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ABSTRACT OF THE DISSERTATION 

 

Memory, Dementia, and the Functional Role of the Parietal Cortex 

 

by 

 

Tyler Michael Seibert 

 

Doctor of Philosophy 

 

University of California, San Diego, 2011 

 

Professor Gabriel A. Silva, Chair 

Professor James B. Brewer, Co-Chair 

 

 

Autobiographical memories are the mind’s definition of self. The neural 

substrates of memory are therefore of tremendous scientific interest. Moreover, the 

impairment or loss of memory in dementia is a personal catastrophe that reverberates 

throughout the community and incurs enormous financial and emotional costs. The 

present dissertation addresses scientific and clinical interests in memory with a 

particular focus on an area of the brain—the parietal cortex—that is active in memory 

retrieval and selectively vulnerable to dementia pathology. Chapter one describes a 
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study using magnetoencephalography (MEG) that revealed an immediate parietal 

response in episodic retrieval. Chapter two discusses a repetition of the first study with 

another neuroimaging technique, functional magnetic resonance imaging (fMRI). The 

results from MEG and fMRI were combined to provide a more precise picture of the 

timing and localization of retrieval-related parietal activity, which onset 

simultaneously with a cue to retrieve and was most prominent in the intraparietal 

sulcus. Chapter three presents a novel method for analyzing the interregional 

functional correlations of the parietal cortex. This method preserves the unique 

anatomical features of individual subjects, allowing more accurate comparisons of 

functional correlations between healthy individuals and those with dementia. Chapter 

four describes results from application of the new analysis method to longitudinal 

data. Parietal and non-parietal functional correlations were contrasted in preclinical 

Huntington’s disease and healthy adults, and the long-term stability of these 

correlation patterns was assessed in both populations. There proved to be little effect 

of preclinical Huntington’s disease on functional correlations, but highly consistent 

group-level results over a one-year period in each population point to the potential of 

this technique as a quantitive clinical biomarker in dementia. Chapter five also reports 

results from application of the new method, in this case to resting fMRI data from 

patients with Parkinson’s disease and Parkinson-related dementia. The strength of 

resting interregional fMRI correlations in demented patients was decreased relative to 

equivalent measurements in unimpaired elderly subjects, particularly within 

corticostriatal regions.  

 

xviii 



INTRODUCTION 
 
 

Memory 

 In 1953, at the age of twenty-seven, Henry Molaison underwent an 

experimental brain surgery hoping to find some relief from the debilitating seizures 

that had prevented him from working or otherwise leading a normal life. Patient H.M., 

as he has since been known to decades of neuroscientists, awoke from the operation 

with a new neurological problem: nearly complete anterograde amnesia. The removal 

of Mr. Molaison’s bilateral hippocampi left him unable to create new explicit 

memories, including those of names, faces, facts, dates, or even of events in his own 

life. This terrible human tragedy was pivotal in the development of our current 

understanding of memory circuitry in the brain and of the essential role of the 

hippocampus and related structures (Scoville and Milner, 2000; Squire, 2009). Nearly 

a half-century later, it became possible to image activation of the human hippocampus 

during memory tasks using functional magnetic resonance imaging, or fMRI (Brewer 

et al., 1998). 

 While focus on the hippocampus led to great strides in the neuroscience of 

memory, beginning in the 1970s researchers using electroencephalography (EEG) had 

found a robust, memory-related effect in another region of the brain—the parietal 

lobe. Subjects were asked to look at a series of images or words and were then tested 

on whether they could distinguish the items they had studied (“old”) from unstudied 

(“new”) items. During the testing phase, electric fields on the subjects’ scalps were 

recorded. On average, there was a strong difference in neuron-generated electric field 

1 
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strength measured when subjects viewed an old item relative to when they viewed a 

new item. This difference was particularly prominent in electrodes over the lateral 

parietal cortex, and the effect became known as the “left parietal old-new effect” 

(Friedman and Johnson, 2000; Rugg and Curran, 2007). 

 When functional brain imaging techniques based on regional blood flow and 

composition were applied to human memory in the 1990s, positron emission 

tomography (PET) studies confirmed activations of the left parietal lobe during 

memory retrieval tasks (Cabeza and Nyberg, 2000; Owen et al., 1996; Rugg et al., 

1998; Tulving et al., 1994). Functional MRI experiments added further evidence 

(Cabeza et al., 2008; Ciaramelli et al., 2008; Vilberg and Rugg, 2008), demonstrating 

prominent retrieval-related activity changes in both the medial and lateral parietal 

cortex. More complex tasks, that required subjects to indicate whether they could 

remember specific details about the study event or whether they had only a general 

sense of familiarity for the item, suggested there was a functional division between 

dorsal and ventral portions of the lateral parietal cortex (Cabeza, 2008; Ciaramelli et 

al., 2008; Vilberg and Rugg, 2008).  

There is no Henry Molaison for the parietal cortex. While lesion studies have 

now conclusively confirmed the importance of the hippocampus in memory, parietal 

lesions do not typically yield prominent memory defects (Berryhill et al., 2007; 

Bisiach and Luzzatti, 1978; Olson and Berryhill, 2009). Clever experimental designs 

and astute meta-analyses of imaging studies have led to intriguing proposed functions 

of the parietal cortex in memory retrieval. Some of these ideas are even supported by 

careful examination of patients with parietal lesions (Cabeza, 2008; Olson and 
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Berryhill, 2009). However, these competing hypotheses are all primarily based on the 

same body of imaging literature. New methodological approaches are required to 

differentiate these hypotheses’ success in explaining the functional role of parietal 

activity in memory. 

  

Dementia 

 One compelling motivation for seeking to understand the processes underlying 

memory is to inform clinical treatment of patients whose memory is disrupted. While 

lesions like Henry Molaison’s are quite rare, another disease affecting memory has 

become a massive challenge in the United States and elsewhere. Dementia is 

approximately tied with diabetes for the 6th most common cause of death in the U.S. 

(Alzheimer’s Association, 2010). Its prevalence increases with age and is estimated to 

affect 1% of Americans aged 60-64 years and 45% of those over 95 (Fratiglioni and 

Rocca, 2001).  

 Dementia also represents an enormous financial burden. Medicare costs for 

persons over 65 years of age are an average of three times greater than costs for 

persons without dementia. Total payments in 2010 for dementia patients over 65 were 

estimated at $172 billion, and $123 billion of those payments came from Medicare and 

Medicaid. For reference, it is worth noting that the entire Medicare budget for the 

2010 fiscal year was $510 billion (U.S. Department of Health & Human Services, 

2009). These staggering cost estimates do not include unpaid care (e.g., by family 

members), which totaled 12.5 billion hours in the U.S. during 2009 at a value of 

approximately $144 billion (Alzheimer’s Association, 2010). 
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 Unfortunately, the problem of dementia is only getting worse. While U.S. 

deaths from stroke, prostate cancer, breast cancer, heart disease, and HIV all decreased 

from 2000 to 2009, deaths from Alzheimer’s disease increased by over 46% 

(Alzheimer’s Association, 2010). From 2005 to 2009 the worldwide cost of dementia 

increased by 34% (Wimo et al., 2010). And the outlook for the future is not 

encouraging, with studies predicting the prevalence of dementia in the U.S. will more 

than double in the next 40 years (Alzheimer’s Association, 2010).  

 The most common cause of dementia is Alzheimer’s disease (AD), which 

accounts for 60-80% of dementia cases in the elderly and has a prevalence in the U.S. 

of 5.3 million (Alzheimer’s Association, 2010). One of the hallmarks of Alzheimer’s 

pathology is accumulation of a protein called amyloid-beta in plaques throughout the 

brain’s cortex. Interestingly, while the most prominent cognitive changes in 

Alzheimer’s disease are in memory, these amyloid plaques are commonly found in the 

medial and lateral parietal cortex—along with the medial prefrontal cortex—even in 

patients at the early stages of the disease (Buckner et al., 2009). These parietal and 

prefrontal regions are also among those affected earliest and most severely by atrophy 

in Alzheimer’s disease (Buckner et al., 2008). 

 The second most common cause of neurodegenerative dementia is called 

dementia with Lewy bodies (DLB), named after its characteristic finding in pathology 

specimens. Lewy bodies are formed by accumulation of a protein called alpha-

synuclein. This disease is believed to account for 15-35% of all demented patients, but 

it can be confused with both Alzheimer’s disease and Parkinson’s disease dementia. 

DLB has been estimated to be underdiagnosed in clinics by as much as 50%, a 
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problem that arises from the inherent diagnostic uncertainty in these conditions. As 

with AD, a DLB diagnosis is only presumptive until it is confirmed by biopsy or 

autopsy; clinical criteria and available tests are not sufficient to allow definitive 

diagnosis non-invasively (Geser et al., 2005).  

 Parkinson’s disease dementia (PDD) is a third cause of cognitive impairment 

in the elderly, with 30-80% of patients with idiopathic parkinsonism eventually 

developing dementia (Geser et al., 2005). PDD is distinguished from DLB by the 

timing of symptom onset: if motor symptoms precede cognitive symptoms by at least 

a year, the diagnosis is PDD; otherwise, the diagnosis is DLB. This arbitrary cutoff is 

clearly insufficient to establish the existence of two distinct etiologies. Both conditions 

are associated with alpha-synuclein Lewy bodies and may actually represent two 

clinical classifications on a continuous spectrum of the manifestations of a single 

disease process. In practical terms, PDD is generally easier than DLB to distinguish 

from AD based on clinical history and exam. This increased confidence in clinical 

diagnosis may allow use of PDD as a model of DLB in initial validation of potential 

non-invasive diagnostic tools intended to distinguish DLB and AD. 

 Safe and accurate diagnostic tests for dementia could have a dramatic impact. 

For DLB, the clinical diagnostic criteria are fairly specific, but the sensitivity of these 

criteria is quite poor. In addition to frequent misdiagnosis of individual patients, this 

poor sensitivity means that cohorts of AD patients in clinical trials of potential 

therapies are contaminated with DLB patients unlikely to respond to an efficacious 

Alzheimer’s therapy. Moreover, some current treatments for AD are contraindicated in 

patients with DLB (Geser et al., 2005). In summary, there is a strong clinical need for 
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a non-invasive diagnostic implement for distinguishing dementia associated with 

amyloidopathies (e.g., AD) from dementia associated with synucleinopathies (e.g., 

DLB, PDD), also referred to as Parkinson-related dementia (or PRD). 

 

Parietal Cortex at Rest 

 Functional imaging and electrophysiology studies have highlighted the parietal 

lobe’s involvement in memory. Examination of amyloid deposition in Alzheimer’s 

disease and aging has revealed the selective vulnerability of the parietal lobe in 

memory pathology. Perhaps most surprising, clues into the functional role of the 

brain’s parietal lobe were also uncovered by its curious activity in the rest period 

between cognitive tasks. Meta-analyses of multiple functional imaging data sets 

revealed that there was a group of regions, dubbed the “default network,” where 

activity was consistently decreased whenever subjects engaged in a cognitive task. 

Seemingly any task led to decreased activity in the default network—from complex 

memory tests, to simple even-odd judgments on single-digit integers (Buckner et al., 

2008; Raichle et al., 2001). The parietal lobe was repeatedly found to be among the 

most prominent default network regions (Buckner et al., 2008; Buckner and Vincent, 

2007; Cauda et al., 2010; Franco et al., 2009; Greicius et al., 2003; Gusnard and 

Raichle, 2001). 

Further investigation of brain activity at rest led to the discovery that regions of 

the default network oscillated in concert. When subjects were simply asked to lie still 

in the scanner, the time course of the blood oxygenation level dependent (BOLD) 

fMRI signal in a given default-network region was highly correlated with the signal in 
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the rest of the default regions (Greicius et al., 2003; Raichle and Snyder, 2007). 

Interregional BOLD correlations in the default network were appealing as a potential 

biomarker in disease because these highly reproducible qualitative patterns were 

obtained with a simple paradigm that was feasible in both healthy and impaired 

populations (Auer, 2008; Fox and Raichle, 2007; Greicius, 2008; van den Heuvel and 

Hulshoff Pol, 2010; Rogers et al., 2007). Indeed, early evidence suggested resting 

BOLD correlations in the default network were disrupted in Alzheimer’s disease 

(Allen et al., 2007; Greicius, 2008; Greicius et al., 2004; Koch et al., 2010; Sorg et al., 

2009; Supekar et al., 2008; Wang et al., 2006; Zhang et al., 2010), as well as in mild 

cognitive impairment (Bai et al., 2009; Pihlajamäki et al., 2009; Sorg et al., 2007), and 

even in cognitively unimpaired subjects with high amyloid burden (Hedden et al., 

2009; Sheline et al., 2010). These early results are promising and suggest that the 

default-network phenomenon warrants rigorous examination to evaluate its potential 

utility as a quantitative marker in scientific and clinical problems. 

 

Overview of Dissertation 

 The above observations invite investigation into the functional role of the 

parietal cortex in memory and disease. To this end, the present dissertation addresses 

five specific aims. The first and second aims relate to adopting novel approaches to 

inform current understanding and hypotheses of the parietal contribution to retrieval of 

memories. The final three aims focus on the development and application of improved 

methods for quantitatively analyzing the functional correlations of the parietal cortex 

in health and dementia. 

 



8 

 Chapter one introduces the hypotheses that have been recently generated for 

the functional role of the lateral parietal cortex in episodic memory. Episodic memory 

is recollection of autobiographical events (or “episodes”) that can be explicitly 

described (Tulving, 2002), and it is therefore a subset of the explicit memory lost in 

patient H.M. and impaired in endless patients suffering from dementia. Most of the 

evidence supporting these hypotheses comes from fMRI, which has excellent spatial 

resolution (on the order of 3 mm for a typical whole-brain study), but depends on an 

evoked impulse response that is blurred over several seconds. The competing 

hypotheses for parietal function in memory can be dissociated based on their 

implications for the timing of parietal contributions, but fMRI offers very limited 

temporal information. Magnetoencephalography (MEG) is another non-invasive tool 

for measuring cortical activity in vivo, and it can be used to record neural activity with 

millisecond time resolution. The first aim of this dissertation, presented in chapter one, 

was to use MEG to investigate the spatiotemporal dynamics of parietal activity in 

episodic retrieval. 

 Chapter two expands on the findings from chapter one by adopting a 

multimodal approach. The memory retrieval task used in the MEG study was repeated 

using fMRI. Because the respective advantages in spatial and temporal resolution with 

fMRI and MEG are complementary, combining both techniques can lead to a more 

precise description of the parietal response in episodic retrieval. Therefore, the second 

aim of this dissertation was to incorporate MEG and fMRI results to refine the 

conclusions from the original MEG study and further characterize the spatial and 

temporal features of the parietal response in retrieval. 
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 Chapter three describes how typical methods for the analysis of BOLD 

correlations are vulnerable to inaccuracies due to anatomic variability across subjects, 

a particular problem in diseases that cause structural pathology such as the atrophy 

commonly found in aging and dementia. Early investigations of interregional BOLD 

correlations depend on group-level analysis after transforming individual brains to a 

standardized anatomical template, or volume atlas. This process, frequently called 

“warping,” is imperfect, and can result in inadvertently measuring correlations of 

neighboring cerebrospinal fluid or white matter in place of the intended cortex. The 

third aim of this dissertation was to develop a novel method for quantitative analysis 

of default-network correlations in the native space of individual brains, whether 

healthy or diseased. 

 Chapter four uses the native-space analysis method presented in chapter three 

to study the long-term stability of resting BOLD correlations and assess the potential 

usefulness of resting fMRI correlations in a clinical population in the early stages of a 

disease that causes dementia. As opposed to any of the other neurodegenerative 

dementias described above, Huntington’s disease has a known genetic marker that can 

be detected in individuals before symptoms begin to manifest. Resting fMRI data was 

collected in a cohort of preclinical (asymptomatic) Huntington’s patients and a cohort 

of age-matched healthy individuals at two time points spaced a year apart. All four 

data sets were analyzed using the new method in native space. The fourth aim of this 

dissertation was to investigate the longitudinal reliability of resting fMRI correlations 

and evaluate the utility of this measure as a clinical biomarker in asymptomatic 

Huntington’s disease. 
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 Finally, chapter five applies the native-space analysis method to Parkinson-

related dementia. PRD patients, cognitively unimpaired PD patients, and age-matched 

elderly control subjects underwent resting fMRI scans, and resulting data were 

compared for population differences in resting interregional fMRI correlations. The 

fifth aim of this dissertation was to evaluate the utility of resting interregional 

correlations as a biomarker in PRD. 
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CHAPTER 1 
 

Early Parietal Response in Episodic Retrieval Revealed with MEG 

 
 
Abstract 

Recent neuroimaging and lesion studies have led to competing hypotheses for 

potential roles of the left lateral parietal lobe in episodic memory retrieval. These 

hypotheses may be dissociated by whether they imply a role in pre-retrieval or post-

retrieval processes. For example, one hypothesis is the left parietal cortex (particularly 

in more ventral subregions) forms part of an “episodic buffer” that supports the online 

representation of the retrieved target, a role that is, by definition, post-retrieval. An 

alternate view maintains parietal activity (particularly in more dorsal subregions) 

contributes to top-down orientation of attention to retrieval search, a pre-retrieval role. 

The present investigation seeks to reveal the earliest onset of lateral parietal activity in 

three anatomically-defined subregions of the left lateral parietal cortex in order to 

identify any pre-retrieval activation. Subjects performed a pair-cued recall task while 

neural activity was recorded with magnetoencephalography (MEG) at millisecond 

temporal resolution. MEG data were then mapped to each subject’s cortical surface 

using dynamic statistical parametric mapping (dSPM). Both dorsal and ventral regions 

showed retrieval-related activations beginning within approximately 100 ms of the cue 

to retrieve and lasting up to 400 ms. We conclude that this early and transient pattern 

of activity in lateral parietal cortex is most consistent with a pre-retrieval role, possibly 

in directing attention to episodic memory retrieval. 

15 
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1.1   Introduction 

 Retrieval of episodic memory is consistently associated with increases in 

activity of the lateral parietal cortex. Converging evidence of this association is found 

in studies using positron emission tomography (PET) (Tulving et al., 1994; Owen et 

al., 1996; Rugg et al., 1998; for review, see Cabeza and Nyberg, 2000), event-related 

functional MRI (fMRI) (for review, see Vilberg and Rugg, 2008a; Cabeza, 2008; 

Ciaramelli et al., 2008), and event-related potentials (ERPs) measured by 

electroencephalography (EEG) (for review, see Rugg and Curran, 2007; Friedman and 

Johnson, 2000). While parietal damage is not as commonly associated with memory 

deficits as damage to the medial temporal or prefrontal cortices, it has long been 

known that parietal lesions can result in deficient attention to spatial aspects of 

memory (Bisiach and Luzzatti, 1978), and recent studies suggest some patients with 

parietal lesions may have poor free recall of detailed autobiographical memories 

(Berryhill et al., 2007; for review, see Olson and Berryhill, 2009). 

For decades electrophysiologists have described an increase in activity, most 

prominent in electrodes over the left parietal cortex, for items correctly labeled as 

previously studied (“old”) relative to items correctly labeled as novel (“new”) (Duarte 

et al., 2004; Neville et al., 1986; Wilding and Rugg, 1996; Curran, 2004; for review, 

see Rugg and Curran, 2007; Rugg et al., 2002). The left parietal old/new effect onsets 

approximately 400-450 ms after presentation of the test item, and typical average 

response times in recognition tests are approximately 800 ms or greater (Vilberg and 

Rugg, 2008a). Even allowing a few hundred milliseconds for execution of the 
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response, the parietal effect begins prior to response selection and therefore 

sufficiently early to play a role in episodic retrieval (Vilberg and Rugg, 2008a). 

The magnitude of this “left parietal old/new effect” is modulated by the type of 

memory retrieval. For example, it is greater for recollection (memory of a studied item 

as well as contextual details from the study event) than for familiarity (memory of a 

studied item alone, without recalling the precise study event) (Vilberg and Rugg, 

2008a; for review of the 'dual-process' description of recognition memory see Rugg 

and Yonelinas, 2003; Yonelinas, 2001). When the quality of the study experience is 

varied, the parietal old/new effect measured during retrieval is greater for items 

believed to have been deeply encoded than for those shallowly encoded (Vilberg and 

Rugg, 2008a). Additionally, retrieval events believed to reflect a larger retrieved load 

have been shown to elicit a larger left parietal old/new effect (Vilberg and Rugg, 

2008a, 2008b). 

 Event-related fMRI studies confirmed the previous ERP findings of left 

parietal activation in retrieval tasks (Buckner and Wheeler, 2001; Henson et al., 1999; 

Kahn et al., 2004; Rugg et al., 2002; Wagner et al., 2005; Wheeler and Buckner, 

2003), providing converging evidence and leading to several competing hypotheses 

for the still unclear role this region plays in retrieving episodic memories. One 

hypothesis supported by evidence from a large number of studies is that the lateral 

parietal cortex forms part of an “episodic buffer” acting to hold retrieved information 

(Baddeley, 2000; Vilberg and Rugg, 2008a; Wagner et al., 2005). Another hypothesis, 

also consistent with much of the current literature, is that lateral parietal cortex is 

involved in directing attention internally to memory (Cabeza, 2008; Ciaramelli et al., 
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2008; Wagner et al., 2005). At least two other ideas have also been described: the first 

maintains that parietal activity does not reflect retrieval of episodic information, but 

rather is associated with the subjective experience of recollection (Ally et al., 2008; 

Olson and Berryhill, 2009); the second suggests the parietal region acts as a 

“mnemonic accumulator,” integrating the accumulated evidence for a memory until a 

threshold is reached that signals recognition (Wagner et al., 2005). 

 With its much higher spatial resolution, studies using fMRI have produced 

considerable evidence suggesting the left lateral parietal cortex may be functionally 

dissociated with respect to episodic retrieval into dorsal and ventral subregions 

(Cabeza, 2008; Ciaramelli et al., 2008; Vilberg and Rugg, 2008a). As two of the 

leading theories for left parietal involvement in recognition memory make distinct 

hypotheses for the dorsal and ventral subregions, the present article will treat these 

subregions as having potentially distinct roles. The dorsal parietal cortex (DPC) lies in 

and superior to the intraparietal sulcus—corresponding most consistently to the lateral 

portion of Brodmann Area (BA) 7 (Cabeza, 2008; Ciaramelli et al., 2008; Vilberg and 

Rugg, 2008a, 2008b), but also reported as including adjacent portions of BA 19 

(Ciaramelli et al., 2008) or BA 40 (Vilberg and Rugg, 2008a). The ventral parietal 

cortex (VPC) most consistently includes the angular gyrus (BA 39) (Cabeza, 2008; 

Ciaramelli et al., 2008; Vilberg and Rugg, 2008b), but also may include adjacent 

posterior and inferior areas, BA 40 (Cabeza, 2008; Ciaramelli et al., 2008) and BA 19 

(Vilberg and Rugg, 2008b). 

 

1.1.1   Left Dorsal Parietal Cortex (DPC) 
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 One view maintains that DPC activity in memory tasks may reflect goal-

driven, top-down direction of attention to retrieval (Cabeza, 2008; Ciaramelli et al., 

2008). Familiarity judgments may require greater effort to direct attention to retrieval 

than recollection judgments (Ciaramelli et al., 2008), and at least two meta-analyses of 

left parietal fMRI activations have found the DPC to be more closely linked to 

familiarity than to recollection (Ciaramelli et al., 2008; Vilberg and Rugg, 2008a). 

Similarly, items for which subjects have lower confidence might also require greater 

top-down attention than items assigned high confidence judgments and therefore result 

in greater activation of the DPC (Cabeza, 2008; Ciaramelli et al., 2008). This assertion 

is supported by several studies of recognition memory where subject confidence 

ratings were obtained (Cabeza, 2008; Ciaramelli et al., 2008; Daselaar et al., 2006; 

Fleck et al., 2006; Kim and Cabeza, 2007, 2009). Finally, two meta-analyses found 

greater activation increases in the DPC for specific source recall relative to subjective 

recollection (Ciaramelli et al., 2008; Spaniol et al., 2009). As the authors point out, 

source recall requires retrieving specific contextual details, while subjective 

recollection in the “remember/know” paradigm requires only some contextual details 

to come to mind; thus, source recall is expected to result in greater top-down retrieval 

effort and greater activity in the DPC. 

Another view asserts that activity in the DPC during episodic memory tasks 

does not contribute directly to retrieval at all, but rather reflects “processes 

downstream of retrieval” and depends on the salience or behavioral relevance of the 

presented item (Vilberg and Rugg, 2008a). The authors note DPC activity in 

recognition tasks may not be specific for familiarity, as DPC activity has also been 
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observed to accompany recollection in some studies (Henson et al., 1999; Vilberg and 

Rugg, 2008a). Additionally, one experiment showed the DPC recognition effect to be 

sensitive to the relative frequency of old and new test items, which the authors suggest 

would not be expected if the region contributed directly to retrieval (Herron et al., 

2004). 

  

1.1.2   Left Ventral Parietal Cortex (VPC) 

 There is greater agreement that the VPC plays a direct role in retrieval. One 

proposal for the function of the VPC is that of an episodic buffer (or part of the 

network supporting a buffer), whose activity serves to hold retrieved information 

(Baddeley, 2000; Vilberg and Rugg, 2008a; Wagner et al., 2005). Greater activations 

found in the VPC for recollection relative to familiarity support a VPC role in 

recollection (Vilberg and Rugg, 2008a). In contrast to DPC effects, VPC retrieval 

effects were not shown to be sensitive to the relative frequencies of old and new test 

items (Herron et al., 2004). Perhaps most interesting, two studies have shown VPC 

activity to be greater when subjects are believed to have recollected more information 

(Vilberg and Rugg, 2007, 2008b). Vilberg and Rugg (2008a) maintain that this 

dependence of VPC activity on the size of the retrieved “load” is most consistent with 

an episodic buffer. 

 The attention hypothesis assigns the VPC a role reflecting automatic, bottom-

up attention that is “captured” by the retrieved output (Cabeza, 2008; Ciaramelli et al., 

2008). As with the episodic buffer hypothesis, VPC activation is expected to have 

increased activity for recollection relative to familiarity, and that activity is expected 
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to vary with the size of the retrieved load. However, in the attention model, VPC 

activity reflects the increased attentional demands of retrieved information rather than 

buffering of that information (Cabeza, 2008; Ciaramelli et al., 2008). High confidence 

responses in recognition studies lead to greater VPC activation (Cabeza, 2008; 

Ciaramelli et al., 2008; Daselaar et al., 2006; Fleck et al., 2006; Kim and Cabeza, 

2007, 2009), a finding that may be explained by stronger bottom-up attention paid to 

stronger memories (Cabeza, 2008). As recollection judgments tend to be associated 

with higher confidence than familiarity judgments, it follows that VPC activity is 

greater for recollection than familiarity (Cabeza, 2008). Additional evidence 

supporting the bottom-up attention to memory hypothesis comes from a meta-analysis 

showing greater VPC activity for deeply encoded items (Ciaramelli et al., 2008). 

Finally, the bottom-up attention explanation finds support in a study of patients with 

bilateral parietal infarcts that included VPC (Berryhill et al., 2007). The spontaneous 

autobiographical memories produced by these patients were poor in detail, but they 

were able to produce a normal amount of detail of the same memories when probed 

with specific questions (Berryhill et al., 2007). Interpreted in terms of the attention 

hypotheses, answering specific questions may rely more on top-down attention, 

whereas these patients’ deficient spontaneous retrieval may reflect impaired bottom-up 

attention to the memories (Cabeza, 2008). 

 

1.1.3   Temporal Dynamics 

The respective timing of DPC and VPC activity could inform the evaluation of 

their proposed mechanistic roles. Some proposed roles (e.g., episodic buffer, 
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mnemonic accumulator, and attentional capture by retrieved information) would best 

explain activity that begins after retrieval has occurred, while a very early activation 

would be more consistent with a role in directing attention to memory. However, the 

temporal dynamics of left parietal subregions remain unknown. Methodological 

constraints have limited direct investigation of the timing of activity in the DPC and 

VPC: fMRI lacks sufficient temporal resolution to dissociate pre- and post-retrieval 

processes, and the ERP parietal old/new effect has not been localized to specific 

cortical subregions. However, a relatively recent method, dynamic statistical 

parametric mapping (dSPM), allows combination of magnetoencephalography (MEG) 

and structural MRI to calculate maps of estimated subregional cortical activity with 

millisecond temporal resolution (Dale et al., 2000).  

In the present study we used MEG and dSPM to investigate the early response 

of left parietal cortex in episodic retrieval. Prior ERP and fMRI studies still leave at 

least two key points unknown. The first is whether parietal activity is present in the 

first 400 ms of episodic retrieval. The second is whether early parietal activity in 

retrieval localizes to DPC, VPC, or both. Answers to each of these questions have 

consequences for the hypotheses described above. For example, if retrieval-related 

activity in either region begins after sufficient time has passed for retrieval to occur, 

this finding would support roles downstream of retrieval. Alternatively, a very early 

pattern of activity (especially if transient) may be most consistent with orientation of 

attention to memory search.  

  To isolate whether parietal lobe subregions participate in the earliest retrieval 

processes, such as orientation to memory search, we examined the first 500 ms after 
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cue to retrieve. Healthy subjects studied pairs of drawings of common objects prior to 

scanning and were tested during MEG recording. A single item from one of the pairs 

was presented in each trial of the test phase. In the control (‘classify’) condition, 

subjects made a living/nonliving judgment on the presented item; in the retrieval 

(‘recall-classify’) condition, subjects made a living/nonliving judgment on the absent 

pair of the presented item, which they had to retrieve from memory. The dSPM 

method (Dale et al., 2000) was used to estimate relative increases in neural activity 

associated with retrieval in specific, anatomically-defined subregions of the left lateral 

parietal cortex. 

 

1.2   Materials and Methods 

1.2.1   Participants 

 Eleven healthy, right-handed adults (mean age: 23.7 years; 6 male) participated 

in this study, which was approved by the institutional review board of the University 

of California, San Diego. Informed consent was obtained from each subject prior to 

participation. Subjects received $40 for their participation.  

 

1.2.2   Task 

 Prior to the MEG session, subjects studied 128 pairs of drawings of common 

objects and animals on a computer screen. Each pair was displayed for three seconds 

on three separate occasions, and subjects were instructed to memorize the pairs for 

subsequent testing. 
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 Approximately 45 minutes after completing the study phase, subjects began the 

test phase while MEG signals were recorded. In all test phase trials, a single drawing 

from one of the studied pairs was presented for 500 ms in one of two boxes (Figure 

1.1), followed by an additional 2750 ms response period. During ‘classify’ trials, 

subjects simply indicated by a finger response whether the presented stimulus was a 

living object. During ‘recall-classify’ trials, subjects indicated whether the absent 

associate of the presented stimulus was a living object, requiring recall of the paired 

associate. A colored box, present from 1000 ms prior to stimulus onset, designated the 

trial type—green for classify, red for recall-classify. A fixation cross, flanked by two 

black boxes, was shown for the first 250 ms of each trial. Subjects were instructed to 

respond as quickly and accurately as possible. 

 The test phase comprised 256 trials, presented in eight runs of 32 trials each. 

Five subjects were given ‘trial list A,’ and six subjects were given ‘trial list B.’ Each 

trial list was constructed by pseudorandomly choosing the order of the stimulus pairs, 

then, for each trial, pseudorandomly choosing which stimulus of the pair to present, 

which side to present it on, and which condition (classify or recall-classify) the trial 

would correspond to. The lists were then manually adjusted to ensure a balance 

between the two conditions in each run, as well as to remove any long streaks of a 

single condition, stimulus presentation side, or correct response (living or non-living).  
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Figure 1.1: Pair-cued recall task. Subjects viewed each pair for 3 seconds during the 
study phase (repeated in random order 3 times). MEG recordings were acquired during 
the test phase. In classify trials subjects made a simple living/non-living judgment on 
the presented item. In recall-classify trials subjects retrieved the absent associate and 
then made a living/non-living judgment on the item in memory. In both conditions the 
test item was equally likely to appear on the left and right sides. The timeline at the 
bottom of the figure represents trial timing for the test phase. During the period of the 
timeline represented in black, the boxes and fixation cross were presented with both 
boxes in black. The cue period is enlarged only for display in the figure. 
 

Both phases of the task were created and displayed using Presentation software 

(Neurobehavioral Systems, Inc., Albany, CA, USA). During MEG acquisition, stimuli 

were presented using a three-mirror DLP projector. Subjects indicated their responses 

by lifting a finger that was otherwise blocking a laser. For two subjects, a single run 

had to be excluded from analysis where subjects’ finger movements were inadequate 

for response recording. 
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1.2.3   MEG Acquisition 

 MEG data were recorded via a 306 channel whole-head MEG system (Elekta 

Neuromag, Elekta, Inc., Helsinki, Finland), consisting of 204 planar gradiometers and 

102 magnetometers. Two electro-oculograph (EOG) electrodes were placed, one each 

above and below the left eye, to monitor eye movements and blinks. To facilitate 

registration of the MEG sensor locations to each subject’s structural MRI, three head 

position coils were placed, and the locations of approximately 150 fiducial landmarks 

were recorded with a Polhemus Fastrak digitizer (Polhemus, Colchester, VT, USA). 

MEG signals were sampled at 1,000 Hz, with an anti-aliasing filter of 333 Hz. 

 A band-pass filter was applied offline between 0.2 Hz and 33 Hz, and the data 

were then downsampled to 100 Hz. Individual trials containing eye blinks or other 

artifacts during the baseline period or time period of interest (or immediately before or 

after either of these periods) were excluded from analysis. No other trials were 

excluded. An average MEG recording (event-related field, or ERF) was calculated for 

each subject from all remaining trials of the same condition. 

 

1.2.4   MRI Acquisition 

 Two high-resolution, three-dimensional, T1-weighted volumes (TE: 4.9 ms, 

TR: 10.7 ms, TI: 1,000 ms, flip angle: 8 degrees, matrix: 256 x 256, voxel size: 1 mm 

x 1 mm x 1mm) were acquired for each subject on a General Electric 1.5T Signa 

Excite HDx using an 8-channel phased-array head coil (General Electric Healthcare, 

Waukesha, WI, USA). Image intensities were corrected for spatial sensitivity 
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inhomogeneities in the eight-channel head coil by normalizing with the ratio of a body 

coil scan to a head coil scan. 

 

1.2.5   Cortical Surface Reconstruction 

 A model of each subject’s cortical surface was generated (Dale et al., 1999; 

Fischl et al., 1999a) to serve as the source space for the locations of dipoles in the 

MEG analysis. The two T1-weighted MRI volumes were first corrected for spatial 

distortion due to gradient nonlinearity (Jovicich et al., 2006), registered to each other, 

and then averaged to improve the signal-to-noise ratio.  The FreeSurfer software 

package (version 3.0.5, http://surfer.nmr.mgh.harvard.edu) was used to create a high-

resolution surface mesh for each hemisphere, representing the gray-white matter 

boundary. This folded surface was subsampled to define the assumed cortical dipole 

locations—approximately 2,500 dipoles per hemisphere, about 7 mm apart.  For group 

analyses, individual surfaces were aligned to a spherical representation of the 

FreeSurfer average subject  (Fischl et al., 1999b).  

 

1.2.6   MEG Activity Estimates 

 For each condition, a time series of estimated activity at each dipole was 

calculated from the gradiometer data of each subject’s average MEG using the 

dynamic statistical parametric mapping (dSPM) method described by Dale et al. 

(2000). The dSPM method involves computing a noise-normalized, L2 minimum-

norm, linear inverse to estimate the strength of each dipole’s contribution to the 

average MEG recording at every time point in the series. The dSPM estimate is a 
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measure of the MEG signal to noise ratio (SNR) at each spatial location; MEG SNR is 

related to neural activity, and so, in reference to MEG data, the terms activity and 

dSPM amplitude are used interchangeably in this paper. Forward solutions were 

calculated using the boundary element method (Mosher et al., 1999; de Munck, 1992; 

Oostendorp and van Oosterom, 1989).  A surface tesselation was created for the inner 

skull from the same high-resolution T1-weighted MRI volume used for cortical surface 

reconstruction (SegLab, from Elekta). Baseline correction was performed on 

individual trial sensor waveforms and on the average waveforms using the period from 

-1090 ms to -950 ms (see Figure 1.1).  

A noise covariance matrix was calculated from the same baseline period of 

individual trials. Three orthogonal vector components of each dipole were estimated 

simultaneously at every time point, thus allowing the dipole orientation to freely vary, 

and the corresponding vector magnitude, after normalizing by noise sensitivity, was 

taken as the estimated activity for that dipole. The result of the dSPM analysis was 

two time series (one for recall-classify, and one for classify) for each subject, 

representing the estimated activity at each dipole (i.e., cortical location). Because the 

MEG recordings were downsampled to 100 Hz, the interval between time points was 

10 ms. Time series from the recall-classify and classify conditions were compared to 

identify activity differences attributable to episodic retrieval. 

  

1.2.7   ROI Time Course Analysis 

 MEG activity was estimated at dipoles aligned to the FreeSurfer average 

subject, allowing anatomical ROIs to be defined using the cortical parcellation 
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available in FreeSurfer. Individual subject data from dipoles within the left superior 

parietal ROI (ROIs shown in Figure 1.2A) were combined to create an average ROI 

time series for each condition. This procedure was repeated for the other two ROIs: 

left inferior parietal and left supramarginal. Each ROI comprised approximately 160 

dipoles. 

 A three-way repeated measures ANOVA with repeated factors of location (3 

ROIs), condition, and time was performed in order to examine the data for significant 

(p < 0.05) main effects and interactions (PASW 18, SPSS Inc., Chicago, IL, USA). 

ROI time series data were separated into sub-periods of 100 ms (i.e., 100-190 ms, 200-

290 ms, etc.), and, for the ANOVA, activity estimates from each subject were 

averaged across the time points in each sub-period. Five sub-periods were initially 

included in the analysis, corresponding to the first 500 ms after cue onset. Subject 

blink frequency, possibly increased at stimulus offset, and disparities in response time 

made exploratory analysis of the entire length of the -1000 ms to 3250 ms task 

impractical due to reduced power, and thus our analyses remained focused on testing 

for an early response in the parietal lobe.  

 To further explore the temporal dynamics of the activity difference between 

the recall-classify and classify conditions, paired t-tests were performed on data from 

individual sub-periods. Sub-periods extending from 300 ms prior to cue onset to 500 

ms after cue onset were examined, and activity differences were considered significant 

at the p < 0.01 level, after applying a Bonferroni correction for multiple comparisons. 

For the t-tests, all time points from each subject’s 100 Hz data were included.  
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 A supplementary analysis was performed to assess whether a potential activity 

difference between the two conditions immediately prior to stimulus onset could 

partially account for activity differences observed after stimulus onset. Activity levels 

in the immediate pre-stimulus period were subtracted from the time series, and 

statistical comparisons were repeated. A detailed description of these methods is 

provided in the Supporting Information. 

 While the left lateral parietal cortex was the a priori area of interest, a post-hoc 

analysis of FreeSurfer ROIs from lateral and medial cortex of both hemispheres was 

also performed and is described further in the supplementary material available online 

(and in Section 1.7). 

  

1.2.8   Individual Dipole Analysis 

 Left hemisphere MEG data were analyzed at each dipole on the lateral surface 

to visualize individual parietal dipole activity across the entirety of the lateral 

hemisphere. For each dipole, the average classify time series was subtracted from the 

recall-classify time series, giving an estimated activity difference for every time point. 

The activity difference at each dipole was displayed on the folded cortical surface to 

create an image at each time point. Together these images form a movie that shows the 

evolution of estimated activity on the surface of the left hemisphere in 10 ms intervals 

over the entire period of interest. 

 

1.3   Results 

1.3.1   Behavioral Results 
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 On average, subjects took about half a second longer to respond in recall-

classify trials than in classify trials. The mean (± standard deviation) response time 

was 1701 ± 228 ms for recall-classify trials and 1244 ± 181 ms for classify trials, 

representing a significant difference (p < 10-5, two-tailed t-test). 

A subject response was recorded within the specified response period in 89% 

of trials. Of these trials, subjects responded correctly in 96 ± 6% of classify trials and 

85 ± 7% of recall-classify trials. A technical malfunction in linking one subject’s 

recorded responses to each presented stimulus prevented exact measurement of his 

accuracy. Despite this, the recorded responses indicate that his performance was 

similar to that of other subjects.  

 

1.3.2   ROI Time Course Analysis Results 

A three-way repeated measures ANOVA established differences in activity 

between ROIs, time sub-periods, and conditions. There was a significant main effect 

of location, F(2,20) = 5.0, p < 0.05; of time, F(4,40) = 4.4, p < 0.01; and of condition, 

F(1,10) = 4.6, p < 0.05. There was also a significant interaction of time with condition, 

F(4,40) = 3.1, p < 0.05. Interactions of location with time and location with condition 

were not significant. 

 

 



32 

 

Figure 1.2: Three anatomical ROIs (A) on the left cortical surface and their estimated 
activity time courses  (note baseline dSPM amplitude is ~1.0) (B-D): Superior Parietal 
(green, B), Supramarginal (orange, C), Inferior Parietal (blue, D). Recall-classify 
activity was significantly greater than classify activity for 100 ms time periods 
indicated in yellow; *: p < 0.01, **: p < 0.001, ***: p < 10-4, ****: p < 10-7 (p-values 
from paired t-tests). 
 

Time series plots show that in all three left parietal ROIs, average MEG 

activity in the recall-classify condition was greater than in the classify condition 

during the first 100 ms after stimulus onset (Figure 1.2, B-D). In the left superior 

parietal ROI, recall-classify activity remained greater than classify activity for 
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approximately 400 ms (Figure 1.2B), with a peak difference at approximately 150 ms. 

Recall-classify activity was also greater than classify activity in the left supramarginal 

ROI (Figure 1.2C), though the effect started earlier (100 ms prior to stimulus onset) 

and was of shorter duration, resolving by 250 ms after the stimulus. Left inferior 

parietal recall-classify activity (Figure 1.2D) differed from classify activity during the 

first 100 ms, then temporarily approached that of the classify condition, but soon 

diverged again and remains elevated above the classify time series until approximately 

300 ms. 

Testing 100 ms sub-periods by paired t-tests revealed left superior parietal 

recall-classify activity was significantly greater than classify activity over 0-100 ms (t 

= 4.4, p < 0.001), 100-200 ms (t = 6.5, p < 10-7), and 200-300 ms (t = 6.6, p < 10-7), 

with a trend toward significance over 300-400 ms (t = 3.6, p < 0.05). In the left 

supramarginal ROI, recall-classify activity was significantly greater over -100-0 ms (t 

= 4.2, p < 0.01), 0-100 ms (t = 4.8, p < 0.001), and 100-200 ms (t = 5.0, p < 10-4). In 

the left inferior parietal ROI, recall-classify activity was significantly greater over 0-

100 ms (t = 4.4, p < 0.001) and 200-300 ms (t = 4.9, p < 10-4), with a trend over 100-

200 ms (t = 3.2, p < 0.05). There was also a trend toward significantly greater classify 

activity in the left superior parietal ROI over -200 to -100 ms (t = -3.6, p < 0.05). None 

of the ROIs shows a significant activity difference over 400-500 ms. All p-values 

reported for these t-tests were corrected for multiple comparisons using the Bonferroni 

method for 24 comparisons (eight sub-periods in three ROIs).  

In a supplementary analysis, all significant between-condition activity 

differences in the left superior parietal and left inferior ROIs remained significant after 
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subtraction of immediate pre-stimulus activity. In the left supramarginal ROI, 

however, no significant activity difference remained in any of the 100 ms sub-periods 

after subtraction of the pre-stimulus activity. Detailed results are included in the 

supplementary material. 

  

 

Figure 1.3: Early retrieval-related activity for left hemisphere. Baseline image is at -
1000 ms and is representative of the other images from the baseline period. Overlay 
shows the activity difference between recall-classify (RC) and classify (C) conditions 
for baseline and from 150 to 230 ms following cue. Threshold was chosen for display 
purposes only; differences shown are greater than 1.0 in dSPM amplitude. 
 

1.3.3   Individual Dipole Analysis Results 

 From visual inspection of the left hemisphere dSPMs, the parietal effect 

appears to be the most prominent retrieval-related activity difference revealed by the 

MEG recordings in this early time period (Figure 1.3). Other, smaller differences were 

observed in caudal temporal and caudal frontal lobes.  
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1.4   Discussion 

 Our results demonstrate an early and transient activation in both dorsal and 

ventral regions of the left lateral parietal cortex in response to a cue to retrieve 

episodic memory. With an onset within 100 ms of the retrieval cue, this increase in 

parietal activity precedes recall of the target and therefore would not be consistent 

with manipulation or representation of retrieved information. Though the parietal lobe 

may be involved in such later processes as well, these data suggest the parietal lobe 

has at least an early involvement that is consistent with a role in orienting attention to 

retrieval.  

 One lateral parietal ROI (left supramarginal) had significantly greater activity 

in the recall-classify condition just prior to stimulus onset, and all three ROIs had 

recall-associated differences immediately following stimulus onset. Additionally, 

results from a supplementary analysis suggest post-stimulus activity differences in the 

left supramarginal ROI may be partially accounted for by the pre-stimulus activity 

difference in this region. The differences preceding stimulus onset must be dependent 

on the condition type generally, rather than an effort to retrieve a particular item. 

Recall-associated differences occurring after stimulus onset, though, may additionally 

depend on specific retrieval efforts. In any case, both anticipatory and reactionary 

parietal responses in these MEG recordings occur prior to retrieval of the target item. 

 These findings support a broader role for parietal lobe involvement in directing 

attention not only to external stimuli, but also to internal processes (e.g., Desmurget 

and Sirigu, 2009). MEG findings of anticipatory and reactionary responses in parietal 

cortex also converge with a recent fMRI study that attributes activity in left lateral 
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parietal cortex to processes both preceding and during an old/new recognition task 

(Phillips et al., 2009). The present study attempts to isolate episodic retrieval, rather 

than familiarity or general recognition, by using stimuli in the retrieval and control 

(classify) conditions that are equally familiar. This design allows for the possibility of 

incidental retrieval in control trials, which might have reduced measured retrieval 

effect. Despite this potential decrease in power, significantly greater activity was 

observed for trials that required episodic retrieval. 

It is possible both anticipatory and reactionary effects simply reflect 

dissociable levels of arousal or effort in the two conditions. The recall-classify task is, 

overall, more difficult than the classify task because it requires retrieval of the absent 

associate, and subjects may therefore exhibit increased arousal or effort in the retrieval 

task. However, while increased general arousal might be expected to result in 

increased activity in the recall-classify condition throughout the duration of the trial, it 

is harder to explain why increased general arousal would result in the specific, 

transitory activity difference measured with MEG. As the effects presented here begin 

just before stimulus onset and last only a few hundred milliseconds, the relevant 

questions are whether a difficulty difference exists in the peri-stimulus onset period 

and, if so, whether such a difference is specifically related to episodic retrieval 

demands. Immediately following stimulus onset, subjects must either direct attention 

toward searching for episodic memory or toward searching for semantic memory. It is 

unknown whether subjects had more difficulty directing attention to semantic retrieval 

or to episodic retrieval, but the present results demonstrate that the left parietal lobe is 

more active when attention is directed toward search for episodic memory. 

 



37 

 Another possible interpretation of these parietal responses is that they may 

represent part of a ‘retrieval mode’ or ‘retrieval orientation,’ tonic states that begin 

after instructions to retrieve and are maintained throughout retrieval effort (Rugg and 

Wilding, 2000; Tulving, 1983). Subjects were instructed to retrieve 1000 ms prior to 

stimulus onset, allowing time to adopt a retrieval state in anticipation of the retrieval 

task. There are several reasons to doubt this explanation, though. Most importantly, 

the retrieval mode, as defined by Tulving and colleagues, is a tonic state maintained 

while episodic retrieval is required (Düzel et al., 1999; see also Rugg and Wilding, 

2000). The marked transience of the present parietal lobe findings argues against 

effects due to a sustained retrieval mode in the recall-classify condition. Further, the 

design of the trial would be expected to minimize such effects. There is support in the 

EEG literature to suggest that retrieval mode activity is poorly detected when 

alternating task designs are employed rather than blocks of retrieval (Herron and 

Wilding, 2006; Morcom and Rugg, 2002). Given that our design was a pseudorandom 

mixed event-related design, subjects are less likely to enter such a tonic retrieval state. 

Finally, prior EEG studies have not identified prominent retrieval mode effects in the 

left parietal lobe. Rather, these effects appear to be greatest in the right hemisphere 

(Düzel et al., 1999; Herron and Wilding, 2004, 2006; Morcom and Rugg, 2002; 

Nyberg et al., 1995; Rugg and Wilding, 2000), with some evidence for left frontal 

activity in retrieval orientations associated with certain types of target information 

(Morcom and Rugg, 2002). 

Cabeza et al. (2008) and Ciaramelli et al. (2008) suggest, based on fMRI 

experiments, that the parietal lobe is involved in top-down attention to memory 
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retrieval (Cabeza, 2008; Ciaramelli et al., 2008). This hypothesis pertains specifically 

to the DPC. The present data lend support to this hypothesis, as the time course for our 

left superior parietal ROI does indeed show activation shortly after stimulus onset that 

could represent orientation to memory search. Regional anticipatory activity is also 

consistent with attention to retrieval in our task, as the subjects were instructed 

whether to retrieve well before stimulus onset. The transience of the activation (less 

than 400 ms duration) is not consistent with top-down attention to post-retrieval 

processes—for instance, attention to the retrieved target during classification in the 

recall-classify task—but the DPC activity may be involved in initiating search and 

retrieval. 

 Another hypothesis suggests DPC activity may depend on the salience or task 

relevance of the presented test item and that the DPC role is “downstream” of retrieval 

(Vilberg and Rugg, 2008a). The present data do not preclude the possibility of a later 

parietal activation that represents such information, but the very early DPC activation 

identified here, which begins over 1500 ms prior to the average behavioral response, 

cannot represent processes occurring only after successful completion of retrieval. 

Furthermore, the presented item in each condition is equally relevant to the behavioral 

task at hand, so the activity difference cannot easily be explained by behavioral 

relevance.  

The early DPC activation, though likely upstream of retrieval, might 

nonetheless be partially driven by increased salience of the item presented under the 

recall-classify condition. In both conditions, the presented item had been previously 

studied, so they were equally ‘old,’ but it is difficult to determine whether salience of 
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the item was greater in the classify condition or in the recall-classify condition. On one 

hand, items presented in the classify condition were, themselves, to be classified, 

which might increase their salience. On the other hand, items presented in the recall-

classify condition were cues that triggered a process of recall, requiring more effort 

and more attention. Under recall-classify conditions, this additional effort and 

attention is quickly directed away from the item and toward retrieval. A rapid and 

transient activation following the cue, such as that seen here, might therefore be 

consistent with such an interpretation. Activity prior to the cue cannot be explained by 

cue salience, but might possibly be attributed to anticipation of a more salient item. 

 The early VPC activity seen in MEG also suggests a pre-retrieval role for this 

region, though hypotheses based on fMRI focus on a post-retrieval role, including that 

VPC serves as a buffer for retrieved episodic memories. An episodic buffer (Baddeley, 

2000; Vilberg and Rugg, 2008a; Wagner et al., 2005) whose function is to represent 

retrieved information would be expected to perform this function beginning once some 

information is retrieved, and would presumably have sustained activity as long as that 

retrieved information is held in mind. It is possible that a region contributing to an 

episodic buffer network might activate prior to actual retrieval in preparation for the 

coming retrieved load, but the transience of the MEG VPC effect is, again, difficult to 

reconcile with a role of holding retrieved information for manipulation during the task. 

 Current attentional hypotheses for VPC activity do not offer satisfactory 

interpretations of the present VPC findings. Existing attentional interpretations of VPC 

activity posit this region reflects the capture of bottom-up attention by the targets of 

retrieval (Cabeza, 2008; Ciaramelli et al., 2008). Given that cues presented during 
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each task were equally ‘old’ and that the VPC response observed using MEG preceded 

retrieval of the target, this hypothesis is not consistent with the current findings, unless 

one posits an additional, later VPC response. Another possibility, however, is that 

subjects, having been cued that the trial would involve retrieval, showed a differential 

early response in VPC elicited by the studied cue in recall-classify trials relative to 

those in classify trials. Nevertheless, given the timing of the response and the clearest 

difference between the conditions (requiring recall or not), the results of this study 

suggest that early VPC activity, like early DPC activity, might represent direction of 

attention toward memory retrieval.  

 

1.5   Conclusions 

We conclude that the left lateral parietal cortex is activated within 100 ms of a 

signal to retrieve episodic memories. In our cued-recall task, this earliest activation is 

also transient, persisting for only a few hundred milliseconds. While there are some 

differences in the timing of activity in different subregions of the lateral parietal lobe, 

each of our three ROIs (left superior parietal, left inferior parietal, left supramarginal) 

displayed an early and transient increase in estimated MEG activity when subjects 

were prompted to initiate retrieval. This very early response thus reflects processes 

prior to retrieval of the target and is most consistent with an attentional role in episodic 

retrieval. The finding of an early, robust, and transient activation does not preclude a 

later role, nor a later dissociation between subregions. Nevertheless, a comprehensive 

account of left lateral parietal function in episodic retrieval should include the early, 

transient activation revealed by MEG. 
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1.7   Supplementary Materials 

1.7.1   Supplementary Analysis Methods 

A supplementary analysis was performed to assess whether potential activity 

differences between the two conditions immediately prior to stimulus onset could 

partially account for activity differences observed after stimulus onset. The average 

activity level in each condition was calculated for the 100 ms prior to stimulus onset 

for each subject, and this average was subtracted from the corresponding activity time 

series. The modified activity time series were then compared by t-tests over 100 ms 

sub-periods from 0 ms to 500 ms after stimulus onset. Activity differences were 

considered significant at the p < 0.01 level, after Bonferroni correction for multiple 

(15) comparisons.  

 

1.7.2   Supplementary Analysis Results 

After subtraction of pre-stimulus activity, left superior parietal recall-classify 

activity remained significantly greater than classify activity over 0-100 ms (t = 6.6, p < 

10-7), 100-200 ms (t = 8.32, p < 10-11), and 200-300 ms (t = 9.84, p < 10-14). Left 

superior parietal recall-classify activity was also significantly greater than classify 

activity over 300-400 ms (t = 5.5, p < 10-5); before subtraction of pre-stimulus activity, 

this difference showed a trend toward significance. In the left inferior parietal ROI, 

recall-classify activity remained significantly greater than classify activity over 0-100 

ms (t = 4.68, p < 0.001) and 200-300 ms (t = 4.84, p < 0.001). In the left 

supramarginal ROI, no significant activity difference remained in any of the 100 ms 

sub-periods after subtraction of the pre-stimulus activity.  
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Table 1.1: Supplementary Table – Lateral cortex. While the left lateral parietal cortex 
was the a priori area of interest, a post-hoc analysis of the remaining FreeSurfer ROIs 
of the lateral cortex was also performed using the same methods as described for the 
ROI analysis in the manuscript. Several medial ROIs were also included in the 
analysis to rule out the possibility that the lateral parietal effects reflect crosstalk from 
sources in the medial temporal lobe or in primary visual cortex. Regions showing a 
sustained ‘cluster’ of significant activation are parietal and superior frontal in the left 
hemisphere, and dorsolateral prefrontal, parietal, and pars opercularis in the right 
hemisphere. P-values were corrected for multiple (294) comparisons using the 
Bonferroni method. 
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CHAPTER 2 
 

Parietal Activity in Episodic Retrieval Measured by fMRI and MEG 

 

Abstract 

 Understanding the functional role of the left lateral parietal cortex in episodic 

retrieval requires characterization of both spatial and temporal features of activity 

during memory tasks. In a recent study using magnetoencephalography (MEG), we 

described an early parietal response in a cued-recall task. This response began within 

100 milliseconds of the retrieval cue and lasted less than 400 milliseconds. Spatially, 

the effect reached significance in all three anatomically defined left lateral parietal 

subregions included in the study. Here we present a multimodal analysis of both 

hemodynamic and electrophysiologic responses in the same cued-recall paradigm. 

Functional MRI (fMRI) was used to more precisely reveal the portion of the parietal 

cortex with the greatest response. The MEG data set was then reanalyzed to show the 

early MEG time course of the region identified by fMRI. We found that the 

hemodynamic response is greatest within the intraparietal sulcus. Further, the MEG 

pattern in this region shows a strong response during the first 300 milliseconds 

following the cue to retrieve. Finally, when individual-dipole MEG activity is 

analyzed for the left cortical surface over the early 300-millisecond time window, 

significant recall-related activity is limited to a relatively small portion of the left 

hemisphere that overlaps the region identified by fMRI in the intraparietal sulcus.  
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2.1   Introduction 

Recent efforts to assign a functional role for the prominent activations in left 

lateral parietal cortex during episodic retrieval tasks have produced competing 

hypotheses. One hypothesis holds that retrieved information is stored in an “episodic 

buffer” supported by the left parietal cortex (Baddeley, 2000; Vilberg and Rugg, 

2008a; Wagner et al., 2005). Another hypothesis states that left parietal cortex 

participates in directing attention internally to memory search (Cabeza, 2008; 

Ciaramelli et al., 2008). Others have proposed that parietal cortex does not directly 

participate in retrieval and instead reflects the subjective experience of recollection 

(Ally et al., 2008).  

The relatively high spatial resolution of functional magnetic resonance imaging 

(fMRI) has provided evidence for a further functional dissociation between left 

hemisphere dorsal parietal and ventral parietal cortex. In particular, ventral parietal 

activity has been associated with the episodic buffer. Some have questioned dorsal 

parietal involvement in retrieval, suggesting it may only reflect “processes 

downstream of retrieval” (Vilberg and Rugg, 2008a, 2008b). Under the attention to 

memory hypothesis, however, ventral parietal activity arises from attentional capture 

by retrieved information in an automatic, bottom-up process, and dorsal parietal 

activity supports goal-driven, top-down direction of attention to retrieval (Cabeza, 

2008; Ciaramelli et al., 2008).  

We recently proposed that these functional hypotheses could be distinguished 

by the timing of the parietal response (Seibert et al., 2010). Episodic buffer, subjective 

experience of recollection, and bottom-up attention all require that at least some 
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information has already been retrieved. Top-down attention to memory search, on the 

other hand, must begin prior to retrieval, and is consistent with an early parietal 

response. Using magnetoencephalography (MEG) in a cued-recall task, we observed a 

response in left posterior parietal cortex that began within 100 milliseconds (ms) of the 

cue and resolved in less than 400 ms. This early and transient activity increase is most 

consistent with an attentional role. However, the pattern of activity in the three 

anatomically-defined subregions probed in the study was fairly similar and did not 

show a dissociation of dorsal and ventral parietal cortices. 

Both location and timing are required to characterize parietal activity in 

retrieval paradigms and improve understanding of its function. Dissociable spatial 

patterns within the parietal cortex have been observed with fMRI, but the 

hemodynamic response offers very limited information on timing. Conversely, our 

MEG results have revealed an early parietal response, but no clear dissociation was 

observed between the superior and inferior anatomical subregions probed in the study. 

While fMRI and MEG may measure different aspects of brain activity, both modalities 

provide important functional insights. The advantage of a multimodal approach is the 

opportunity to leverage both the spatial resolution of fMRI and the temporal resolution 

of MEG to investigate retrieval activity in the same region of parietal cortex. 

In this manuscript, we present results from a combined analysis of a previously 

unpublished fMRI data set and our MEG data. We acquired BOLD functional data 

from subjects performing the same paradigm used in our previous MEG study (Seibert 

et al., 2010). We expected the hemodynamic response would reveal one or more 

significant activations within the left lateral posterior parietal cortex. Those regions 
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could then be used as masks for our MEG data to give insight into the temporal 

dynamics of neural activity in the functional regions of interest (ROI). We 

hypothesized that this multimodal analysis would confirm MEG findings of recall-

associated activity in dorsal and ventral parietal subregions, while painting a more 

precise picture of the spatiotemporal dynamics of the left lateral parietal response in 

episodic retrieval. 

 

2.2   Material and Methods 

2.2.1   Participants 

 Sixteen healthy, right-handed adults participated in this study. Twelve subjects 

(mean age: 23.8 ± 3 years; five male) participated in the fMRI study, and eleven 

subjects (mean age: 23.7 ± 3 years; six male) participated in the MEG study. Seven 

subjects participated in both the fMRI and MEG studies; of these, four had fMRI first. 

These studies were approved by the institutional review board of the University of 

California, San Diego. Subjects gave informed consent prior to the experiment and 

received $40 for their participation.  

 

2.2.2   Stimuli 

Stimuli were 256 color drawings of common objects selected from Rossion 

and Pourtois color Snodgrass images (Rossion and Pourtois, 2004). Drawings were 

paired randomly into 128 pairs. Pairs were screened to remove those with obvious 

visual or semantic relationships. 
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2.2.3   Task 

The behavioral task for fMRI sessions was identical to that previously 

described for MEG sessions (Seibert et al., 2010). Subjects were tested on 128 pairs of 

drawings of common objects and animals (which they had studied approximately 45 

minutes prior to the experiment) while activity was recorded using either fMRI or 

MEG. In all test phase trials, a single drawing from one of the studied pairs was 

presented for 500 ms in one of two boxes (Figure 2.1), followed by an additional 

2750-ms response period. During “classify” trials, subjects simply indicated by a 

finger response whether the presented stimulus was a living or non-living object. 

During “recall-classify” trials, subjects indicated whether the absent associate of the 

presented stimulus was a living or non-living object, requiring recall of the paired 

associate. A colored box, present from 1000 ms prior to stimulus onset, designated the 

trial type—green for classify and red for recall-classify. A fixation cross presented 

between two black boxes was shown for the first 250 ms of each trial. Subjects were 

instructed to respond as quickly and accurately as possible. 

The test phase comprised 256 trials, presented in eight runs of 32 trials each. 

Order of presentation of stimulus pairs was pseudorandomized to create ‘trial list A’ 

and ‘trial list B,’ each containing all pairs. The item presented from each pair, the side 

of the screen it was presented on, and the condition associated with each pair were all 

pseudorandomly determined separately for each trial list. All pairs were the same in 

each list. In the MEG experiment, five subjects were given trial list A and six subjects 

were given trial list B. In the fMRI experiment, six subjects were given trial list A, and 

six subjects were given trial list B. Of the seven subjects who participated in both the 
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MEG and fMRI experiments, four were given trial list A first, and three were given 

trial list B first. The average interval between sessions for these subjects was 7.9 days 

(range: 5-11 days). During fMRI acquisition, stimuli were presented on a screen 

visible to the subject via a mirror, and subjects indicated their responses using an MRI 

compatible button box held in their right hand.  

 

 

Figure 2.1: Pair-cued recall task. Subjects viewed each pair for 3 seconds during the 
study phase (repeated in random order three times). MEG or fMRI recordings were 
acquired during the test phase (timeline on bottom of figure). In classify trials subjects 
made a simple living/nonliving judgment on the presented item. In recall-classify trials 
subjects retrieved the absent associate and then made a living/nonliving judgment on 
the item in memory. In both conditions the test item was equally likely to appear on 
the left and right sides. A fixation cross and two black boxes were presented during 
the initial 250 ms of the trial. The cue period is enlarged only for display in the figure. 
Reproduced with permission from Seibert et al., 2010. 

 

2.2.4   MRI Acquisition 
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Imaging was done with a 3T GE scanner at the Center for Functional MRI at 

the University of California, San Diego. Functional images were acquired using a 

gradient echo echo-planar, T2*-weighted pulse sequence (repetition time = 1.5 s, one 

shot per repetition, echo time = 30 ms, flip angle = 90۫, bandwidth = 31.25 MHz). 

Twenty-two slices covering the entire brain were acquired perpendicular to the long 

axis of the hippocampus with 3.4 x 3.4 x 7 mm voxels. A T1-weighted high-resolution 

(1 x 1 x 1 mm), three-dimensional magnetization-prepared rapid gradient echo or fast 

spoiled gradient recalled anatomical dataset was also collected for each subject. An 

additional T1-weighted structural scan was acquired in the same slice locations as the 

functional images for use in confirming alignment of functional data to the high-

resolution anatomical scan. 

  

2.2.5   fMRI Analysis 

An event-related design was used to examine parietal activity during the recall-

classify and classify conditions. These were contrasted with an even-odd digit 

classification active baseline. Error trials (unsure, incorrect, and no-response) were 

excluded from the analysis. Trials were jittered with 0, 3, 6, or 9 seconds of baseline to 

optimize the study design (Dale, 1999).  

Data from each run were reconstructed. Slices were temporally aligned and co-

registered with a 3D registration algorithm. Voxels outside the brain were removed 

using a threshold mask of the functional data. A general linear model was constructed 

for multiple regression analysis using the AFNI suite of software (Cox, 1996) with six 

motion regressors from the registration process and regressors for recall-classify and 
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classify conditions correct and incorrect responses. For the recall-classify and classify 

conditions, a hemodynamic response was estimated, within each voxel, for the 15 

seconds following trial onset using signal deconvolution . 

Derived hemodynamic response time series for each condition were projected 

to a model of each subject’s cortical surface (Dale et al., 1999; Fischl et al., 1999a) to 

facilitate comparison to the MEG analysis, which used surface meshes as the source 

space for dipole locations. The FreeSurfer software package (version 4.5.0, 

http://surfer.nmr.mgh.harvard.edu) was used to create a surface mesh for each 

hemisphere consisting of approximately 160,000 vertices per hemisphere. Anatomical 

regions of interest were identified through an automated parcellation of the individual 

surface using the Desikan-Killiany atlas (Desikan et al., 2006; Fischl et al., 2004). 

Three regions (corresponding to those used in the previous MEG study) were taken 

from the atlas as ROIs for fMRI analysis: left superior parietal, left inferior parietal, 

and left supramarginal. 

BOLD activity was measured by averaging the expected peak parameter 

estimates from the hemodynamic response of each condition (corresponding to 

volumes acquired at 4.75, 6.25, 7.75, and 9.25 seconds following cue onset). Activity 

differences between conditions were assessed at the ROI and vertex levels. ROI 

differences were evaluated after averaging BOLD activity from all vertices within the 

region in each subject’s native space and performing a two-tailed t-test across subjects 

for recall-classify vs. classify conditions. Vertex-wise analysis (for group-level maps) 

was performed after registering individual surfaces to a seventh-order icosahedron 

representation of the FreeSurfer average subject (Fischl et al., 1999b). To account for 
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variation in anatomy in the vertex-wise analysis, a conservative iterative smoothing 

process was applied to each subject’s data before registering to the average surface, as 

well as to the group-level data after averaging across subjects (iterative smoothing was 

equivalent to a 6 mm full-width, half-maximum Gaussian kernel). 

In addition to the atlas regions, a functional ROI within the left lateral parietal 

cortex was defined from a t-statistic map of BOLD activity differences between recall-

classify and classify conditions. The region was defined as the cluster of supra-

threshold vertices adjacent to the peak activity difference within the left lateral 

posterior parietal cortex, where the threshold was set by controlling the false discovery 

rate for the entire left hemisphere surface at 0.05 (Genovese et al., 2002). For display 

of the map, color thresholds were set for t-statistics corresponding to controlling the 

false discovery rate at 0.05 (minimum) and 0.01 (maximum). 

 

2.2.6   MEG Analysis 

 MEG data acquisition, activity estimation using dynamic statistical parametric 

mapping (Dale et al., 2000), and analysis were all described previously (Seibert et al., 

2010). Additionally, the functional ROI defined from the fMRI group map was 

resampled to a lower-resolution surface mesh used for MEG analysis (approximately 

2,500 dipoles per hemisphere). Estimated individual subject MEG data from dipoles 

within the functional ROI were combined to create an average ROI time series for 

each condition. As in the previously published analysis, statistical significance of the 

activity difference between the two conditions was evaluated by paired, two-tailed t-

tests across subjects for each of eight 100 ms subperiods (e.g., 100-190 ms, 200-290 
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ms, etc.), extending from 300 ms prior to cue onset to 500 ms after cue onset. 

Significance was assessed at the p < 0.01 level, after applying a Bonferroni correction 

for the eight comparisons.  

 A t-statistic map of MEG data was calculated for comparison with fMRI 

results and to visualize the spatial extent of significant MEG activity using a vertex-

wise approach. Estimated activity for each condition was averaged across the time 

periods of significant MEG activity difference in the functional ROI. For each dipole 

(i.e., each vertex on the low-resolution surface), a t-test across subjects was performed 

to compare the average recall-classify and classify activity. This group map was then 

resampled to the high-resolution surface and smoothed (iterative smoothing equivalent 

to 6 mm full-width, half-maximum Gaussian kernel) for display consistent with the 

fMRI map. Color thresholds were set for t statistics corresponding to controlling the 

false discovery rate for the left hemisphere surface at 0.05 (minimum) and 0.01 

(maximum). 

 

2.3   Results 

2.3.1 fMRI Behavioral Results 

Mean reaction times (± standard error) from the fMRI experiment were 1743 ± 

59 ms for recall-classify, and 1191 ± 46 ms for classify trials, representing a 

significant difference (p < 0.001, two-tailed t-test), similar to previous studies with 

this task (Israel et al., 2010; Seibert et al., 2010). 

A subject response was recorded within the specified response period in 94% 

of trials. Of these trials, subjects responded correctly in 97 ± 1% of classify trials and 
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90 ± 4% of recall-classify trials (mean ± standard error). Only trials with correct 

responses were included in signal deconvolution and comparisons of activity. 

For subjects who participated in both MEG and fMRI sessions there was no 

significant difference in accuracy in either condition between the first and second 

sessions (paired t-tests, p = 0.58 and p = 0.97 for recall-classify and classify 

conditions, respectively). 

 

2.3.2   Atlas ROI Analysis 

 MEG results from three left lateral parietal regions of the Desikan-Killiany 

atlas (Desikan et al., 2006) were published previously. Recall-classify activity was 

greater than classify activity in each of the three regions for 100 ms subperiods 

immediately following cue onset, with the superior parietal region showing the 

greatest effect. Analysis of the BOLD data shows recall-classify activity was greater 

than classify activity in the left superior parietal (t = 6.1, p < 10-5) and left inferior 

parietal regions (t = 7.7, p < 10-9), but not left supramarginal (t = -1.4, p = 0.18). 

Figures 2.4 and 2.5 (in Supplementary Materials, Section 2.7) show the MEG and 

fMRI time courses. 

 

2.3.3   fMRI Vertex Analysis 

 Lateral parietal BOLD activity differences are displayed as t-statistics for each 

vertex in Figure 2.2B, alongside the three parietal atlas ROIs (Figure 2.2A). A 

prominent region of greater activity for the recall-classify condition was found in the 

intraparietal sulcus, straddling the entire boundary between the superior and inferior 
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parietal atlas ROIs. A smaller region of greater recall-classify activity was also 

observed in the most inferior portion of the inferior parietal atlas ROI, though the peak 

of this cluster was in lateral occipital cortex. t-statistic values for vertices outside the 

parietal cortex are included in the display for context but such activations outside the a 

priori ROIs are not discussed further.  

 

 

Figure 2.2: (A) Three anatomical ROIs in the left lateral posterior parietal cortex. (B) 
Group-level t-statistics for greater BOLD response in the recall-classify condition than 
in the classify condition. (C) Analogous t-statistics for MEG response, averaged over 
the period from 0-300 ms after onset of the retrieval cue. The lower image in each 
frame is a superior view of the left hemisphere, rotated 30 degrees to show the 
intraparietal sulcus. Thresholds were set for t-statistics corresponding to controlling 
the false discovery rate over the left hemisphere at 0.05 (minimum) and 0.01 
(maximum).  
 

2.3.4   Functional ROI Analysis 

 A functional region of interest was defined on the FreeSurfer average cortical 

surface for the peak cluster of greater recall-classify activity within the left parietal 

cortex (Figure 2.3A). The full, derived hemodynamic response for the functional ROI 

is shown in Figure 2.3B.  
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Figure 2.3: (A) Functional ROI defined from t-statistic map for greater BOLD activity 
in the recall-classify than in the classify condition. The lower image is a superior view 
of the left hemisphere, rotated 30 degrees to show the intraparietal sulcus. (B) Derived 
hemodynamic response functions (and standard error) for both conditions within the 
functional ROI. (C) Estimated MEG activity time series. “dSPM” refers to dynamic 
statistical parametric mapping, the MEG source localization method used. Recall-
classify MEG activity was significantly greater than classify activity for the 100 ms 
time periods indicated in yellow (**: p < 0.001, ***: p < 10-5, ****: p < 10-7). 
 

When this region was applied to the MEG data set, average time series for 

recall-classify and classify conditions appeared to diverge just prior to cue onset, with 

a peak difference at ~150 ms (Figure 2.3C). A temporary convergence is seen at ~100 

ms, and the two conditions display similar levels of activity by ~400 ms after stimulus 

onset. Testing for significant activity difference in 100 ms subperiods revealed 

significantly greater recall-classify activity over 0-100 ms (t = 4.4, p < 10-3), 100-200 

ms (t = 5.3, p < 10-5), and 200-300 ms (t = 6.3, p < 10-7). All MEG p-values are 

corrected for multiple comparisons using the Bonferroni method for eight 

comparisons. An exploratory analysis of the early prestimulus period (from 1000 ms 

prior to cue onset to 300 ms prior to cue onset) did not suggest a MEG activity 

difference prior to our time period of interest. 
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2.3.5   MEG Vertex Analysis 

 MEG activity time series at each vertex were averaged over 0-300 ms, 

corresponding to the period of significant MEG activity difference in the functional 

ROI. Significant vertex-wise MEG activity differences in the lateral parietal cortex 

over this time window are shown in Figure 2.2C, with t-statistics displayed for each 

vertex. The spatial extent of greater recall-classify activity in this analysis is relatively 

limited to the intraparietal sulcus and neighboring cortex.  

 

2.4   Discussion 

 Taking advantage of the complementary strengths of fMRI and MEG, we have 

described a parietal response to episodic retrieval that is centered on the intraparietal 

sulcus and has an early, transient time course. Vertex-wise analysis of fMRI data over 

the left lateral parietal cortex localized the peak region of greater recall-classify 

activity to the border between the superior and inferior anatomical atlas ROIs, in the 

intraparietal sulcus. The region identified by localization of the hemodynamic 

response was then used to probe the temporal dynamics of the electrophysiologic 

response, which exhibited greater recall-classify activity during the first 300 ms 

following the cue to retrieve. Vertex-wise analysis of MEG data suggested the 

retrieval-related electrophysiologic response over this early period was also 

concentrated in and near the intraparietal sulcus. 

 The location of the retrieval response described here supports a functional role 

in episodic retrieval for the intraparietal sulcus, a region that has been highlighted as 

part of the dorsal parietal cortex in dissociations of parietal activity in retrieval 
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(Cabeza et al., 2008; Ciaramelli et al., 2008; Vilberg and Rugg, 2008a). The chief 

argument against an episodic retrieval role is based on a consistent observation from 

fMRI studies using remember/know recognition paradigms that the intraparietal sulcus 

is associated more with familiarity than with recollection (Ciaramelli et al., 2008; 

Vilberg and Rugg, 2008a, 2008b). Under one view, these findings are evidence that 

the intraparietal sulcus does not participate in episodic retrieval, but instead 

contributes to downstream processes (Vilberg and Rugg, 2008a). Under another view, 

however, it is argued that the intraparietal sulcus is more active for familiar items 

because these require greater top-down attention to memory search than recollected 

items (Cabeza et al., 2008; Ciaramelli et al., 2008). If the subject recognizes a test item 

in the remember/know paradigm as previously studied (i.e., familiar), but some detail 

from the study event does not immediately come to mind, the subject should make an 

effort to retrieve such a memory. In this way, familiar items themselves represent a 

cue to engage top-down attention to episodic memory search in the remember/know 

task. Among the advantages of the cued-recall paradigm used in this study are that 

stimuli in both conditions are equally familiar and that the conditions differ by the 

presence or absence of an explicit top-down retrieval cue. Thus, the recall-related 

response during this paradigm, localized to the intraparietal sulcus with both fMRI and 

MEG, is difficult to reconcile with the suggestion that dorsal parietal involvement in 

retrieval is limited to familiarity. 

 The time course of the MEG activity difference also does not support several 

of the functional hypotheses associated with the left lateral parietal cortex. In 

particular, the early onset and offset of increased recall-classify activity is not 
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consistent with processing downstream of retrieval. Other functions attributed to left 

parietal lobe activity similarly imply post-retrieval activity. Some retrieved 

information is necessary before the parietal cortex could participate in the subjective 

experience of recollection or in the buffering of that episodic information, but the 

MEG activity difference in the time courses in Figure 2.3C is clearly observed during 

the first 50 ms after onset of the stimulus—before completion of basic visual 

processing. There remains a possibility that processes associated with successful 

retrieval might partially contribute to the later portions of the MEG response. If, 

however, the intraparietal sulcus is either buffering retrieved information or utilizing 

retrieved information for some process occurring downstream of retrieval, the MEG 

response might be expected to extend closer to the behavioral response. The mean 

behavioral response in the retrieval condition comes more than 1400 ms after the 

period of significant MEG response. The early onset and the transient duration of 

retrieval-related MEG activity are not readily compatible with hypotheses assigning a 

post-retrieval role to intraparietal sulcus activity. 

 Both the timing and location of the present findings are consistent, however, 

with top-down attention to memory search. The recall-classify condition in our study 

encourages top-down attention to memory search by requiring retrieval of a specific 

paired associate and giving the instruction to retrieve prior to presentation of the cue. 

The intraparietal sulcus may contribute to the direction of internal attention toward 

episodic memory search or possibly toward a particular target in episodic memory, 

though the latter is less likely, given the immediate and brief MEG response. Centered 

in and near the intraparietal sulcus, our findings are largely localized within the dorsal 
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parietal cortex region proposed to be responsible for top-down attention to memory 

search (Cabeza et al., 2008; Ciaramelli et al., 2008).  

 A limitation of the present study is the relatively focused time period 

investigated. The present MEG data set was designed to explore the first 500 ms 

following cue onset (Seibert et al., 2010) and thus does not preclude the possibility of 

a later activity difference; however, any such activity difference would likely be 

distinct from that described here, as there is no significant activity difference in the 

300-400 ms or 400-500 ms subperiods.  

 Another limitation of this study, common to all brain imaging studies 

comparing two conditions, is that a paired contrast does not provide proof that the 

process underlying the activity difference is exclusive to only one of the conditions. A 

graded process may participate in both the recall-classify and classify conditions but 

still contribute to the activity difference. Ongoing encoding and retrieval are to be 

expected regardless of experimental task, yet this study controls for incidental memory 

processes by contrasting the recall condition with a condition that does not require 

episodic retrieval. Thus, similar underlying processes may contribute to both 

conditions, but the present findings demonstrate that intraparietal sulcus activity is 

increased when episodic retrieval is required. 

 

2.5   Conclusions 

Taken together, these findings offer convergent, multimodal evidence for 

involvement of the intraparietal sulcus in recall and suggest that this region contributes 

to pre-retrieval processes, such as orienting attention to memory search. The power of 
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integrative analyses in evaluating functional hypotheses is demonstrated by the 

observation that only one of the several proposed roles for lateral parietal cortex (top-

down attention to memory search) is clearly consistent with the parietal response 

measured in this study. By describing both the location and timing of parietal activity 

during recall, the present results provide a critical piece of the empirical framework 

necessary for understanding how the intraparietal sulcus contributes to episodic 

retrieval.   
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2.7   Supplementary Materials 

 

Figure 2.4: Supplementary Figure 1 – MEG anatomical ROI time series. (A) Three 
anatomical ROIs in the left lateral posterior parietal cortex. (B-D) Estimated MEG 
activity time courses from these regions. “dSPM” refers to dynamic statistical 
parametric mapping, the MEG source localization method used. 100 ms time periods 
highlighted with yellow showed significantly greater recall-classify activity than 
classify activity (*: p < 0.01, **: p < 0.001, ***: p < 10-4, ****: p < 10-7). Adapted 
with permission from Seibert et al., 2010; ROIs are displayed on the higher-resolution 
surface used throughout the present study. 
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Figure 2.5: Supplementary Figure 2 – BOLD anatomical ROI time series. (A) Three 
anatomical ROIs in the left lateral posterior parietal cortex. (B-D) Derived 
hemodynamic response functions from these regions.
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CHAPTER 3 
 

Default Network Correlations Analyzed on Native Surfaces 

 

Abstract 

 Disruptions of interregional correlations in the blood oxygenation level 

dependent fMRI signal have been reported in multiple diseases, including Alzheimer’s 

disease and mild cognitive impairment. “Default network” regions that overlap with 

areas of earliest amyloid deposition have been highlighted by these reports, and 

abnormal default network activity is also observed in unimpaired elderly subjects with 

high amyloid burden. However, one limitation of current methods for analysis of 

interregional correlations is that they rely on transformation of functional data to an 

atlas volume (e.g., Talairach-Tournoux or Montreal Neurological Institute atlases) and 

may not adequately account for anatomic variation between subjects, particularly in 

the presence of atrophy. We assessed the utility of the FreeSurfer cortical parcellation 

to analyze default network functional correlations on the native surfaces of individual 

subjects. Group-level quantitative analysis was accomplished by comparing 

correlations between equivalent structures in different subjects. The method was 

applied to resting-state fMRI data from young, healthy subjects; preliminary results 

were also obtained from cognitively unimpaired elderly subjects and patients with 

Alzheimer’s disease, Parkinson’s disease, Parkinson’s disease dementia, and dementia 

with Lewy bodies. 
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3.1   Introduction 

Characteristic patterns of low-frequency correlations have been repeatedly identified 

in the blood oxygenation level dependent (BOLD) fMRI signal when subjects are 

asked to simply lie still in the scanner (Biswal et al., 1995; Buckner et al., 2008; 

Greicius et al., 2003). The relative consistency of these patterns across studies and 

analysis methods, as well as the simplicity of the instructions, has led to considerable 

interest in their potential application as a biomarker in disease (Auer, 2008; Fox and 

Raichle, 2007; Greicius, 2008; van den Heuvel and Hulshoff Pol, 2010; Rogers et al., 

2007). Particular attention has been paid to a collection of regions called the default 

network1 and the disruption of correlations across these regions in Alzheimer’s disease 

(Greicius et al. 2004; L Wang et al. 2006; Allen et al. 2007; Supekar et al. 2008; Koch 

et al. 2010; H-Y Zhang et al. 2010; for review, see Greicius 2008; Sorg et al. 2009). 

Disruptions in so-called functional connectivity in the default network have also been 

reported in conditions believed to precede onset of Alzheimer’s disease, including 

patients with amnestic mild cognitive impairment (Bai et al., 2009; Pihlajamäki et al., 

2009; Sorg et al., 2007) and cognitively unimpaired subjects with high amyloid burden 

(Hedden et al., 2009; Sheline et al., 2010). 

Anatomical variability across subjects gives rise to two notable challenges in 

the analysis of spontaneous BOLD correlations within the default network. First, if 

analyses are to be extended beyond qualitative assessment in individual subjects, a 

                                                 
1 A number of brain regions exhibit greater activity in functional neuroimaging studies when subjects 
are permitted to rest than when they are instructed to engage in a specific cognitive task. These regions 
have been collectively deemed the “default network” (Buckner et al., 2008; Raichle et al., 2001; Raichle 
and Snyder, 2007) 

 



73 

method of comparing results across subjects is critical. Second, the network of interest 

has to be identified in each subject. In seed-correlation analyses, this is typically 

accomplished by choosing an a priori seed region known to lie within the network 

(Hedden et al., 2009; Sheline et al., 2010). For independent component analyses 

(ICA), a template is used to identify the component that best matches the default 

network (Greicius et al., 2004; Seeley et al., 2009).  

Currently, both of these challenges are addressed by performing analyses in 

atlas-volume space. Anatomical and functional images from each subject are 

transformed, or warped, to match a canonical brain (e.g., Talairach-Tournoux or 

Montreal Neurological Institute template). Once in a standardized, or atlas, volume, 

seed regions and templates from the literature or other data sets can be applied to the 

spatially transformed data to identify the default network. The process of transforming 

data to an atlas volume also permits direct comparison of analysis results across 

subjects and studies.  

 Unfortunately, atlas-space results are only valid to the extent that the warping 

process is valid, a point of particular concern in conditions where participants’ brains 

differ considerably from the atlas due to disease. Functional correlation analyses are 

subject to concerns similar to some known issues with voxel-based morphometry, a 

method for structural MRI analysis which also depends heavily on accurate 

registration to a template. Improper registration can lead to misleading results in both 

cases because, for example, a given coordinate represents gray matter in the template 

but lies in cerebrospinal fluid in a patient’s warped brain. Voxel-based morphometry 

gives varied results depending on the particular warping algorithm used (Senjem et al., 
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2005), and even algorithms identified as “optimized,” which include multiple steps to 

improve normalization, are still prone to errors when atrophy causes gross changes in 

brain structure (Ashburner and Friston, 2001; Bookstein, 2001; Senjem et al., 2005). 

Despite the crucial role warping plays in functional correlation analyses and the 

known pitfalls of common methods in the face of structural brain pathology, accuracy 

of individual transformations are rarely, if ever, reported or displayed. 

 Analysis on a subject’s native surface offers potential advantages over atlas-

volume methods. First, possible ambiguity about precise anatomic locations is 

reduced. Measuring functional correlations on native surfaces also facilitates 

accounting for anatomic effects of disease and age. Moreover, by preserving inter-

individual anatomic variability, longitudinal patient studies can better avoid confounds 

due to disease-related structural changes that affect an individual patient’s brain over 

time. Comparison of functional measures to other individual markers is also 

straightforward on native surfaces, in particular cross-modal imaging markers such as 

amyloid imaging results and regional cortical thickness. There is also a clinical appeal 

to obtaining and displaying functional imaging results on the brain surface of an 

individual patient. Prior studies have pointed to the potential of functional correlations 

to provide meaningful results in individual patients (Buckner and Vincent, 2007; 

Greicius et al., 2004; Koch et al., 2010); analyzing functional data on native surfaces 

may be an important step toward that aim. 

 We assessed the utility of the FreeSurfer (http://surfer.nmr.mgh.harvard.edu) 

cortical parcellation to analyze functional correlations on the native surfaces of 

individual subjects. Automated processes are employed to anatomically parcellate 
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each subject’s cortical surface into distinct regions of cortex (subcortical gray matter 

structures are included after a similar automated volume segmentation). One cortical 

region, the isthmus cingulate, is proposed as a suitable native-surface seed for 

identification and analysis of the default network. Parcellation and segmentation 

regions are then used for group-level analyses by comparing interregional correlations 

between equivalent regions in different subjects. Additionally, registration of native 

sulcal and gyral patterns to an average surface allows display of group-level results 

after quantitative parcellation analysis on native surfaces.  

Here we present results from the application of this method to BOLD data 

from young, healthy subjects as a proof of concept. The primary findings were 

reproduced in preliminary data from multiple disease populations, including 

Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), Dementia with Lewy 

bodies (DLB), and cognitively unimpaired elderly controls. 

 

3.2   Methods 

3.2.1   Subjects 

 Subject demographics are provided in Table 3.1. Patients designated 

‘Alzheimer’s disease’ had a clinical diagnosis of probable AD based on the 

NINCDS/ADRDA criteria (McKhann et al., 1984); diagnoses for dementia with Lewy 

bodies and Parkinson’s disease dementia were based on the criteria established by the 

Movement Disorders Society Task Force (Geser et al., 2005; McKeith, 2007).  

Diagnosis for all patients was made by consensus of two or more neurologists in the 

UCSD Shiley-Marcos Alzheimer’s Disease Research Center Clinical Core. Elderly 

 



76 

controls with no cognitive impairment had a mini mental status exam score of at least 

27 and a CDR score of zero. 

 

Table 3.1: Subject demographics 
 
Subject group N Age range Field strength 
Young adults 15 22-28 3.0 Tesla 
Elderly controls 7 69-90 1.5 Tesla 
Alzheimer's disease 4 61-94 1.5 Tesla 
Parkinson's disease dementia 8 65-86 1.5 Tesla 
Dementia with Lewy bodies 7 61-75 1.5 Tesla 
 

3.2.2   MRI Acquisition 

 Functional imaging of each subject consisted of two T2*-weighted sequences 

of approximately seven minutes each on a General Electric Signa Excite HDx using an 

eight-channel phased-array head coil (General Electric Healthcare, Waukesha, WI). 

Data for young subjects were acquired on a 3.0 Tesla system (TE: 30 ms; TR: 2124 

ms; flip angle: 90°; matrix: 64 x 64; voxel size: 3.75 mm x 3.75 mm x 4 mm; 36 

adjacent sagittal slices; 205 samples per series); data for elderly subjects, including 

patients, were acquired on a 1.5 Tesla system (TE: 45 ms; TR: 2624 ms; flip angle: 

90°; matrix: 64 x 64; voxel size: 3.75 mm x 3.75 mm x 5 mm; 32 adjacent sagittal 

slices; 155 samples per series). The initial five samples from each functional run were 

excluded to allow for T1-equilibration. Immediately prior to each functional series, a 

spin-echo volume was acquired with opposite phase-encoding polarity for field 

inhomogeneity correction (Holland et al., 2010). Instructions for the young subjects 

were to rest motionless with eyes closed. Instructions for the elderly subjects were to 

rest motionless with eyes open; this modification was adopted after it was suggested 
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that functional correlations in the default network are more robust with eyes open 

(Van Dijk et al., 2009; Yan et al., 2009). In addition to the functional volumes, a high-

resolution, three-dimensional, T1-weighted volume was acquired for each subject 

during the same session (TE: 2.8 ms / 3.8 ms; TR: 6.5 ms / 8.5 ms; TI: 600 ms / 500 

ms; flip angle: 8° / 10°; matrix: 256 x 256; voxel size:  0.9375 mm x 0.9375 mm x 

1.2000 mm; values separated by ‘/’ are for 3.0 T data / 1.5 T data). Respiratory effort 

and heart rate were monitored with a pressure transducer (BioPac Systems Inc., 

Goleta, CA) and a pulse oximeter (BioPac Systems and InVivo, Orlando, FL), 

respectively. 

 

3.2.3   Structural MRI Processing 

 A model of each subject’s cortical surface was reconstructed from the T1-

weighted MRI volume (Dale et al., 1999; Fischl et al., 1999a). To ensure accuracy, the 

automatically generated boundaries were overlaid on the original T1-weighted volume 

as thin colored lines to aid visual confirmation of the tissue boundaries on each slice—

yellow for the boundary between white and gray matter, and red for the boundary 

between gray matter and cerebrospinal fluid. Where these automatically generated 

lines deviated from the visually identified boundaries, manual control points were 

created, and the automated algorithms were applied again. Final surfaces were visually 

inspected to search for gross errors; none were found in the present data set. 

 The surface model was then anatomically parcellated using the Desikan-

Killiany atlas and standard FreeSurfer tools (Desikan et al., 2006; Fischl et al., 2004). 

This process assigns each point (vertex) on the native surface to the most probable 
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anatomical label (e.g., inferior parietal, precentral, parahippocampal, etc.) based on 

registration to a probabilistic atlas of surface folding patterns and on the observed 

surface geometry at that location of the native surface (Fischl et al., 2004). Subcortical 

structures were similarly identified by volume segmentation (Fischl et al., 2002). 

Automated parcellation by this method has been shown to be comparable to manual 

labeling (Fischl et al., 2004). Additionally, the parcellation for each subject was 

visually inspected to search for gross errors; none were found in the present data set. 

 For direct comparison with prevailing methods, the T1-weighted volume from 

an Alzheimer’s patient exhibiting atrophy was submitted to common registration 

algorithms to warp the atrophied brain to the Montreal Neurological Institute (MNI) 

152 T1 reference brain provided in standard software packages. Affine transformation 

with 12 degrees of freedom was performed using 3dWarpDrive in AFNI 

(http://afni.nimh.nih.gov/afni). Nonlinear transformations were performed using 

FNIRT in FSL (http://www.fmrib.ox.ac.uk/fsl/index.html), the “normalise” process in 

SPM2 (http://www.fil.ion.ucl.ac.uk/spm/), and the DARTEL process in SPM8. An 

older version of SPM (SPM2) was included because it appears to be among the more 

common packages used in the relevant literature (Buckner et al., 2009; Supekar et al., 

2008; Van Dijk et al., 2009; Wang et al., 2007; Wang et al., 2010). All registration 

procedures followed the configurations and parameters recommended in the 

documentation provided with the corresponding software. Simple alignment of the 

original volume was also performed using manually defined markers in AFNI in order 

to display the original images in a similar orientation to the registered images.  
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3.2.4   fMRI Data Pre-analysis Processing 

 All fMRI pre-analysis processing was performed using custom software 

written in MATLAB (Mathworks, Natick, MA), except where noted. Functional 

images were first corrected for distortion due to inhomogeneity in the static magnetic 

field (Holland et al., 2010). Effects of respiratory fluctuations were modeled and 

removed from time series using RETROICOR (Glover et al., 2000). Similar removal 

of cardiac fluctuations did not have a meaningful impact on the results in any group, 

and this step was not included in final analyses for the sake of consistency across all 

subjects (pulse recordings were sporadically lost in approximately 20% of scans in 

elderly and disease subjects due to technical problems). After interpolation for slice 

acquisition timing, rigid body volume registration was performed using AFNI (Cox 

and Jesmanowicz, 1999), followed by voxel-wise regression of six head motion 

parameters and a cubic polynomial baseline from each functional series. Functional 

data were next projected onto the subject’s cortical surface model using FreeSurfer, 

and a bandpass filter of 0.01-0.08 Hz was applied to the time series from each vertex 

on the surface. BOLD correlation analyses typically include a smoothing step with a 

Gaussian kernel to account for functional and anatomic variation across subjects, but 

this step is not necessary for native-surface parcellation analysis. 

 

3.2.5   fMRI Correlation Analysis 

 We designed an fMRI correlation analysis that takes advantage of the 

FreeSurfer surface generation and parcellation tools and avoids transforming 

functional data to an atlas volume. All steps were performed using custom software 
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written in MATLAB, except where noted. Functional time series were averaged across 

surface vertices within the left isthmus cingulate region to serve as the seed time series 

for correlation analyses. Average time series were also calculated from each of the 

other 30 cortical surface parcellation regions in the Desikan-Killiany atlas not adjacent 

to the seed (see Figure 3.4), as well as from five volume segmentation regions from 

the left hemisphere (hippocampus, caudate, pallidum, putamen, and amygdala). A 

Pearson’s correlation coefficient was calculated for the correlation between the seed 

time series and each region’s average time series, and Fisher’s z-transform was applied 

to these coefficients. The same process was repeated for right hemisphere regions, 

with the right isthmus cingulate region as the seed. Region time series were obtained 

by loading both the subject’s functional data and the parcellated native surface (which 

contains a region code at each vertex location) in MATLAB; time series at each vertex 

could then be classified by the region code at the corresponding location in the 

parcellated surface. 

 Results from native-surface parcellation analysis were summarized in two 

ways. First, the z-transformed correlation coefficients from each region were averaged 

across subjects. Second, as it is possible that relative changes in correlation coefficient 

may also be informative, all 35 regions per hemisphere were ranked in order of highest 

to lowest coefficient for a given subject. These ranks were summarized by calculating 

the median rank across subjects for each region. 

 A power analysis was performed to give an estimate of the number of subjects 

needed to detect a difference between two groups. For each region, the standard 

deviation (across subjects) was calculated for the z-transformed correlation coefficient 
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with the isthmus cingulate seed. This standard deviation was included in Cohen’s 

equation sample size for a population difference (Cohen, 1988; Dawson and Trapp, 

2004). The expected effect size (i.e., population difference) was assumed to be 0.2; the 

actual value is unknown and specific to the populations studied, but available 

published values suggest this value is conservative for comparing unimpaired elderly 

with high risk for Alzheimer’s disease to age-matched controls (Fleisher et al., 2009; 

Hedden et al., 2009; Koch et al., 2010). All calculations also assumed 80% power and 

an alpha value of 0.05. The final result of the power calculations was an estimated 

sample size for each region, corresponding to the number of subjects necessary to 

detect a population difference of 0.2 in the correlation coefficient.  

 Vertex-wise correlation analysis was performed in addition to the parcellation 

analysis, allowing visualization of entire hemispheres at finer resolution. Individual 

maps were produced by calculating the Fisher’s z-transformed correlation coefficient 

for the average seed region time series and the time series of each vertex on the 

surface. Individual native surfaces were registered to the FreeSurfer fsaverage surface 

using a spherical-based algorithm in FreeSurfer (Fischl et al., 1999b). That registration 

was used to transform the individual maps to the fsaverage surface, also using 

FreeSurfer tools. Group maps were created by loading the fsaverage versions of the 

individual maps in MATLAB and taking the average across subjects. A surface-based 

smoothing process was applied using FreeSurfer for display in the figures (28 iterative 

steps, approximately equivalent to a 6 mm full-width half-maximum Gaussian kernel 

in two dimensions). Group maps were calculated from unsmoothed individual maps so 

that the smoothing process was only applied once. The minimum threshold for both 
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group and individual hemisphere maps was set as the mean coefficient across all 

vertices on the surface plus 0.5 times the standard deviation; the maximum threshold 

was set as the mean coefficient plus 1.5 times the standard deviation. 

 

3.2.6   Comparative Analysis: Volume Atlas vs. Native Surface 

 To assess the degree to which warping to a volume atlas affects functional 

correlation results, all functional data from this study were also analyzed after 

nonlinear transformation to the MNI152 volume atlas. All pre-analysis processing and 

correlation procedures for the volume-atlas analysis were performed as in the native-

surface analysis up to the point of projection of time series data to the surface. Instead 

of directly projecting processed functional time series to each subject’s native surface, 

all data were transformed to volume-atlas space using standard tools in a software 

package cited in several resting correlation studies (SPM2). The transformation to 

volume-atlas space was calculated for each subject using the individual high-

resolution T1-weighted volumes. The time series in MNI space were then projected 

onto the fsaverage surface using the standard transformation provided with FreeSurfer. 

Subsequent bandpass filtering and correlation analysis (using the fsaverage surface 

parcellation) were performed as in the native-surface analysis.  

Any inaccuracies in registration to the MNI volume atlas could change the 

definition of the seed and therefore affect correlation measures across the entire brain 

even if the rest of the brain was perfectly registered to MNI. To isolate the effect of 

whole-brain registration to a volume atlas, the time series from each subject’s native-

surface isthmus cingulate was used as the seed in both the native-surface and volume-
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atlas analyses. Additionally, the correlation coefficient between the native-surface 

isthmus cingulate time series and the MNI-transformed isthmus cingulate time series 

was calculated for each subject to quantify the effect of MNI transformation on the 

seed. Note that, in order to maintain intuitive interpretation of the values, these seed-

to-seed correlation coefficients were not Fisher-transformed. 

MNI volume-atlas correlation coefficients for each region on the fsaverage 

surface were compared to the corresponding region on the native surfaces. As volume-

atlas registration inaccuracies lead to a heterogeneous mix of both increases and 

decreases in correlation values, the magnitude of the differences was used for 

comparing the methods. The mean (across-subjects) difference between MNI-

transformed and native-surface results was calculated for each region. Paired t-tests 

were applied to evaluate the statistical significance of any regional differences 

between the two methods. 

Vertex-by-vertex comparison of the MNI volume-atlas results (projected on 

the fsaverage surface) to the native-surface results was achieved using the native-

surface maps that were registered to the fsaverage surface (see section 3.2.5). 

Difference maps were calculated by taking the root-mean-square (RMS) average, at 

each vertex, of the difference between MNI-transformed and native-surface results. 

 

3.3   Results 

Both linear and nonlinear algorithms successfully aligned the atrophied brain 

to the MNI template (Figure 3.1). The nonlinear methods (FSL, SPM2, SPM8) appear 

to have reduced ventricular spaces and stretched the brain tissue to fill portions of the 
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adjacent CSF space (distortions to the skull and other tissues in the nonlinear examples 

should be ignored, as the methods are optimized for registration of the brain, not 

extraparenchymal tissues). None of the transformations, however, fully accounted for 

the bulk atrophy in the superior brain or the enlarged sulci evident throughout the 

cortex. Many MNI coordinates that lie within cortical regions in the template 

correspond to cerebrospinal fluid in the transformed brains for this patient. 

 

 

Figure 3.1: Warping to an atlas volume. T1-weighted volume from a patient with 
atrophy transformed to an atlas volume using popular software packages. AC-PC 
aligned: original image, after rotation and cropping for comparison with transformed 
images (rotation in AFNI after manual landmark identification). AFNI: after affine 
(12 degrees of freedom) transformed with 3dWarpDrive. FSL: after nonlinear warping 
with FNIRT. SPM2: after nonlinear warping with “Normalise” tool. SPM8: after 
nonlinear warping with the “DARTEL” process. MNI 152: standard T1 atlas volume 
used for all transformations presented here. None of these methods adequately 
accounted for the structural effects of atrophy in this patient. One consequence of the 
poor alignment is some cortical MNI coordinates correspond to cerebrospinal fluid in 
the patient’s transformed brain. 
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Table 3.2: Native-surface correlation analysis in young subjects. Regions most 
consistently correlated with the seed region in each hemisphere. A median rank of 2 
for the superior frontal region in the left hemisphere indicates that this region is among 
the top 2 regions most correlated with the seed in at least 50% of subjects 
(interquartile ranges give analogous results for the 25th and 75th percentiles). Mean z 
and SE indicate the population mean z-transformed correlation coefficient and 
standard error, respectively. Sample size indicates the estimated sample size to detect 
a difference in mean z of 0.2 with 80% power and alpha value set to 0.05. 
 

Left Hemisphere 
 region ranks correlation coefficients 
Region name median quartiles mean z SE sample size 
Superior Frontal 2 (1-2.75) 1.06 0.06 21 
Inferior Parietal 3 (2-6.25) 1.02 0.07 33 
Medial Orbitofrontal 3 (2-7.75) 1.02 0.06 21 
Hippocampus 6 (5-10.5) 0.90 0.05 16 
Parahippocampal 7 (4-13.25) 0.89 0.06 18 

Right Hemisphere 
 region ranks correlation coefficients 
Region name median quartiles mean z SE sample size 
Superior Frontal 4 (2-7.75) 0.91 0.06 22 
Inferior Parietal 5 (1.25-8.75) 0.94 0.08 37 
Hippocampus 6 (3-10.75) 0.89 0.07 28 
Parahippocampal 7 (4.25-18.75) 0.80 0.08 37 
Medial Orbitofrontal 8 (2.25-13.75) 0.87 0.05 15 
 
 
 

The T1-weighted volume and reconstructed cortical surface model are shown 

in Figure 3.2A and 3.2B, respectively, for the brain of a young subject and the 

atrophied brain from Figure 3.1. Anatomic features of each individual brain were 

preserved by the surface reconstructions. The depression of the superior aspect of the 

atrophied brain is reflected in the relatively flat superior aspect of the surface. 

Similarly, the patient’s enlarged sulci are readily observable in the corresponding 

surface. Neither of these abnormalities prevented successful automated parcellation of 

the cortical surface (Figure 3.2C). The isthmus cingulate seed region is identified for 

each subject within the parcellation (Figure 3.2D, dark green), allowing calculation of 
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correlation coefficients for the rest of the cortex on the subject’s native surface (Figure 

3.2D, 3.2E).  

 

 

Figure 3.2: Analysis on native surfaces. The top row shows structural and functional 
analysis for a young subject; the bottom row shows corresponding images from a 
patient with atrophy (see Figure 1). A: Original T1-weighted volumes after AC-PC 
alignment. B: Cortical surface models generated from T1-weighted volumes; 
anatomical features from individual subjects, including effects of atrophy, are 
preserved. C: Automated anatomical parcellation of cortical surface for each subject. 
D-E: Individual correlation maps consisting of coefficients (z-transformed) from 
correlation of each surface vertex with the average time series of the isthmus cingulate 
seed (dark green). The isthmus cingulate region was defined on the native surface for 
each subject during the automated anatomical parcellation. Thresholds (for display 
only) were determined separately for each subject from the mean and standard 
deviation of correlation coefficients for the vertices on the individual surface. 
 
 
 Cortical surface models reconstructed from five individual young subjects are 

shown in Figure 3.3A (all subjects are included in supplementary material). As 

expected, substantial variability in anatomy is observed between individuals; brain 

size, gyral patterns, and structural landmarks are all unique for each surface. The 

inferior parietal region identified by the FreeSurfer parcellation is also shown for each 

subject. 
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 Functional correlation maps are displayed on the native surfaces for the same 

five individual young subjects in Figure 3.3B. Many individual subject maps resemble 

the well-known default network pattern typically reported in group averages. As with 

the anatomy, though, the functional maps demonstrate considerable variability from 

one individual to another.  

 

Table 3.3: Native-surface correlation analysis in elderly subjects and patients. 
Regions most consistently correlated with the seed region in each hemisphere. A 
median rank of 2 for the superior frontal region in the left hemisphere indicates that 
this region is among the top 2 regions most correlated with the seed in at least 50% of 
subjects (interquartile ranges give analogous results for the 25th and 75th percentiles). 
Mean z and SE indicate the population mean z-transformed correlation coefficient and 
standard error, respectively. Sample size indicates the estimated sample size to detect 
a difference in mean z of 0.2 with 80% power and alpha value set to 0.05. 
 

Left Hemisphere 
 region ranks correlation coefficients 
Region name median quartiles mean z SE sample size 
Inferior Parietal 2 (1-4) 0.84 0.05 36 
Superior Frontal 4 (2-5) 0.77 0.05 30 
Caudal Middle Frontal 6 (4-14) 0.67 0.05 38 
Hippocampus 10 (6-19) 0.57 0.04 24 
Caudate 10.5 (7-17) 0.59 0.04 27 

Right Hemisphere 
 region ranks correlation coefficients 
Region name median quartiles mean z SE sample size 
Inferior Parietal 3 (1-5) 0.84 0.05 28 
Superior Frontal 3 (2-8) 0.79 0.05 31 
Pericalcarine 8.5 (4-14) 0.66 0.05 29 
Caudal Middle Frontal 9 (6-15) 0.64 0.05 38 
Middle Temporal 9 (6-19) 0.60 0.05 40 
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Figure 3.3: Individual correlation maps. Columns represent individual subjects. A: 
Cortical surface models with a single parcellation region (inferior parietal) highlighted 
in blue. The substantial anatomic variability across subjects is captured by the 
individual surfaces. B-C: Individual correlation maps for five young subjects, 
consisting of coefficients (z-transformed) from correlation of each vertex on the 
surface with the average time series of the isthmus cingulate seed (dark green). The 
isthmus cingulate region was defined on the native surface for each subject during the 
automated anatomical parcellation. Individual correlation maps for all fifteen young 
subjects are included in the supplementary material. 
 
 
 Native-surface regions most consistently correlated with the seed region in 

each hemisphere are shown in Table 3.2. All of the top five regions in each 

hemisphere are among those frequently included in the default network (dorsolateral 

prefrontal, medial prefrontal, inferior parietal, and medial temporal). Both the mean 

correlation coefficient and median rank measures identify default network regions as 

the most strongly correlated with the isthmus cingulate seed.  

 Group-average functional correlation maps for the young subjects are 

displayed in Figure 3.4. While interindividual variability is lost in the group average, 

the pattern at the group level confirms that typical default network patterns are 

identified using the isthmus cingulate seed.  
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Figure 3.4: Group correlation map for young subjects. Vertex-wise average 
correlation map across fifteen young subjects after surface-based registration to the 
FreeSurfer “fsaverage” subject. The Desikan-Killiany cortical parcellation atlas is 
shown in the first column, and the isthmus cingulate seed is shown in dark green on all 
medial surfaces. 
 
 
 Power analysis estimated the sample size required for a difference in 

population mean for the regions in Table 3.2. Sample sizes for the regions in Table 3.2 

had a median of 21.5 subjects. Among these regions, the right inferior parietal and 

right parahippocampal regions had the greatest estimated sample sizes at 37 subjects 

each. Right medial orbitofrontal had the smallest estimated sample size at 15 subjects. 
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Figure 3.5: Group correlation maps for elderly subjects and patients. Vertex-wise 
average correlation maps after surface-based registration to the FreeSurfer “fsaverage” 
subject. The isthmus cingulate seed is shown in dark green. The upper left map is the 
average across all thirty-four elderly subjects and patients; the other five maps are 
averages within elderly and disease subgroups. 
 

 Functional correlation maps were calculated for five additional populations 

(Figure 3.5). The qualitative patterns in these group-average maps were similar for 

cognitively unimpaired elderly, Parkinson’s disease, Parkinson’s disease dementia, 

Alzheimer’s disease, and dementia with Lewy bodies. Characteristic features of the 

default network are observed in each group. Sample sizes from each group are 

insufficient for intergroup comparisons, but pooled analysis across groups 

demonstrates that some of the same regions remain most consistently correlated with 

the isthmus cingulate seed in native-space analysis (Table 3.3). As with the young 

subjects, the top two most consistently correlated regions in both hemispheres were 

inferior parietal and superior frontal. 
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Figure 3.6: Group RMS difference maps for volume-atlas versus native-surface 
correlation results. The overlays in the bottom two rows show the root-mean-square 
difference between correlation results obtained after nonlinear transformation to the 
MNI152 volume-atlas and results obtained from analysis on each subject’s native 
surface. The minimum threshold for the RMS difference (0.2) matches the magnitude 
of estimated population difference used in power analyses (see Table 3.2 and Table 
3.3). For reference, the fsaverage parcellation is included in the top row. 
 

 The effect of defining a seed in volume-atlas space rather than defining a seed 

on the native surface was quantified by calculating the correlation coefficient between 

the two average time series for each subject. For young subjects, the median 

correlation coefficient (and interquartile range) between the MNI isthmus cingulate 

and native-surface isthmus cingulate was 0.84 (0.81-0.86) for the left hemisphere and 

0.87 (0.85-0.87) for the right hemisphere. The minimum coefficient among the young 

subjects was 0.63, and the maximum was 0.93. For healthy and impaired elderly 

subjects, the median correlation coefficient was 0.77 (0.65-0.85) for the left isthmus 
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cingulate and 0.79 (0.66-0.85) for the right. The minimum coefficient among the 

elderly and patients was -0.09, and the maximum was 0.95. 

 Registration to an atlas volume also led to significant effects on correlation 

results throughout the rest of the cortex, even when the same (native-surface) seed 

time series was used for both methods. Correlation coefficients for MNI-transformed 

regions on the fsaverage surface differed from their native-surface homologues by a 

mean magnitude of 0.14 ± 0.06 (standard deviation) in young subjects. Paired t-tests 

for a non-zero magnitude difference between MNI and native regions gave p-values 

less than 0.005 for all regions in both hemispheres in the young subjects, and the 

median p-value was less than 10-4. In the elderly (including patients) group, the mean 

magnitude of the difference was 0.16 ± 0.04, which was significantly greater than in 

the young subjects (t-test, p < 0.05). Paired t-tests between MNI and native regions 

gave p-values less than 10-5 for all regions in both hemispheres in the elderly and 

patients group, and the median p-value was less than 10-7. 

 Vertex-wise group-level maps showing the root-mean-square difference 

between correlation coefficients obtained with MNI-transformed time series versus 

native-surface coefficients are displayed in Figure 3.6. The maps have a threshold 

RMS difference of 0.2, corresponding to the magnitude of the estimated population 

difference used in the power analysis above. Root-mean-square differences greater 

than 0.2 are widespread throughout both hemispheres in both young and 

elderly/diseased subjects. Among regions with the greatest RMS differences (greater 

than 0.35) are some associated with the default network, including the isthmus 

cingulate, inferior parietal, and medial prefrontal cortices. 
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3.4   Discussion  

 Spontaneous BOLD correlation studies may afford opportunities to increase 

our understanding of how regions of the brain interact and to develop clinical tools for 

diagnosis or measurement of disease progression. Already, intriguing results have 

been reported in various diseases, including mild cognitive impairment and 

Alzheimer’s disease. Analysis in native space may improve accuracy, allow more 

rigorous investigation into resting-state correlation phenomena, and otherwise 

facilitate transition to clinical utility. 

 Reliance on warping to atlas space has the potential to critically influence 

results of functional correlation analyses. Despite the critical importance of accurate 

localization and known issues with warping, very few studies report on the accuracy 

of transformations, and transformed images are rarely included in published 

manuscripts. Many methods for warping to atlas volumes exist, and these usually have 

many user-selected parameters that affect the transformation but are not typically 

reported in methods descriptions. In the case of patients with atrophy or other 

structural abnormalities, these issues become more apparent and have been described 

previously (Ashburner and Friston, 2001; Bookstein, 2001; Senjem et al., 2005).  

Figure 3.1 gives a striking example of the pitfalls of warping an atrophied 

brain to a normal template. Four methods from three standard software packages, 

using the recommended parameters, produced warped volumes that have obvious 

inconsistencies with the MNI template. Analysis of this subject with current methods 

might yield decreased correlations relative to controls, for example, in regions 

corresponding to the hippocampus or dorsal cortex. Following typical practices, 
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statistical results would be overlaid on the atlas brain to show the effect. However, 

decreased correlations in this hypothetical example might be explained by the fact that 

relatively large portions of the MNI cortex correspond to cerebrospinal fluid in the 

patient’s warped brain, and therefore in the patient’s warped functional data.  

Analysis on native surfaces avoids warping individual brains to atlas volumes 

and the accompanying issues. Figure 3.2 demonstrates how the model of the 

individual cortical surface can still readily capture the features of the severely 

atrophied brain from the previous example. Remaining within the individual anatomy 

rather than attempting to distort it through spatial normalization, reduces the risk of 

mistakenly analyzing correlations outside the gray matter, or outside the brain 

altogether. Images of other brains, especially those without atrophy, may transform 

more accurately to the template. Use of other warping algorithms, other warping 

parameters, or other templates may improve the registration of this, and other, imaged 

brain volumes. However, at a minimum, the accuracy of the transformations for brains 

with structural pathology must be assessed and reported alongside functional analyses 

that depend on that transformation. Moreover, it is possible even studies using young, 

healthy subjects with no pathology could benefit from analysis on individual surfaces. 

The effects of warping to a volume atlas on seed definition and on 

interregional correlations are quantified in this manuscript by direct comparison of 

native-surface results to results obtained after warping to the MNI152 volume atlas. In 

one such comparison, MNI transformation was shown to affect the isthmus cingulate 

seed time series, yielding MNI seed time series that were often poorly correlated with 

the seed defined on the subject’s native surface. 25% of the healthy and impaired 
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elderly subjects had MNI-to-native isthmus cingulate correlation coefficients less than 

0.66, and two subjects had coefficients less than 0.10. The weak correlation between 

the MNI and native time courses in this region suggests defining the seed on the native 

surface may impact resting correlation analyses independent of other methodological 

considerations. Moreover, a region-by-region comparison of volume-atlas and native-

surface results revealed significant differences in every region tested, even when 

controlling for potential differences in the seed time series. This was true both in the 

young and elderly/patient groups. Finally, group maps of vertex-wise root-mean-

square differences between the two methods also showed that MNI transformation led 

to sizeable effects throughout the cortex in both groups. Of concern is the observation 

that these group-level effects were as large as population differences reported in the 

literature, and regions highly correlated with the seed (in this case, default network 

regions) may be particularly vulnerable to modulation during transformation to an 

atlas volume. As the accuracy of registration to a volume atlas is logically dependent 

on the severity of structural pathology, studies of disease populations require special 

attention to these possible confounds.  

 Quantitative, native-surface parcellation analysis of spontaneous fMRI in 

young subjects highlights known default network regions when the isthmus cingulate 

is used as a seed (Table 3.2). Because the seed is defined on the native surface, 

individual vertex-wise maps can also be calculated to show both the similarities across 

subjects and the unique features of each subject’s data. Inter-individual variability in 

both anatomy and functional correlations is preserved in this method, and composite 

statistics still allow comparisons between groups and between sessions.  
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 Association with other individual markers is one of the primary advantages of 

analysis in native space. Native-surface cortical analysis is especially convenient for 

comparison to cortical thickness, as many morphometry studies already use FreeSurfer 

to measure cortical thickness in the same parcellation regions used in the present study 

for functional analysis (Desikan et al., 2010; Du et al., 2007; Liu et al., 2010; Rimol et 

al., 2010). A potential confound in all functional MRI studies of populations with 

atrophy, including those using the present method, is that decreased tissue volume 

might lead to a decrease in BOLD signal-to-noise ratio. Therefore, while a decrease in 

functional correlations with atrophy is expected due to effects on neural 

communication, it is difficult to distinguish this neural effect from the signal-to-noise 

effect. While this limitation is not entirely addressed by analysis on native surfaces, 

the availability of regional cortical thickness and volume measurements allows local 

atrophy effects to be accounted for in each subject. This may be additionally 

advantageous in longitudinal studies of patients with neurodegenerative disorders 

where atrophy may give structural changes over the course of the experiment.  

 The power analysis for the native-surface parcellation analysis suggests that a 

moderate difference in correlation coefficient (with the isthmus cingulate seed) can be 

detected in any of the regions in Table 3.2 with practical sample sizes for 

neuroimaging studies and clinical trials (Jack et al., 2010). Sample sizes range from 16 

to 42 subjects, depending on the region; this is consistent with another report of 

regional differences in variability of correlation strength (Chang and Glover, 2010). 

The actual sample size necessary to detect a change is highly dependent on the effect 

size between the populations (sample size is proportional to the square of the effect 
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size). Both the intersubject variance and the effect size will be unique to each disease 

studied, so caution should be exercised when extrapolating the values presented in 

Table 3.2 to other populations. Further research is warranted to estimate population-

specific sample sizes; these power analyses will provide additional quantitative 

information to guide inference and practical application of correlation measurements 

in those diseases. The value of the power analysis presented here is to demonstrate that 

the range of expected sample sizes suggests studies of diseases with moderate 

differences in BOLD correlations are feasible using the native-surface method.  

 In addition to the benefits of quantitative native-surface analysis of individual 

subject data, it is also valuable to display surface-based, group-level results. 

Integrating and interpreting large numbers of individual maps can be difficult, and 

space constraints will prevent many authors from including maps for each individual 

in publications. Comparison to other published group maps, particularly those of 

cortical thickness in aging and dementia (Dickerson et al., 2009; Salat et al., 2004), 

might also be useful. Registration of individual surface models to a surface average 

(e.g., the “fsaverage” subject in FreeSurfer) requires transformation to an atlas space, 

which raises some of the same concerns described for volume transformations, but 

evidence suggests that surface registration may be substantially more accurate (Fischl 

et al., 1999b). Importantly, since cortex is being registered to cortex, the risk of 

mapping an atlas coordinate to white matter or cerebrospinal fluid is greatly decreased.  

 Results from the patient and elderly subjects demonstrate that default network 

regions are highlighted in native-surface analysis in multiple populations and with 

relatively small sample sizes. The robustness of default network correlations to the 
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effects of age, atrophy, and dementia (of at least two different presumed etiologies) is 

also evident. However, the group maps also serve as an illustration of the degree to 

which inter-individual differences can be hidden by group averages. The Alzheimer’s 

disease group map in Figure 3.5, for example, was generated from only four subjects. 

This map shows many of the characteristics of typical default network maps and is not 

remarkably different from the maps of the other groups. At least one of the four 

subjects, though, has a functional correlation map (Figure 3.2C, 3.2D) divergent from 

the typical default pattern. Investigation into the cognitive and pathological correlates 

of inter-individual differences in functional correlation patterns may prove 

enlightening, and native-surface analyses would be a powerful approach for such 

investigation. 

 Limitations of analysis on native surfaces include the computational cost of 

reconstructing and parcellating each subject’s surface, which can take approximately 

24 hours processing time per node. Visual confirmation of automated pial and white 

matter boundaries in the T1-weighted volume is also recommended. In our opinion, 

however, checking the anatomical boundary definition is simpler than an equivalent 

check on a warping algorithm’s match of each gyrus in each slice in the volume. We 

also find it easier to correct small errors in the boundaries for the surface than to 

optimize nonlinear registration parameters for individual subjects. Analysis with this 

method requires a high-resolution T1-weighted volume for each subject, which may be 

viewed as a limitation to authors not routinely including this acquisition in their 

scanning protocols.  
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The parcellation atlas itself poses a limitation to the size and shape of the 

regions tested with the native-space parcellation analysis. Some applications may 

require more flexibility in region definitions, smaller regions, or specific subdivisions 

within some of the atlas regions. For others, there may be reason to question the 

implied assumption of relative functional homogeneity within the anatomically-

defined regions. Exploratory studies may require functionally-defined regions or a 

vertex-wise analysis, which makes transformation to the atlas surface necessary for 

inter-subject comparisons. Investigators may also consider another atlas available in 

FreeSurfer for native surfaces that subdivides the regions shown in Figure 3.4 into 

gyral and sulcal cortex (Destrieux et al., 2010). Many other atlases exist, and custom 

atlases can be created within FreeSurfer or elsewhere; these additional atlases typically 

rely on registration to the average surface, though, and are not automatically produced 

in the reconstruction process within FreeSurfer. The primary advantages of the 

Desikan-Killiany atlas parcellation are its common use for cortical thickness studies 

and its definition based on landmarks that can be consistently identified in individual 

subjects’ anatomy.  

 An alternative to native-surface analysis is analysis within the native volumes 

of individual subjects. To avoid manual ROI selection, the seed region could be 

defined by a coordinate in the atlas volume and reverse-transformed to each subject by 

applying the inverse of the transformation matrix from the warping algorithm. 

Accuracy of seed placement in this case, however, is subject to the same limitations of 

the transformation matrix as analysis in atlas space. Seed location should be verified 

for each subject, most likely by visual inspection. A spherical region centered on a 
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reverse-transformed atlas coordinate may increase the chances of including the desired 

cortex, but if the spheres are much larger than the thickness of the cortex, it is very 

likely voxels containing primarily white matter or cerebrospinal fluid will be included 

in the seed. Common diameters for spheres range from 8 mm to 12 mm or larger (Fox 

et al., 2005; Fox et al., 2006; Hedden et al., 2009; Vincent et al., 2006), compared to 

cortical thickness which is around 2 mm (Du et al., 2007; Liu et al., 2010).  

Even if the reverse-transformed seed is sufficiently accurate, the native-surface 

functional correlation maps generated with it cannot be quantitatively compared across 

individuals unless additional regions are defined. One approach is to create more 

regions of interest from other reverse-transformed atlas volume coordinates, but each 

of these regions will be subject to the same limitations as the seed. Another approach 

is to use the reverse-transformed seed to perform seed-correlation analysis in the 

native brain. However, inter-subject comparisons of the native results in this voxel-

wise approach still requires warping the functional data to an atlas volume, and it is 

unlikely that any advantage is gained by applying that transformation to final statistics 

rather than to the raw data. An analogous challenge faces independent component 

analysis (ICA) in native space: even if a suitable template is defined for each subject 

to identify the component of interest, warping the native-space components to atlas 

space is necessary for comparison across subjects or groups. 

 Future development of this method could focus on broadening the scope of its 

applications. Parcellation regions other than the isthmus cingulate might be used as 

seeds for other cortical networks that are associated with neurological or psychiatric 

diseases (Ebisch et al., 2010; Greicius, 2008; Seeley et al., 2009). Additional methods 
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of analyzing functional correlations might also be adapted to native surfaces. 

Currently, methods such as ICA could be readily applied within the average surface 

space; however, ICA components are difficult to compare quantitatively across 

subjects without transforming to atlas space. One idea for native-space ICA is to use 

one or more of the anatomical parcellation regions highlighted in this study as a 

template for identifying the default network components. Independent components 

could then be compared across subjects within analogous parcellation regions. A 

similar approach could be taken to define templates for other resting-state network 

components. Regardless of analysis method, investigation of these resting-state 

functional patterns in disease can benefit from leveraging the underlying anatomy and 

pathology of individual subjects.  
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3.6   Supplementary Materials 

 
Figure 3.7: Supplementary Figure – Individual correlation maps for all young 
subjects. Columns within each block represent individual subjects. A: Cortical surface 
models with a single parcellation region (inferior parietal) highlighted in blue. B-C: 
Individual correlation maps consisting of coefficients (z-transformed) from correlation 
of each vertex on the surface with the average time series of the isthmus cingulate seed 
(dark green).  
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CHAPTER 4 

 

Stability of resting fMRI interregional correlations analyzed in subject-native 

space: a one-year longitudinal study in healthy adults and premanifest 

Huntington’s disease 

 

Abstract 

 The pattern of interregional functional MRI correlations at rest is being 

actively considered as a potential noninvasive biomarker in multiple diseases. Before 

such methods can be used in clinical studies it is important to establish their usefulness 

in three ways. First, the long-term stability of resting correlation patterns should be 

characterized, but there have been very few such studies. Second, analysis of resting 

correlations should account for the unique neuroanatomy of each subject by taking 

measurements in native space and avoiding transformation of functional data to a 

standard volume space (e.g., Talairach-Tournox or Montreal Neurological Institute 

atlases). Transformation to a standard volume space has been shown to variably 

influence the measurement of functional correlations, and this is a particular concern 

in diseases which may cause structural changes in the brain. Third, comparisons 

within the patient population of interest and comparisons between patients and age-

matched controls, should demonstrate sensitivity to any disease-related disruption of 

resting functional correlations. Here we examine the test-retest reliability of resting 

fMRI correlations over a period of one year in a group of healthy adults and in a group 
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of gene-positive, asymptomatic individuals with Huntington’s disease. A recently-

developed method is used to measure functional correlations in the native space of 

individual subjects. The utility of resting functional correlations as a biomarker in 

premanifest Huntington’s disease is also investigated. Results in control and 

premanifest Huntington’s populations were both highly consistent at the group level 

over one year. We thus show that when resting fMRI analysis is performed in native 

space (to avoid confounds in registration between subjects and groups) it has good 

long-term reliability at the group level. No significant effect of premanifest 

Huntington’s disease on prespecified interregional fMRI correlations was observed 

relative to the control group, either at baseline or with regards to the longitudinal 

change. Within the premanifest Huntington’s group, though, there was evidence that 

decreased striatal functional correlations might be associated with disease severity, as 

gauged by estimated years to symptom onset or by striatal volume. 

 

Keywords: test-retest; reliability; default network; fMRI; functional connectivity 

 

Abbreviations: BOLD, blood oxygenation level dependent; fMRI, functional 

magnetic resonance imaging; HD, Huntington’s disease; pre-HD, preclinical 

Huntington’s disease; MNI, Montreal Neurological Institute; ICC, intraclass 

correlation coefficient; MMSE = mini-mental state exam; CAG = cytosine-adenine-

guanine; UHDRS = Unified Huntington’s Disease Rating Scale. 
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4.1   Introduction 

There is currently great interest in measuring interregional correlations of the 

resting blood oxygenation level dependent (BOLD) fMRI signal as a biomarker in 

disease. This approach could have advantages over structural MRI as it might reveal 

changes in physiological function before widespread and substantial cell loss occurs 

(Bohanna et al., 2008). Resting fMRI has a strong clinical appeal because it affords the 

ability to study multiple networks of the entire brain at once and without confounding 

effects of cognitive ability to perform a given behavioral task (Auer, 2008; Fox and 

Raichle, 2007; Greicius, 2008; van den Heuvel and Hulshoff Pol, 2010; Rogers et al., 

2007). Already, variations in resting functional correlations (often termed “functional 

connectivity”) have been reported in a wide range of neurological and psychiatric 

disorders, including Alzheimer’s disease (Greicius et al., 2004; Sorg et al., 2009), mild 

cognitive impairment (Bai et al., 2009; Pihlajamäki et al., 2009; Sorg et al., 2007), 

amyotrophic lateral sclerosis (Mohammadi et al., 2011b), schizophrenia (Jafri et al., 

2008; Repovs et al., 2011), depression (Greicius, 2008), writer’s cramp (Mohammadi 

et al., 2011a), and Parkinson’s disease (Helmich et al., 2010; Wu et al., 2009). In the 

case of amyloid-associated pathology, there is evidence that resting functional 

correlations may be sensitive to neurological changes prior to onset of clinical 

symptoms (Hedden et al., 2009; Sheline et al., 2010). Taken together, these many 

reports motivate resting fMRI as a tool for investigating the disease process across 

time (i.e. in longitudinal biomarker studies) with the eventual aim of evaluating 

neuroprotection or treatment.  
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It is important, however, to first evaluate the test-retest reliability of resting 

fMRI. Reliability may be a particular concern in resting fMRI because whereas task-

based studies attempt to tightly control brain behavior, resting fMRI uses an 

unconstrained paradigm that allows the potential for markedly different states of 

mental activity from one scan session to the next. Existing studies of reliability in 

resting fMRI have used data transformed to a standard volume (Chen et al., 2008; 

Damoiseaux et al., 2006; Meindl et al., 2010; Shehzad et al., 2009; Thomason et al., 

2011; Van Dijk et al., 2009; Zuo et al., 2010), and to our knowledge, only one data set 

has been examined with longitudinal measurements in adults (mean age 20.5 years) 

for a period longer than 16 days (5-16 months) (Shehzad et al., 2009). Thus, further 

investigation of the long-term reliability of resting functional correlations is needed.  

For resting fMRI to be a useful biomarker in neurological disease it may also 

be necessary to use an analysis method that takes into account the fact that patient or 

gene-positive groups may already have changes in gray and white matter—for 

example, to regions adjacent to cerebrospinal fluid, such as the periventricular basal 

ganglia regions. When such changes occur, it is possible that resting correlations can 

be mistakenly measured from voxels in white matter or cerebrospinal fluid. We 

recently showed that transforming functional data to a standard volume (e.g., 

Talairach or MNI152) can introduce large, widespread effects on resting fMRI 

correlations due to imperfect registration of native anatomy to the volume atlas 

(Seibert and Brewer, 2011). This was true even in young, healthy subjects, but is a 

particular concern in disease. We proposed an alternative method that addresses these 

issues by analyzing resting BOLD correlations on models of the native cortical surface 
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created for each subject’s brain (Seibert and Brewer, 2011). Here we again apply this 

native-space method. 

Finally, the utility of resting fMRI to biomarker development also requires 

establishing that longitudinal inter-regional correlations can indeed detect differences 

between a disease group and a healthy one. Huntington’s disease (HD) is a genetic 

neurodegenerative disorder that causes deficits in both motor and cognitive function. 

Though HD affects a number of brain regions, including cerebral cortex, the most 

prominent neuropathologic changes occur in the striatum, made up of the caudate and 

putamen (Eidelberg and Surmeier, 2011; Rosas et al., 2008). Strikingly, atrophy in the 

caudate and putamen has been identified using neuroimaging more than a decade prior 

to the estimated onset of manifest symptoms, i.e. during the premanifest stage of HD 

(pre-HD) (Aylward et al., 1996, 2004, 2011; Paulsen et al., 2010; Stoffers et al., 2010; 

Tabrizi et al., 2009). In this study, we compare gene-positive premanifest HD 

participants with a group of healthy controls matched for age and IQ.  

Diagnosis of Huntington’s disease is aided by the presence of genetic markers, 

and these genetic markers permit identification of high-risk individuals prior to onset 

of clinical symptoms. An imaging biomarker is highly desirable in premanifest 

Huntington’s disease (pre-HD) to track progression, inform prognosis, and measure 

the effects of potential therapies. We have previously shown that MRI can detect 

structural changes (atrophy) over one year in pre-HD (Majid et al., 2011). A functional 

MRI technique might complement structural MRI and suggest physiological relevance 

of structural changes; additionally, functional imaging may have the potential to detect 

acute effects of therapies before major structural pathology occurs (Rosas et al., 2004). 
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Differences between pre-HD and age-matched control populations have already been 

demonstrated using task-based fMRI (Klöppel et al., 2009; Paulsen et al., 2004; 

Reading et al., 2004; Wolf et al., 2008; Zimbelman et al., 2007), but disease-related 

changes in functional activation have yet to be identified longitudinally in pre-HD, and 

resting fMRI correlations have not been evaluated in pre-HD.  

Thus, the present study had two main objectives. First, we aimed to investigate 

the long-term stability (over one year) of resting fMRI correlations in 22 healthy 

adults and also 34 adults with pre-HD. Second, we aimed to ascertain whether a 

detectable difference exists in the resting interregional functional correlations between 

pre-HD subjects and age-matched controls (cross-sectionally and longitudinally). 

Importantly, to avoid artifactual effects from transformation to a standard volume, 

functional correlations in this study are calculated on each subject’s native cortical 

surface and within native-space subcortical structures. 

 

4.2   Methods 

4.2.1   Subjects 

Thirty-seven pre-HD (≥ 38 CAG repeats) and 22 healthy age-matched control 

participants underwent resting state scans at two visits, with a one-year interval 

between visits. Consent was provided in accordance with an Institutional Review 

Board at the University of California, San Diego. A movement disorder specialist 

evaluated the pre-HD participants using the United Huntington’s Disease Rating Scale 

(UHDRS) (Huntington Study Group, 1996), as described previously (Majid et al., 

2011). With this scale, participants were assigned a ‘motor score’ (range: 0-124) and 
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were rated as to the clinician’s confidence that the presenting motor abnormalities 

represent symptoms of HD (range: 0-4). A confidence rating of 0 represents a normal 

evaluation with no motor abnormalities, a rating of 1 represents < 50% confidence of 

an HD diagnosis, and a rating of 4 represents a definitive HD diagnosis. All 

participants rated below 2 at visit 1, confirming pre-HD status. At follow-up, two 

initially pre-HD participants rated 4, indicating conversion to manifest HD. These two 

were removed from the analysis. An additional pre-HD participant was removed 

because of considerable signal dropout due to dental implants. This left a pre-HD 

group of 34 individuals. 

Global cognitive ability was measured using the mini-mental state exam 

(MMSE) (Folstein et al., 1975) at both timepoints. Furthermore, the length of the 

CAG repeat expansion was used to calculate estimated years-to-onset (YTO) using 

both the Aylward and Langbehn methods (Aylward et al., 1996; Langbehn et al., 

2004). 

 

4.2.2   MRI acquisition 

 A General Electric (GE; Milwaukee, WI) 3T Signa HDx scanner was used to 

acquire 182 functional T2*-weighted ecoplanar images (EPI) (axial acquisition, 4mm 

slice thickness, 32 slices per volume, TR = 2s, TE = 30ms, flip angle = 90°, field of 

view = 220mm). Before the resting state scan, participants were instructed to close 

their eyes, relax, and try not to fall asleep during the procedure. Additionally, a 

matched-bandwidth high-resolution fast spin echo (FSE) scan (axial acquisition, 4mm 
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slice thickness, 32 slices per volume, TR = 5s, TE = 103.224ms, flip angle = 90°, field 

of view = 220mm, matrix = 128x128) was acquired for each subject for registration 

purposes. Structural T1-weighted imaging data were obtained on a GE 1.5T Excite 

HDx scanner. Image acquisition included a GE “PURE” calibration sequence and a 

high-resolution three-dimensional T1-weighted IRSPGR sequence (axial acquisition, 

1.2mm slice thickness, TR = 6.496ms, TE = 2.798ms, TI = 600ms, flip angle = 12°, 

bandwidth = 244.141 Hz/pixel, field of view = 240mm, matrix = 256x192). 

 

4.2.3   Structural MRI processing 

 A model of each subject’s cortical surface was reconstructed from the T1-

weighted MRI volume at visit 1 (Dale et al., 1999; Fischl et al., 1999a). The surface 

was then anatomically parcellated using the Desikan-Killiany atlas (Desikan et al., 

2006; Fischl et al., 2004). Subcortical structures were similarly identified by volume 

segmentation (Fischl et al., 2002). Results from each of these automated steps were 

inspected for accuracy, and manual corrections were applied as necessary according to 

procedures described previously, ensuring accurate native surfaces and identification 

of tissue boundaries (Seibert and Brewer, 2011). 

 

4.2.4   fMRI data pre-analysis processing 

 Functional volumes were first corrected for static field inhomogeneity using 

field maps acquired in each functional session (Smith et al., 2004). After interpolation 

for slice acquisition timing, rigid-body volume registration was performed using AFNI 
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(Cox and Jesmanowicz, 1999), followed by voxel-wise regression of six head motion 

parameters, the average signal from white matter voxels, and a cubic polynomial 

baseline. White matter voxels were identified with a subject-specific white matter 

mask, eroded away from tissue boundaries (gray matter and cerebrospinal fluid) to 

avoid partial volume effects. Functional data were next projected onto the subject’s 

cortical surface model, and a bandpass filter of 0.01-0.08 Hz was applied to the time 

series from each vertex on the surface. To avoid differences that might arise from any 

variation in surface reconstruction, functional data from both visits were projected to 

the visit 1 surface. This was achieved by first registering each functional volume to a 

matched-bandwidth, spin-echo T2-weighted volume acquired during the same session. 

The T1-weighted volume from visit 1 was registered to the spin-echo T2-weighted 

volume from each visit, and these registrations were used for surface projection. 

 

4.2.5   fMRI interregional correlation analysis 

 Procedures for fMRI correlation analysis on native surfaces are described in 

detail elsewhere (Seibert and Brewer, 2011); these procedures take advantage of the 

FreeSurfer surface generation and parcellation tools and avoid transforming functional 

data to an atlas volume. Briefly, a single region from the automated parcellation of 

each individual surface is used as the seed time series for each hemisphere. The 

functional time series from the seed region is then correlated with the average time 

series from 33 cortical surface parcellation regions and five volume segmentation 

regions (hippocampus, caudate, pallidum, putamen, amygdala) in the Desikan-Killiany 

atlas, excluding regions adjacent to the seed. Fisher’s z-transform was applied to these 
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native-surface correlation coefficients. Potential differences in native-space results 

were evaluated with t-tests corrected for multiple comparisons. In addition, power 

analysis estimated the number of subjects needed to detect a difference between two 

groups, following steps described previously (assuming population difference of 0.2 in 

z-tranformed correlation coefficient, alpha value of 0.05, and 80% power) (Seibert and 

Brewer, 2011; Cohen, 1988; Dawson and Trapp, 2004).  

Vertex-wise correlation analysis (surface equivalent to voxel-wise analysis) 

was also performed after spherical-based surface registration to the FreeSurfer 

fsaverage surface (Fischl et al., 1999b; Seibert and Brewer, 2011). The minimum and 

maximum thresholds were set based on the group map for control subjects’ first visit; 

the minimum threshold was one standard deviation above the map mean, and the 

maximum threshold was two standard deviations above the map mean. To account for 

possible variation in functional anatomy, individual maps were subjected to a surface-

based smoothing process (approximately equivalent to a 6 mm Gaussian kernel in two 

dimensions) prior to performing vertex-wise group statistics. All group summary maps 

were similarly smoothed for display. Tissue mislabeling can frequently arise during 

transformation to a volume atlas such as Talairach or MNI152, introducing large 

effects on functional correlations; surface-based registration reduces these errors 

(Fischl et al., 1999a, 1999b; Seibert and Brewer, 2011). 

 The main analyses were performed with two seed regions. The isthmus 

cingulate region has been shown to be a reliable seed for study of the default network 

(Seibert and Brewer, 2011). Additionally, the putamen was chosen as a seed for 

investigating intrastriatal and corticostriatal correlations in light of known striatal 
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involvement in Huntington’s pathology and MRI evidence that the putamen may be 

the most prominently affected structure in early Huntington’s disease (Harris et al., 

1992). In a supplementary analysis, group maps were also created with the caudate as 

a seed for qualitative comparison of correlation patterns arising from caudate or 

putamen seeds. 

 

4.2.6   Stability of fMRI intrerregional correlations 

 Long-term stability of group-level interregional correlation results (from visit 1 

to visit 2, approximately one year later) was investigated in both the native-surface 

parcellation regions and the vertex-wise group-surface maps. Consistency of the 

overall pattern of correlations with the seed was evaluated by calculating the Pearson’s 

correlation coefficient across native-surface regions for group-mean results from visit 

1 and visit 2. Paired t-tests across subjects were then applied to the visit 1 and visit 2 

results of each native-surface region to identify any regions that changed significantly 

over time. Maps of longitudinal consistency were then created with paired t-tests for 

every vertex on the group surface. All t-test results were assessed for statistical 

significance after controlling the false discovery rate at less than 0.05 to correct for 

multiple comparisons (Genovese et al., 2002). 

 Subject-level stability from visit 1 to visit 2 was also evaluated with the 

Pearson’s correlation coefficient across native-surface regions for each subject. 

Additionally, the relative intrasubject and intersubject variance was compared by 

calculating intraclass correlation coefficients (ICC) for each native-surface region. 

Intraclass correlation coefficients were obtained using the following formula: 
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( 1)

BMS EMSICC
BMS k EMS

−
=

+ −
, 

where k is the number of observations; BMS is the between-subjects mean-square 

error; and EMS is the within-subjects mean-square error (mean-square errors 

computed with a repeated-measures, mixed-effects ANOVA) (Shrout and Fleiss, 

1979). ICC values can have magnitude between 0 and 1, and large ICC values reflect 

low within-subjects variance (across sessions) and high between-subjects variance. 

ICC values were tested for significance against a zero-value null hypothesis based on 

an F distribution, where 

 0
BMSF
EMS

= , 

and the degrees of freedom are (n-1) and (n-1)(k-1), where n is the number of subjects 

(Shrout and Fleiss, 1979).   

 

4.2.7   Effect of pre-HD on interregional correlations 

 Subjects with pre-HD were compared to healthy controls to test for a potential 

population difference attributable to early pathology. Two-sample t-tests were applied 

to pre-HD and control data from each native-surface parcellation region. Vertex-wise 

comparisons were also made, using two-sample t-tests at each vertex on the group 

surface. The t-tests made no assumption of equal variance between groups and were 

assessed for statistical significance after controlling the false discovery rate at less 

than 0.05 to correct for multiple comparisons (Genovese et al., 2002). These tests were 

performed on both visit 1 and visit 2 data. 



121 

 The potential for differential longitudinal change in interregional correlations 

between pre-HD and control groups was also investigated. Subject difference values 

were computed for each native-surface region, and two sample t-tests evaluated 

whether pre-HD subjects experienced a greater change from visit 1 to visit 2 than 

control subjects. Analogous vertex-wise two-sample t-tests were also performed on the 

longitudinal differences for subjects in the two groups. 

 Indicators of disease severity were also compared to interregional correlations. 

Langbehn and Aylward estimates of years to onset were tested for association with 

strength of functional correlations, as were FreeSurfer-based structural volume 

measures for the putamen and caudate (see below). The three regions most strongly 

correlated with each seed in the control group were included in these comparisons. 

Associations were evaluated by calculating the Pearson’s correlation coefficient across 

subjects. We note that all the subjects studied here all had T1 scans, and we have 

reported on cross-section, between group (voxel based and whole-brain based) and 

longitudinal analyses (whole-brain based) of those data (Majid et al., 2011; Stoffers et 

al., 2010). Further analysis of T1 images also used FreeSurfer-based subcortical 

segmentation of caudate and putamen and also found significant cross-sectional and 

longitudinal group differences (Majid et al. under review). 

 

4.3   Results 

4.3.1   Participant characteristics 

At visit 1, control and pre-HD groups were similar in age and MMSE scores (p 

= 0.906 and p = 0.180, respectively) (Table 4.1). For MMSE, ANOVA [group x visit] 
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revealed no between-group difference (F < 1), but did show a main effect of time 

(F(1,56) = 6.872, p = 0.011), with scores decreasing in both groups as time 

progressed. There was no interaction (F(1,54) = 1.112, p = 0.296). UHDRS motor 

scores were significantly elevated in pre-HD compared to controls (t(54) = 3.664, p = 

.001), consistent with subtle motor signs that were insufficient to meet diagnostic 

criteria for manifest HD. Follow-up UHDRS motor scores were significantly elevated 

in the pre-HD group after the one-year duration, indicating a slightly worsening 

condition (t(33) = 3.123, p = 0.004). Follow-up UHDRS motor scores were not 

obtained in controls. 

 

Table 4.1: Participant characteristics. Regions are ordered by strength of correlation 
with the seed region. Mean z(r) and SE indicate the population mean z-transformed 
correlation coefficient and standard error, respectively. Sample size indicates the 
estimated sample size to detect a difference in mean z(r) of 0.2 with 80% power and 
alpha value of 0.05. 
 

 
 
SD = standard deviation; MMSE = mini-mental state exam; CAG = cytosine-adenine-guanine; UHDRS 
= Unified Huntington’s Disease Rating Scale; Pre-HD = preclinical Huntington’s disease; N/A = not 
applicable. 
a ANOVA revealed main effect of time (p = 0.011) but no effect of group. 
b Significantly different between groups at baseline (p = 0.001) and between timepoints in pre-HD 
group (p = 0.004). UHDRS was not obtained for controls at follow-up. 
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4.3.2   fMRI interregional correlation analysis 

 Native-surface regions most consistently correlated with the isthmus cingulate 

are shown in Table 4.2; among these are several areas frequently associated with the 

default network (dorsolateral prefrontal, medial prefrontal, inferior parietal, and 

medial temporal). This observation is common to both hemispheres, both visits, and 

both populations. The putamen seed also yielded results that were replicated across 

data sets (Table 4.3). Areas associated with motor function such as the caudate, 

supplementary motor area, pre-supplementary motor area, and ventral pre-motor 

cortex are among those most strongly correlated with the putamen seed. Group maps 

are displayed in Figure 4.1 (isthmus cingulate seed) and Figure 4.2 (putamen seed). 

Isthmus cingulate maps are thresholded from 0.18 to 0.32, corresponding to one to two 

standard deviations above the group mean (across both hemispheres) for the control 

group at visit 1. Putamen maps are thresholded from 0.09 to 0.16, using analogous 

summary statistics. For qualitative comparison with the putamen maps, group maps 

were also calculated with the caudate as seed (Figure 4.6 in Supplementary Materials). 
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Figure 4.1: Group correlation maps with isthmus cingulate seed. Fisher’s z-
transformed correlation coefficients for the correlation of each vertex on the surface 
with the average time series of the isthmus cingulate seed. The minimum and 
maximum thresholds for the functional overlay represent one and two standard 
deviations, respectively, above the mean coefficient from the first-visit group map for 
control subjects (i.e., Figure 4.1B). The top row (A) shows the Desikan-Killiany 
cortical parcellation atlas. 
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Figure 4.2: Group correlation maps with putamen seed. Fisher’s z-transformed 
correlation coefficients for the correlation of each vertex on the surface with the 
average time series of the putamen seed. The minimum and maximum thresholds for 
the functional overlay represent one and two standard deviations, respectively, above 
the mean coefficient from the first-visit group map for control subjects (i.e., Figure 
4.2B). The top row (A) shows the Desikan-Killiany cortical parcellation atlas. 
 

4.3.3   Stability of fMRI interregional correlations 

  Qualitative similarity of group-level results between visit 1 and visit 2 are 

confirmed by quantitative comparison. In the control group, the correlation between 

visit 1 and visit 2 isthmus cingulate results (correlation coefficient across all native-
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surface regions) was 0.93 in the left hemisphere and 0.90 in the right hemisphere. Pre-

HD inter-visit correlations for the isthmus cingulate seed were also high, with 

coefficients of 0.96 in the left hemisphere and 0.94 in the right hemisphere. For the 

putamen seed, the control group visit 1 and visit 2 results had a correlation coefficient 

of 0.95 and 0.96 for the left and right hemispheres, respectively; the pre-HD group had 

values of 0.96 and 0.97 for the left and right hemispheres, respectively. Thus, group-

level results for the native-surface parcellation regions were highly consistent for 

scans spaced a year apart. 

 Paired t-tests were applied to detect significant differences from visit 1 to visit 

2. In the control group, with the isthmus cingulate seed, only the left rostral anterior 

cingulate region was significantly different after controlling for false discovery rate. 

The left rostral anterior cingulate had a group-mean z-transformed correlation 

coefficient of 0.46 at visit 1 and 0.24 at visit 2 (t(21) = 4.11; uncorrected p < 0.001). 

This rostral anterior cingulate finding was not replicated in the pre-HD group, though 

there was a trend in the same direction (0.36 at visit 1; 0.22 at visit 2; t(33) = 2.75; 

uncorrected p < 0.01). No region was significantly different from visit 1 to visit 2 in 

the pre-HD group for isthmus cingulate correlations. Likewise, no region showed a 

significant inter-visit difference in either group with the putamen seed. Vertex-wise 

paired t-test maps in Figure 4.3 (isthmus cingulate) and Figure 4.4 (putamen) also 

show very few significant inter-visit differences. 

 Power analyses were performed for each region to estimate the sample size 

necessary for 80% power to detect a difference of 0.2 in the group mean correlation 

coefficient when alpha is set at 0.05. With the isthmus cingulate seed, the median 
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calculated sample size (and interquartile range) across all regions was 21 (17-28) 

subjects for the control group and 25 (20-29) subjects for the pre-HD group. With the 

putamen seed, the median sample size was 21 (15-28) subjects for the control group 

and 22 (18-27) subjects for the pre-HD group. These estimates are comparable to the 

actual sample sizes of the present study.  

 While the correlation between visit 1 and visit 2 results was quite high at the 

group level, inter-visit correlation across native-surface regions was considerably 

lower for individual subjects. For control subjects, the median correlation coefficient 

between visit 1 and visit 2 with the isthmus cingulate seed was 0.59, with an 

interquartile range of 0.39-0.69. For pre-HD subjects, the median with the isthmus 

cingulate seed was 0.45, with an interquartile range of 0.21-0.59. With the putamen 

seed, the median (and interquartile range) for controls was 0.38 (0.17-0.60), and for 

pre-HD subjects was 0.51 (0.27-0.63). 

 Intraclass correlation coefficient analysis also suggested notable within-

subjects variance from visit 1 to visit 2. ICC values for the regions from Tables 4.2 

and 4.3 are shown in Tables 4.4 and 4.5, along with associated p-values. The greatest 

ICC with either seed was found in the right medial orbitofrontal region in the control 

group (ICC = 0.66, p < 0.001). ICC values significantly greater than zero (p < 0.05, 

uncorrected) with the isthmus cingulate seed were also found in the following regions 

in the control group: left cuneus, right rostral anterior cingulate, right frontal pole, and 

right superior frontal. In the pre-HD group, regions with ICC values significantly 

greater than zero with the isthmus cingulate seed included the left frontal pole, right 

medial orbitofrontal, and right inferior parietal. With the putamen seed, significant 
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ICC values for the control group were found in right superior frontal and right caudal 

anterior cingulate regions. In the pre-HD group, the putamen seed gave significant 

ICC values in the left amygdala, right caudate, and right precentral regions. An ICC 

value greater than 0.5 indicates that between-subjects variance is greater than within-

subjects variance. With the isthmus putamen seed, only the right medial orbitofrontal 

region had an ICC of at least 0.50 in both control and pre-HD groups. With the 

putamen seed, no region had an ICC of at least 0.50 in either group. 
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Figure 4.3: Group t-test maps with isthmus cingulate seed. Functional overlays show 
t-values for each vertex for the relevant comparison. The threshold for each row was 
set independently to indicate t-values corresponding to a false discovery rate less than 
0.05 (minimum) and 0.01 (maximum). A-B: Hot colors indicate significantly greater 
correlation in visit 2; cool colors indicate significantly greater correlation in visit 1. C-
D: Hot colors indicate greater correlation in the pre-HD group than in the control 
group; cool colors indicate greater correlation in the control group. Thresholds are as 
follows (min, max): (A) t = 3.6, 4.3; (B) t = 3.4, 4.0; (C-D) t = 3.3, 3.9.
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Figure 4.4: Group t-test maps with putamen seed. Functional overlays show t-values 
for each vertex for the relevant comparison. The threshold for each row was set 
independently to indicate t-values corresponding to a false discovery rate less than 
0.05 (minimum) and 0.01 (maximum). A-B: Hot colors indicate significantly greater 
correlation in visit 2; cool colors indicate significantly greater correlation in visit 1. C-
D: Hot colors indicate greater correlation in the pre-HD group than in the control 
group; cool colors indicate greater correlation in the control group. Thresholds are as 
follows (min, max): (A) t = 3.6, 4.3; (B) t = 3.4, 4.0; (C-D) t = 3.3, 3.9. 
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Table 4.4: Intraclass correlation coefficients with isthmus cingulate seed. For easy 
comparison, regions are ordered according to the strength of correlation in the left 
hemisphere of the control group (see Table 4.2) for the other sub-tables. Intraclass 
correlation coefficients were calculated from visit 1 and visit 2 data from all subjects 
within each group. Significance is indicated by associated p-values (null hypothesis: 
ICC = 0). 
 

 
 

Table 4.5: Intraclass correlation coefficients with putamen seed. For easy comparison, 
regions are ordered according to the strength of correlation in the left hemisphere of 
the control group (see Table 4.3) for the other sub-tables. Intraclass correlation 
coefficients were calculated from visit 1 and visit 2 data from all subjects within each 
group. Significance is indicated by associated p-values (null hypothesis: ICC = 0). 
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4.3.4   Effect of pre-HD on interregional correlations 

 Population mean correlations with the isthmus cingulate seed for pre-HD and 

control groups did not differ significantly in any of the native-surface regions in either 

hemisphere at visit 1 (two-sample t-tests, FDR controlled at less than 0.05). This 

remained true approximately one year later at visit 2. Likewise, no statistically 

significant difference was found for correlation with the putamen seed in any of the 

parcellation regions at either visit. Vertex-wise t-tests on the group surface also 

yielded only sparse spots showing significant effects of pre-HD with either seed 

(Figures 4.3 and 4.4). 

 Though the change from visit 1 to visit 2 was unimpressive at the group level 

for either population, the size of the longitudinal change in pre-HD might still differ 

from controls in some region(s). However, two-sample t-tests comparing the visit 2 - 

visit 1 difference in pre-HD subjects to that of control subjects did not yield any 

native-surface parcellation regions with a statistically significant effect. This was true 

with both the isthmus cingulate and putamen seeds. Vertex-wise t-tests on the group 

surface were consistent with the native-surface region results (Figure 4.5 in 

Supplementary Materials). 

 Comparison of interregional correlations with indicators of disease severity in 

the pre-HD group did not reveal any associations for the isthmus cingulate seed 

correlations (results not shown), but potential associations were identified for the 

putamen seed correlations (Table 4.6). Subjects with weaker putamen-caudate 

functional correlation at visit 1 were also closer to disease onset using the Langbehn 
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method. This was true in each hemisphere. Similarly, subjects with weaker putamen-

caudate functional correlation at visit 1 also had smaller caudate and putamen volumes 

(Table 4.6). These findings were less consistent at visit 2, though trends in the same 

direction remained. 
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4.4   Discussion  

 In assessing the potential of resting correlations as a biomarker, the primary 

objectives of the present study were to evaluate the long-term stability of measures 

obtained in native space and to apply the technique to the premanifest HD population. 

Group correlation results obtained using the native-surface method highlighted 

corticostriatal and default patterns that were stable over one year in both the control 

and pre-HD populations. On the other hand, results from visit 1 and visit 2 were less 

stable at the individual-subject level. No significant group-level differences were 

demonstrated between the pre-HD and control groups, but weakening of resting 

correlation between the caudate and putamen in the pre-HD group may be related to 

disease severity as estimated by subcortical volumes or estimated years to symptom 

onset. 

 

4.4.1   Isthmus cingulate and putamen seeds yield expected networks 

Regions with strongest correlation with the isthmus and putamen seeds were 

consistent with previously published group-level resting fMRI results. Specifically, the 

isthmus cingulate seed highlighted default network areas such as dorsolateral 

prefrontal, medial prefrontal, inferior parietal, and medial temporal cortex bilaterally 

in both the control group and the pre-HD group (Table 4.2, Figure 4.1). The putamen 

seed, on the other hand, was most strongly correlated with motor-related areas (Table 

4.3, Figure 4.2) in both populations. Distinguishable patterns with these two seeds 

converges with prior studies demonstrating dissociable “networks” of brain regions at 

rest (Beckmann et al., 2005; Seeley et al., 2009; Vincent et al., 2007) and, along with 
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supplementary analyses using the caudate seed, are further evidence that seeds defined 

by automated parcellation on the native surface yield meaningful and reproducible 

results. Consistent with known structural connectivity (Alexander et al., 1986; 

Lawrence et al., 1998; Leh et al., 2007), the caudate maps differ from those using the 

putamen seed, highlighting dorsolateral prefrontal and anterior cingulate cortex, 

whereas the putamen maps highlight ventrolateral prefrontal cortex and supplementary 

motor area (Figure 4.6 in Supplementary Materials). Also of note, the magnitudes of 

the isthmus cingulate correlations are generally greater than that of the putamen (or 

caudate) correlations. While this confirms multiple previous findings that the default 

network is particularly active at rest (Buckner et al., 2008; Greicius et al., 2003; 

Raichle et al., 2001), it also suggests a resting condition may not be optimal for studies 

specifically focused on corticostriatal networks. Resting correlations in this study did, 

however, highlight both corticostriatal and default networks in four data sets (two 

populations at two time points). 

 

4.4.2   Resting interregional correlations stable over one year at group level  

 Group-level results with both putamen and isthmus cingulate seeds were 

longitudinally stable, yielding similar patterns in scans collected a year apart. 

Qualitatively similar group maps (Figures 4.1 and 4.2) and native-surface results 

(Tables 4.2 and 4.3) are corroborated by strong inter-visit correlations at the group 

level (greater than 0.9 in each hemisphere in all four data sets). Additionally, only a 

single region, in a single group, showed a statistical difference between visit 1 and 

visit 2. The congruency of group results from data collected a year apart is 



139 

encouraging for application of this technique to longitudinal studies such as clinical 

trials. That this relatively high long-term stability held in both control and pre-HD 

populations is also encouraging, as it suggests population differences could also be 

consistently measured over a year-long study. 

 Subject-level results were considerably less stable than group-level results 

from visit 1 to visit 2. Inter-visit correlations at the subject level had medians of 0.59 

and 0.45 for the isthmus cingulate seed (left and right hemispheres), and 0.38 and 0.51 

for the putamen seed. While there is still reasonable inter-visit agreement for many 

subjects (approximately 25% of subjects in each group had inter-visit correlations 

greater than 0.60), the within-subjects variance is approximately as great, or greater, 

than the between-subjects variance in nearly every case. In other words, for a given 

single region, on average, measurements taken from the same individual a year apart 

were at least as different as measurements taken from two different individuals from 

within the same group.  

 Strong group-level stability with high within-subjects variance is suggestive of 

a noisy marker that can be reliable at the group level because of improved signal-to-

noise ratio with averaging. The sources of this noise may be varied. Technical imaging 

issues may contribute, including fluctuations in scanner properties, thermal noise, 

physiological noise (e.g., due to changes in respiration), and static field distortions. 

Additionally, different scan sessions might have involved different levels of anxiety, 

alertness, mood, fatigue, or mental activities. It is also unknown to what extent the 

physiological phenomenon underlying interregional BOLD correlations is stable in the 

absence of all measurement noise. The strength of these resting BOLD correlations 
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may naturally fluctuate over time; in fact, coherence analysis has provided evidence 

for such fluctuation even within a single scan (Chang and Glover, 2010). Despite the 

apparently high noise, the stable group results indicate that efforts to minimize 

measurement noise and account for biological variation might improve the 

reproducibility of resting fMRI results in individual subjects. 

 

4.4.3   Resting interregional correlations only modestly affected in premanifest stage 

 Premanifest Huntington’s disease did not greatly disrupt interregional BOLD 

correlations in the present study. Functional correlations for the pre-HD group were 

compared to age-matched controls with two different seeds and at two different time 

points. The lack of difference in fMRI correlations was found despite reliable genetic 

diagnosis and measured structural differences on MRI in the same subjects (Majid et 

al., 2011). It is possible there is an underlying effect of pre-HD, but the present results 

suggest it would be relatively small. Power analyses estimate the present sample sizes 

are sufficient for fairly high power to detect an effect size of 0.2 in most regions, a 

conservative value selected to detect an effect even in studies including healthy 

subjects at high-risk of other neurodegenerative diseases (Fleisher et al., 2009; Hedden 

et al., 2009; Koch et al., 2010). Power in the present study to detect a population 

difference was even higher because the initial comparison was repeated in a second set 

of measurements (visit 2). If there are subtle effects of pre-HD on interregional BOLD 

correlations, these might be detected with improved signal to noise or larger sample 

sizes. However, in light of the present results, other potential biomarkers might be 
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more sensitive to premanifest Huntington’s pathology than resting fMRI correlations 

(Aylward et al., 1996; Majid et al., 2011; Tabrizi et al., 2011). 

 The paucity of significant differences in resting correlations between pre-HD 

and control groups may be unsurprising given that cognition is relatively intact and 

motor symptoms have not yet manifested at this early stage of the disease. While 

structural changes in these subjects’ brains suggest disease progression, these changes 

may still be insufficient to overcome subjects’ functional reserve. As gene-positive 

individuals begin to experience cognitive impairment, resting BOLD correlations may 

also become disrupted. Indeed, the within-group associations with disease severity 

shown in Table 4.6 suggest that disease progression might affect functional 

correlations between the caudate and putamen, even in the premanifest stage. 

 Efforts could be made in future studies to attempt to address limitations 

suggested in the present study. The most important limitation is probably the signal-

to-noise ratio of the resting BOLD correlations. As intimated above, improvements in 

scanner reliability and technical aspects of functional imaging might lead to increases 

in signal to noise. Additionally, physiological noise arising from fluctuations in heart 

rate or respiration might be somewhat better controlled if these metrics were measured 

and their effects modeled (Glover et al., 2000). Rigorous investigation might also be 

directed toward achieving an optimal scanning environment to produce more 

homogeneity in the “resting” condition of the subjects; this could include instructions 

regarding the mental activities subjects should engage in or avoid, the illumination of 

the room, subject comfort in the scanner, whether visual fixation is encouraged, and 

many other considerations. Correlation measures have been shown to be fairly 
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consistent with four-minute resting scans (Van Dijk et al., 2009), and the six-minute 

scans used here are within the typical range for resting fMRI; however, increased scan 

duration might still improve signal-to-noise ratio and possibly improve individual-

subject reliability. 
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4.6   Supplementary Materials 

 

Figure 4.5: Supplementary Figure – Longitudinal group t-test maps. Functional 
overlays show t-values for each vertex for the relevant comparison. The thresholds 
were set to indicate t-values corresponding to a false discovery rate less than 0.05 
(minimum) and 0.01 (maximum). A-B: Hot colors indicate significantly greater 
longitudinal change in pre-HD subjects than in control subjects; cool colors indicate 
greater longitudinal change in control subjects. Thresholds are (min, max): t = 3.3, 3.9.  
 

 



144 

 

Figure 4.6: Supplementary Figure – Group correlation maps with caudate seed. 
Fisher’s z-transformed correlation coefficients for the correlation of each vertex on the 
surface with the average time series of the caudate seed. The minimum and maximum 
thresholds for the functional overlay represent one and two standard deviations, 
respectively, above the mean coefficient from the first-visit group map for control 
subjects (i.e., Figure 4.2B). The top row (A) shows the Desikan-Killiany cortical 
parcellation atlas.  
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CHAPTER 5 

 

Resting fMRI interregional correlations in Parkinson’s disease and Parkinson-

related dementia 

 

Abstract 

 Parkinson-related dementia (PRD) is the second leading cause of dementia in 

the United States, but the varied clinical presentation and lack of definitive, non-

invasive tests contribute to frequent misdiagnosis, presenting challenges for clinicians 

and investigators. A functional imaging biomarker could improve diagnosis, facilitate 

scientific inquiry, and provide a tool for evaluation of potential therapies in clinical 

trials. Resting interregional fMRI correlations have already shown potential in 

Alzheimer’s and other diseases. Here we use a method of calculating such correlations 

in the native space of individual subjects to compare resting correlation patterns in 

PRD, cognitively unimpaired Parkinson’s disease, and in age-matched elderly 

controls. Two seeds are used: a medial parietal region that contributes to the default 

network affected in Alzheimer’s disease, and the caudate, which is affected by loss of 

dopaminergic inputs in Parkinson’s disease. Only moderate effects of PRD were found 

in the default network, but PRD was associated with significantly decreased 

corticostriatal correlations. 
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5.1   Introduction 

Parkinson-related dementia (PRD) is the second most common cause of 

neurodegenerative dementia in the United States, estimated to make up 15-35% of all 

demented patients (Geser et al., 2005). Patients with PRD may experience the motor 

symptoms of parkinsonism as well as cognitive impairment that is frequently confused 

with Alzheimer’s disease (Geser et al., 2005; Lippa et al., 2007; McKeith, 2007). 

Subtypes of PRD include Parkinson’s disease dementia (PDD) and dementia with 

Lewy bodies (DLB), but these share a common hallmark neuropathology finding (α-

synuclein deposits called Lewy bodies) and are primarily distinguished in clinics by 

the order of symptom onset (Galvin et al., 2006; Geser et al., 2005; Lippa et al., 2007; 

McKeith, 2007). A non-invasive imaging biomarker is needed to advance basic 

scientific investigation of this disease in vivo, as well as to aid in diagnosis and 

evaluation of potential treatments in clinical trials.  

Interregional correlations of the resting blood oxygenation level dependent 

(BOLD) fMRI signal constitute one area of active interest in the search for biomarkers 

in disease. Functional imaging biomarkers are particularly attractive in that they may 

be able to detect pathology prior to widespread atrophy and could reflect therapeutic 

effects on a shorter time scale than structural techniques. Resting fMRI has a strong 

clinical appeal because it affords the ability to study multiple networks of the entire 

brain at once and, relative to task-based fMRI, is less susceptible to confounding 

effects of cognitive ability to perform a given behavioral task (Auer, 2008; Fox and 

Raichle, 2007; Greicius, 2008; van den Heuvel and Hulshoff Pol, 2010; Rogers et al., 

2007). Variations in resting functional correlations (often termed “functional 
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connectivity”) have already been reported in several neurological disorders, including 

Alzheimer’s disease (Greicius et al., 2004; Sorg et al., 2009), mild cognitive 

impairment (Bai et al., 2009; Pihlajamäki et al., 2009; Sorg et al., 2007), and 

Parkinson’s disease (Helmich et al., 2010; Wu et al., 2009). Early reports have even 

suggested resting functional correlations may be sensitive to neurological changes 

prior to onset of clinical symptoms in neurodegenerative disease (Hedden et al., 2009; 

Sheline et al., 2010).  

One important challenge for resting fMRI studies in neurodegenerative 

conditions such as PRD is the potential confound of registration errors in subjects with 

atrophy. Nearly all available reports on resting interregional fMRI correlations in 

disease, including all those that have included PD (Helmich et al., 2010, 2011; Wu et 

al., 2009) or PRD (Galvin et al., 2011), have used methods that depend on 

transformation of functional data to a standard volume atlas (e.g., Talaraich or 

MNI152) based on healthy brains. Even small inaccuracies in the warping of 

individual brains to the standard volume could result in areas of cerebrospinal fluid or 

white matter being mistakenly labeled as gray matter in the standard space. We have 

recently shown that such errors can be quite common; that they are easily overlooked; 

and that they can have large, widespread effects on resting fMRI correlations. To 

account for this problem, we proposed a method of group-level analysis of resting 

fMRI correlations measured within the native space of individual subjects (Seibert and 

Brewer, 2011). 

The present study applies the native-space (or native-surface) method to 

resting fMRI data acquired in patients with PRD, cognitively unimpaired PD, and age-
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matched controls. The network of regions with activity correlated with an isthmus 

cingulate seed (the “default network”) was examined, as prior studies have suggested 

disease-related effects on their correlated activity in Alzheimer’s disease (Greicius et 

al., 2004; Sorg et al., 2009) and DLB (Galvin et al., 2011). In addition, the 

corticostriatal network identified by a caudate nucleus seed was examined, as basal 

ganglia involvement in parkinsonism is well known, and disruption of corticostriatal 

resting fMRI correlations have also been described in PD (Helmich et al., 2010; Wu et 

al., 2009)..For each seed, we identified the five regions that had the strongest resting 

correlation in independent data sets from healthy, younger adults, and we then limited 

regional analysis to these “within-network” a priori regions of interest to avoid 

excessive multiple comparisons. We hypothesized that Parkinson-related dementia 

would be associated with altered interregional BOLD correlations within both default-

network and corticostriatal regions. 

 

5.2   Methods 

5.2.1   Participant characteristics 

Participant characteristics are provided in Table 5.1. Fifty-six participants 

underwent resting-state scans for this study (19 PD, 18 PRD, 19 age-matched 

controls). Consent was provided in accordance with an Institutional Review Board at 

the University of California, San Diego.  Movement disorder specialists from the 

University of California faculty evaluated the PD and PRD participants and made 

diagnoses based on criteria established by the Movement Disorders Society Task 

Force (Geser et al., 2005; McKeith, 2007); participants meeting criteria for DLB or 
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PDD were included in the PRD group. Elderly controls and PD patients with no 

cognitive impairment had a mini-mental status exam (MMSE) score of at least 27 

(Folstein et al., 1975).  

 

Table 5.1: Participant characteristics 

Participant group n (females) Age (mean ± SD) MMSE (mean ± SD) 
Elderly control 19 (11) 76 ± 9 * 
Parkinson's disease 19 (7) 70 ± 8 * 
Parkinson-related dementia 18 (2) 72 ± 7 23.8 ± 4.9 
* All participants MMSE ≥ 27 

 

5.2.2   MRI acquisition 

 Structural and functional imaging procedures were described previously 

(Seibert and Brewer, 2011). Two T2*-weighted sequences of approximately 7 min 

each were acquired for each participant on a 1.5 T system (General Electric 

Healthcare, Waukesha, WI) (TE: 45 ms; TR: 2624 ms; flip angle: 90°; matrix: 64 x 

64; voxel size: 3.75 mm x 3.75 mm x 5 mm; 32 adjacent sagittal slices; 155 samples 

per series). Immediately prior to each functional series, a spin-echo volume was 

acquired with opposite phase-encoding polarity for field inhomogeneity (Holland et 

al., 2010). Participants were asked to rest motionless with eyes open during the 

functional sequences (Van Dijk et al., 2009; Yan et al., 2009). In addition to the 

functional volumes, a high-resolution, three-dimensional, T1-weighted volume was 

acquired for each subject (TE: 3.8 ms; TR: 8.5 ms; TI: 500 ms; flip angle: 10°; matrix: 

256 x 256 x 256; voxel size: 0.9375 mm x 0.9375 mm x 1.2000 mm). Respiratory 
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effort and heart rate were monitored and recorded with a pressure transducer and a 

pulse oximeter, respectively (BioPac Systems Inc., Goleta, CA).  

 

5.2.3   Structural MRI processing 

 A model of each subject’s cortical surface was reconstructed from the T1-

weighted MRI volume (Dale et al., 1999; Fischl et al., 1999a). The surface was then 

anatomically parcellated using the Desikan-Killiany atlas (Desikan et al., 2006; Fischl 

et al., 2004). Subcortical structures were similarly identified by volume segmentation 

(Fischl et al., 2002). Results from each of these automated steps were inspected for 

accuracy, and manual corrections were applied as necessary according to procedures 

described previously, ensuring accurate native surfaces and identification of tissue 

boundaries (Seibert and Brewer, 2011). Parcellation regions used in functional 

analysis were tested for group differences in cortical thickness (or subcortical volume, 

after adjusting for intracranial volume) with ANOVA. 

 

5.2.4   fMRI data pre-analysis processing 

 All fMRI pre-analysis processing was performed as described previously 

(Seibert and Brewer, 2011) and was primarily performed using custom software 

written in MATLAB (Mathworks, Natick, MA). After interpolation for slice 

acquisition timing, rigid-body volume registration was performed using AFNI (Cox 

and Jesmanowicz, 1999), followed by voxel-wise regression of six head motion 

parameters and a cubic polynomial baseline. Functional data were next projected onto 
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the subject’s cortical surface model, and a bandpass filter of 0.01-0.08 Hz was applied 

to the time series from each vertex on the surface.  

 

5.2.5   fMRI interregional correlation analysis 

 Procedures for fMRI correlation analysis on native surfaces are described in 

detail elsewhere (Seibert and Brewer, 2011); these procedures take advantage of the 

FreeSurfer surface generation and parcellation tools and avoid transforming functional 

data to an atlas volume. Briefly, a single region from the automated parcellation of 

each individual surface is used as the seed time series for each hemisphere. The 

functional time series from the seed region is then correlated with the average time 

series from other cortical surface parcellation and volume segmentation regions in the 

Desikan-Killiany atlas. Fisher’s z-transform was applied to these native-surface 

correlation coefficients. 

 Vertex-wise correlation analysis (surface equivalent of voxel-wise analysis) 

was also performed after spherical-based surface registration to the FreeSurfer 

fsaverage surface (Fischl et al., 1999b; Seibert and Brewer, 2011). The minimum and 

maximum thresholds were set based on the group map for control subjects; the 

minimum threshold was one half standard deviation above the map mean, and the 

maximum threshold was 1.5 standard deviations above the map mean. To account for 

possible variation in functional anatomy, individual maps were subjected to a surface-

based smoothing process (approximately equivalent to a 6 mm Gaussian kernel in two 

dimensions) prior to performing vertex-wise group statistics. All group summary maps 

were similarly smoothed for display. Tissue mislabeling can frequently arise during 



159 

transformation to a volume atlas such as Talairach or MNI152, introducing large 

effects on functional correlations; surface-based registration reduces these errors 

(Fischl et al., 1999a, 1999b; Seibert and Brewer, 2011). 

 Analyses were performed with two seed regions. The isthmus cingulate region 

has been shown to be a reliable seed for study of the default network (Seibert and 

Brewer, 2011). As midbrain dopaminergic projections affected by Parkinson’s 

pathology directly modulate the striatum, the caudate was also chosen as a seed to 

investigate corticostriatal correlations. Each of these regions has been evaluated as a 

seed in other data sets using healthy adults (Seibert and Brewer 2011; Seibert et al., 

submitted). To avoid unnecessary multiple comparisons, the five regions most 

strongly correlated with each seed in those independent data sets were selected a 

priori for regional analyses (Table 5.2). Vertex-wise analyses were performed for the 

entire cortical surface. 

 Subjects with PD and PRD were compared to elderly controls to test for 

potential population differences attributable to Parkinson-related pathology. Two-

sample t-tests were applied to data from each native-surface parcellation region of 

interest, and results were assessed for statistical significance after controlling the false 

discovery rate at less than 0.05 to correct for multiple comparisons (Genovese et al., 

2002). Vertex-wise comparisons were also made, using two-sample t-tests at each 

vertex on the group surface. Group vertex-wise t-test maps were smoothed 

(approximately equivalent to a 12 mm Gaussian kernel in two dimensions) for display. 

All t-test results made no assumption of equal variance between groups.  
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5.3   Results 

 Regions selected a priori for group comparison were also tested for a structural 

effect of disease state. Cortical thickness for surface regions and subcortical volumes 

(adjusted for intracranial volume) for basal ganglia structures were compared by 

ANOVA. After controlling FDR at 0.05 (or 0.10), only the right parahippocampal 

region was significantly different across groups (F(2,52) = 7.905).  

Despite the relatively advanced age of the elderly control participants (mean 

age was over 76 years) resting correlation results for this group were generally 

consistent with previous reports in college-aged and middle-aged adults (Seibert and 

Brewer, 2011). Isthmus cingulate maps (Figure 1B) show characteristic features of the 

default network, including prominent involvement of medial and inferior lateral 

parietal areas, as well as medial and lateral prefrontal cotex. Caudate maps differ from 

isthmus cingulate maps—particularly in that the caudate is strongly correlated with 

areas such as the supplementary motor area, pre-supplementary motor area, and 

middle frontal gyrus (Figure 2B), in agreement with known structural connectivity 

(Alexander et al., 1986; Lawrence et al., 1998; Leh et al., 2007). Table 2 (first column 

in each hemisphere) lists the z-transformed correlation coefficients for the elderly 

control group; regions in the table were selected a priori for their strong correlation 

with the respective seeds in independent data sets. Many of these a priori regions 

remain strongly correlated with their respective seeds in the present cohort of resting 

elderly controls, further demonstrating the overall qualitative consistency of these data 

with published resting fMRI data. 
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 Potential effects of Parkinson pathology on the strength of interregional 

correlations within the default network were investigated by comparing group-level 

results from elderly controls to PD and PRD groups. The upper section of Table 2 

reports correlation coefficients for a priori default-network regions and the isthmus 

cingulate seed. While there are some regions where a pattern of decreased correlation 

strength with PRD is suggested (especially bilateral superior frontal, left medial 

orbitofrontal, and right hippocampus), no default region significantly differs between 

PRD and elderly controls, or between PD and controls, after correcting for multiple 

comparisons. Indeed, no region showed a significant difference even when relaxing 

the FDR correction to only 0.10 (i.e., to look for trends). Group maps in Figure 1B-D 

also show some hint at diminished prefrontal (medial and lateral) involvement with 

PD and PRD relative to controls, but the maps for the three groups are still 

qualitatively very similar. No area of the cortex was significantly different between 

groups after correcting for multiple comparisons in vertex-wise tests. For illustration 

of possible trends, however, Figure 3A shows population differences at a very liberal 

threshold without correction for multiple comparisons (p < 0.01, uncorrected). While 

there were some suggestions of small group differences in both region-based and 

vertex-wise results, in the end there was not a single a priori default-network region or 

cortical vertex with a significant difference between disease and control groups when 

the isthmus cingulate was used as a seed. 

 Corticostriatal resting correlations were also examined for differences across 

Parkinson-related disease state.  Contrary to the isthmus cingulate results, the lower 

section of Table 2 shows that several regions were significantly different in the PRD 
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group relative to elderly controls. These included bilateral superior frontal, bilateral 

caudal middle frontal, and right putamen (left putamen showed a trend toward 

significance, identified when FDR was relaxed to 0.052 instead of 0.05). No a priori 

region was significantly different in the PD group relative to either the elderly control 

or PRD groups. This pattern is illustrated in Figure 2, where there is a qualitative 

decrease in both magnitude and extent of corticostriatal correlations in the PRD maps 

relative to the control maps, with PD showing an intermediate level of correlations. 

However, these vertex-wise results do not reach statistical significance after a standard 

correction for multiple comparisons, and Figure 3B again shows areas where PRD and 

control groups differ when thresholds uncorrected for multiple comparisons are 

presented. While these vertex-wise corticostriatal differences do not survive correction 

for multiple comparisons, they are more widespread than in the analogous default-

network differences, and they overlap well with the regions that were significantly 

different in the native-surface parcellation analysis. 
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Figure 5.1: Group correlation maps with isthmus cingulate seed. Fisher’s z-
transformed correlation coefficients for the correlation of each vertex on the surface 
with the average time series of the isthmus cingulate seed. The minimum and 
maximum thresholds for the functional overlay represent 0.5 and 1.5 standard 
deviations, respectively, above the mean coefficient from the group map for control 
subjects (i.e., Figure 5.1B). The top row (A) shows the Desikan-Killiany cortical 
parcellation atlas. 
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Figure 5.2: Group correlation maps with caudate seed. Fisher’s z-transformed 
correlation coefficients for the correlation of each vertex on the surface with the 
average time series of the caudate seed. The minimum and maximum thresholds for 
the functional overlay represent 0.5 and 1.5 standard deviations, respectively, above 
the mean coefficient from the group map for control subjects (i.e., Figure 5.2B). The 
top row (A) shows the Desikan-Killiany cortical parcellation atlas.  
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5.4   Discussion  
 When measurements were made in the native space of individual subjects, 

Parkinson-related dementia was associated with disruption of corticostriatal resting 

fMRI correlations relative to elderly controls. In default-network regions, interregional 

correlations also tended to be decreased in PRD relative to controls, but these effects 

were weak and did not reach significance after correcting for multiple comparisons. 

These results suggest that, as has been reported for fronto-temporal dementia and 

Alzheimer’s disease (Seeley et al., 2009), disruption of resting fMRI correlations in 

PRD may differentially affect different resting networks.  

 While this is the first study to examine resting corticostriatal BOLD 

correlations in PRD, a very recent publication (Galvin et al., 2011) reported 

differences between DLB and controls in the default network. The suggestion in our 

data of decreased correlation between a medial parietal seed and prefrontal and medial 

temporal regions (Table 5.2) is consistent with their results, and the differences in both 

studies were found only when no correction was made for multiple comparisons.   

Because (Galvin et al., 2011) is the only other comparison so far of resting 

interregional BOLD correlations in PRD, some consideration of methodological 

differences is appropriate. One primary difference is the previous study compared 

regions that were defined from group differences in same functional data, whereas we 

used anatomical regions that were defined a priori from independent data sets 

acquired in young, healthy adults. Additionally, our regions were defined from the 

native structural images of each subject, thus avoiding effects on the functional 

correlations that can be introduced during the warping of individual brains to a 
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common volume template (Seibert and Brewer, 2011). Participant selection also 

differed between the two studies; Galvin et al. included only the DLB subtype of PRD, 

and were able to exclude from their control group (but not the DLB group) individuals 

with a high amyloid burden. Similar numbers of PRD participants were included in the 

two studies (18 in the present study compared to 15 DLB in the previous study), but 

the Galvin et al. included a larger control group (38 compared to 19). Here we 

modeled and removed effects of respiratory fluctuations using RETROICOR (Glover 

et al., 2000); no method of controlling for physiological noise was mentioned by 

Galvin et al. Finally, negative interregional correlations (“anticorrelations”) are 

frequently only present after regression of the mean global signal, a step we did not 

perform due to concerns about mathematical validity (Murphy et al., 2009) and 

associated controversy of interpretation (Chang and Glover, 2009; Fox et al., 2009; 

Glover et al., 2000; Murphy et al., 2009). 

The primary limitation of this and other studies of PRD is the inherent 

diagnostic ambiguity of dementia. Without biopsy, we must rely on imperfect clinical 

diagnoses to classify the participants (Geser et al., 2005; Lippa et al., 2007; McKeith, 

2007). Amyloid imaging (PiB) could be helpful in identifying participants with 

elevated fibrillar amyloid burden, though amyloid is known to accumulate in the 

absence of symptomatic Alzheimer’s disease, and so the relative contribution of 

Parkinson- and Alzheimer-related pathologies to patients’ symptoms (or altered 

resting fMRI correlations) would remain unknown (Rabinovici and Jagust, 2009). 

Ideally, PRD, PD, and control groups could all be screened for amyloid and 

comparisons could be made across only those subjects without any evidence of 
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Alzheimer-related pathology. This is made difficult, though, by the high comorbidity 

of Lewy bodies and amyloid plaques (Geser et al., 2005). 

Other limitations of the present study include the lack of a double dissociation. An 

Alzheimer’s disease group showing selective disruption of the default network, for 

example, would support the selectivity of the present results. However, though 

Alzheimer’s patients were not included in this study, many studies have reported 

effects on the default network in amyloid disease (Bai et al., 2009; Buckner et al., 

2009; Chen et al., 2011; Damoiseaux et al., n.d.; Greicius et al., 2004; Hedden et al., 

2009; Koch et al., 2010; Rombouts and Scheltens, 2005; Sheline et al., 2010; Sorg et 

al., 2007, 2009; Sperling et al., 2009; Supekar et al., 2008). The number of a priori 

regions for this study was intentionally limited to reduce multiple comparisons, though 

larger sample sizes would make whole-brain analysis more feasible and might lead to 

significant differences at the vertex level that would survive correction for multiple 

comparisons. A limitation of native-space parcellation analysis is dependence on 

anatomical regions of interest, but these also provide the advantages of avoiding 

circularity (e.g., with functional region selection in the same data set), allowing ready 

comparison across multiple studies, and increasing signal-to-noise over single voxels 

or vertices. 
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