters into Stride Pending State. A 

pre-fetch is issued with the address a2+6. if the corresponding data block is not in 
the cache. 

• Stride Pending state: a stride is newly detected, and it needs to be confirmed by the 

next reference address a3. When a3 comes, we get 6.new = a3-a2. If 6.new= 6., the 



stride is confirmed. The state enters into Stride Confirmed State. However, if .6.new 

-=j:.fl, the entry is updated by the new address a3, along with the newly detected 
stride flnew· The state would stay in Stride Pending State . 

• it Stride Confirmed state: A stride flnew is established. A pre-fetch for a set of data 
blocks with distance flnew is issued. When new address a4 comes and the new stride 
a4-a3=a3-a2, the state remains at this state. Otherwise, the state goes back to 
Stride Pending State . 

Partition based pre-fetch can be implemented as consecutive-address based scheme 
[39], which is used in in our experiments. Consecutive-address based scheme is similar to 
PC based pre-fetch [18][11 J described in the previous section. It is stride-based. One table 
is used to track the references. Each entry in the table is allocated to a memory "chunk", 
which is a contiguous memory area. The higher bits of the reference addresses index the 
entry of the table. If two memory addresses belong to the same "big chunk", they index 
the same entry. In practice, the division of the "chunk" can be done statically. Usually, 
the elements in two different vectors are allocated to different "chunks". For example, in 
Figure 10, the memory addresses for A[I] and A[I+l] belong to the same chunk and index 
the same entry. Similarly, B [I] and B [I+ 1 J index the same entry. The strides for prediction 
are calculated between two successive memory references. If a stride fl is detected to be 
constant, the data that lies fl apart is pre-fetched. The mechanism for detecting strides is 
the same as PC based pre-fetch, so FSM in Figure 9 can be employed here. For example, 
in Figure 10, the strides of 1 are detected for vector A and B, so A[I+2] is pre-fetched 
after A[I+l], and B[I+2] is pre-fetched after B[I+l]. 

for ( i = 0 ; i < k ; i += 3) { 
A[i]=B[i]+l; 
A [ i + I]= B [ i + 1 ] + 2; 
A[i+2]=B[i+2]+3; 

Figure 10: Example where Partition Based prefetch is effective 

PC based pre-fetch can capture the locality in one reference instruction of differ­
ent iterations. Partition based pre-fetch can catch the locality in a group of references. 
From the mechanism point of view, we cannot say that one is better than the other. 
The example Figure 11 is a case where PC based pre-fetch is better. In this example, 
PC based pre-fetch can detect the strides for the four different memory references, Vl [I], 
Vl [2I], Vl [4I], and V2[I]. Thus it issues pre-fetch commands with appropriate stride for 
individual reference. Partition based pre-fetch, however, cannot distinguish the first three 



memory references Vl[I], Vl[2I] and Vl[4I]. They fall into the same table entry and no 
constant strides can be detected. For V2[I], partition based pre-fetch will distinguish it 
from the reference to Vl, and pre-fetch for \12 will succeed. 

In another example in Figure 12, Partition based pre-fetch outperforms PC based 
pre-fetch. In this example, the index computations in vector Vl are randomized. PC 
based pre-fetch cannot detected any strides. However, Partition Based SB can detect 
the stride 32 between Vl[I*RANDQ], Vl[I*RANDQ + 32], and Vl[I*RANDQ+64], thus 
pre-fetching is issued for Vl [I*RANDQ+96]. 

In our experiments, both PC based pre-fetch and Partition Based prefetch a.re em­
ployed. The experimental results show that there are cases where one mechanism outper­

forms the other. 

for ( i = 0 ; i < N ; i ++ ) { 
ip+=Vl [i]; 
i p += v 1 [ 2 * i ] ; 
ip +=VI [ 4 * i ]; 
ip += V2 [ i ]; 

Figure 11: Example where PC based prefetch is more effective than Partition based 

prefetch 

for ( i = 0 ; i < N ; i ++ ) { 
randq = V 1 [ i ] ; 
ipl += Vl [ i * randq ]; 
ip2+=Vl [i*randq+32]; 
Vl [ i * randq + 64] = ipl; 
Vl [ i * randq + 96] = ip2 ; 

Figure 12: Example where Partition based prefetch is more effective than PC based 

prefetch 

3.1.3 Stream Buffer 

Stream Buffer [28] has a small FIFO buffer and a hardware pre-fetch mechanism. 
The pre-fetched data are fetched into Stream Buffer to avoid cache pollution. On a cache 
miss, the data a.re sent to cache. At the same time, they are removed from Stream Buffer. 

The prediction mechanism used in Stream Buffer can be either PC or Partition based. 



Therefore, it can pre-fetch data in unit stride or non-unit stride. The experimental results 
from both prediction mechanisms will be presented in this report. 

CPU 

Tag LI 
Data Stream Buffer 

Lower Memeory Hierarchy 

Figure 13: Memory Hierarchy with Stream Buffer 

Figure 13 illustrates the memory hierarchy with the Stream Buffer between the Level 

one and lower level cache (or memory). The data blocks are pre-fetched into Stream Buffer 

in order. They will be evicted in the same order. More specific, once a pre-fetch is started, 

up to K cache blocks with stride 6 a.re loaded, where K is the degree or depth of Stream 

Buffer, and 6 is the established stride. Each time data a.re required, Stream Buffer is 
accessed in parallel with data cache. Only the tag of the first line in Stream Buffer is com­
pared with the tag of the reference address. If there is a miss in cache and a hit in Stream 
Buffer, Stream buffer provides the data to the cache. The first line is evicted and the 

following lines shifts up. In case that data are not in the first line, Stream Buffer is flushed. 

One of the key factors in Stream Buffer is the depth of Stream Buffer K. The larger 

K in a regular stream, the more future references will be pre-fetched ahead. However, 

large K increases traffic. In our experiments, we choose K as 4. 

A single-way Stream Buffer is not effective when there are multi-way streams, as in 
example in Figure 14. Every stream flushes the pre-fetched data for the previous one. 

To solve this problem, multi-way Stream Buffer is propose in [28]. It is used to remove 

compulsory and capacity misses in multiple concurrent streams. Obviously, the larger the 
number of Stream Buffers, the more concurrent streams can be captured. The optimal 

number of parallel Stream Buffers is application-dependent. In our experiments, we use 

a 4-way Stream Buffer. In general it is a good trade off between space and performan~e. 



for ( k = 0 ; k < n ; k ++ ) 
for ( i = 0 ; i < n ; i ++ ) 

for ( j = 0 ; j < n ; j ++ ) { 
old= DIN ( j, i ); 
newl =DIN (j, k) +DIN ( k, i ); 
DOUT ( j , i ) = (new I <old ? new I : old); 

Figure 14: Example of when Single Way Stream Buffer fails and Multi-ways Stream Buffer 
is effective 

3.2 Victim Cache (VC) 

In a memory hierarchy composed of several levels of caches, the Victim Cache [50] [46] 

is placed between two levels as assistant for the upper level. VC is a very small fully as­
sociative cache. It has the same line size of the level it assists. It applies a write back 

policy. It holds the data evicted from the upper level, and only when evicted from it, the 
data are sent to the lower levels. In a memory sustem, if some data is repeatedly evicted 
from the upper level, and then requested after a short period of time, a large percentage 

of application execution time would be .spent waiting for the data from the lower levels. 
However, when VC is used and the data. is found in the VC, the waiting time is shortened 

a lot. For its small size and associativity, VC intends to hold data with temporal locality. 
These data are evicted from upper level cache due to conflict misses. 

Tag LI 
Data vc 

Lower Memeory Hierarchy 

CPU 

Figure 15: Memory Hierarchy with Victim Cache 

Figure 15 illustrates the memory hierarchy with VC between the Level one and lower 



level cache (or memory) .Each time a data is requested, both VC and the assisted level 
are accessed in parallel. The lookup in VC is the same as lookup in general data cache. 
When data are missing in the upper level but can be found in the VC, the VC supplies 
the data as a usual cache. There is no need to access the other level cache (or memory). 

If the data are missing in VC, the lower level cache (or memory) has to be accessed. The 
fetched data will bypass VC and go directly to the upper level cache. The access time of 
the VC is not longer than access time of the assisted level, because the small size of the 

cache assistant compensates the complexity of the associativity. 

Depending on the reference stream, the performance of VC can be either significant 
or negligible. In a sequential reference stream where there is seldom data reuse, VC can 
remove few misses. While if two vectors are accessed concurrently using a direct-mapped 
cache, ( n - 1) out of n miss will be removed for each line, where n is the number of 

elements per line. The performance of VC depends also on its capacity. The larger the 

cache is, the more temporal locality can be captured, and the more the conflict misses 

will be removed. However, the lookup time would be longer. 

Right now, we are using VC of 32-way associative with 32B of each line. Its perfor­

mance will be described in Section 5. 

3.3 Adaptive Line Size Cache (ALS) 

In [21] [43], the authors present experiments results showing that different applica­

tions have different spatial and temporal locality, and also different parts of an application 

may have similar characteristics [55]. In this scenario, applications may be unable to take 

full advantage of the spatial locality offered by a cache with fixed line size. ALS [51 J is 
a cache design that uses cache lines of different sizes concurrently. The size of each line 

changes dynamically on demand of application needs. 

There are some definitions in the memory hierarchy with ALS cache: 

• Definition. ALS cache is composed of same-sized lines, physical cache line (PCL). 
Each of them is a power of two, for hereafter is 16B. 

• Definition. The composition of contiguous PCLs is a virtual cache line (VCL), whose 

size is a power of two. 

• Definition. Every VCL is associated with a virtual line (VL) in the lower level 
cache. On a cache miss, one VL is fetched into ALS and fill one VCL. 

• Definition. Two VLs are said to be neighboring if they have the same size and the 
starting addresses of both of them divided by twice the VL size are the same [51]. 



For a certain VCL or VL, its line size can be changed dynamically during its lifetime. 

Line size adjustment is based on the algorithm we will describe shortly. No matter hovv 

it changes, line size is always a power of two. The lookup in ALS is the same as in a fixed 

line size cache. A cache hit will not result in any line size change. In case of a cache miss, 

the missing VL is fetched from lower-level cache (or memory) to a buffer close to the ALS 

cache. For every VCL to be evicted, the prediction algorithm determines the size of its 

associated virtual line, and makes it increase, decrease, or stay the same, depending on 

the locality detected. Then the VCL is evicted from the cache. 

When a VCL is replaced from cache, the line size prediction algorithm works as 

follows: 

1. Get the VL that is mapped to the VCL and the neighboring virtual line of the VL. 

2. If the VCL of the neighboring virtual line is also in the cache, the line size is 

increased. 

3. In case that there is no neighboring VCL in the cache and at most one half of the 

VCL has been accessed before, the line size is decreased. 

4. Otherwise, no change is made to the line size. 

ALS exploits spatial locality by increasing the line size. I~ cases where spatial locality 

is small but temporal locality is demonstrated, the line size is decreased to avoid cache 

pollution. Ideally, line size can be arbitrary large or small so that either spatial or tem­

poral locality can be exploited as much as possible. However, the minimum line size is 

limited by the physical line size, and the upper bound of the line size is limited by the 

fixed bandwidth between ALS and lower cache (or memory). Another issue associated 

with ALS is the initial line size. Experiments have shown that the selection of initial line 

size is not important [55]. In our experiments, the candidate line sizes are 16B, 32B, 64B, 

128B, 2.56B, and the initial line size is 32B. 

In ALS, the line size is predicted for a specific virtual line, while in Adaptive fetch 

line cache ( AFL), which will be described in the following section, line size is predicted 

for all the lines in the cache. 

3.4 Adaptive Fetch Line Size Cache (AFL) 

The AFL [.52] has the same motivation as ALS: to allow cache to follow the change 

of locality, both across applications and in an application. As in ALS, the fetch line size 

must be a power of two. The difference is that, at any time, the fetch line size is one 



for all lines, and its prediction is based on the global information, thus is not biased to a 
particular virtual line. 

Depending on observations used for prediction, there are two types of fetch size 
prediction algorithms: 

• Sampling-based fetch size prediction: it predicts the optimal fetch size for a long 
interval by finding the optimal fetch size over several small intervals. The optimal 
fetch size is the one that will result in minimum miss ratio among a set of candidate 
fetch sizes. Each candidate is applied for a short interval and its miss ratio is 

calculated. After all the candidates are tested, the corresponding miss ratios are 
compared. The candidate with the minimum miss ratio is selected, and is going to 
be used throughout the next interval. In the next interval, the fetch size for the 
coming interval will be predicted in the same way. It has been observed that the 
optimal fetch line size for a small interval is very likely to be optimal for a long 
interval [52]. 

• Locality-based fetch size prediction: As in the sampling-based fetch size prediction, 
memory access trace is divided into separate time intervals. The fetch size for the 
coming interval is predicted based on the spatial locality observed in the current in­
terval. The spatial locality information, which is refleded in the tedency of the size 

adjustment trace of individual lines, is accumulated and used as the basis for fetch 
size prediction. Two counters, I ncC ounter and DecC ounter, are used to accumu­
late the number of times that fetch line size is requested to increase and decrease by 
individual lines, respectively. I ncC ounter% and DecC ounter% are used to char­
acterize locality. At the end of each interval, IncCounter% and DecCounter% 

are compared with the thresholds thresholdinc, and thresholddec, respectively. If 
IncCounter% is bigger than thresholdinc, fetch size doubles. If DecCounter% is 
bigger than thresholddec, fetch size decreases by half. In the next interval, the same 
process is repeated and the fetch size is predicted. 

Experiments [52] have been done to explore the parameters in the above two fetch size pre­
diction algorithms. The fist parameter is the sampling interval in Sampling-based AFL. 
It has been pointed out that smaller intervals are better because AFL can adapt to the 
changing locality faster. However, if the intervals are too small, the locality information 
used for prediction will be insufficient. In our experiments, the sampling interval is set to 
be lOOK instructions. 

The possible fetch sizes that can be used in the next time interval are explored for 
Sampling based AFL. In this algorithm, the fetch size can be: 



• All possible fetch sizes, and 

• The set of current fetch size, the immediately larger fetch size and the immediately 
smaller fetch size. 

The first approach takes one interval time to determine the optimal fetch size be­
cause all possible fetch sizes are tested, but it results in more computations. The second 
approach may take more than one interval to determine the optimal fetch size, but results 

in fewer computations. 

In Locality-based AFL, thresholds that will result in the smallest .miss rates are dif­

ferent for different applications [52]. High thresholddec and low thresholddec will cause a 
small fetch size, while low thresholddec and high thresholdinc will cause a large fetch size. 
If both thresholds are too high, the adaptation is insensitive to the change of locality. 
The adaptive threshold algorithm, called aging threshold algorithm, is thus implemented 
in [52]. In this algorithm, both thresholdinc, and thresholddec are decreased by an aging 
ratio if there is no fetch size change prediction. 

In our experiment, we chose the locality-based prediction. The possible fetch sizes 
that can be used in the next time interval are: current fetch size, the immediately larger, 

and the immediately smaller. The possible line sizes are 16B, 32B, 64B, 128B, and 256B. 
The aging threshold algorithm was applied, with aging ratio 0.01, lower bound of thresh­
old 0.4, middle threshold 0.55, and upper bound is 0. 7 (Please refer to [52] for the more 
detailed explanation of these parameters). 

4 Benclunark Suites 

In order to evaluate memory adaptation approaches under all kinds of situations, a 
set of representative and commonly used benchmark suites were chosen. From the most 
general ones to the most specific ones, they are Data Intensive Systems (DIS) Benchmark 
[37][36], DIS Stressmark [38] and SPEC95 [49]. 

• The term Data Intensive is used to reference problems characterized by large data 
sets, non-contiguous memory accesses, and frequent load/store instructions. DIS 
Benchmark suite was created to qualify the performance gains likely to be achieved 
for data intensive problems. DIS benchmarks include the processes of data move­

ment and preparation, and the interactions between program components, as in 
general applications. 



• DIS Stressmark suite was developed as complementary of DIS Benchmark suite. 
It intends to illustrate more directly particular elements of the DIS problems. It 
requires less energy to implement but often at the expense of reduced realism. The 

focus is not the on number of accesses but the way memory is accessed. Thus, 

DIS stressmark suite evaluates the performance of memory hierarchies; and in some 

cases (i.e. Pointer) optimized memory architectures (i.e. SB) do not outperform 

general-purpose memory architectures (with simple cache). 

• SPEC95 is intended to provide a common set of programs to measure computing­
intensive performance of processor, memory hierarchy and other features of a com­
puter system. This common set is used to compare performance of different archi­

tectures. It was built to be more resistant to compiler optimizations, with longer 
run times and larger problems, and having more application diversity. 

The complete view of each of these benchmark suites will be given in the following.sections. 

4.1 DIS Benchmark Suite 

DIS benchmark suite [37][36] was developed as repr~sentatives of Data-Intensive 
(DIS) applications so that new architectures and approaches explored for these appli­

cations can be effectively evaluated. Usually, these applications have large data sets that 
are accessed non-contiguously. They cannot take full advantage of typical memory opti­
mizations. 

DIS Benchmark suite intends to represent DIS applications in a simplified but real­

istic way. Instead of focus on specific, isolated tasks, DIS Benchmark suite .includes the 

processes of data movement and preparation, as well as the interactions between program 
components. People should not assume that, as data sets grow large, these "overhead" 
functions diminish in proportional resource consumption. 

There are five benchmarks in DIS Benchmark suite: 

• Method of .Nloment (MoM). MoM algorithm is applied in the frequency domain to 

compute electromagnetic scattering from complex objects. It requires the solution 
of large dense linear systems of equations. The currently used solver is Boeing's fast 

solver, based on the preconditioned GMRES iteration method and fast multi-pole 

method (FMM) for fast matrix-vector multiplies. The key FMM kernels represented 
in the benchmark are the translation operations and spherical harmonic filtering. 



Indeed, the benchmark is missing of the pre-processor phase, the iterative solver 
and the post-processor phase typical for MoM. The computational complexity of 

these FMM methods is O(NlogN) and memory requirement is O(N). There is one 
memory-related bottlenecks that contribute to MoM's advantage as DIS problems: 

non-unit stride accesses. The filter of spherical harmonic filtering in FMM is on 
rectangular arrays of data in three stages. The arrays are accessed first by rows, 
then by columns, and finally, by rows again. In the second stage, it is necessary to 
access memory locations that are not consecutive. So the speed of the fast MoM 
algorithm is limited by the speed of accessing memory hierarchy with non-unit stride. 

e Simulated SAR Ray Tracing . The algorithm in Simulated SAR Ray Tracing is to 
simulate the performance of hypothetical sensors systems and to predict the signa­

ture of targets from a large number of viewing angles as well as target signatures 

that are inaccessible. The method is based on the image domain approach that uses 

a generalization of the physical optics approximation to compute target scattering. 

The simulated SAR technique can be divided into three steps. First step is the ray­

tracing portion, the process of sampling a scene database made of polygons, splines, 
and Constructive Solid Geometry. The second step is the process of converting the 
ray-traced information, the ray history, into the electromagnetic (EM) response of 

the sampled scene data. This portion is trivial and can be negligible. The final step 
is the process of converting the 2-D array of EM responses into complex images. 

This involves large data passing and different layout of memory and should pose 
some problems on memory performance. 

e Image Understanding (IU). It belongs to the class of target detection and classifica­

tion problems. The application is composed of three parts: (1) morphological filter, 

(2) region of interest (ROI) selection and (3) feature extraction. The morphological 
filter component generates images. It has address to operation ratio of around 2-to-1 
(implementation dependent). Thus data starvation may be frequently encountered. 

The operational and addressing cost of ROI is associated with the internal imple­

mentations and the data involved, so no accurate estimation can be given. In the 

feature extraction step, a gray-level co-occurrence matrix is processed for statistics 

in image. The cost depends on the number of features or targets presented in the 
input image. The ratio of computations to addressing can be either high or low, so 

no estimation can be given here. 

• Nfoltidimensional Fourier Transform. It is widely utilized in a diverse set of techni­
cal fields. The algorithm represented in DIS benchmark is multidimensional Discrete 



Fourier Transform (DFT). DFT can accomplish the task in O(NlogN) operations if 
Fast Fourier Transform is applied. Associated with D FT is the memory bottleneck 

that results from non-unit-stride memory accesses. No matter what arrangement 
is made and what memory accesses the inner loop attempt, the outer loop is al­

ways opposite or irregular, which prevents a unit-stfide access. The implementation 
tested is the Fastest Fourier Transform in the West (FFT\¥) and it is a divide and 
conquer algorithm and it exploits data time locality. 

• Data managernent (DM): it is chosen from the area of Data Base Management Sys­

tem (DBMS), which is dominated by archival storage and retrieval of large volumes 

of essential static data. The focus of this benchmark is on the two weaknesses of 

conventional DMBS implementations: index algorithms (search by index) and ad 

hoc query (non-index) processing (search by key). Since both index searching and 
non-index searching require index query and index management, the bottlenecks 
associated with index query and index management are of more interests. The in­
dexing method chosen within this benchmark is an R-Tree structure. The R-Tree 

index is a height-balanced tree containment structure, that is, nodes of the tree con­
tain lower nodes and leaves. Three kinds of operations are associated with R-Tree: 

query, insert, and delete. The bottleneck associated with query operations is the 
maximum number of node accesses, which is N, or a complete search over all possible 

paths, where N is the number of paths of the tree. The maximum cost associated 

with insert is N+2h, where his the height of the tree, and is N+h associated with 
delete operation. The performance improvement of the benchmark depends on the 
improvement over index maintenance and non-index search. 

4.2 DIS Stressmark Suite 

DIS Stressmark suite [38] was developeded as complementary to DIS Benchmark 

suite. Since it was difficult to measure specific elements of interest from large applica­

tions, smaller procedures were written and gathered as DIS Stressmark suite. 

DIS Stressmarks are small and focus only on particular elements of a problem. Usu­

ally they will lose realistic when representing applications. Thus the architectures opti­
mized for DIS Stressmarks may perform worse for general applications. So DIS Stress­
marks should be used in support of DIS Benchmarks, not replacing them. 

DIS Stressmarks have a large overhead in data initialization. People should exclude 
this part from tests. It is not our research interests. And also, it is much larger than the 



kernel. The performance of the kernel would be hidden if this part is included. 

There are seven kernels in DIS Stressmark suite: 

• Pointer. It repeatedly follows the input-dependent pointers ("hop") to locations in 
memory. The procedure consists of fetching a small number of ·words at a given 
address, finding the median of the values, and using the result and an additional 
offset to determine the address for the next fetch. The process is repeated until a 
"magic number" is found, or until a fixed number of fetches have been done. No 

temporal locality exists if the input is randomized. The number of words fetched 

at a given address is called size of a "window". Since fetching in a window is con­

tiguous, the larger the window size, the more spatial locality. The kernel exploits 

no spatial locality if the window size is set to 1. 

• Update. It is a variation of Pointer. The difference is the following: when a small 
number of words at a given address is fetched, the first element in the window is 
updated with the total sum of the window's elements, and then the median is found 

and used to determine the address for the next fetch. Update has the same "pointer 

jumping" behaviors as Pointer, thus spatial locality is difficult to exploit. 

• f'd atrix. It characterizes operations dealing with data stored in a compact form. In 
this stressmark, the iterative conjugate gradient method is used to solve a linear sys­

tem, which is represented by the equation A•x = b, where A is a sparse nxn matrix, 
and x and b are vectors with n elements each. As the required method is iterative, 
the steps are performed until x is found to be within a specified error tolerance, 
or for a specified maximum number of iterations, whichever occurs first. Different 

matrix storage schemes may generate different memory behaviors and performance. 

In our implementation Compact Row Storage scheme is used [17]: a sparse matrix is 

stored in two vectors. The row elements are contiguous stored in a vector, and as­
sociated with a vector are the original column indexes. Row-wise accesses are faster 

than column-wise accesses, as spatial locality is exploited, e.g., in computations 
such as matrix-by-vector multiplication. In Matrix-vector-multiplications, vectors 

are indexed non-contiguously and the "forward jumping" behaviors may happen. 

• Neighborhood. It deals with data that is organized in a two-dimensional grid, and 

computed by neighborhood operators. The operator can be described as follows: 

given a ray and a distance along the direction, two points in the grid are deter­

mined as neighbors, and a computation is performed on them. The operation is 



performed on each valid pair of points chosen in a row-wise fashion. Memory ac­
cesses are contiguous along rows, and spread along the direction of the operator. 
The texture measurements are obtained by estimating a gray-level co-occurrence 
matrix (GLCM). The matrix contains information about the spatial relationships 

between pixels within an image. Statistical descriptors of the co-occurrence ma­
trix have been used as a practical method for utilizing these spatial relationships. 

Two statistical descriptors, GLCM entropy and GLCM energy, are calculated for 
each valid direction. The descriptors can be estimated by a neighborhood compu­
tation using sum-histogram (i.e. a vector element indexed by the value sum of the 

neighborhood operands is incremented by one) and the difference-histogram (i.e. 

a vector element indexed by the value difference of the neighboi·hood operands is 

incremented by one) as neighborhood operators. The accesses to image have high 
spatial locality. The operator result has no particular stride depending on the values 

of two pixels compared. Some temporal locality may exist in difference-histogram 
when the values of two pixels change in the same scale. 

• Field. It emphasizes regular access to large quantities of data. It involves scanning 

for strings using ad hoc. In this way, it tests a system's ability to perform searching 

when indices are unavailable or inadequate. The procedure consists of searching 

an array (field) of random words for token strings, which are used as delimiters. 

All words between instances of the delimiter form a sample set, from which simple 
statistics are collected. The delimiters themselves are updated in memory. When 
all instances of a token are found, the process is repeated for a new one. The mem­
ory behavior depends largely on the token used for searching matching instances. 
If a token is not matched in the data field, the searching would be offset by only 

one position each time. So the sample sets would be contiguous and almost repeat­
edly scanned. The statistics lists, which are forwarded by one position only when a 

matching instance is found, would stick to one position repeatedly. So there is high 

temporal locality when the token matching is a rare case. On the other hand, if the 
token is matched, the sample sets would forward by the length of the token. 

• Corner-Turn. It emphasizes effective memory bandwidth without stressing func­
tional units. It involves the matrix transposition ("corner-turn") operation useful 
in signal processing applications. Although matrix transposition is a required ele­

ment in other applications within this suite, it involves practically no computation, 

so memory bandwidth issues are not readily masked behind processing latency. The 

procedure consists of transposing a matrix of random words repeatedly. It has both 

in-place and out-of-place modes, referring to whether or not the transposed matrix 



must overwrite the original. 

• Transitive Closure. It emphasizes semi-regular access to elements in multiple ma­
trices concurrently. It requires the solution of the all-pairs shortest path problem, 
which is fundamental to a variety of computational problems. The procedure utilizes 
the Floyd-Warshall all-pairs shortest path algorithm []. It accepts as input an adja­

cency matrix of a directed graph, which is stored in row major format. It then uses 
a re-current relationship to produce the adjacency matrix of the shortest-path tran­
sitive closure. If the dimension of the matrix is n, Floyd-Warshall algorithm takes 

O(n3
) steps, which asymptotically is no better than n calls to Dijkstra's single-source 

shortest-paths algorithm (O(n 2
)). However, this approach is generally considered 

to operate better in practice than Dijkstra's, especially when adjacency matrices 

(as opposed to lists) are employed. The program suggested and implemented in 
Transitive Closure is not the standard Floyd-Warshall's algorithm: the two inner 
loops are interchanged so most of the memory accesses are in column major, loosing 
the inherently spatial locality of the original algorithm. 

4.3 SPEC95 

SPEC95 [49] was the latest version of the world-wide· standard for measuring and 

comparing computer's processors, memory architecture and compiler. It is an improve­

ment over its predecessors for computing-intensive benchmarking. The benchmarks are 
developed to be as resistant as possible to compiler optimizations, which might not trans­
late into real world performance gains. The benchmarks now run with long times. No 

small changes or :fluctuations in the measurements should have a significant impact on the 

performance improvement being seen. Some benchmarks have large problems requiring 
a great amount of resources, while others have smaller ones. So diverse applications are 

represented. However, SPEC95 is not intended to evaluate the graphics, network or I/0. 

SPEC95 is composed of two suites of benchmarks: SPEC CINT95, which includes a 

set of eight computing-intensive integer and non-floating point benchmarks SPEC CFP95, 

which includes a set of computing-intensive :floating-point benchmarks. 

In the following two sections, each of benchmarks will be described in more details 

covering the application areas represented, tasks accomplished, and characteristics of the 
routines. 



although potentially any format supported by jpeg) is both compressed and decom­
pressed at multiple settings. The difference between the original and decompressed 

image is evaluated, and simple statistics are taken. The trivial provided the routines 

jpeg requires too expensive I/O to be acceptable. In order to remedy the situation, 

this version reads an image into a memory buffer, and processes it repeatedly with 
different compression settings. 

• 134.perl accomplishes the task of a Shell interpreter. It performs text and numeric 
manipulations (anagrams and prime number factoring). 

• 141. vortex is a single-user object-oriented database transaction benchmark that ex­
ercises a system kernel. It is a subset of a full database program called vortex 
(vortex stands for "Virtual Object Runtime Expository"). Transactions to and 

from the database are translated through a schema; a schema provides the neces­

sary information to generate the mapping of the internally stored data block to a 
model viewable in the context of the application. Vortex has been modified to not 

commit transactions to memory in order to remove input-output activity. 

4.3.2 SPEC CFP95 

SPEC CFP95 includes a set of 10 computing-intensive floating-point benchmarks 

• 101.tomcatv is a highly vectorizable, double precision, floating point FORTRAN 
benchmark (computation on a stream of data). It represents fluid dynamics and 

geometric translation applications. It is a vectorized mesh generation program. It 
is part of Prof. W. Gentzsch's benchmark suite. It does little I/O and is described 
by Prof. Gentzsch as 90 - 98 % vectorizable. 

• 102.swim is a single precision, floating point FORTRAN benchmark. It is used in 
whether prediction. Swim stands for Shallow Water Model with 1024 x 1024 grid 
(grid size controlled by parameters Nl, N2). The program solves the system of 
shallovv water equations using finite difference approximations on a Nl x N2 grid. 

• 103.su2cor is a double precision, floating point FORTRAN program that is vector­

izable. It is used in quantum physics. In this application, program from the area 

of quantum physics, masses of elementary particles are computed in the framework 

of the Quark-Gluon theory. The data are computed with a Monte Carlo method 
taken over from statistical mechanics. 



4.3.1 SPEC CINT95 

SPEC CINT95 includes a set of eight computing-intensive integer/non-floating point 

benchmarks: 

• 099.go is an example that utilizes artificial intelligence in game playing. Go plays 
the game of "go against itself''. The benchmark is a stripped down version of a 
successful go-playing computer program. There is a great deal of pattern matching 
and look-ahead logic. It is commonly that up to a third of the run-time can be 

spent in the data-management routines. 

• 124. m88ksim is a simulator for the 88100-microprocessor. It can measure the num­

ber of clocks, which an 88100 microprocessor would take to execute a program. It is 
essentially an integer program, although the exact instruction mix of the simulator 
depends on the program being simulated. The simulator can pass the system calls 
from the simulated program through to the host system running the simulator. 

• 126.gcc is a CPU intensive integer benchmark. It is based on the version 2.5.3 GNU 

C compiler, which is distributed by the Free Software Foundation. The benchmark 

measures the time the GNU C compiler takes to convert a number of preprocessed 

source files into the optimized Spare assembly language ( .s files). 

• 129.compress reduces the size of the named files using adaptive Lempel-Ziv cod­
ing. Whenever possible, each files is replaced by the one with the extension ( .Z). 

If no files are specified, standard input is compressed to standard output. Com­

pressed files can be restored to their original form using Uncompress. The amount 

of compression obtained depends upon the size of the input, the number of bits per 

character, and the distribution of common sub-strings. Compression and decom­

pression programs are used in a wide variety of applications, which require storage 

and/or transmission of large text files. 

• 130.li is a CPU intensive integer benchmark, which performs minimal I/O. Li is 
a Lisp interpreter written in C. The workload used is a translation of the Gabriel 

benchmarks by John Shakshober of DEC. 

• 132. ijpeg represents an image processing application. It performs jpeg image com­

pression with various parameters. First, an original bitmap image (usually GIF, 



• 104.hydro2d is a double precision, floating point arithmetic program that is vector­
izable. In this application, program from the area of astrophysics, hydro-dynamical 
N avier-Stokes equations are solved to compute galactic jets. 

• 107. mgrid is a FORTRAN benchmark used in the area of electromagnetism. It 
demonstrates the capabilities of a very simple multi-grid solver in computing a 
three dimensional potential field. 

• 110.applu is a FORTRAN benchmark used in fluid dynamics/math. It solves matrix 
system with pivoting. 

• 125.turb3d is used for simulating isotropic, homogeneous turbulence in a cube, which 
has periodic boundary conditions in x, y, z coordinate directions. It solves the 

N avier-Stokes equations using a pseudo spectral method: Leapfrog-Crank-Nicolson 

scheme, which is used for time stepping. 

• 141.apsi is a double precision, floating point arithmetic FORTRAN scientific bench­

mark. It is used to solve for potential temperature, wind, velocity and pressure of 

pollutants. The synoptic scale components are in quasi-steady state balance, while 
the mesoscale pressure and velocity are found diagnostically. 

• 145.fppp is a double precision, floating point FORTRAN scientific benchmark. It is 
a quantum chemistry benchmark. It measures performance on one style of compu­

tation (two electron integral derivative), which occurs in the GaussianXX series of 
programs. It does very little I/0. The input contains as the first entry the number 

of atoms. The computational time should be proportional to the 4th power of the 

number of atoms. In order to get this dependence, the atoms are placed in a rela­

tively compact region of space, and are positioned in a graphite-like lattice (as the 

atoms in fpppp appear to be carbons). 

• 146.wave is a double precision, floating point FORTRAN scientific benchmark. It 
solves Maxwell's equations and particle equations of motion on a Cartesian mesh, 

which has a variety of field and particle boundary conditions. The benchmark 

problem involves 750,000 particles on 75,000 grid points for 40 time steps; about 
11 M words (32-bit) of memory a.re required. Considerable indirect addressing 
dominates the code's runtime. 

5 Experiiuental Results 

In this section, we present a complete view of how the memory adaptation approaches 

work on SPEC95, DIS Benchmark suite, and DIS Stressmark Suite. We first describe the 
experimental environments. Then three examples are used to describe how adaptation 



approaches work for different memory behaviors. Finally, we show the complete experi­
mental results by benchmark suites. vVe analyze and demonstrate in detail how different 

adaptation approaches can have different memory performance. We compare and corre­
late the performance of these adaptation approaches in a systematic way so that readers 

can understand and benefit from our analysis mechanism. 

5.1 Experiment Setup 

The platform, simulator, compiler and baseline architecture we used are introduced 

in this Section. 

5.1.1 Platform 

Our experiments are performed on Sun Ultra.spare 5 with the speed 333MHz and 

128M RAM. 

5.1.2 Baseline Simulator 

The simulator used for baseline simulation is a processor simulator Sim-Outorder, 

which is from a processor simulator suite SimpleScalar[8]. The SimpleScalar architecture is 
derived from the MIPS-IV ISA [41] with small modifications to the semantics. It supports 

non-blocking cache and speculative execution. Configuration interface is provided. Users 

can statically configure the architecture before simulation. The relevant configuration 

flags include: 

• max:inst <uint>, which specifies the maximum number of instructions simulated. 
In our experiments, it is 3 billion, which is large enough to fully execute most 

applications. 

• fastfwd <int>, which specifies the number of instructions skipped before statistics 
is collected. It is used when we want to skip the data initialization and go directly 

to the kernel. 

• cache:dll dll : number of sets : block size : associative : replacement policy. It 
is the level 1 data cache specification. For example, dl1:512:32:2:1 defines a level 1 

data cache with size 32KB, block size 32B, 2-way associative and least-recently-used 

replacement policy. This is the data cache specification of the baseline. 

• cache:dl2 dl2 : number of sets : block size : associative : replacement policy. It is 
the level 2 data cache specification. For example, dl2:8192:64:2:1 defines a level 2 
data cache with size lMB, block size 64B, 2-way associative and least-recently-used 
replacement policy. Users can also specify level 2 data cache as a unified cache by 



combining level 2 data cache and level 2-instruction cache together. This is the data 

cache specification of the baseline. 

The other related configurations include: 

• cache:dlllat 1: level 1 data cache hit latency. It is one instruction cycle 

• cache:dl2lat 8: level 2 data cache hit latency. It is eight instruction cycles. 

Please see the Appendix A for more details on configuration flags and their default 

values. 

5.1.3 Adaptive Cache Modules 

Two modules are introduced on top of the baseline simulator: 

• Victim Cache 

• Stream Buffers 

Two modules are introduced in place of the baseline simulator: 

• Adaptive Line Size cache model, replacing the original cache model, 

• Adaptive Fetch Size cache model, replacing the original cache model 

Victim Cache model lies between level 1 data cache and level 2 data cache. It is a 

32-way fully associative cache with block size 32 Bytes. The replacement policy used is 

least-recently-used. The access latency is one instruction cycle. 

Stream Buffer model is used to support level 1 data cache. It is a four-way pre-fetch 
buff er, and each way has four elements. Each way is used to keep track of a reference 

stream with constant stride. The access latency to each buffer is one instruction cycle. 

Adaptive line cache model consists of adaptive line size cache controller and adaptive 

line size cache. Cache lookup in the adaptive line size cache is the same as the cache 

lookup in a fixed size cache. So is the access latency. The major difference is_ in the case 
of miss. For sake of explanation we consider just one level of cache (minor modifications 

must be applied when there are more than one level). On a miss, the controller predicts 
the line size for the evicted virtual line in memory (virtual line is the sequence of memory 
locations that will fit in an adaptive line in the cache) so that any modification of the 

line size has effect next time the virtual line will be fetched. Adaptive cache consists of 

different sizes of lines adjusted according to the spatial locality in the past stream. User 

can specify possible line sizes statistically. The possible line sizes are 16B, 32B, 64B, and 



256B in our experiments. 

Adaptive fetch size cache model consists of adaptive fetch size cache controller and 
adaptive fetch size cache. Periodically, the controller changes the cache line size as a func­

tion of the measured performance in the previous sample interval. In our experiments, the 
prediction mechanism is locality-based. The sample interval is lOOK instructions. The 
initial fetch line size is 32 B. The possible fetch line size can be 16B, 32B, 64B, 128B, 
and 256B. The aging threshold algorithm is used with aging ratio 0.01, lower bound of 
threshold 0.4, middle threshold 0.55. 

5.1.4 Compiler 

Benchmarks written in C are compiled using SimpleScalar version of GCC. Those 

written in FORTRAN are compiled using SimpleScalar version of f77. The optimization 
flag used is -03, which performs nearly all the supported optimizations. Function inlining 
is performed. 

5.1.5 Baseline Architecture 

The baseline architecture for level one data cache is: 

• Cache size: 32KB 

• Block size: 32B 

• Associative: 2-way 

• Replacement policy: least-recently-used 

5.2 Example Benchmark Analysis 

An analysis of benchmark improvement is important to our evaluation. It helps us 

to understand how the adaptations exploit the spatial and temporal locality. 

Three benchmarks are chosen for evaluation in this section. Each one illustrates one 
adaptation approach. Nlatrix illustrates Partition based Stream Buffer (SB-PA) and PC 
based Stream Buffer (SB-PC). wave5 illustrates VC, and applu illustrates ALS and AFL. 

5.2.1 Analysis of Matrix: why Stream Buffer Works 

As shown in Figure 16, SB-PA and SB-PC reduce the miss ratio of Matrix by 80% 
and 82%, respectively. ALS and AFL reduce it by 72% and 79%, respectively. VC is not 



Comparison of Miss Ratios of Different Adaptations on Matrix 
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Figure 16: Average Miss Ratios of Adaptations on Matrix with input in2 

Compasiron of Miss Ratios of Different Adaptations on 
Matrix 

Io Baseline Ill VC D SB_PA D SB_PC Ill ALS D AFL I 
25.00% .................................. "" ................................................................................................................... .. 

~ 15.00% 
c: 
UI 

~ 10.00% 

5.00% 

matrix 

Input: m09 

Figure 17: Average Miss Ratios of Adaptations on Matrix with input m09 

effective. These experimental results are based on a particular input: in2 (s·ee Appendix 
B for detail). Performance depends on the size and density of the vectors. For example, 
using another input m09.in in in Figure 17, the miss ratio reduction using SB-PA and 
SB-PC is 503 and 393, respectively. It is 483 and 583 using ALS and AFL, respec­

tively, and 23 using VC. We have noticed that SB is always the most effective even if 
the input is changed. Without the loss of generality, we choose in2 as representative input. 

The algorithm of Matrix is the iterative conjugate gradient method. The algorithm 

seeks the solution of an equation, Aex = b, where A is a sparse N x N matrix, and x 

and b are vectors. The matrix storage scheme used is the Compact Row Storage [17]: 
Each row is represented by two vectors. Value vector contains the values of the non-zero 
elements (at) in the row. And index vector stores the column indexes of the non-zero 
elements. The kernel includes two kinds of operations: matrix-by-vector multiplication and 



Basic Linear Algebra Subprograms Level 1 (BLAS 1) operations. A quantitative analysis 
shows that the number of memory accesses generated by matrix-by-vector multiplication 

is dominant. And the unit-stride accesses to value vector and index vector are dominant. 

Conflicts may happen when the index vector conflicts and evicts elements of b. But this 

happens very rarely, as is shown in Figure 16. 

SB captures the unit-stride accesses. Therefore every time when the data in value 
vector and index vector are needed, they are in the cache or SB. Due to the unit-stride 
accesses, all the elements in each cache line are used. Such characteristics are also be 

exploited by ALS and AFL. 

5.2.2 Analysis of Wave5: Why Victim Cache Works 

Comparison of Miss Ratios of Different Adaptations on Waves 
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Figure 18: Average Miss Ratios of Adaptations on wave5 with reference input 

The miss ratio of wave5 has been reduced by 42% using VC, 29% and 36% using SB­

PA and SB-PC respectively, and around 30% and 30% using ALS and AFL respectively. 

The Figure 18 shows the performance of the memory adaptation approaches. It can be 

figured out that at least 42% misses are conflict misses. This is counter-intuitive with 
respect to the miss distribution achieved in Section 2, where conflict misses are a small 

fraction of the total misses. There might be the following reasons: 

• Adaptations have been simulated for 3 billion instructions, which is about half of the 
entire execution. A partial behavior is exploited, not an average behavior. Indeed, 

the simulated instructions have a large portion of conflict misses and therefore VC 

is the most effective one. 

• The conflict misses measured in Section 2 are underestimated due to the non-optimal 
replacement policy. 



In more detail, we did profiling to generate the procedure relationships in waveS. 

We assume that the procedure with longer execution the time causes the larger portion 

of the misses. In Waves, the dominating procedure is "PARMVR", which accounts for 
65% of the total execution time. In this procedure, there are two kinds of memory access 

patterns: 

• Four vectors with high temporal locality have unitary stride accesses. 

• Some vectors have the "Pointer Jumping" characteristic, i.e. A[B Li]]. 

For most of time, more than two vectors are accessed concurrently. So conflicts hap­

pen frequently in a 2-way associative cache. "Pointer Jumping" characteristics may cause 
more conflicts. VC can capture conflict misses from vector accesses with high temporal 

locality. 

5.2.3 Analysis of Applu: Why Adaptive Line/Fetch Size Caches Work 

Comparison of Miss Ratios of Different Adaptations on Applu 
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Figure 19: Average Miss Ratios of Adaptations on wave5 with reference input 

The miss ratio of applu has been reduced by 84% and 85% using ALS and AFL re­
spectively, by 25% and 40% using SB-PA and SB-PC respectively, and no reduction using 

VC. The experimental results show that most of the locality in applu is spatial locality. 

There are too many concurrent streams and SB is not effective, but ALS and AFS are. 

The miss distribution shows that around 80% of misses are compulsory and capacity 

misses. So there is improvements space for ALS, AFL and SB. In the kernel, there are 
two kinds of memory access patterns: 

• There are unitary stride accesses. 



• There are seven streams in the same loop. Each of them has a constant stride. Four 

of them refer to the same vector. The other three refer to different vectors. 

ALS and AFL are able to exploit the spatial locality in both unitary stride accesses 
and stream accesses. SB-PC has only 4 ways of pre-fetch buffers, which is insufficient for 

seven streams. SB-PA is a little bit more effective than SB-PC. It allocates buffers only 
for those three reference streams for different vectors, and the number of pre-fetch buffers 
is sufficient. 

5.3 Results per Benchmark Suite 

This section shows the effectiveness of memory adaptation approaches by benchmark 

suites. As summary for all benchmarks, the average miss ratio reduction is 40% and 52% 

using SB-PA and SB-PC respectively; it is 32% and 36% using ALS and AFL respectively; 

it is 14% using VC. 

5.3.1 Experimental Results for DIS Benchmark Suite 

In this section we present the experimental results of DIS benchmarks except the 

Method of Moment, which is presented separately in Section 2.4. We use MoM as a mo­
tivating example to show that adaptation is very effective in short periods of application 

execution time, but is undetectable by the average miss ratio. 

Comparison of Miss Ratios of Different Adaptations on DIS 
Benchamrk Suite 
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Figure 20: Average Miss Ratios of Adaptations on DIS Benchmark Suite 

DIS Benchmarks have small miss ratios because they have been developed to fit con­

temporary architectures. Three of the DIS Benchmarks in Figure 20, JU) DM and FFT 
have relatively high miss ratios (around 2%), while the other two, IM and Raytray, have 



Comparison of Number of Misses of Different Adaptations on Raytray 
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Figure 21: Average Miss Ratios of adaptations on Raytray 
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Figure 22: Average Miss Ratios of adaptations on IM 

very small miss ratios (less then 0.1 %). Due to the different order of magnitudes, we show 
the last two benchmarks in separate charts in Figure 21 and Figure 22, where the metric 
used is the number of total misses. 

SB is effective for JU) FFT) and IM. SB-PA and SB-PC have similar performance. 
It suggests that the references access the separate address "chunks" and have constant 
strides. (We do not discriminate SB-PA and SB-PC in our discussion below. We use 
SB-PC as representative and use SB to refer both of them ). Almost all the miss latency 
in JU is hidden. Its memory access pattern is regular and predictable. The number of 
concurrent reference streams is not greater than four. For IM, SB hides the latency of 85% 
of total misses. Only 30% of miss latency in FFT is hidden, which implies that capacity 
and cold misses are not dominant for this input set. There is no latency hiding for DM 
using SB (2% improvement). We infer from the experimental results (comparing with 



ALS and AFL) that two possible situations exist in Dlvl: 

• there is no regular reference streams, 

• there are too many concurrent reference streams. 

For Raytray, SB hides the latency of around 50% of misses. 

ALS and AFL have comparable performance as SB in JU, which is 85% miss ratio 
reduction. The memory access patterns in JU are regular and have good spatial locality. 
ALS and AFL have 40% of miss reduction in DM, which is much better than SB (2% 
latency hiding) and VC (2% reduction). In IM, AFL removes 50% of misses. ALS in­
creases the number of misses because of unsuccessful line size prediction. ALS and AFL 
are effective for FFT. We think the performance would be better if the upper bound of 
the line size could be larger than 256B. ALS and AFL are not effective for Raytray. ALS 
introduces misses (12 times that of the baseline). 

VC is effective for FFT and reduces the miss ratio by 21 %. The number of conflict 
misses in this benchmark is significant so that SB is not very effective. The kind of conflict 
in this benchmark is independent from the line size. Therefore ALS and AFL is not very 
effective either. In JU and DJ\!f, VC reduces the miss ratios 9y 0.95% and 2% respectively. 

In DIS Benchmark suite, we have observed: 

• SB is the most effective one among the three kinds of adaptations. It is effective on 
JU, FFT) Raytray) and IJ\!f. The average improvement is 55%. 

• The average performance improvements using ALS and AFL are 35% and 51 %, 
respectively (we did not take Raytray into calculation because we think it is an 
exception). They are effective for four of the DIS Benchmark suite: JU) DJvf) FFTJ 
and Ilvl. For DJ\!f, ALS and AFL are more effective than SB because they can exploit 
some kind of spatial locality that SB cannot, i.e., large number of reference streams 
and irregular memory access pattern. 

• In general, VC is not effective in DIS Benchmark suite. The average miss ratio 
reduction is 9%. Only FFT is significantly improved (21 % ) . 



5.3.2 Experimental Results for DIS Stressmark Suite 

Memory adaptations improve four of the six DIS Stressmarks. They are not effec­
tive for Pointer and Update because these benchmarks have neither spatial nor temporal 
locality. Thus we illustrate the miss ratios in two figures: Figure 23 shows Field) l\1atrix) 
Neighborhood) and Transitive Closure, Figure 24 contains Pointer and Update. 
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Figure 23: Average Miss Ratios of Adaptations on DIS Stressmark Suite 
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Figure 24: A vearge Miss Ratios of Adaptations on Pointer and Update 

The kernels of Pointer and Update have very high miss ratios (27%) because of the 

random memory accesses. Every memory access through a pointer might result in a miss 
(So the miss ratio should be 100%!). In practice, the optimizing compiler generates an 

executable that has "spills" in memory. Since these "spills" are generally hit in cache, 
the miss rate of the kernel is dropped. Because the random memory accesses cannot be 
optimized, we will not discuss Pointer and Update in our analysis. In this section, our 



focus is on the Stressmarks that can be improved. 

Note that data initializations of the DIS Stressmarks are not negligible. \"Ve tested 
the stressmark kernels separately. 

SB-PA has similar performance of SB-PC. It means that most of the reference streams 
have separate address space and regular strides. There is an exception: SB-PC improves 
Transitive Closure (85%), while there are almost no improvements by SB-PA (0.13%). 
We report the kernel here in Figure 25: DIN is a matrix with N rows and N columns 
stored in row major, so is DOUT. 

for ( k = 0 ; k < n ; k ++ ) 
for ( i = 0 ; i < n ; i ++ ) 

for ( j = 0 ; j < n ; j ++ ) { 
old = DIN ( j , i ); 
newl =DIN (j, k) +DIN ( k, i ); 
DOUT (j, i) = ( newl <old? newl: old); 

Figure 25: Kernel of Transitive_Closure 

Using SB-PA, the first two references: DIN(j,i) and DIN(j,k), specify a stride. The 
third one, DIN(k,i), which is a constant reference in the inner loop, does not confirm the 
stride. No stride can be established. A simple optimization, i.e. move the loop invariant 
outside the inner loop, would circumvent the problem. In contrast, SB-PC recognizes the 
column major accesses, DIN(j,i) and DIN(j,k), and detects the large strides. As previously 
adopted, we use the notation "SB" to refer both pre-fetch schemes. SB hides the latency 
of 80% of the total misses for Matrix and around 30% for Neighborhood. It hides nearly 
all the miss latencies in Field (100%). SB is effective because most memory accesses have 
constant strides, and more than 99% of the misses in Matrix and Neighborhood are cold 
and capacity misses. In Field, almost all the misses are compulsory misses. Field has a 
very big working set and it has to fetch new data constantly. 

ALS and AFL are effective for Matrix, in which they have comparable performance 
with SB. They are also effective for Field (50% improvement) because of its spatial local­
ity. They are not effective for Neighborhood: by an elimination process and by the average 
line size from the experimental results (larger than 32B), we think that the absence of 
improvement is due to the increase of interferences that offsets the benefit of a larger line 
size. ALS and AFL are not effective for Transitive Closure (less than 1 % improvement). 
In fact, there is no spatial locality because the row major matrix is accessed by column. 



VC is not effective for all the stressmarks. For Matrix, The improvement is 3. For 

Neighborhood, we achieve 53 improvement. For Transitive Closure, we use input tc06, 
for which eight columns of the adjacent matrix can fit in the cache and conflict misses do 
not happen. So VC is not effective, even if the input sizes grow larger such that less than 
eight columns can fit in the cache and capacity misses arise. VC cannot remove these 
capacity misses. Field has very small baseline miss rate( almost 03) such that VC is not 
effective. 

In DIS Stressmark suite, we observe: 

• SB is effective for all the DIS Stressmarks except Pointer and Update. The average 

miss ratio reduction is 74% (we didn't take Pointer and Update into calculation 
because they are not optimizable.) 

• ALS and AFL only improve matrix andField. The average miss ratio reduction 
is 25 3 and 403 respectively, excluding Pointer and Update. The performance of 
ALS and AFL may be restricted by randomized accesses, which is common in DIS 
Stressmark suite. 

• VC is not effective for DIS Stressmark suite. 

e We found that SB-PA is not effective for Transitive Closure because the executable 
does not have such memory access pattern that can be exploited. We manually 
moved the loop invariant DIN(k, i) out of the inner loop, and we executed it again. 
Now SB-PA is very effective and Transitive Closure gets 503 improvement. Using 
this example, we show that just using benchmarks to evaluate architectural mecha­
nisms is not accurate. Architectural mechanisms may have the potential to optimize 
the applications but the executables generated do not give such chance. 

5.3.3 Experimental Results for SPEC95 

We simulated 17 out of 18 SPEC95 benchmarks with the reference inputs. The average 
miss ratio is shown in Figure 26. Each benchmark is improved by at least one adaptation 
approach. The average miss ratio reduction is 40% and 52% using SB-PA and SB-PC 
respectively, 313 and 22% using ALS and AFL respectively, and 19% using VC. 

SB is effective for all the tested SPEC95 benchmarks. For some benchmarks, (i.e., 
compress95, su2cor, apsi, turb3d, wave5, swim), SB-PC is more effective than SB-PA. 
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Figure 26: Average Miss Ratios of Adaptations on SPEC95 

Swim is a good example to explain this: there are references that belong to different 

memory chunks but the sequence of references inside a chunk are not in constant stride. 

Forapplu and li, SB-PA works better than SB-PC. We use applu as an example to 
explain this. There are more than four reference streams in applu. SB-PC detects the 
strides for all of them and allocates the space in Stream Buffer. However, these streams 

would evict each other because there are only four ways in Stream Buffer. SB-PA instead. 
considers several of these streams to be in the same chunk, and monitors the strides among 
them, just as for one reference stream. Finally the number of streams is reduced to be 
less than four. 

As usual, we use SB-PC as representative because we observe that SB-PC is in gen­

eral more effective than SB-PA, and we use SB to refer to both of them. We are going 
to introduce the improvements from the largest to the smallest. Some benchmarks have 
relatively high baseline miss rates and SB is able to optimize them significantly, such as 

go (99%), apsi (73%), turb3d (60%), swim (74%), and hydro2d (87%). It can be inferred 
that the reference streams in these benchmarks are purely sequential, and almost all the 

spatial locality can be exploited. The miss distribution from the experimental results 

supports this inference, i.e., nearly 100% misses inhydro2d are capacity and cold misses, 
which provides space for SB to work in. 

The improvement on Compress ( 49%), Vortex ( 60%), Su2cor ( 54 % ) , wave5 ( 36%), and 
applu (25%), is significant. There is still high spatial locality in them, e.g., the portion of 
cold and capacity misses are 85% in su2cor, 97% in wave5. Some spatial locality is not 
exploited. The reason is that there are too many concurrent reference streams, i.e., wave5 

and applu. 



Some benchmarks have very small baseline miss ratios (i.e. ranging from 0.05% for 
perl up to 1.07% for tomcatv), and SB still performs very well on them: m88ksim (60%)Ji 
(40%), tomcatv (66%), and perl (40%). From the performance point of view, the improve­
ment is negligible. But from the architectural point of view, SB is effective. 

SB does not significantly improve vortex, (only 7% improvement) because Vortext 
has high percentage of conflict misses (15% for vortex). 

ALS and AFL are effective for most SPEC95 benchmarks. They have very good 
performance on some of the benchmarks, such as hydro2d (85%/86%), applu (84%/85%), 
swim (59%/22%), and compress (31%/30%). Hydro2d has very regular and short strides 
with high spatial locality.Applu has many sequential reference streams. For swim, AFL is 
less effective than ALS because AFL takes more time to reach the "optimal" line size than 
ALS. For benchmarks such as wave5 (29%/31%), apsi (4%/13%) and turb3d (4%/6%), 
ALS and AFL are not very effective because the benchmarks have no negligible percent­
age of conflict misses (25% and 19% respectively and see characterization of wave 5 in 
Section 5.2.2). 

ALS and AFL have a drawback that other approaches do not have: misses can be 
introduced and memory performance can be degraded. In ot.her words, the overall number 
of misses is larger with adaptation than without. For example, vortex has a degradation 
of 21.54% due to AFL, and tomcatv has a degradation of 4.67% due to ALS. 

VC is effective for apsi (24%), turb3d (53%), and wave5 (42%). It has an average 
improvement of 20%. Eight of SPEC95 benchmarks have been improved at least by 12%. 

We observe that ALS and AFL are effective and they have an average improvement of 
31.01 % and 22.25%, respectively. Both can improve nine benchmarks by at least 30% and 
30%, respectively. ALS introduces more misses than the ones it reduces for tomcatv and 
perl. AFL has the same problem as ALS but for vortex, su2cor and perl. If we compute 
the average miss ratio reduction without the above benchmarks, it is 40% for ALS and 
45% for AFL. Furthermore, those cases have very small baseline miss ratios, up to 1 %. 
The performance of these benchmarks would not vary significantly even if degraded. 

6 Conclusion 

In this report, we have evaluated Victim Cache (VC), Partition based and PC based 
Stream Buffer (SB-PA and SB-PC), Adaptive Line cache (ALS) and Adaptive fetch size 
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Figure 27: Average Miss Ratio Reduction of Different Adaptations 

cache ( AFL). The averag emiss ratio reduction is shown is Figure 27 Based on the exper­
iments coming from a total of 28 benchmarks, the following conclusions can be drawn: 

• Among architectural assists, SB is effective in most cases. It can improve the perfor­
mance of all the 28 benchmarks. ALS and AFL are effective, but less than SB. ALS 
can improve 23 benchmarks. For the other 5 benchmarks, the miss ratios with ALS 
are higher than baseline because of unsuccessful prediction. AFL can improve 25 
benchmarks. For the other 3 benchmarks, the miss ratios with ALS are higher than 
baseline. VC is effective only in a small set of benchmarks when there is locality 
but conflicts arise. The miss ratio reduction is less than 10% for 18 benchmarks. 

• ALS and AFL are "potentially" the most versatile one. SB has a fixed number 
of buffers. It is not well utilized unless the number of concurrent streams is equal 
to the number of buffers. ALS and AFL do not have such a constraint. However, 
ALS and AFL have the problem to fully exploit spatial locality due to line size 
misprediction. The prediction is based on the information collected in the past, and 
the assumption that the similar behavior would occur in the future. However, this 
assumption is not always true. (see also in [56]) 

• For some benchmarks (i.e., DIS Benchmarks), we have found that the average miss 
ratio was not capable in efficiency evaluation. The adaptation may be effective 
in part of the application, but the effectiveness may not be seen "globally". For 
example, we show the temporal behavior of MoM. And we have found that ALS, 
AFL and SB can reduce the miss rates from 40% to 60% in the crucial part of the 
execution (level 4), but no improvement in the average behavior. 

Besides these, we observe that VC is efficient in removing conflict misses. However, this 
efficiency may be limited by it capacity. The optimal size of VC is application dependent. 



SB can be optimized if the number of ways is adaptive. There should be a good way to 

determine the trade-off between capacity and cost. And it is still an open problem. 
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Appendix A: SimpleScalar Configurations 

Besides the configurations we described in section 5.1.2, there are some other configu­
rations. These configurations are common to all the cache modules (VC, SB, ALS/ AFL). 
These configurations include: 

• fetch:ifqsize instruction fetch queue size. For example, -fetch:ifqsize 4 in our exper­
iments specifies that four instructions can be fetched at one time. 

• fetch:mplat extra branch mis-prediction latency. For example, -fetch:mplat 3 in our 
experiments, specifies that the penalty of the branch mis-prediction is 3 instruction 

cycles. 

• fetch:speed speed of front-end of machine relative to execution core. For example, 
-fetch:speed 1 in our experiments specifies that . 

• bpred branch predictor type {nottakenjtakenjperfectjbimodj2levjcomb }. In our ex­
periments, it is -bpred bimod, specifying that the branch predictor is bimodal. 

• bpred:bimod bimodal predictor table size. For example, -bpred:bimod 2048 in our 
experiments specifies that there are 2048 entries in the table. 

• bpred:2lev <llsize><l2size><hisLsize><xor>. For· example, -bpred:2lev 1 1024 
8 0 will specify that there is one entry at the 1st level branch history table, 1024 
entries at 2nd level branch pattern table, the history table has 8 bits shift register. 
Dont xor the history and addess for the index of the 2nd level pattern table. 

• bpred:comb combining predictor meta_table_size. For example, -bpred:comb 1024 
specifies that the meta_table has 1024 entries. 

• bpred:ras return address stack size. For example, -bpred:ras 8 specifies that return 
address stack size is 8 entries. 

• bpred:btb <num_sets><associativity>. For example, -bpred:btb 512 4 specifies 
that BTB has 512 sets with each set 4 ways. So the history of 2048 branch instruc­
tions can be recoreded. 

• bpred:spec_update speculative predictors update in {ID(Instruction decoding) I WB(Write 
Back)}. The default specification is bpred:spec_update NULL, which means non­
speculation. 

• decode:width instruction decode bandwidth. For example, -decode:width 4 in our 
experiments specifies that four instructions can be decoded in one instruction cycle. 



• issue:inorder {TRUEjFALSE} specifies whether to run pipeline with in-order issue 

or not. In our experiments, it is -issue:inorder FLASE. 

• issue:wrongpath {TRUEjFALSE} specifies whether to issue instructions down to 
the wrong execution paths. The default is issue:wrongpath TRUE. 

• commit:width number of instruction committed per cycle. In our experiments 1 -

commit:width 4 specifies that four instructions can be committed per cycle. 

• ruu:size size of register update unit (RUU). In our experiments, -ruu:size 16 specifies 
that the of register update unit is 16. 

• lsq:size load/store queue size. In our experiments, -lsq:size 16 specifies that the 

load/store queue can store 16 load/store instructions. 

• cache:ill 11 instruction cache configuration, { <config>jdlljdl2jnone}. It specifies 

that level 1 instruction cache can be separate instruction cache, or use the same 
cache as level 1 or 2 data cache, or there is no instruction cache. In our experiments, 
it was specified as cache:ill ill:512:32:2:1, which defined a level 1 instruction cache 
with 512 sets, 32B line size, direct-mapped, and least recently used replacement 

policy. 

• cache:illlat level 1 instruction cache access latency. In our experiments, it is specified -

as cache:ill 1. 

• cache:il2 level 2 instruction cache configuration, { <config> jdl2jnone }. It has sim­
ilar meaning as level 1 instruction cache configuration. In our experiments, it was 

cache:il2 dl2, which defines a unified 12 cache. 

• cache:il2lat level 2 instruction cache access latency. In our experiments, it was 

cache:il2lat 6. 

• cache:icompress whether or not to convert 64-bit addresses to 32-bit inst equivalents 

{TRUEjFALSE}. In our experiments, it was specified as cache:icompress FLASE. 

• mem:lat memory access latency <firsLchunk><inter_chunk>. In our experiments, 
it is mem:lat 18 2. 

• mem:width memory access bus width (in bytes). In our experiments, it is mem:width 

64. 

• tlb:itlb instruction TLB configuration. In our experiments, it is defined as tlb:itlb 

itlb:l6:4096:4:1. It has 64 entries. 



• tlb:dtlb data TLB configuration. In our experiments, it is defined as: -tlb:dtlb 
dtlb:32:4096:4:1. It has 128 entries. 

• tlb:lat inst/data TLB miss latency (in cycles). In our experiments, it was specified 
as tlb:lat 30. 

• res:ialu total number of integer ALU s available. In our experiments, it is defined as 
res:ialu 4. 

• res:imult total number of integer multiplier/ dividers available (to CPU). In our 
experiments, it is defined as res:imult 1. 

• res:memport total number of memory system ports available (to CPU). In our ex­
periments, it was: -res:memport 2. 

• res:fpalu total number of floating point AL Us available. In our experiments, it was 
res:fpalu 4. 

• res:fpmult total number of floating point multiplier/ dividers available. In our ex­
periments, it was res:fpmult 1. 

• Write buffer: this configuration is not defined in the original simulator: sim-outorder. 
It is defined in our enhanced simulator: sim-rlOk. In our experiments, dlO write 
buffer is defined as: set size 8, line size 32, direct-mapped, least recently used. Dll 
write buffer is defined as: set size 16, line size 32, direct-mapped, least recently 
used. 



Appendix B: Benclunark Input Sets and Execution Scripts 

The complete input sets and the corresponding execution script will be given in this 
section. 

For SPEC95 and DIS Benchmark suite, the standard inputs were provided in the 
product packages, so the inputs were selected from these standard inputs. For example, 
most of the SPEC95 inputs are the reference inputs. The selection of inputs for DIS 
Benchmarks is based on the following rules: 

• the size of inputs should be large enough so that the miss rate is not too small 
(larger than 1 

• the size of inputs should not be too large such that the simulation can be finished 
in a reasonable period of time. 

In carrying out these two rules, we found that for some DIS benchmarks, such as 
Raytray, the miss rate is always very small (almost 0%) for inputs of different sizes. For 
these DIS Benchmarks, we chose the inputs that result in longer (but not too long) sim­
ulation time. 

For DIS Stressmarks, We tried to choose the inputs from DARPA/ITO. Finally, the 
inputs for Pointer, Update, Field, Neighborhood, and Transitive_closure are from the 
inputs provided by DAPAR/ITO. For Matrix, the input in2 is chosen from the inputs 
provided by us, and m09 is from DAPAR/ITO. 

Please note that the input parameters for DIS Stressmarks will be described in de­
tail, while those of SPEC95 and DIS Benchmarks will not. The reason behind this is 
that the inputs for DIS Stressmarks are not standardized, and readers needs to know the 
meaning of each parameter. While for SPEC95 and DIS Benchmarks, the inputs have 
been standardized.Users are expected to use these inputs without any modification. 

The configurations used in the following description is along with the simulator sim­
rlOk and the users' environments. Please contact Weiyu Tang (wtang@ics.uci.edu) for 
the corresponding configurations. 

• Inputs and Scripts for SPEC95 

SPEC95 CINT: 

- 099.go Input: 9stone21.in (ref) Script: sim-rlOk [configurations] go.ss < 9stone21.in 



- 124.m88ksim Input: ctl.raw (ref) Script: sim-rlOk [configurations] m88ksim.ss 

< ctl.raw 

Note: dcrand.big, dcrand.lit, dhry.big, and dhry.lit should be put into the 
working directory (where simulator runs). These files can be found in the 
same directory as ctl.raw. 

126.gcc Input: gee.in Script: sim-rlOk [configurations] ccl.ss < gee.in 

129.compress Input: test.in (tarin) Script: sim-rlOk [configurations] compress95.ss 

< test.in 

130.li Input: test.lsp (train) Script: sim-rlOk [configurations] li.ss < test.lsp 

- 132.ijpeg Input: penguin.ppm (ref) Script: sim-rlOk [configurations] ijpeg.ss 
imageJile penguin.ppm compression.quality 90 compression.optimize_coding 0 

compression.smoothing_factor 90 difference.image 1 di:fference.x-Btride 10 dif­
ference.y -Btride 10 verbose 1 GO.findoptcomp 

- 134.perl Input: primes.in (ref) Script: sim-rlOk [configurations] perl.ss primes.pl 

<primes.in 

Note: dictionary and primes.pl should be put into the working directory (where 
simulator runs). These files can be found in the same directory as primes.in. 

147.vortex Input: vortex.in (ref) Script: sim-r~Ok [configurations] vortex.ss 
vortex.in 

Note: bendian.rnv (or lendian.rnv), bendian. wnv (or lendian. wnz), persona. lk, 

vortex.msg, and vortex.raw should be put into the working directory (where 
simulator runs). These files can be found in the same directory as vortex.in. 

SPEC CFP95 

- 101.tomcatv Input: tomcatv.in (ref) Script: sim-rlOk [configurations] tom­

catv.ss < tomcatv.in 

Note: TOMCATV.MODEL should be put into the working directory (where 
simulator runs). These files can be found in the same directory as tomcatv.in. 

102.swim Input: swim.in (ref) Script: sim-rlOk [configurations] swim.ss < 
sw1m.m 

103.su2cor Input: su2cor.in (ref) Script: sim-rlOk [configurations] su2cor.ss < 
su2cor.in 

Note: SU2COR.MODEL should be put into the working directory (where sim­
ulator runs). These files can be found in the same directory as su2cor .in. 



200000 1200000 1200010 
210000 1300000 1300005 
220000 1400000 1400150 
230000 1500000 1500200 
240000 1600000 1600400 
130000 500000 500100 
140000 600000 600100 
150000 700000 700100 
250000 1700000 1703000 

Input Description: 

Input consists of a single ASCII file containing all the parameters required for 
a single run. The parameters are listed below in the order they appear in the 

input file. 

* Size of field of values 
This item defines the range of the memory space that can be accessed 

throughout the whole process. The larger the size of field, the more capac­

ity misses there would be. That is why the miss rates on the second level 

data cache would be doubled when the size of field of values exceeds lMB. 
For the same reason, in the stressmarks, when the size of field of values 
exceed 1 MB, the miss rates on the second level cache would become very 
high. 

* Size of sample window 
This defines how many elements are to be scanned to search for the me­
dian of the values in the sample window. The bigger the size of this sample 

window, the more capacity misses there would be, and the more compar­

isons have to be done to search for the median. However, since this sample 

window size is relatively small compared with the size of field, its influence 
on the memory performance is small. 

* Maximum number of hops to be allowed for each starting value 

It is the number of the new indexes calculated before the current thread 
stops and the next thread starts. The more the number of hops, the more 

the computations and memory accesses have to be done. 

* Seed for random number generator 

* Number of threads 
This defines how many tests are to be done totally. The more the number 

of threads, the more computations and memory accesses there would be. 

The following three items are the same for all the threads. 



- 104.hydro2d Input: hydro2d.in (ref) Script: sim-rlOk [configurations] hydro2d.ss 
< hydro2d.in 

Note: put HYDR02D.MODEL into the current working directory. This file is 
located in the same directory as hyfro2d.in. 

- 110.applu Input: applu.in (ref) Script: sim-rlOk [configurations] applu.ss < 
applu.in 

- 125.turb3d Input: turb3d (ref) Script: sim-rlOk [configurations] turb3d.ss < 
turb3d.in 

- 141.apsi Input: apsi.in (ref) Script: sim-rlOk [configurations] apsi.ss < apsi.in 

- 145.fpppp 

Input: natoms.in (ref) Script: sim-rlOk [configurations] fpppp.ss < natoms.in 

- 146.wave Input: wave5.in (ref) Script: sim-rlOk [configurations] wave5.ss < 
wave5.in 

• Inputs and Scripts for DIS Benchmarks 

- FFT Input: ftl.in Script: sim-rlOk [configurations] FFT.ss < ftl.in 

- IU Input: iul.in Script: sim-rlOk [configurations] IU.ss < iul.in 

- DM Input: dml6.in Script: sim-rlOk [configurations] DM.ss -i dm16.in 

- IM input: balls3.512a.rh (example) Script: sim-rlOk [configurations] Imgform.ss 
4 6 3.517576e-03 im_balls3_512.rh < balls3.512a.rh 

- Raytray Input: ballsl.tri (data) Script: sim-rlOk [configurations] Raytray.ss 

ifile ballsl. tri itype t nsamp 4096 lookloc 3.05 8 4.8 lookdir -.25 -. 707 -.350 l 
out.rh 

• Inputs and Scripts for DIS Stressmarks 

- Pointer Stressmark 

Input: p07.in Content: 
4194304 1 330000 -59817 16 
160000 800000 800100 
170000 900000 900100 
180000 1000050 1000100 

100000 200000 200100 
110000 300000 300100 
120000 400000 400100 
190000 1100000 1100100 



* Item number: 3i+6,i =(0,n] The starting index for the ith thread, where 0 
::; i < 16 
This determines for the ith thread where to start sampling. Its influence 
is small. 

* Item Number: 3i+ 7, i =(0,n] The minimum ending index for the ith thread. 
This one, combined with the maximum ending index, defines the memory 
space where the indexing could not fall into. That is, when the index is 
greater than or equal to the minimum ending index, and less than the 
maximum ending index, we exit this thread. Since we try to magnify the 
number of the memory accesses for each thread, their v~lues are set to the 
same as the size of the field. In this way, their influence is small. 

* Item Number: 3i+8, i =(0,n] The maximum ending index for the ith 
thread. 

Update Stressmark 

Input: U08.in Content: 4194304 1 1000000 -59817 190000 1100000 1100100 

Input Description: 

The input of Update Stressmark is similar to Pointer Stressmark except that 
there is only one thread. 

* Size of field of values 

* Size of sample window 

* Maximum number of hops to be allowed for each starting value 

* Seed for random number generator 

* The starting index 

* The minimum ending index 

* The maximum ending index 

- Field Stressmark 

Input: f07.in Content: 

4194304 -59817 17373 32 59 DB 16 00 
B3 F5 86 00 
72 F2 EF 00 
8F 27 50 00 
F7 15 59 00 
3F 70 29 00 
FD B3 CO 00 
F7 7A F5 00 
lB 78 AF 00 
A2 43 03 00 



B4 DC D4 00 
70 88 cc 00 
E6 B8 4D 00 
04 55 D8 00 
B7 8B DC 00 
3C C9 DO 00 
D9 7D 71 00 
F3 3B 45 00 
65 2D A7 00 
10 42 22 00 
36 8F 6A 00 
23 90 lB 00 
23 90 lB 00 
47 BB 92 00 
86 A2 19 00 
lC OA 4E 00 
56 31 44 00 

. 2E 98 88 00 
01 BD 72 00 
76 E5 23 00 
08 39 E7 00 
EO AB 69 00 
B6 45 Al 00 

Input Description: 

Input consists of a single ASCII file containing all the parameters required for 
a single run. These parameters are listed below in the order they appear in the 

input file. 

* Size of field 
This defines the range of the memory space that will be scanned during 

the whole process of searching the matching patterns of a certain token. 

So the larger it is, the memory accesses there would be, and the more 
capacity misses there would be. However, the miss rate can still be low if 

a lot of scalars are spilled out to memory. Generally, these scalars have 
high temporary locality. 

* Seed for random number generator 

* Off set value for token modifier, mod_offset 
This value is the number of words between a found token word and the 

word that should be used to modify it. Its influence is small when its value 



is small. It may incur some misses when its value becomes large. 

* Number of tokens 
The more the number of tokens, the more iterations are to be performed, 

so the more computations and memory accesses. 

* Item Number: 5+i, The ith token, where 0 :::; i < n, 
It is given as a zero-terminated string of hexadecimal values. Its pattern 

and length has less influence on the memory performance because the 
values of the elements in the field are the randomly generated numbers. 

Matrix Stressmark Input: in2 Content: 

* in2: -2 2000 40000 65535 0.000031 

* m09: -51525 10000 100000 10000 0.0001 

Input Description: 

Input consists of a single ASCII file containing all the parameters required for 

a single run. These parameters are listed below in the order they appear in the 
input file. 

* Seed for random number generator 

* The dimension of matrix A and vectors X and b 
The bigger the dimension, the more memory would be required to store 

the elements in the matrix and vectors. This would result in more memory 

accesses and thus more data cache misses each time the matrix is multiplied 

by a vector. 

* The number of nonzero elements to be inserted within matrix A 
In the actual implementation, this number is only the number of non­
diagonal nonzero elements. So the total number of nonzero elements is 

Numbernonzero +dim since the matrix is positive-definite and symmetric. 

* The maximum number of iterations to be performed 
The bigger this number is, the more memory accesses and computations 

there would be. Note that the actual number of iterations required may 

be less if the calculated error is lower than the tolerance specified by the 

next field. 

* The tolerance of error for the solution vector 
The smaller the error tolerance, the more computations and memory ac­
cesses it requires approaching this tolerance. 

Neighborhood Stressmark 

Input: n03 Content: -12789 15 500 1000 1 10 1 2 

Input description: 



Input consists of a single ASCII file containing all the parameters required for 
a single run. These parameters are listed below in the order they appear in the 

input file. 

* Seed for random number generator 

* The bit-depth of the image 
This value determines how many possible values one pixel can be. The 

bigger the bit-depth, the more computations are needed to calculate the 
total of the sum histogram and the total of the difference histogram. It 
is less dominant when compared with the dimension of the image, the 

distanceShort and the distanceLong. 

* The dimension of the input image 
This is dominant because the lager the dimension, the more memory ac­

cesses and computation are to be done. 

* The number of line segments to be inserted into the image 
This is non-dominant because the image is accessed independent of the 

number of the lines. 

* The minimum thickness, in pixels, of the line segments, minThickness 

* The maximum thickness, in pixels, of the line segments 
These two determines the thickness of a pixel. They don't affect the mem­

ory behavior. 

* The shorter of the distances between pixels to be measured. 

* The longerer of the distances between pixels to be measured. 

The distanceShort and distanceLong are dominant. the reason is that each 

time along one direction, the pixels within the distance of (dimension - dis­
tanceShort) or (dimension - distanceLong) are accessed. So the smaller of 

distanceShort or distanceLong, the more memory accesses and computations 

are to be done. 

- Transitive_closure Stressmark 

Input: tc06.in Content: 512 65536 1550 

Input Description: 

Input consists of a single ASCII file containing all the parameters required for 
a single run. These parameters are listed below in the order they appear in the 

input file. 

* Number of vertices 

The effect of the number of vertices on the computations and memory 

accesses is 0 ( n 2) because n *n matrix is created to keep the record of the 

shortest paths between two vertices. By using Floyd-Warshall all-pairs 



shortest path algorithm, the time complexity is 0( n 3
). So its influence is 

significant. 

* Number of edges 
its influence is small because no matter how many edges there are, all the 
paths between all the vertices are still be calculated. 

* Seed for random number generator 



Appendix C: Number of Instructions of Data Ini­
tialization in DIS Stressmarks 

As we mentioned in the report, the data initialization parts of DIS Stressmarks oc­
cupy a large percentage of memory activities. Sometimes, the data initialization part is 
two times more than the kernel in the number of memory accesses (i.e., Neighborhood). In 
order to get the accurate memory behavior of kernels, the activities of data initialization 
parts should not be taken into calculation. This requires that we fast-forward the instruc­
tions in the data initialization parts. For different inputs, the number of instructions that 

need to be fast-forwarded is different. Here we just give the number of fast-forwarded 
instructions for the inputs we used in our experiments. 

• Pointer: p07.in Fast-forwarded: 2017880238 

• Update: u07.in Fast-forwarded: 51186019 

• Matrix: No need to fast-forward because the kernel is dominant. 

• Neighborhood: n03.in Fast-forwarded: 55599623 

• Field: f07.in Fast-forwarded: 492570882 

• Transitive_closure: tc03 No need to fast-forward because the kernel is dominant. 



Benchmark SB vc ALS AFL 

Pointer 

Update 

Field 1 4 3 2 
Stressmark suite 

Matrix 1 4 3 2 
Neighbor 1 3 3 2 
Transitive 1 2 4 3 

Median 1 4 3 2 

Benchmark SB vc ALS AFL 

DM 3 4 1 2 

FFT 1 3 4 2 
DIS suite 

IU 1 4 2 3 

IM 1 3 3 2 

Median 1 4/3 2 

Benchmark SB vc ALS AFL 

Applu 3 4 2 1 

A psi 1 2 3 4 

Compress 1 4 2 3 
Hydro2d 1 4 3 2 

Li 3 4 2 1 

Su2cor 1 4 2 3 
SPEC95 suite 

Swim 1 4 2 3 

Tomcatv 1 3 4 3 

Wave5 2 1 3 4 

M88ksim 1 3 4 2 

Perl 1 2 3 4 
Vortex 3 1 2 4 

Median 1 4 2 3 

I Median 

Table 1: Qualitative comparison of Adaptation Performance 




