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ORIGINAL ARTICLE Open Access

Empowering Data Sharing and Analytics
through the Open Data Commons for Traumatic
Brain Injury Research
Austin Chou,1,2 Abel Torres-Espı́n,1,2 J. Russell Huie,1–3 Karen Krukowski,1,4 Sangmi Lee,1,2 Amber Nolan,1,4

Caroline Guglielmetti,4,7 Bridget E. Hawkins,8,9 Myriam M. Chaumeil,4,7 Geoffrey T. Manley,1,2 Michael S. Beattie,1–3,5

Jacqueline C. Bresnahan,1,2,5 Maryann E. Martone,10 Jeffrey S. Grethe,10 Susanna Rosi,1,2,4–6,* and Adam R. Ferguson1,2,3,5,*

Abstract
Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury
pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine
intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-
centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication
with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling
pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-
TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles
(N = 1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine
learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving
experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate
open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set,
multi-dimensional analytics toward effective translation.
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analysis; traumatic brain Injury
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Introduction
Traumatic brain injury (TBI) is a leading cause of neu-
rological disorders and affects >69 million persons
annually worldwide.1,2 Incidence of TBI is expected
to rise each year, and >3 million patients in the United
States alone and many more globally suffer from chro-
nic TBI-related disabilities.2–4 Despite the abundance
of pre-clinical TBI studies, randomized controlled clin-
ical trials have consistently failed.5,6 One significant
challenge for the development of effective treatments
is the heterogeneity of injuries and the varied patholog-
ical biology captured by the broad definition of TBI: a
disruption of neurological function caused by a bump,
blow, or jolt to the head or penetrating head injury.7

Biological injury responses can differ dramatically
across injury sites, injury severities, and patient character-
istics.8 To capture the heterogeneity of clinical TBIs, a
multitude of pre-clinical TBI models have been devel-
oped to isolate specific injury mechanisms.9 Although
the diverse injury parameters and outcome measures
used by different experimenters do effectively recapitulate
distinct aspects of clinical pathology, the breadth of pre-
clinical models and research ultimately makes inferential
insights difficult to compare across studies and translate
across species. Pre-clinical TBI models have thus largely
been treated as very distinct representations of clinical
TBI, circumventing the complexity of TBI heterogene-
ity instead of directly addressing it. However, the wealth
of data collected across TBI models presents a new
opportunity for rigorous joint analyses across studies
and across pre-clinical TBI models to directly investigate
common biological features underlying heterogeneity.

Indeed, there is growing interest and support for
the application of Big Data frameworks and multi-
dimensional machine learning to TBI research.10–12

Such techniques have been recently used with clinical
data to reveal TBI pathophysiology persistent across
heterogeneous patients.13,14 Whereas similar efforts in
pre-clinical TBI research are still nascent, they repre-
sent a unique perspective toward unraveling common
pathological mechanisms and bridging pre-clinical to
clinical research.

A major obstacle to the Big Data approach is the
underdeveloped and -utilized practice of data sharing
and data standardization and harmonization in the pre-
clinical TBI field. Clinical TBI data programs, such as
Transforming Research and Clinical Knowledge in
TBI (TRACK-TBI) and Collaborative European Neuro-
Trauma Effectiveness Research in TBI (CENTER-TBI),
have dramatically improved access to data and enabled

multi-dimensional analytics in clinical research.15–18 In
contrast, most pre-clinical TBI data and research have
been communicated and shared solely through publi-
cations without the release of the underlying data.
The data of each published specimen are thus seques-
tered as summarized aggregates, which makes individ-
ual subject-level data inaccessible for data reuse and
further analytics.12,19

Additionally, the language and terminology of col-
lected variables can differ in name and definition
between labs. The National Institute of Neurological
Disorders and Stroke (NINDS) have released dictionar-
ies of Common Data Elements (CDEs), basic units of
data that prescribe the data type and standardize the
language for variables in an effort to improve the repro-
ducibility of clinical and pre-clinical TBI research.20,21

However, there remains an unmet need for open data
infrastructures that host pre-clinical TBI data and for
data sets to begin integrating the NINDS-defined
CDEs for data sharing and reusability.

In this article, we present the Open Data Commons for
TBI (ODC-TBI), a platform and repository for data shar-
ing for the global pre-clinical TBI research community.
The infrastructure is developed in collaboration with the
Neuroscience Information Framework (NIF).22 Building
upon previous work on the Open Data Commons for
Spinal Cord Injury (ODC-SCI),23,24 we developed the
ODC-TBI for protected data sharing while upholding
data stewardship principles toward making biomedical
data Findable, Accessible, Interoperable, and Reusable
(FAIR).25 To jumpstart FAIR sharing in pre-clinical
TBI, we standardized data sets from 11 publications
along NINDS-defined CDEs and uploaded them to the
ODC-TBI. As a proof of concept for Big Data analytics
enabled by the ODC-TBI, we aggregated data from three
separate experiments uploaded to the ODC-TBI and
harnessed multi-variate analytics to uncover persistent
patterns of inflammatory response in the controlled cor-
tical impact TBI mouse model. Altogether, we illustrate
the infrastructure of the ODC-TBI to promote data
sharing within the pre-clinical TBI research community
and demonstrate the utility of multi-data-set, multi-
dimensional analytics to uncover common TBI patho-
physiology across heterogeneous experimental features.

Methods
Data formatting and upload to the Open Data
Commons for Traumatic Brain Injury
Data from 11 published studies at University of
California San Francisco (UCSF) were collected from
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various data sources and structured according to the
Tidy data format.26 Variable names were aligned to
NINDS pre-clinical TBI CDEs when possible.20,21

Data were uploaded after the ODC-TBI data upload
workflow. The specific variables and data analyzed in
this article will be published and made accessible on
the ODC-TBI.

Data summarization and missing
values visualization
Data sets were downloaded from the ODC-TBI and
aggregated using the open-source programming lan-
guage, R.27 Data summaries were generated using
tidyverse28 for data-frame manipulation and ggplot2,29

RColorBrewer,30 and colorRamps31 R packages for
visualization.

Missing values visualizations were generated using
the ‘‘vis_miss’’ function in the naniar R package.32

Labeling of the types of missingness was done manu-
ally by relying on researcher familiarity with the data
set.

Multi-dimensional use case workflow
Quantitative polymerase chain reaction (qPCR) measu-
res of six cytokines (interleukin 1-beta [IL-1b], tumor
necrosis factor alpha [TNF-a], inducible nitric oxide
synthase [iNOS], Ym1 chitinase-like protein [Ym1],
cluster of differentiation 206 [CD206], and transform-
ing growth factor beta [TGF-b]) from three experiment
cohorts33,34 were combined into a single data set. A
missing-values visualization was generated using the
naniar R package, and rows that were missing values
across all cytokine variables (i.e., columns) were remo-
ved (one row removed). Little’s missing completely at
random (MCAR) test was performed using the ‘‘Lit-
tleMCAR’’ function in the BaylorEdPsych R package35

to determine the pattern of missingness to meet statis-
tical assumptions.36

To impute missing values, we used the ‘‘mice’’ func-
tion in the mice R package37 with the parameters: 10
imputations, predictive mean matching method, and
a seed value of 200. Linear principal component anal-
ysis (PCA) was performed using the ‘‘prcomp’’ func-
tion in the stats R package27 with centering and
scaling.38,39

To correct for the batch effect (i.e., effect of different
studies), we added a z-score standardization step after
removing the rows missing data across all columns
and before data imputation. We first calculated the
mean and standard deviation for each cytokine for

each of the three studies. For each cytokine data
point, we then subtracted the respective mean and
divided by the standard deviation of the study.

Principal components (PCs) were retained using clas-
sic tools from the factor analysis tradition: 1) scree plot,
2) Kaiser rule (eigenvalue, >1), and 3) PC determi-
nation based on examination of loading saturation. In
addition, we performed iterative testing of accuracy/
stability of PC patterns under imputation iterations.
To determine the stability of the PCA results across
the 10 imputations generated through mice, we uti-
lized the ‘‘component_similarity’’ function in the synd-
Romics R package.40 We reported the resulting
Congruence Coefficient, Cattell’s salient similarity met-
ric, and root mean square error (RMSE). Because the
PCA outputs for each imputation were highly similar,
we averaged all 10 imputations together to generate
the final imputed data set. PCA was then performed
on the imputed, averaged data set for further analysis.

To visualize the scree plot, we calculated the vari-
ance accounted for (VAF) for each PC from the
‘‘sdev’’ output of ‘‘prcomp’’:

VAFi = sdev2
i =S sdev2

� �
where i is the PC number and the denominator is the
sum of the variance across all PCs. We selected the
top PCs that collectively explained >80% of the vari-
ance in the data and had biological interpretations.
PC loadings were calculated and visualized using the
‘‘syndromic_plot,’’ ‘‘barmap_loading,’’ and ‘‘heatmap_
loading’’ functions in the syndRomics R package. PC
scores were obtained from the ‘‘x’’ output of ‘‘prcomp,’’
which transformed the original variables into values
along each PC.

To determine the study and injury effects and injury
and age effects, we performed a two-way analysis of
variance (ANOVA) with Tukey’s honestly significant dif-
ference HSD post hoc using the ‘‘aov’’ and ‘‘TukeyHSD’’
functions in the stats R package, respectively.

To compare effect sizes and observed power, we
performed two-way ANOVA for the main effects and
interaction of Injury and Age on PC1 and PC2 of
adult and aged sham animals and animals at 7 days
post-injury (dpi) from the aggregated data set (n = 47).
We additionally filtered for the Chou and colleagues
2018 cohort (n = 31) and performed two-way ANOVA
on the six individual inflammatory markers. The effect
size (g2) of the Injury effect, Age effect, or interaction
was calculated from the ANOVA F table as:
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g2 =
term sum of squares

total sum of squares

To obtain observed power, we calculated the partial Z2:

partial g2
0 =

term sum of squares

term sum of squaresþ residual sum of squaresð Þ

We then converted the partial Z2
0 (which is based on

sample estimates) to the partial Z2 based on Cohen’s
f according to the G*Power manual41:

partial g2 =
partial g2

0� N � kð Þ
N� k� partial g2

0

� �
where N is the total number of samples and k is the
total number of groups in the experimental design. Par-
tial Z2 was converted to Cohen’s f:

f =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
partial g2

1� partial g2

s

The observed power was then calculated from Cohen’s f
using the ‘‘pwr.f2.test’’ function in the pwr R package42.

Results
Open Data Commons for traumatic brain injury
infrastructure for data sharing and security
The purpose of the ODC-TBI is to establish an infra-
structure to facilitate effective data-sharing practices
within the pre-clinical TBI research community and
expand the data standardization and harmonization
guidelines initiated by the NINDS.20,43 Additionally,
the ODC-TBI interface has been developed to address
the concerns of pre-clinical TBI researchers toward
data-sharing practices21 and empower the researchers
through an intuitive interface. Currently, the ODC-
TBI provides guidelines to help researchers format
their data set according to best practices for data inter-
operability26,44 and standardize them according to
FAIR principles25 and NINDS-defined CDEs. Once pre-
pared, data sets can be uploaded to the ODC-TBI and
then further combined for Big Data analytics (Fig. 1A).

Protecting a lab’s data from misuse by third parties
is a major concern of investigators.45,46 To address
this obstacle, the ODC-TBI is built on a robust cloud-
based cyberinfrastructure through the California
Institute for Telecommunications and Information
Technology, which includes e-commerce–grade secu-
rity and encryption. In addition, ODC-TBI has estab-
lished several approval protocols to provide qualified
access to sensitive data while enabling open access to
published data (Fig. 1B). Uploading, sharing, and

accessing data are only possible for users who have a
verified institutional e-mail and have been approved
for lab membership by a Principal Investigator (PI)
with a lab in ODC-TBI. The process of data sharing
requires authorization by the PI, and the PI can remove
data sets from the shared space at any time.

When data are first uploaded, it is restricted to a Per-
sonal space accessible to only the original uploader and
their lab PI. Once approved by the PI, the data set
migrates to the Lab space where others in the same
lab will be able to access the data set. The PI can
approve the release of a data set into the Community
space where other members of the ODC-TBI commu-
nity will be able to access the data set. Last, the PI can
trigger a data-set publication process on the ODC-TBI;
once completed, the data set will be published as a cit-
able unit of research with a unique digital object iden-
tifier (DOI) and made accessible to the general public
(Fig. 1C). By granting the PI full control of their data
sharing at all times and requiring multiple security
checks, we can alleviate security concerns regarding
data sharing.

Another common obstacle toward data sharing is
the lack of guidance toward adequately organizing
the data.47 Experimental data are commonly stored
on spreadsheets with various structures that strive to
make the data clearly readable by humans. This inclu-
des nested labels, different font sizes, and multiple
tables on the same spreadsheet representing differ-
ent parameters (Supplementary Fig. S1A). However,
though this approach makes data easy to understand
to the original experimenters, the practice creates wide
variations in data formats and presents an intractable
problem for large-scale data harmonization, interopera-
bility, and merging. The ODC-TBI requires that data
sets be reformatted into the Tidy format, a standardized
data format ideal for data storage, aggregation, and
multi-data-set analytics (Supplementary Fig. S1B).26

The ODC-TBI contains written tutorials to guide
researchers in formatting their data into the Tidy
structure. We also encourage the upload of data-
set–associated data dictionaries (Supplementary
Fig. S1C). Data dictionaries help provide critical defini-
tions for each variable in the data set, essential informa-
tion, such as the unit of measurement and additional
comments about the experimental protocol, that im-
prove the interpretability and reusability of the data
set (e.g., reasons for excluding samples).

To demonstrate the ODC-TBI, we uploaded and
aggregated 11 data sets corresponding to 11 past
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publications from several labs at the UCSF.33,34,48–56

Additionally, we included an external data set from a
pooled analysis from the University of Texas Medical
Branch published through the ODC-TBI and reused
under a creative commons (attribution) license (CC-
BY 4.0).57 The number of animals across all 12 data
sets totaled N = 1250 individual subjects. Data sets
were harmonized according to National Institutes of
Health/NINDS CDEs for pre-clinical TBI, which enab-

led merging of the data sets for multi-data-set descrip-
tive analytics as presented in Figure 2. The majority
of the uploaded data corresponded to mouse experi-
ments (86.56%). The rest corresponded to rat experi-
ments (13.44%; Fig. 2A). Overall, 74.88% of subjects
were male, whereas 6.24% were female, animals. Nota-
bly, 18.88% of records were missing a value for the sex
parameter as a result of irrecoverable records, which is
a common issue when collecting data sets from older

FIG. 1. Open Data Commons for Traumatic Brain Injury (ODC-TBI) data flow and accessibility summary.
(A) Experiments are currently carried out by individual researchers and labs. Resulting data sets are
commonly preserved within lab resources (e.g., hard drives, lab notebooks, etc.). The ODC-TBI provides
documentation and guidance to help standardize data sets with respect to NINDS-defined pre-clinical
Common Data Elements (CDEs). Data sets from multiple labs and centers can then be uploaded into the
ODC-TBI and shared and combined for further analysis. (B) The ODC-TBI has five user types with three steps
for security. Each user type has different available functions on the site. After an e-mail verification and
approval by the ODC-TBI committee to ensure that the user is a researcher in the TBI field, they become a
general member. They can then join or create a lab, which requires the lab PI’s approval. Lab members can
upload and share their data within the lab they have joined. Last, PI-level users can also initiate the data set
release/publication process, increasing the accessibility of their data to others outside of their lab. (C) The
ODC-TBI consists of four Data Spaces. Each Data Space has different levels of accessibility. Data sets are
delegated to a Personal space when they are first uploaded; Personal data sets are accessible only to the
uploader and their lab PI. Data sets are shared into the Lab space where they can be accessed by anyone in
the lab. Data sets can be released into the Community space where other general members can access
them. Last, PIs can publish their data sets, which will make the data set accessible to the general public as
citable units of research with unique digital object identifiers. NINDS, National Institute of Neurological
Disorders and Stroke; PI, Principal Investigator.
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publications (Fig. 2B).58 The majority of the experi-
ments utilized the controlled cortical impact contusion
injury model (77.6%) with a smaller number of fluid
percussion injury (8.56%), closed TBI (6.32%), and
closed-TBI model of engineered rotational acceleration
repeated injury models (7.52%; Fig. 2C).

We further visualized the characteristics of the
1082 mouse subjects. Whereas most of the mice were
wild type, 17.28% of subjects were transgenic for
immunology-related genes, which highlights the fact
that the summarized studies were primarily focused
on immunological processes of TBI (Fig. 2D). Subject
age distribution showed a bimodal distribution, with
most animals falling below 6 months or above 18
months of age, reflecting the nature of the studies
investigating the effects of age on TBI biology (Fig. 2E).
Last, a variety of acute and chronic time points were
represented in the data sets (Fig. 2F). Notable peaks
in time-point distribution included time 0 (often a
control time point for uninjured animals), 1 dpi,
7 dpi, and 28 dpi to measure acute, subchronic, and
chronic effects of TBI, respectively.

Missing data in data structure
While working with users to prepare their data sets for
upload, we observed that users often had questions
regarding uploading files that contain empty cells,
also termed ‘‘missing values.’’ Missing values are to be
expected: A single data set can contain data from mul-
tiple studies with different outcome measures, resulting
in a patchwork of missing and present data. Missing
values analysis (MVA) is an established statistical sub-

field that involves descriptive statistical diagnosis of
missingness patterns, such as whether data are missing
completely at random (MCAR), missing at random
(MAR), or missing not at random (MNAR).58,59 Iden-
tifying the pattern and reasons for missing data is crit-
ical for appropriate data imputation—the statistical
practice of replacing missing values with plausible
substitute values usually derived from the rest of the
data—and multi-dimensional analytics.58,59 Data-set–
associated methodology and data dictionary documents
on the ODC-TBI can be utilized to inform MVA.

Here, we highlight common reasons for missingness
using the Chou and colleagues 2018 data set given
the researchers’ familiarity with the data set and the
breadth of reasons for missingness represented.33 The
simplest visualization for MVA recodes the data-set
elements (i.e., spreadsheet cells) with a binary code
(0 = missing, 1 = present) and produces a plot of black
and gray for missing elements and present elements,
respectively. MVA revealed that 61% of the elements
in the selected data set are missing values (Fig. 3A).

Reasons for missingness can be quite varied (Fig. 3B).
Most commonly, measures might not be collected at all
as part of the experimental design (‘‘not collected [by
design]’’ white cells in Fig. 3B). For example, a sample
can be used either for immunohistochemistry or for
flow cytometry, but not both. Accordingly, two sepa-
rate cohorts of animals are required: one planned for
immunohistochemistry measures and one for flow
cytometry. Conversely, there are times when an attempt
is made to collect the data, but the data are excluded
because of technical reasons (‘‘removed for technical

‰

FIG. 2. Descriptive summaries of data aggregated from 11 pre-clinical TBI publications from the UCSF on the
ODC-TBI. (A) The 11 data sets constituted data from 1250 unique animals, with the majority being mice. (B) The
majority of subjects were male, with a small proportion of female, animals. Notably, 18.9% of the subjects were
missing records of male or female. (C) The primary TBI model utilized was the controlled cortical impact model
with the greatest representation by parietal injuries. There were also a smaller number of fluid percussion injury
subjects, closed TBI subjects, and repeated closed-TBI models using the CHIMERA impactor. (D) Of the mice
subjects, the predominant genotype was wild type. The remaining mouse models included C3-knockout, CCR2-
knockout, CCR2-rfp transgenic, and CX3CR1-gfp and CCR2-rfp transgenic animals. These transgenics reflected the
interest in inflammatory pathways after TBI in the publications. (E) Mice subjects’ age at time of injury showed a
bimodal distribution encompassing young (2–6 months) and old (16+ months) animals. Age distribution reflected
the focus on the effect of aging on TBI processes. (F) Data were collected at a variety of time points from the
mice experiments. Time points with the greatest number of observations were 0 days post-injury (dpi), 1 dpi, 7 dpi,
and 28 dpi. The breadth of time points reflected time-course studies as well as the interest in both acute and
chronic effects of TBI in the studies. C3, complement C3; CCR2, C-C motif chemokine receptor 2; CX3CR1, C-X3-C
motif chemokine receptor 1; CHIMERA, closed-head impact model of engineered rotational acceleration; F, female;
M, male; NA, not applicable; TBI, traumatic brain injury; UCSF, University of California San Francisco.
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reasons’’ green cells in Fig. 3B). Understanding the cir-
cumstances for which the data were removed is critical
for the process of data imputation.

In some cases, a variable (i.e., column) may exist in
the data set, but not actually be applicable, thus leading
to an entire column of missing values (‘‘not applicable’’
red cells in Fig. 3B). This can also be the result of data
harmonization and aggregation when certain columns
are not applicable to specific data sets. In the Chou
and colleagues 2018 data set, there is a column for
the ‘‘treatment’’ CDE. However, no treatments were
administered in any of the experiments, and, accord-
ingly, the entire column is missing given that the
parameter was not applicable to the data set.

Another possible reason for missing values is that
the data were not recorded or were unable to be recov-
ered from past records (‘‘missing record’’ blue cells in
Fig. 3B). In the Chou and colleagues 2018 data set,
some subjects are missing the sex variable, which cor-

responds with Figure 2B. In this case, the experimental
records that we collected the data from did not have
the sex information readily available.

Multi-dimensional analytics use case
To demonstrate the multi-data-set analytic workflow
facilitated by the ODC-TBI, we aggregated data from
three controlled cortical impact studies (i.e., indepen-
dent experimental cohorts of animals; N = 99) pub-
lished in Chou and colleagues [2018] and Morganti
and colleagues [2015]33,34). These studies were chosen
because basic multi-variate approaches require com-
mon variables between data sets. The selected studies
included an injury time-course study, an aging study,
and a treatment study that isolated innate immune
cells from injured brain tissue, and all measured the
expression of the following six inflammatory markers
by qPCR: IL-1b, TNF-a, iNOS, Ym1, CD206, and
TGF-b. Using the aggregated data, we performed 1)
MVA, 2) missing data imputation, 3) PCA, and 4)
syndromic visualization to identify salient multi-
dimensional patterns of immune activation across the
studies.

‰

FIG. 3. Missing value visualizations of Chou and
colleagues (2018).33 (A) Typical missing value
visualization shows which elements (i.e., cells) contain a
value and which do not, which are thus termed
missing. The uploaded data showed generally low
missingness for variables (i.e., columns) corresponding
to NINDS CDEs and fairly high missingness for variables
corresponding to collected experimental measures.
Each row corresponded to an observation, in this case
a single animal subject. (B) Types of missingness were
manually color-coded based on the type of
missingness. The majority of the missing values were
‘‘Not Collected (by design)’’; the data set constituted
eight separate experiments, and experimental
outcomes were specifically collected for subjects
belonging to one experiment. The result was an
extremely sparse data set by design. Another source of
missingness was when a variable is ‘‘Not applicable,’’
which we expect in cases when a NINDS-defined CDE is
not applicable to the study design. In this example, no
treatments were given, so the treatment CDE column
was entirely missing values. Data could also be
irrecoverable because of ‘‘Missing records,’’ such as the
subject’s sex in this example and as reflected in
Figure 2B. Last, data from experiments could also have
been ‘‘Removed due to technical reasons.’’ CDEs,
Common Data Elements; NINDS, National Institute of
Neurological Disorders and Stroke.
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After the initial analysis, we included an additional
within-study z-score standardization step between MVA
and missing data imputation in order to correct for
an observed batch effect of study (i.e., study effect;
Fig. 4A). Broadly, PCA is an unsupervised multi-
variate dimensionality reduction technique that com-
bines and reduces the input variables into new features
that retain properties of the original data while maxi-

mizing the variance of the data accounted for.60,61 Syn-
dromic visualization encapsulates a set of plots (e.g.,
syndromic plots, barmaps, and heatmaps) developed
in the Ferguson lab to intuitively present the PCA
results.40,62

MVA revealed that the aggregated data set has 1.3%
missingness (Fig. 4B). Within the Chou and collea-
gues 2018 data, one of the samples (i.e., rows which

FIG. 4. Multi-dimensional analytics use case. (A) We implemented an analysis workflow including missing
values analysis, missing data imputation, principal component analysis (PCA), and syndromic visualizations.
After an initial analysis, we implemented an additional z-score standardization step before data imputation
to correct for a study effect. (B) Data were aggregated from three experiments (figures) from two articles:
Chou and colleagues (2018) and Morganti and colleagues (2015).33,34 Visualization of the missing data show
that 1.3% of the data set was missing values. Notably, one entire row was entirely missing, and the other
two missing values were from the Ym1 variable. (C) Conceptual representation of PCA. The original
variables (TNF-a, IL-1b, Ym1, CD206, TGF-b, and iNOS) can be categorized into the domains of
proinflammation, anti-inflammation, and oxidative stress based off of existing knowledge. PCA is an
unsupervised method that captures the underlying relationship between the variables—and thus the
relationship between the represented knowledge domains—to derive new latent cross-domain features
from the data. (D) The derived PC can be represented as a syndromic plot that visualizes the contributions
(i.e., loadings) of each variable to the PC. Further, the PC captures a portion of the variance in the data,
which is reflected by the percentage value in the center of the syndromic plot. In the example PC, 48% of
the variance in the data set was accounted for, and all six of the variables were loading positively. CD206,
cluster of differentiation 206; IL-1b, interleukin 1 beta; iNOS, inducible nitric oxide synthase; PC, principal
component; TGF-b, transforming growth beta; TNF-a, tumor necrosis factor alpha; Ym1, Ym1 chitinase-like
protein.
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correspond to individual mice in the selected data sets)
was missing values across all six variables. A sample
that is missing values across all variables cannot be
accurately imputed, so we removed the sample from
further analysis. Two other samples were missing val-
ues for Ym1. Harnessing experimenter knowledge, we
identified that the two values are missing because of
technical errors during the qPCR procedure. We fur-
ther verified that the missing data could be consid-
ered MCAR with Little’s statistical test ( p = 0.86),36

indicating that the pattern of missingness was attrib-
utable to random chance and not correlated with the
values of other variables in the data set.

Importantly, data imputation could accordingly
proceed without the need to explicitly model the miss-
ingness.58,59 We imputed the two missing values using
a multiple imputation method that operates under the
assumption that the data are MCAR: predictive mean
matching. The imputation first creates a predictive
model from the samples with complete cases (rows
without missing values) to generate estimates for the
missing values, identifies which complete samples
have observed values closest to the predicted value
for the missing entry, and then randomly chooses
one of the observed values to use for the imputation.
We repeated the process 10 times—a general guideline
for multiple imputation of missing data that is suffi-
cient for cases where only a small portion (<10%) of
the data is missing63—to create 10 imputed data sets.

We then performed PCA on each individual impu-
ted data set with mean centering and z-scaling of the
data (i.e., analogous to running PCA on the correla-
tion matrix of the data set) to examine the relation-
ship between the six inflammatory markers. In brief,
during experimental design, researchers select out-
come measures (i.e., variables) that represent broader
domains of interest. In our use case, the variables are
inflammatory markers that can be categorized into
pro-inflammatory, anti-inflammatory, and oxidative
stress domains.33,34 PCA transforms the variables of
this multi-variate data set into a set of PCs that capture
the relationship of the analytes. PCA maximizes the
variance in the data along each PC under the restriction
that each component is uncorrelated to the others.60,61

Importantly, because PCA is an unsupervised method,
the PCs are data-derived scores determined purely by
the correlational pattern between the variables as obser-
ved. PCA thus captures the relationship between the
represented domains in a data-driven manner and can
identify new underlying (i.e., latent) cross-domain fea-

tures (Fig. 4C). We can further visualize the contribu-
tions (i.e., loadings) of each of the original variables
to each PC in the form of a syndromic plot (Fig 4D).

The initial PCA revealed three PCs that were above
the scree plot elbow with eigenvalues of 2.88 (PC1),
1.22 (PC2), and 0.91 (PC3). Examination of load-
ings suggested that PC3 included parts of TBI biology
that are of historical interest to the field, so we opted
to include it in subsequent stability/accuracy testing
and discussion. To determine whether our imputation
method significantly affected our PCA output, we
tested the similarity of the resultant PCs from PCAs
performed on each of the individual imputed data
sets. We found that the resultant PCAs were almost
exactly identical (congruence coefficient, >0.999 – 0.001
for each PC; Cattell’s salient similarity = 1.000 – <0.001
for each PC). Accordingly, we took the mean of the
imputed values to create a single imputed, complete
data set and then applied PCA for further analysis.
We additionally verified that the PCA results of the
mean-imputation data set were near identical to the
PCAs of each individual imputed data set (congruence
coefficient, >0.999 – 0.001 for each PC; Cattell’s salient
similarity = 1.000 – 0.001 for each PC; RMSE = 0.0010 –
0.0003 for PC1, 0.0010 – 0.0007 for PC2, and 0.0010 –
0.0006 for PC3).

The resulting loadings of each variable to each PC
allowed us to transform the original data into PC scores
for each subject. Plotting the PC scores on the first
two PC axes, we observed that the first two components
account for variance attributable to study 2 and study 1
(along PC1 and PC2 respectively; Fig. 5A). A two-way
ANOVA of PC1 scores revealed significant main effects
of Injury (F(1,93) = 8.30, p < 0.005) and Study (F(2,93) =
18.32, p < 0.001) and a significant interaction of Injury
and Study (F(2,93) = 4.84, p < 0.05). Along PC2, two-way
ANOVA similarly revealed significant main effects of
Injury (F(1,93) = 46.69, p < 0.001) and Study (F(2,93) =
4.64, p < 0.05) and a significant interaction of Injury
and Study (F(2,93) = 5.63, p < 0.005). To further empha-
size the study effect captured by the PC scores, we
filtered for all adult sham animals and adult TBI ani-
mals at 7 dpi across the three cohorts. We observed
that the TBI animals fell on both sides of the sham
animals along PC1, suggesting that the PCA had trans-
formed the original data according to variance attrib-
utable to study as well as biological differences
attributable to injury (Fig. 5B).

To correct for this study effect, we standardized each
inflammatory marker into z-scores of the distribution
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of values within the individual studies (i.e., within-
study z-score standardization; Fig. 4A). After the cor-
rection, we reperformed imputation and PCA on the
standardized data set. Two-way ANOVA on the new
PC scores revealed only a main effect of Injury along

PC1 (F(1,93) = 84.42, p < 0.001). There were no signifi-
cant main effects or interactions with Study for either
PC1 or PC2, suggesting successful correction. Visual-
ization of the study-corrected PC scores also showed
that PC1 now primarily captured the variance

FIG. 5. Change in PC scores after correcting for study. (A) Data points mapped onto PC space (i.e., PC1
and PC2) grouped by Study and Injury groups. In the uncorrected PC space, PC1 primarily captured the
variance from study 2 whereas PC2 primarily captured the variance from study 1 (left). Two-way ANOVA
revealed significant main effects of Study and Injury and significant interaction along both PC1 and PC2.
After correcting for study, PC1 primarily captured the variance between sham and TBI samples, and neither
PC1 nor PC2 appeared to represent the variance from a single study (right). Two-way ANOVA revealed only
a significant main effect of Injury along PC1. (B) Data points for animals belonging to similar experimental
groups mapped onto the uncorrected and study-corrected PC spaces. Before correcting for the study effect,
adult animals at 7 days post-injury (dpi) from study 1 and study 2 fell on opposite sides of the sham
experimental groups (left). After correcting for study, the 7-dpi animals clustered more closely in the PC
space and exhibited similar PC1 direction in relation to sham animals (right). The variance accounted for
(VAF) of the PCs additionally show that the study correction increases the VAF of PC1 and decreases the
VAF of PC2. ANOVA, analysis of variance; PC, principal component; TBI, traumatic brain injury.
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attributable to injury (Fig. 5A,B), verifying that our
within-study z-score standardization helped to correct
for the variance between studies that may have been
caused by different experimenters.

Taking the PCA of the data set that had been stan-
dardized to within-study z-scores and then averaged
across 10 imputations, we plotted the VAF by each
PC on a scree plot. We observed that the first three
PCs (PC1, PC2, and PC3) accounted for 83.5% of
the variance in the aggregated data set (Fig. 6A). We

focused our attention on these three PCs given that
they explain the majority of the data variance and
have biologically interpretable loading patterns; conver-
sely, PC4–6 essentially captured unexplained variance
and noise in the data. We visualized the loadings of
each individual marker to the first three PCs using
the syndRomics package in R to generate syndromic
plots (Fig. 6B).40 Markers visualized in the syndromic
plots were those with absolute loadings above a thresh-
old of significance (jloadingj > 0.2).

FIG. 6. Syndromic visualization of the principal component analysis (PCA). (A) The scree plot after running
PCA on the imputed data set revealed that the first three PCs account for 83.5% of the variance in the
aggregated data set. (B) Syndromic plot visualization showed the significant variable loadings for each PC.
PC1 was labeled as overall inflammation, PC2 as the pro- versus anti-inflammatory axis, and PC3 as iNOS
expression. (C) The barmap visualization provides additional information, including the variable loadings
that were below the threshold of significance (0.2) for each PC. The barmap denotes with an asterisk (‘‘*’’)
which loadings were above the significance threshold. CD206, cluster of differentiation 206; IL-1b,
interleukin 1 beta; iNOS, inducible nitric oxide synthase; PC, principal component; TGF-b, transforming
growth beta; TNF-a, tumor necrosis factor alpha; Ym1, Ym1 chitinase-like protein.
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We also visualized the PCA output as a barmap and
heatmap, which show the loadings for all six inflamma-
tory markers to each PC (Fig. 6C and Supplementary
Fig. S2). Researchers with domain expertise in pre-
clinical TBI neuroinflammation examined the load-
ing patterns and labeled PC1 as representative of an
‘‘overall inflammation’’ axis, with every inflammatory
marker loading positively, and PC2 as representative
of the ‘‘pro- vs anti-inflammatory’’ axis, with anti-
inflammatory markers (CD206 and TGF-b) loading
inversely to proinflammatory markers (IL-1b and
TNF-a). Last, PC3 showed iNOS loading almost exclu-
sively, suggesting that iNOS might provide unique
information about the inflammatory state after injury
distinct from the other five markers.

Notably, data aggregation and PCA can increase the
sensitivity (increased effect sizes) to better distinguish
experimental groups as compared to univariate analy-
ses. To illustrate this, we mapped the PC scores for
adult (3–6 months) and aged (18+ months) animals
in sham or 7-dpi experimental groups from the aggre-
gated data set (n = 47; Fig. 7). We observed that TBI
increased the inflammatory profile at 7 dpi as repre-
sented by an increase in PC1 score (Injury main effect:
F(1,43) = 65.14, p < 0.001). Further, we observed a dis-
tinct separation between adult and aged animals at
7 dpi along PC2: Aged TBI animals have lower PC2
scores as compared to adult TBI animals, reflecting an
age-driven shift toward proinflammation and away
from anti-inflammation at the subchronic time point
(two-way ANOVA; Injury main effect: F(1,43) = 7.44,
p < 0.01; Age main effect: F(1,43) = 18.69, p < 0.001;
Injury and Age interaction: F(1,43) = 15.02, p < 0.001;
Tukey’s HSD: adult TBI vs. aged TBI, p < 0.001).

For comparison, we also reproduced the univariate
analyses from Chou and colleagues 2018 with the indi-
vidual inflammatory markers and the study-specific
cohort.33 We calculated the effect sizes (g2) and corre-
sponding observed statistical power (1-b) for the main
effects and interactions of Injury and Age for PC1, PC2,
and each individual marker (Supplementary Table S1).
PC1 had the largest effect size for Injury (g2 = 0.593)
with an observed power of 1.0. Of particular interest
to the original study, which examines Injury and Age
interactions, PC2 had the largest effect size for the
interaction term (g2 = 0.179) with an observed power
of 0.96. Importantly, PCs are derived mathematically
from correlations in the data and directly model the
relationship between variables without relying on mul-
tiple univariate comparisons, which would be prone to

false positives. PCA thus not only improved sensitiv-
ity for the original experimental question, but also
specifically established that age skews subchronic
inflammation away from anti-inflammation and toward
proinflammation. This was not clearly observed in the
original cohort and univariate analyses with the indi-
vidual markers.

Altogether, our analyses demonstrate the potential
of multi-dimensional analytics in reinforcing infer-
ential reproducibility of previous findings while leverag-
ing heterogeneous data sets to identify persistent
pathophysiological patterns. By establishing a func-
tional infrastructure toward the FAIR principles of
data sharing to promote data reuse, the ODC-TBI
acts as a critical bridge for data-set standardization
and aggregation to facilitate and accelerate such efforts.

FIG. 7. Validation of results from previous
studies with the aggregate analysis. Animals
corresponding to sham versus TBI at 7 days
post-injury and Adult (3 months) versus Aged
(18+ months) experimental groups were filtered
from the aggregated data set and mapped onto
the study-corrected PC space. Sham animals
clustered closely regardless of age. TBI
significantly increased the overall inflammation
(PC1; variance accounted for [VAF] = 48%) for TBI
animals without a significant main effect of Age
or interaction. Along PC2 (VAF = 20.4%), there
were significant effects of Injury and Age as well
as a significant Injury and Age interaction,
suggesting that aged animals exhibited a shift
toward proinflammation whereas adult animals
shifted toward anti-inflammation at 7 days post-
injury. PC, principal component; TBI, traumatic
brain injury.
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Discussion
The ODC-TBI is a data commons developed for pre-
clinical TBI research designed to 1) enable data sharing
within the research community,12 2) support data stan-
dardization guidelines established by the NINDS,20,21

3) promote FAIR data-sharing principles,25 and 4) em-
power Big Data analytics in pre-clinical TBI research.10

Importantly, the ODC-TBI is uniquely positioned to
directly socialize and implement data sharing with
the TBI research community. In contrast to general
cross-disciplinary repositories that have few require-
ments on structure and documentation, the ODC-TBI
requires data sets to be organized in the Tidy data for-
mat as well as include critical information through data
dictionaries and data-set–associated metadata. Such
standards significantly improve data interoperability
and reusability and reduce the likelihood of shared
data being mis- or uninterpretable for reuse.

Further, because the ODC-TBI is developed in close
communication with the TBI research community, we
are able to directly assist and empower researchers to
understand and meet the FAIR data standards as well
as continue to evolve the ODC-TBI platform to meet
community needs. This critical community engage-
ment sets the ODC-TBI apart from all-purpose repos-
itories and follows a similar path to success for FAIR
data sharing as demonstrated by other community-
centered data repositories.64 We additionally demon-
strate an analytical process made possible by utilizing
the ODC-TBI to identify common TBI immune re-
sponses across three different pre-clinical TBI studies.
Although the analysis performed here is not yet inte-
grated on the ODC-TBI, analytical features and tools
are being actively developed that will be directly avail-
able through the platform. Indeed, as the ODC-TBI
continues to grow to fulfill the needs and interests of
the TBI research community, the platform will evolve
to be both a data repository as well as a hypothesis gen-
eration platform that empowers researchers to leverage
the richness of individual subject-level data through
FAIR data sharing and publication.

We recognize that the practice of data sharing is still
emerging in many biological fields, including pre-
clinical TBI. There are potential risks of data sharing—
such as data security and misuse without proper
citation45,46—that endure among research communi-
ties even as publishers and funding agencies have
begun to require it.23,47,65 With the ODC-TBI, we
ensure that the PI has full control of the accessibility
of their data set when sharing their work with their

peers in the research community and when they pub-
lish the data sets to the general public. The ODC-TBI
also tracks which users have accessed shared data sets
and provides the information to the data-set PIs. Dur-
ing data-set publication, the ODC-TBI generates a
unique and persistent DOI and citation for the data
set where the PI can include all associated authors
and contributors for proper credit.

Importantly, all data sets published through the
ODC-TBI are done so under the Creative Commons
CC-BY 4.0 license, meaning that any work utilizing
those data sets must properly cite them much the same
way scientific articles are cited. This provides a novel
avenue for researchers to benefit from their data as a
new, citable, scientific work product. This has direct
benefits to the data contributor, given that data shar-
ing has been found to be associated with an increase
in citations for researchers.66 These requirements are
explicitly written as part of the data-use agreement
consented to by all users signing up to the ODC-TBI
and provide a key layer of accountability. Future fea-
tures of the ODC-TBI platform will include direct
peer-to-peer sharing functionalities, further diversify-
ing the methods that PIs can upload and share their
data in a protected manner on the ODC-TBI.

We also realize the importance of supporting and
integrating common terminology, such as CDEs, to
improve all aspects of FAIR data sharing on the
ODC-TBI. Indeed, NINDS and the TBI research com-
munity have recognized the challenges in data compar-
ison attributable to the lack of common variable names
and definitions; this spurred a concerted multi-center
endeavor to identify and define CDEs to be adopted
by clinical and pre-clinical TBI researchers.15,20,21 We
manually aligned variables in 11 data sets described
here to NINDS-defined CDEs before uploading them
to the ODC-TBI.

To promote the practice of aligning NINDS-defined
CDEs, we aim to implement a CDE mapping system on
the ODC-TBI built upon the engineering framework of
the InterLex/NeuroLex system developed by NIF.22

The feature will enable CDE mapping after data upload
and allow users to align each variable of a data set to a
dictionary of CDEs (including NINDS-defined CDEs),
an aspect of the ODC-TBI that further distinguishes
the repository from other existing platforms. The map-
ping system would increase the accessibility and prom-
inence of NINDS-defined CDEs and help to construct a
knowledge base of TBI research to make data more
findable, interoperable, and reusable. As the number
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of data sets shared on the ODC-TBI grows, it will be
possible to further validate the prevalence of NINDS-
defined CDEs as well as identify novel CDEs in TBI
research.

We expect many data sets uploaded to the ODC-TBI
to contain missing values for a variety of reasons, such
as those visualized in Figure 3. MVA is a critical com-
ponent for Big Data analytics; many multi-variate
techniques as well as common univariate approaches
(t-test, correlation, and ANOVA) require complete
data sets for analysis. Most commercial statistics tools
default to dropping subjects (list-wise deletion) with
missing values. However, researchers are often un-
aware of the impact of missing values, and the practice
of list-wise deletion can introduce bias and contribute
to scientific irreproducibility.36,58 Understanding the
types of missingness is essential for selecting which
data imputation technique can be applied; various
imputation techniques contain different assumptions
that would invalidate specific analyses if they are violat-
ed.58,67 In simple cases, such as when the Treatment
column is not applicable in the study but still kept as
a column (red-labeled cells in Fig. 3), the missing
value can be imputed with a control value (e.g., control,
naı̈ve, or zero).

More generally, data imputation depends on mod-
eling the correlation between variables, and if two
variables are never collected in tandem because of
experimental design or limitations, then identifying
their relationship becomes increasingly inaccurate.
Recognizing when data are missing because of experi-
mental design is critical. To this end, the ODC-TBI
supports the upload of data-set–associated method-
ology and data dictionaries that can provide context
for researchers to interpret when data imputation is
appropriate.

Similarly, the methodology documents and data dic-
tionaries can also highlight the reasons data may be
missing because of technical reasons. In many cases,
data are missing because of truly random events (e.g.,
contamination of a single sample during processing
or human error performing the experimental protocol).
In such cases, the missing data would be classified as
MCAR, which permits straightforward approaches to
imputing missing data without having to incorporate
patterns of missingness directly into the analysis.58 In
other circumstances, the data might be MNAR: The
missingness is correlated to one of the other variables
of interest or itself. For example, this may occur
when a sample’s protein quantification falls below the

detectable range of an assay. Instead of keeping a
potentially inaccurate value, the experimenter decides
to exclude the value altogether.

Here, the missingness is correlated to the variable
itself: The value is missing because its value falls
below the detectable limit. If we were to impute the
missing values without regard, we would overesti-
mate the true values of the missing data and bias our
analyses. With proper documentation, the type of
data missingness can be identified to better inform the
appropriate approach to data imputation and avoid
grave statistical mistakes in analysis.

As an illustration of how ODC-TBI data can be
reused for further discovery, we pooled data across
three cohorts of subjects from past articles33,34 and per-
formed a multi-variate analysis workflow. Our results
indicate that across experiments investigating the ef-
fects of time post-injury, age, and a monocyte-
infiltration antagonist, there were latent variables (i.e.,
PCs) that captured the general inflammatory state
(PC1), a pro- vs anti-inflammatory state (PC2), and
oxidative stress response (PC3). PC loadings further
suggest that: 1) Ym1 is not a primary contributor
to explaining the pro- versus anti-inflammatory state
of the tissue despite Ym1 being considered an anti-
inflammatory marker on myeloid cells68; 2) whereas
myeloid cells do not exhibit strictly pro- or anti-
inflammatory phenotypes after TBI, there is a marked
inverse relationship between pro- and anti-
inflammatory markers34,50; and 3) iNOS expression is
mostly distinct from the other analytes even though
iNOS is often correlated with proinflammatory respon-
ses in innate immune cells after TBI.69,70 This is fur-
ther reinforced by the fact that PC3—which is where
iNOS primarily loads into—has an eigenvalue of
0.91; a PC with an eigenvalue of <1 would mean that
the PC contains less variance or information than any
individual marker.

We chose to report PC3 given that the eigenvalue is
close to 1, the component is clearly biologically inter-
pretable, and that the inference regarding iNOS is con-
sistent with or without retaining PC3. Applications
of PCA onto more complex data that lack clear inter-
pretability should also consider utilizing other PC
selection methods, such as the Kaiser rule, based on
eigenvalues or permutation tests. Additionally, though
we focused on interpreting the PCs as composite bio-
logical responses across the variety of experimental
conditions, principal component regression (PCR)
could be used in future studies to identify the PCs
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with maximal prediction accuracy for a given hypoth-
esis. Depending on the hypothesis of interest, PCR may
reveal that lower variance PCs may, in fact, be better
predictors and thus offer additional insight to the rela-
tionship of the PCs to specific biological questions.

Overall, these results reinforce the inferential repro-
ducibility of previous findings through the increased
sample size from data aggregation and the methodol-
ogy that specifically reveals persistent latent variables
across different experimental manipulations. Addition-
ally, as more data sets are shared, such analyses can sim-
ilarly uncover the multi-variate correlation of other
measured variables, such as from behavior or imaging
assays. This can be further applied across outcome
domains to generate novel hypotheses about latent bio-
logical responses after TBI, which, in turn, can stimulate
the conceptualization and design of new experiments.

Notably, in the original univariate analysis of Chou
and colleagues (2018), we observed a general impair-
ment of anti-inflammatory markers, but no difference
in proinflammatory markers at 7 dpi in aged animals
after TBI.33 Although the univariate analysis suggested
a shift in pro- versus anti-inflammatory responses, at
best we could conclude that anti-inflammation after
TBI was blunted by age. As reflected in our analysis
by PC2, we can, in fact, posit that age biases the sub-
chronic inflammatory state toward proinflamma-
tion and away from anti-inflammation. Further, the
effect-size analysis shows that data pooling and PCA
increased the overall power for detecting the primary
experimental effect of interest (i.e., interaction of age
and injury). Indeed, uni- and multi-variate analyses
together provide a more meaningful understanding of
the biology, with the latter additionally increasing the
statistical power and inferential validity of findings.

Critically, the work demonstrated here is limited by
the amount of data on the ODC-TBI that can be effec-
tively aggregated. In particular, the analysis was signif-
icantly facilitated by first-hand familiarity with the
data, though proper documentation of the data sets
as described will go a long way to reinforce data inter-
pretability for reuse. However, there remains a consid-
erable obstacle of the heterogeneity of outcome
variables in the field. Indeed, whereas the aggregated
data originated from three separate experimental stud-
ies, they ultimately comprised a total sample size of 99
subjects—larger than typical individual animal experi-
ments, but still comparatively small—out of our total
data. Importantly, these 99 subjects were the samples
with data across the six analytes.

Fortunately, whereas many multi-variate techniques
rely on subjects having complete data for the same var-
iables, Big Data methods for handling data variety may
provide avenues for extracting novel inferences and
hypotheses from data sets that are not completely over-
lapping with variables. For example, validated latent
variables may provide common multi-variate domains
to connect data sets with only partially overlapping
variables. Additionally, there is significant work on
extending concepts of missing data imputation toward
incomplete multi-table data sets that could be applied
toward these challenges.71 As the community use
of ODC-TBI for data sharing and reuse grows, under-
standing the differences in collected data may also pro-
vide an impetus for standardizing outcome variables
for common biological and functional pathways.

Notably, the analytical workflow presented here can be
extended to reveal features persistent across laboratories,
experimenters, injury parameters, and injury models.
This approach is powerful because it ultimately leverages
the heterogeneity of experimental design in pre-clinical
TBI research to find common underlying pathophysiol-
ogy of TBI. Critically, although the PCs are extracted
through multi-variate statistical techniques, assigning la-
bels and contextualizing PCs with the underlying biology
requires a combination of statistical rules based in the
well-established field of factor analysis72,73 as well as
the specific biomedical domain expertise. Data sharing
through the ODC-TBI will open avenues of collaboration
not only between researchers in pre-clinical TBI, but also
between computational and molecular researchers who
can provide complementary expertise toward interpret-
ing results. As more studies populate the ODC-TBI,
such opportunities and interdisciplinary collaboration
will identify features of TBI across an even broader
array of heterogeneity and uncover possible therapeutic
targets and biomarkers that would be applicable to a
broader patient population.

Data availability
The data sets generated and analyzed in the current
study will be published and made publicly available
in the ODC-TBI repository. The datasets generated
and analyzed in the datasets can be identified by their
DOIs: 10.34945/F51P49 (Fig. 2), 10.34945/F5T595
(Fig. 3–7), and 10.34945/F5PC77 (Figs. 4–7).
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Handling missing rows in multi-omics data integration: multiple
imputation in multiple factor analysis framework. BMC Bioinformatics 17,
402.

72. Spearman, C. (1987). The proof and measurement of association between
two things. By C. Spearman, 1904. Am. J. Psychol. 100, 441–471.

73. Pituch, K.A., and Stevens, J. (2015). Applied Multivariate Statistics for
the Social Sciences, 6th ed. Routledge/Taylor & Francis Group:
New York.

Cite this article as: Chou, A, Torres Espin, A, Russell Huie, JR,
Krukowski, K, Lee, S, Nolan, A, Guglielmetti, C, Hawkins, BE, Chaume,
MM, Manley, GT, Beattie, MS, Bresnahan, JC, Martone, ME, Grethe, JS,
Rosi, S, and Ferguson, AR (2022) Empowering data sharing and ana-
lytics through the open data commons for traumatic brain injury re-
search. Neurotrauma Reports 3:1, 139–157, DOI:10.1089/
neur.2021.0061.

Abbreviations Used
ANOVA ¼ analysis of variance
CD206 ¼ cluster of differentiation 206

CDEs ¼ Common Data Elements
DOI ¼ digital object identifier
dpi ¼ day(s) post-injury

FAIR ¼ Findable, Accessible, Interoperable, and Reusable
HSD ¼ honestly significant difference

IL-1b ¼ interleukin 1-beta
iNOS ¼ inducible nitric oxide synthase
MAR ¼ missing at random

MCAR ¼ missing completely at random
MNAR ¼ missing not at random

MVA ¼ missing values analysis
NIF ¼ Neuroscience Information Framework

NINDS ¼ National Institute of Neurological Disorders and Stroke
PCs ¼ principal components

PCA ¼ principal component analysis
PI ¼ Principal Investigator

PCR ¼ principal component regression
qPCR ¼ quantitative polymerase chain reaction
RMSE ¼ root mean square error

TBI ¼ traumatic brain injury
TGF-b ¼ transforming growth factor beta
TNF-a ¼ tumor necrosis factor alpha
UCSF ¼ University of California San Francisco

VAF ¼ variance accounted for
Ym1 ¼ Ym1 chitinase-like protein
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