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ABSTRACT OF THE DISSERTATION
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by

Riley Thornton

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Andrew S. Marks, Chair

We explore the descriptive set theory of problems originating in theoretical computer science.

We investigate a few special cases of locally checkable labelling problems using a variety of

Borel and measurable techniques. Our result clarifies a small part of the connection between

descriptive set theory and distributed computing. And, we adapt tools from the algebraic

approach to constraint satisfaction problems to the Borel setting. In particular we draw a

direct connection between NP-completeness and Σ1
2-completeness.
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CHAPTER 1

Introduction

Descriptive combinatorics asks questions like: What graphs on R have a Lebesgue measurable

2-coloring? What posets on N have Borel maximal antichains? More generally, when does

a combinatorial problem on a Polish have a definable solution? The term definable here

is vague, but its scope include such notions as continuous, measurable, Borel, and ordinal

definable. These kinds of questions turn out to have deep and shockingly diverse connections

to many other areas of mathematics. For instance:

1. Equidecompositions as in the Banach–Tarski paradox and Tarski circle squaring prob-

lem are equivalent to matchings in certain auxiliary graphs on the underlying space

2. Understanding the structure of cardinalities in inner models like L(R) involves delicate

analysis of equivalence relations on R.

3. In classical combinatorics, limiting objects often carry a measurable structure, and

definable solutions in the limit give uniform information about the finite objects

This thesis focuses in large part on interactions between computer science and descriptive

combinatorics specifically in the Borel and measurable settings. In particular, we look at

two classes of problems—Locally Checkable Labelling problems (LCLs) and Constraint Sat-

isfaction Problems (CSPs)—which were first isolated by computer scientists interested in

various notions of complexity. We will see that the computational notions of complexity

parallel descriptive set theoretic notions. And in fact, in some cases, direct implications can

be drawn.
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The formalism of Locally Checkable Labelling problems comes from distributed comput-

ing. An LCL is specified by some collection of local constraints, an instance of an LCL is

a graph, and we want to find a labelling which meets these constraints in every neighbour-

hood of the graph. Computer scientists are often interested in how much communication

is needed between vertices of a graph to solve all instances of a particular LCL, and this

gives rise to various distributed complexity classes. One can similarly ask when all instances

of a given LCL have a definable solution in the various descriptive set theoretic senses of

definability, and this gives rise to descriptive set theoretic complexity classes. It turns out

these descriptive set theoretic and distributed complexity classes fit into a common picture

of locality, and methods have been fruitfully translated between the two fields. For a survey,

see [BCG21b][GR21]. In the first half of this thesis, we investigate a handful of LCLs related

to the problem of generating a graph using functions. Our results are purely descriptive set

theoretic, but since their original publication many of them have been seen to fit nicely into

this picture of locality. We give more context in Section 1.1.

The archetypal CSP is 3SAT, i.e. the satisfaction problem for ternary disjuncts of literals.

A CSP is described by a domain D and a collection of relations on D (that is, a CSP is

described by a finite relational structure D). An instance of CSP(D) is a collection of

variables and specification of relations from D we want to hold among them (that is, an

instance is a relational structure in the same signature). And, a solution to an instance

X of CSP(D) is an assignment of values from D to the variables in X which satisfies the

constraints imposed by X (that is, a homomorphism from X to D). Details are given in

Section 3.1. CSPs are a very rich class of problems, but still a very structured class. Indeed,

many algorithmic complexity questions about CSPs, such as which CSPs are NP-complete

or solvable by linear relaxation, are decidable using methods from algebra. The second

half of this thesis adapts these algebraic tools to the study of Borel CSPs and draws direct

comparisons between algorithmic and descriptive set theoretic notions of complexity. For

instance, we show that any NP-complete CSP has a Σ1
2-complete corresponding Borel CSP.
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We sketch the relevant algebra in Section 1.2 and give details in Chapter 3.

1.1 Locally checkable labelling problems

We parameterize LCLs by sets of finite labelled graphs. To this end, let L(G,A) be the set

of labellings of (vertices, edges, etc. of) the graph G by elements of A, and let G• be the set

of (isomorphism classes of) finite rooted graphs.

Definition 1.1.1. An LCL is a set of labellings in
⋃

G∈G•
L(G,A) for some fixed A with all

elements of some fixed radius n. We call n the radius of definition of the LCL.

If φ is an LCL, and x is a vertex of a graph H, we say a labelling f : H → A meets φ

at x if there is a graph isomorphism g : K → Bn(x) such that (f ↾ Bn(x)) ◦ g ∈ φ (where

we root Bn(x) at x).

A labelling of a graph H is a φ-decoration or solution to the LCL φ on H if it meets

φ at every vertex.

Of course we are interested in Borel and p.m.p. graphs which admit Borel labelling which

solve an LCL (possibly ignoring a measure 0 or measure ϵ set of neighbourhoods). These

kind of definable LCLs have shown up implicitly in dynamics, probability, and geometry.

For instance:

Proposition 1.1.2. For any shift of finite type X ⊆ AΓ, there is an LCL φ so that a : Γ ↷ Y

admits a (Borel, measurable, continuous) homomorphism into X if and only Sch(a,E) admits

a (Borel, measurable, continuous) φ-decoration.

Proof. Recall that a shift of finite type is a Γ-invariant subset X ⊆ AΓ for some finite A

defined by a finite list of configurations c1, ..., cn with finite windows W1, ...,Wn ⊆ Γ so that

x ∈ X if and only if (∀i, γ) (γ · x) ↾ Wi ̸= ci.

Let k be such that W1, ...,Wn ⊆ Bk(e), and let φ be the set of configurations on Bk(e)
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which avoid the cis. Then, if f : Y → X is a homomorphism, g(x) = f(x)(e) is a φ-

decoration of Sch(a,E). And similarly, if g is a φ-decoration, then f(x)(γ) = g(γ · x) is a

homomorphism. (Recall here that the Cayley graph is defined by the action of Γ on itself

on the left, so Γ acts on labellings f by (γ · f)(δ) = f(γ−1 ·r δ) = f(δγ).)

In particular, for any marked group (Γ, E), Cay(Γ, E) admits an Γ-FIID φ-decoration if

and only if S(Γ, E) admits measurable φ-decoration. See also Subsection 1.4.4.

1.1.1 Distributed complexity

LCLs were first isolated in distributed computing. Computer scientists measure how much

communication is needed solve an LCL on graphs of a given size in various models. In

recent years, surprising formal connections have been drawn between the LOCAL model of

computation and descriptive set theory. These connections provide some important context

for the results in this thesis. Details of the model are not so important for us, but can be

found in [BCG21b]

Definition 1.1.3. RLOCAL(f) is the set of LCLs solvable in f(n) rounds of communication

in the randomized LOCAL model on graphs of size n. LOCAL(f) is the set of LCLs solvable

in f(n) rounds in the deterministic model.

For LCLs on regular trees1, the connections between LOCAL algorithms and descriptive

set theory are summarized in the picture and theorem below.

Theorem 1.1.4. For an LCL φ, the following hold when we restrict to regular acyclic graphs

of some fixed degree n:

• If φ ∈ LOCAL(O(log∗(n))) = LOCAL(o(log(n))) = RLOCAL(o(log log(n))), then φ

is solvable on every Borel graph

1When we speak of finite d-regular trees we mean that only leaves are allowed to be of degree other than
d, and we allow constraints to be violated in any neighbourhood containing a leaf.
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LOCAL(O(log(n))) = BAIRE

FIID

OO

MEASURE

OO

RLOCAL(O(log log(n)))

33

BOREL

jj

RLOCAL(o(log(n)))

LOCAL(O(log∗(n)))

kk

::

LOCAL(o(log(n)))

Figure 1.1: The relation between some distributed and descriptive complexity classes on

regular trees
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• If φ ∈ RLOCAL(o(log(n))) = RLOCAL(O(log log(n))), then every p.m.p. graph has a

measurable φ-decoration

• φ ∈ LOCAL(O(log(n))) if and only if any Borel graph admits a Baire measurable

φ-decoration

• If Tn has an Aut(Tn)-FIID φ-decoration then every Borel graph has a Baire measurable

φ-decoration

There are similar pictures for other classes of graphs: d-dimensional grids, bounded degree

graphs, etc. We focus on trees here for simplicity.

1.1.2 Lovász local lemma

We can also describe some of these local complexity classes in terms of bounds for the Lovász

local lemma. The Lovász local lemma is a powerful tool from probabilistic combinatorics

which roughly says that if we have a collection of events which are not too dependent on

each other and each occur with high probability, then they can all occur simultaneously.

Moser and Tardos gave a simple randomized algorithm for solving instances of the Lovász

local lemma, and this and other algorithms have been adapted to distributed computing and

descriptive combinatorics [MT10][Ber19]. To state things precisely we need some definitions.

Definition 1.1.5. An instance of the local lemma is a pair (G,φ) where G is a graph

(say on X) and φ is an LCL.

Let n be the radius of definition of φ and suppose φ is an LCL containing k-labellings.

We define

d(G,φ) := max
x∈X

|Bn(x)| − 1

and

p(G,φ) := sup
x∈X

P(f meets φ at x)

where this probability is taken uniformly over k-labellings of the finite graph Bn(x).

6



For instance, if φ is the LCL defining edge d-coloring and G is d-regular, then d(G,φ) = d,

and p(G,φ) = 1 − (d!/dd). The local lemma can be defined more generally, but for our

discussion it suffices to look at LCLs.

It turns out that problems in RLOCAL(o(log(n)) are exactly the problems which can be

turned into instance of the local lemma satisfying a certain polynomial bound.

Theorem 1.1.6 ([CP17]). If φ ∈ RLOCAL(o(log(n))), then for any constant c, φ is equiv-

alent to an instance of the local lemma with pdc = O(1).

Theorem 1.1.7. [BCG21b]] On trees, there is an RLOCAL(O(log log(n))) algorithm for

solving instances of the local lemma with pd8 ≤ c for some small enough c.

Further, with a strong enough exponential bound we can find solutions in O(log∗(n))

deterministic time (and thus we have Borel solutions).

Theorem 1.1.8 ([BGR20]). If φ is an LCL and for any G p(φ,G)2d(φ,G) < 1, then φ ∈

LOCAL(O(log∗(n)).

And linear bounds as in the original statement of the Lovász local lemma give FIID

solutions (at least on trees). For instance:

Theorem 1.1.9 ([Ber19]). If Γ is nonamenable and (φ,Cay(Γ, E)) is and instance of the

local lemma with epd < 1, then S(Γ, E) has a measurable φ-decoration.

So in Figure 1.1.1, the region marked by dotted lines correspond to bounds on the local

lemma. In the top region a linear bound is sufficient, in the middle region polynomial

bounds suffice, and in the bottom region an exponential bound is needed. There are many

open questions about optimality of these bounds and about the picture for other graph

classes.

7



1.1.3 Overview of LCL results

In this thesis we consider a handful of LCLs, many related to orientation problems. For

instance:

Definition 1.1.10. BO is the problem of finding a balanced orientation of a given graph

(i.e. an orientation with indegree and outdegree equal at all vertices), and SO is the problem

of finding a sinkless orientation (or equivalently a sourceless orientation) of a given graph

(i.e. an orientation with outdegree at least 1 at all vertices).

Note that if G is d-regular, then p(SO, G) = 1/2d and d(SO, G) = d. So, we have

p(SO, G)2d(SO,G) = 1. In particular, SO ∈ RLOCAL(o(log(n))). We prove the following:

Theorem 1.1.11. The regular tree T2n has an Aut(G)-FIID balanced orientation, but for

all d there is a d-regular p.m.p. acyclic graph with no measurable balanced orientation. So

BO ∈ FIID ∖ MEASURE.

Theorem 1.1.12. For any d there is a d-regular acyclic Borel graph with no sinkless orien-

tation.

This means that p2d < 1 is a sharp bound for instances of the local lemma in the bottom

region Figure 1.1.1. See Theorem 2.1.15 and Proposition 2.1.20.

In fact, we give optimal bounds on the minimum outdegree needed to orient many

p.m.p. graphs. Our bounds mimic a classical bound given by the Edmonds matroid cov-

ering theorem. The method of proof suggests connections to another model of distributed

computing, the so-called CONGEST model. See Theorem 2.1.7 and the following discussion.

The other class of LCLs we study are Cayley diagrams. A Cayley diagram is an as-

signment of generators of a marked group (Γ, E) to a Cayley graph of Γ which encodes an

action of Γ. For instance, a Cayley diagram from C∗n2 with the usual generators is an edge

n-coloring of the n-regular tree. We show that if a Cayley graph G admits an (approximate)

8



Aut(G)-FIID Cayley diagram, then the distinction between (approximate) Aut(G)- and Γ-

FIID solutions to LCLs vanishes. We also give a number of examples of when these can

and cannot be found, resolving a handful of questions from measurable graph combinatorics

along the way.

For instance, we lift sharp asymptotic bounds for the density of Aut(Tn)-FIID indepen-

dent sets to bounds Aut(Γ)-FIID independent sets when Cay(Γ, E) is a tree. In the language

of distributed computing, we find bounds on randomized algorithms for independent sets on

trees already equipped with edge colorings or Schreier decorations. This answers a long-

standing question of Marks and Kechris. See Thm 2.2.21

We also compute the projective complexity of Borel versions of these and related prob-

lems. For instance, we show that the set of Borel equivalence relations which admit a Borel

selector is Σ1
2-complete in the codes (Theorem 2.1.25). This is in sharp contrast to the

complexity of smooth relations.

1.2 Constraint satisfaction problems

For a finite relational structure D, CSP(D) is the problem of testing if a given structure in

the same signature admits a homomorphism into D.

Definition 1.2.1. For relational structures D = (D,RD1 , ..., R
D
n ) and E = (E,RE1 , ..., R

E
n),

a homomorphism f : D → E is a function f : D → E so that (x1, ..., xn) ∈ RDi implies

(f(x1), ..., f(xn)) ∈ REi for all i.

The class of CSPs is broad and contains many well-studied problems. For instance,

CSP(Kn) is the problem of n-coloring graphs. And, it is straightforward to code kSAT and

systems of linear equations over Fn as CSPs for finite relational structures. However, there

is a rich algebraic structure to CSPs that allows us to answer many algorithmic questions

about these problems.

9



1.2.1 Polymorphisms and pp definitions

For a finite relational structure D, the polymorphisms of D are the operations which preserve

solutions to CSP(D). More formally:

Definition 1.2.2. A polymorphism of D is a homomorphism f : Dn → D for some n, and

Pol(D) is the set of polymorphisms of D.

Here, we use the so-called categorical product for structures. For example, one can check

that Pol(Kn) is generated by projections and permutations for n > 2. For n = 2 we have

some extra structure; K2 is preserved by the following operations:

(x, y, z) 7→ x+ y + z(mod 2)

maj(x, y, z) = the repeated value amongx, y, z.

Note that CSP(Kn) is polynomial time solvable if and only n = 2. This is not a coincidence;

the presence of nontrivial polymorphisms is, in some sense, responsible for the tractability

of CSP(K2). To explain the general phenomenon we need some definitions

Definition 1.2.3. Say that a relation R is pp definable in a structure D if

R(x1, ..., xn) ⇔ (∃y1, ..., ym)
∧
i

αi(x1, ..., xn, y1, ..., ym)

where each αi is either a relation in D or an equality.

If every relation E is a pp definable in D, then any instance of E can be turned into an

instance of D ∪ {(=)} by adding in dummy variables. And in the finitary setting, we can

eliminate (=) by taking a quotient. So, any algorithm for D gives an algorithm for D.

Theorem 1.2.4 ([Jea98]). Pol(D) ⊆ Pol(E) if and only if D pp defines E

Corollary 1.2.5. If Pol(D) ⊆ Pol(E), then CSP(E) is polynomial time reducible to CSP(D).

10



Abstractly, this means that any algorithmic question has an answer in terms of Pol(D).

(This can be generalized quite a bit, see Theorem 3.2.6). The most spectacular example of

this is the so-called CSP dichotomy theorem:

Theorem 1.2.6 ([Bul17][Zhu17]). If there is some f ∈ Pol(D) so that

(∀a, e, r) f(a, r, e, a) = f(r, a, r, e) (⋆)

then CSP(D) ∈P. Otherwise, CSP(D) is NP-complete.

1.2.2 Overview of results

The theory of polymorphisms and pp definitions does not immediately apply to the descrip-

tive set theoretic setting. In particular, the reductions given by a pp definition require taking

a quotient, and quotients by Borel equivalence relations can be pathological (consider, for

instance, R/Q). Nonetheless, with some work this algebraic approach can be adapted.

Definition 1.2.7. Say that D is essentially classical if, whenever a Borel instance of

CSP(D) has a solution, it has a Borel solution.

We can completely classify essentially classical structures. They turn out to be exactly

the so-called width 1 structures. In terms of polymorphisms:

Theorem 1.2.8 (see Theorem 3.1.11). D is essentially classical if and only if D has a poly-

morphism f of high enough arity so that f(x1, ..., xn) = f(y1, ..., yn) whenever {x1, ..., xn} =

{y1, ..., yn}.

We can also adapt half of the CSP dichotomy theorem to descriptive setting. Projective

complexity is the relevant measure of complexity for Borel problem (see Subsection 1.4.7),

and a CSP is at most Σ1
2-complete.

Theorem 1.2.9 (see Theorem 3.4.3). If D does not have a polymorphism satisfying (⋆)

above, then the Borel version, CSPB(D), is Σ1
2-complete.

11



Corollary 1.2.10 (P̸=NP). If CSP(D) is NP-complete, then CSPB(D) is Σ1
2-complete.

And we have partial converses, such as a descriptive set theoretic analogue of the Hell-

Nešetřil theorem:

Theorem 1.2.11. For an undirected graph G, CSPB(G) is Σ1
2-complete if and only if G is

not bipartite.

1.3 Notation

We will record some notation in this section. Most of this standard, and we will try to recall

the sticking points throughout the text. We will give the formalism for LCLs here as they

will be relevant in the next section.

We will be concerned with graphs throughout. For us, a graph on a vertex set X is a

symmetric irreflexive subset of X2. An edge in a graph G ⊆ X2 is pair (x, y) ∈ G. We

write {x, y} ∈ G to mean (x, y) ∈ G and (y, x) ∈ G when we want to emphasize that G is

symmetric. When we say that a graph G on a Polish space X is Borel, we mean that G is

Borel in the product spaces X2. Given a graph G, EG is the connectedness relation of G:

xEGy :⇔ (∃x = z1, z2, ..., zn+1 = y)(∀i = 1, ..., n) (zi, zi+1) ∈ G

For a relation R ⊆ X×Y , and x ∈ X, then section over x is Rx = {y : (x, y) ∈ R}. Similarly,

the section under y ∈ Y is Ry = {x : (x, y) ∈ R}. Given a graph G on X, the degree of G

is deg(x) := |Gx|. We will often assume this is uniformly bounded for x ∈ X. We call such

graphs bounded degree graphs. We write Bn(x,G) for the ball of radius n in G centered on

x. When we refer to Bn(x,G) as a rooted graph, we mean to choose x as the root. Often

we suppress G in the notation.

Given a pair e = (x, y) ∈ X2, we write −e = (y, x), and −A = {−e : e ∈ A}. A directed

graph is an irreflexive relation, and a directed graph D is an orientation of a graph G if
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G = D ∪ −D and D ∩ −D = ∅. For x a vertex of a directed graph D, we write

B+
n (x,D) := {y : (∃x = x0, ..., xn = y)(∀i < n) xi = xi+1 or (xi, xi+1) ∈ D}.

Similarly, B−n (x,D) = B+
n (x,−D). We will often suppress D in the notation. We say

(x0, ..., xn) is a directed path of length n in D if (xi, xi+1) ∈ D for i < n. So, B+
n (x) is the

set of vertices y with a directed path of length at most n from x to y.

Many of the graphs we study will come from group actions. Throughout, Γ will represent

a countable discrete group and e will be the identity element of of Γ. By a generating set

for Γ, we mean a set E ⊆ Γ so that e ̸∈ Γ and Γ =
⋃

n∈N(E ∪E−1)n. Note that we disallow e

(to avoid loops in our graphs) and we allow ourselves to take inverses. By a marked group,

we mean a group Γ equipped with a finite generating set E.

Given an action a : Γ ↷ X of a marked group (Γ, E), we can form the associated Schreier

graph on X:

Sch(a,E) = {(x, γ · x) : x ∈ X, γ ∈ E ∪ E−1}.

Γ acts on itself by left multiplication.

λ : Γ ↷ Γ

γ ·λ x = γx

(The choice of left or right multiplication is arbitrary, but will cascade throughout this text.)

The Cayley graph of (Γ, E) is the Schreier graph of this action:

Cay(Γ, E) = Sch(λ,E)

Note that Γ embeds into Aut(Cay(Γ, E)) by right multiplication. That is, writing ⟨γ⟩ for

the image of γ in Aut(Cay(Γ, E)), ⟨γ⟩(x) = xγ−1.

For A a Polish space and G a graph with vertex set X, an A-labelling of H is a partial

function

ℓ :
⊔
n

{(x1, ..., xn) : (∀i, j ≤ n) xiEGxj} → A.

13



We will mostly be concerned with vertex and edge labellings, i.e. labelling f : X → A and

g : G → A. We denote by L(H,A) the space of A-labellings of H. If H is countable, this

comes with a natural Polish product topology.

The group Aut(H) acts on L(H,A) by shifting indices. For instance, if ℓ is a vertex

labelling we have:

f · ℓ(x) = ℓ(f−1(x)),

and if ℓ is an edge labelling:

f · ℓ(x, y) = ℓ(f−1(x), f−1(y)).

So, Γ acts on labellings as follows:

γ · ℓ(x) = ⟨γ⟩ · ℓ(x) = ℓ(⟨γ⟩−1(x)) = ℓ(xγ)

(Again the choice of which side γ appears on is arbitrary, but we need to be sure the correct

number of inverses show up.)

Often we want to restrict to the free part of an action: for a : Γ ↷ X,

Free(X) = {x : (∀γ ̸= e) γ · x ̸= x}.

In the case that X is a space of labellings equipped with a shift action, there is some

ambiguity in whether we mean free with respect to the full automorphism group or some

countable subgroup. We typically mean the former when the label space is uncountable.

For (Γ, E) a countable marked group, write Free(Γ, E) for the free part of [0, 1]Γ (i.e. the

space of total [0, 1]-vertex labellings) under the action of Aut(Cay(Γ, E)). This contains, for

instance, the injective labellings, so has measure 1 with respect to the product of Lebesgue

measure.

Given a marked group (Γ, E), the associated shift graph is the Schreier graph of the shift

action on Free(Γ, E). The choice of base space here turns out to be not so important, see

Subsection 1.4.4. Given a vertex transitive graph G, we can similarly associate the so-called

14



Bernoulli graphing. (The difference between the shift graph and the Bernoulli graphing is

subtle but important.) Pick a root e for G and let Aute(G) = {f ∈ Aut(G) : f(e) = e}. The

vertex set is X̃ = Free([0, 1]G)/Aute(G), the space of vertex labellings of G up to rooted

isomorphism. This is a standard Borel space as Aute(G) is compact. Note that X̃ inherits

the quotient measure from Free([0, 1]G). Let M be the set of automorphisms that move e to

one of its neighbours. The edge set of the Bernoulli graphing is

S̃(G) := {(Aute(G) · x,Aute(G) · y) : (∃f ∈M) f(x) = y}.

If G = Cay(Γ, E), we can equivalently write

S̃(G) = {(Aute(G) · x,Aute(G) · γx) : x ∈ Free(Γ, E), γ ∈ E}.

We will see that the quotient measure is invariant under this S̃(G) and that S̃(G) captures

the Aut(G)-FIID labellings of G. (See 1.4.4.)

Note that if Γ ≤ Aute(G) acts transitively on G, then Aut(G) = Γ Aute(G) = Aute(G)Γ.

That is, any automorphism factors as an element of Γ and Aute(G) with the element of γ

showing up on either side. For G = Cay(Γ, E) such factorizations are unique and related by

the following commutation relations:

r⟨γ⟩ = ⟨r(γ−1)⟩−1(⟨r(γ−1)⟩r⟨γ⟩). (1.1)

Let G• be the set of (isomorphism types of) finite rooted graphs. A locally checkable

labelling problem (or LCL) is described by a set of local constraints, i.e. a finite φ ⊆⋃
G∈G•

L(G,A) for some A finite. We view φ as a set of allowed configurations. The radius

of definition is the largest radius of the domain of any configuration in φ.

Definition 1.3.1. An LCL is a finite subset φ ⊆
⋃

G∈G•
L(G,A) so that the domain of each

f ∈ φ has the same radius n. We call n the radius of definition of φ.

If φ is an LCL, and x is a vertex of a graph H, we say a labelling f : H → A meets φ

at x if there is a graph isomorphism g : K → Bn(x) such that (f ↾ Bn(x)) ◦ g ∈ φ (where

we root Bn(x) at x).
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A labelling is a φ-decoration or solution to the LCL φ if it meets φ at every vertex.

If the vertex set of H carries a measure µ, a µ-measurable φ-decoration is a measur-

able labelling f which meets φ on a co-null set. A sequence of labellings ⟨fi : i ∈ ω⟩ is an

approximate φ-decoration if µ({x : f does not meet φ at x}) → 0.

So if G is a countable graph, a random φ-decoration of a graph G is a measure µ on

L(G,A) so that µ({f : f meets φ at x}) = 1 for all x ∈ G. If further µ is invariant under

some group Γ ⊆ Aut(G) that acts transitively on G, then it suffices that

µ({f : f meets φ at x}) = 1

for any particular x. Approximate random decorations can be defined analogously.

Recall that, for Γ ≤ Aut(G), an Γ-invariant measure µ on X is Γ-FIID if there is an

equivariant map f : [0, 1]G → X so that the pushforward of the power of Lebesgue measure

λG is µ. We typically drop the word random from the phrase “Γ-FIID random (approximate)

φ-decoration.”

We will also be concerned with the density with which we can meet an LCL:

Definition 1.3.2. For φ an LCL and H a graph on a probability space (X,µ),

ρφ(H) := sup {µ({x : f meets φ at x}) : f ∈ L(X,A) measurable} .

For instance, the independence number of H is ρφ(H), where φ says that ℓ is a vertex

{0, 1}-labelling with ℓ−1(1) independent and ℓ(x) = 1.

We will also consider relational structures more generally. A relation on a set A of

arity k is a subset of Ak. We will write R(x1, .., xk) to mean (x1, ..., xk) ∈ R. We will

switch freely between these two notations. In particular a unary predicate is just a subset

of A. Some relations, like equality, are typically written in infix notation. We will write

these in parenthesis to emphasize that we mean the associated set. For instance, we have

(=) = {(a, b) ∈ A2 : a = b}.
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By a relational structure we mean a tuple D = (D,R1, R2, ...), where D is a set and each

Ri is a relation on D. Relational structures will be denoted throughout by script letters:

D, E ,X , etc. Unless otherwise stated, the domain of a structure will be denoted by the

unscripted letter: D,E,X, etc.

We say that a structure is finite to mean that its domain is finite and that it comes

equipped with only finitely many non-empty relations. When D is a finite relational struc-

ture, we say that X is an instance of D when it has the same signature. That is, if

D = (D,R1, ..., Rn), then X = (X,S1, ..., Sn) where Si has the same arity as Ri. We re-

fer to Si as the interpretation of Ri in X and write Si = RXi . The superscript may be

dropped if the context is clear. If X is an instance of D, we say D is a template of X .

We will want to perform a few operations on structures. For D = (D,R1, ..., Rn) a

structure and R a relation on D, we abuse notation and write D∪{R} for (D,R1, ..., Rn, R).

For A ⊆ D we write D ↾ A for the structure with domain A equipped with relations Ri ∩Ak

for each i (where Ri has arity k.) And, if R and S are relations both of arity k on A and B

respectively, then R ⊔ S is the relation on A ⊔B defined by

R ⊔ S = {e ∈ Ak ⊔Bk : R(e) or S(e)}

A homomorphism between relational structures in the same signature is a map which

preserves relations. That is, f : D → E is a homomorphism if, for all R

(x1, ..., xn) ∈ RD ⇒ (f(x1), ..., f(xn)) ∈ RE .

For products, we take the categorical product (i.e. the product in the category of structures

with homomorphisms). In detail, given D, E and a relation R

RD×E(x, y) :⇔ RD(x) and RE(y).

For a set A, πk
i : Ak → A is the ith projection map

πk
i (a1, ..., ak) = ai.
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And for J = {j1, ..., jn} ⊆ {1, ..., k}, πk
J is the projection onto the coordinates in J :

πk
J(a1, ..., ak) = (aj1 , ..., ajn).

We will drop the superscript when the context is clear.

Our infinite structures will all live on Polish spaces. When we say a structure on X

is Borel, we mean each relation is Borel in the product space. By standard universality

arguments, we can typically restrict our attention to the space N = NN. Most reasonable

codings of Borel sets will work for our arguments. See Appendix A for some details.

We will work throughout with Borel and projective complexity classes. See, e.g. [Mar19]

for the basic definitions. Most relevantly, Σ1
1 is the class of sets in Polish spaces defined with

an existential quantifier over R with Borel predicates, Π1
1 is the class of sets defined with

a universal quantifier, and Σ1
2 is the class of (∃∀)-definable sets. The lightface symbols Σ1

1,

Π1
1, etc. denote effective analogues of these.

Many results in this paper refer to computational complexity classes. Almost anywhere

P (or NP) appears it can replaced with the algebraic notion of tractability (or intractability).

See Definition 3.2.8 and the following comments. In particular most theorems in this paper

are true even if P=NP. We will point out any exceptions by putting “(P ̸=NP)” before any

theorems which require this assumption.

1.4 Basic Tools

Most of the tools needed in this thesis are explained in the survey on Borel graph theory by

Pikhurko [Pik21], Marks’s notes on effective descriptive set theory [Mar19], and the survey of

continuous model theory by Ben Yaacov, Berenstein, Ward Henson, and Usvyatsov [BHU06].

We will summarize some of the main points here and explain a give more details on a few

of the topics not found in these surveys (namely effectivization, the Bernoulli graphing

associated to a countable graph, and weak containment for graphs). The most notable
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omission from this section is the machinery of toasts and asymptotic Borel dimension, which

have resolved many questions about the descriptive combinatorics of nilpotent (and other

elementary amenable) group actions. See for instance [GR21]. This section can safely be

skipped and referred back to as needed.

1.4.1 Locally countable relations and the Luzin–Novikov theorem

In the next chapter of this thesis we will primarily be concerned with Borel relations whose

sections are all countable (or even of bounded cardinality). It turns out that all such relations

are generated by countably many Borel functions. In the case of equivalence relations, these

functions can even be corralled into a group action. We will return to general of question of

how many and how nice these functions can be later.

Definition 1.4.1. A relation R ⊆ X × Y is locally countable if |Rx| ≤ ℵ0 for all x ∈ X.

Theorem 1.4.2 ([Pik21, Theorem 3.8]). If R ⊂ X ×Y is a locally countable Borel relation,

then R =
⋃

i fi where each fi : X → Y is a Borel partial injection.

Theorem 1.4.3 ([Pik21, Theorem 7.1]). If R ⊆ X2 is a Borel, locally countable, symmetric

and total relation, then R =
⋃

i fi, where each fi is a total Borel involution. In particular, if

R is an equivalence relation, then it is the orbit equivalence relation of an action of
⊕

n∈ω C
∗n
2 .

Together with the following proposition, these results make many complexity calculations

much simpler for locally countable relations.

Proposition 1.4.4. For any Borel A and injective Borel function f , f(A) is also Borel. And

for any Borel partial function f , dom(f) is Borel.

This means any set obtained by a countable length procedure operating on locally count-

able Borel inputs will be Borel. For instance:

Corollary 1.4.5. For any Borel set A and locally countable Borel graph G, the connected

component of A, [A]G = {y : (∃x ∈ A) yEGx} is Borel.
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Proof. Indeed, if G =
⋃
fi with each fi a partial Borel injection, then N(A) =

⋃
i fi(A) is

Borel by the above proposition. So, [A]G =
⋃

iN
i(A) is Borel.

1.4.2 Invariant measures

In the measurable setting we will often focus on probability measure preserving (or p.m.p.)

graphs. In other sources these are called graphings. These are locally countable graphs on

a measure space satisfying measure theoretic version of the handshake lemma which allows

us to measure sets of edges:

Definition 1.4.6. A Borel graph G on a standard probability space (X,µ) is probability

measure preserving or p.m.p. if, whenever f ⊆ G is injective and A ⊆ X is Borel

µ(A) = µ(f(A)).

Equivalently if, for A ⊆ G Borel

µ̃(A) :=

∫
x∈X

|Ax| dµ =

∫
x∈X

|Ax| dµ

where Ax = {y : (x, y) ∈ A} and Ax = {y : (y, x) ∈ A}.

We say that µ is an invariant measure for G

We will often abuse notation and write µ for µ̃. The measure µ̃ allows us to use edge

counts to track modifications to labellings and ensure almost everywhere convergence of

algorithms. The following argument Conley and Tamuz is a good illustration.

Theorem 1.4.7. If G is a bounded degree p.m.p. graph then there is a vertex labelling of

G by {0, 1} so that the label at each vertex differs from at least half of its neighbours.

Proof. A theorem of Kechris–Solecki–Todorcevic [Pik21, Theorem 5.12] says that every

bounded degree Borel graph has a finite Borel coloring. So, we can find a sequence of

sets of vertices, ⟨Xi : i ∈ ω⟩, where each Xi is independent and each vertex appears infinitely

often.
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Let f0 be any {0, 1} labelling of the vertices and define fi inductively by flipping every

vertex in Xi with too many same-colored neighbours. That is,

fi+1(x) =

 1 − fi(x) x ∈ Xi and for most neighbours y of x, fi(x) = fi(y)

fi(x) otherwise

Intuitively, flipping colors in this manner always decreases the fraction of edges between

same-colored vertices, so the process must converge in the limit. To make this precise,

consider Ai = {(x, y) ∈ G : fi(x) = fi(y)} and Ei = {x : fi(x) ̸= fi+1(x)}. Note that

µ(Ai+1) ≤ µ(Ai) ≤ µ(G). Since

Ai△Ai+1 ⊆ {(x, y) : x or y ∈ Ei}

and |(Ai)x| > |(Ai+1)x| for x ∈ Ei we have µ(Ai) − µ(Ai+1) ≥ µ(Ei). This gives us a

telescoping sum: ∑
i

µ(Ei) ≤
∑
i

µ(Ai) − µ(Ai+1) = µ(A0) <∞.

By the Borel–Cantelli lemma, fi(x) converges for almost all x, say to f(x). If f(x) = f(y)

for most neighbours y of x, then there is some i where, for any j > i, f(x) = fj(x) and

f(y) = fj(y) for all neighbours y of x. But then x would have flipped at some stage after

i.

We will sometimes also work with measures that are not quite invariant, but where

measure does not vary too much along edges. These are so-called quasi-invariant measures.

Definition 1.4.8. A measure µ is G quasi-invariant if there is a measurable function

ρ : G→ R+ so that, for f ⊆ G injective and A Borel

µ(f(A)) =

∫
x∈A

ρ(x, f(x)) dµ.

Such a ρ is called a Rado-Nikodym cocycle for µ. We typically write ρ = ess supG ρ(x, y).

One can check that, for instance, the argument for Theorem 1.4.7 works whenever ρ is

sufficiently small. A discussion of quasi-invariance and equivalent conditions can be found

in [KM04].
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1.4.3 Augmenting flows

There are two important features of the above argument. First we have some greedy algo-

rithm we want to run on a Borel graph. We cannot operate on vertices one by one, so we

use some general coloring results to solve a scheduling problem and operate on entire inde-

pendent sets of vertices at once. The second feature is that we show that the sets of points

we need to modify at each step (Ei in the above argument) have summable measure, so our

construction will work in the end by the Borel–Cantelli argument. Showing this summabil-

ity usually relies on some invariance of measure. The next two lemmas packages these ideas

usefully for us. We will prove the lemma for vertex labellings, though the argument adapts

easily to more general labellings.

Definition 1.4.9. For an LCL φ and labelling ℓ ofG, E(φ, ℓ) = {x : ℓ does not meet φ at x}.

An r-augmentation of a labelling ℓ for an LCL φ is a connected subgraph G′ of size

at most r with a labelling ℓ′ of G′ so that changing ℓ to ℓ′ on G′ satisfies φ at more points.

That is, for f := ℓ′ ∪ (ℓ∖ ℓ ↾ G′), E(φ, ℓ) ⊇ E(φ, f).

Lemma 1.4.10. Let G be a locally finite Borel graph on a space X, ℓ be a Borel labelling.

Then, for any r > 1, there is a Borel labelling ℓ′ of G with no r-augmentations for φ and r

Borel maps, f1, ..., fr : E(φ, ℓ) ∖ E(φ, ℓ′) → X such that

• d(x, fi(x)) ≤ r

• If ℓ(x) ̸= ℓ′(x), then x ∈ im(fi) for some i.

In the next lemma we use the Borel–Cantelli lemma to get measurable decorations.

However, we only use measures to analyze the convergence of our decorations. The labellings

we construct are Borel and independent of the measure.

Lemma 1.4.11. Suppose µ is a G quasi-invariant measure and that there are ϵr so that∑
r rρ

rϵr <∞ and whenever a labelling ℓ of G has no r-augmentation then µ(E(φ, ℓ)) < ϵr.

Then, G has a µ-measurable φ decoration.
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In fact, there is a single Borel labelling which meets φ off of a µ-null set for any measure

µ which meets these hypothesis. This yields purely Borel results for graphs which support

rich enough measures.

Proof. Define ℓi inductively as follows: let ℓ0 be any labelling, and let ℓi+1 be a labelling

with no (i+ 1)-augmentation as in the previous lemma. If µ is a quasi-invariant measure as

in the statement, then

µ({x : ℓi(x) ̸= ℓi+1(x)}) ≤ rρrE(φ, ℓi) ≤ rρrϵr

is summable, so ℓ(x) = limi ℓi(x) is defined almost everywhere. And, if ℓ had an r-

augmentation, say with domain G′, then at some state in this construction ℓi stabilizes

at every point in G′. But then ℓi has an r-augmentation for a cofinal set of indices i, which

is a contradiction. So, E(φ, ℓ) ≤ ϵr for all r and must be 0.

To get rapid decay in E(φ, ℓ) we often use expansion in the underlying graph.

Definition 1.4.12. A p.m.p. graph is expansive with expansion constant λ if

λ := inf{µ(∂A)/µ(A) : 0 < µ(A) < 1/2} > 1.

For example, the shift graph and Bernoulli graphing for any non-amenable Cayley graph

are expansive (indeed this is equivalent to non-amenability). The Lyons–Nazarov matching

theorem was one of the first instances of a measurable augmentation argument.

Theorem 1.4.13. If G is an expansive d-regular p.m.p. graph with no odd cycles, then G

has a measurable perfect matching

Proof. Suppose that M is matching with no r-augmentation. Consider the set E of un-

matched vertices in M . It suffices to show that µ(M) ≤ O(λ−r/4). One way to get an

augmentation of M is to find an alternating path (as in most proofs of Hall’s theorem). So,

define Ei inductively by
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• E0 = E,

• E2i+1 = N(E2i),

• E2i+2 = {x : {x} × E2i+1 ∩M ̸= ∅}.

For i < r/4 each E2i must be independent, and each E2i+1 must be in the domain of M

(otherwise we would have an r-augmentation). So, µ(Ei) < 1/2, µ(E2i+1) = µ(E2i+2), and

µ(E2i) ≤ λ−1µ(E2i+1). Chaining this all together, we have µ(E) ≤ λ−r/4.

1.4.4 Shift graphs and Bernoulli graphings

We will want a somewhat more detailed analysis of the shift graph associated to a group

and the Bernoulli graphing associated to a countable graph.2 Recall that the vertex sets

of these graphs are both spaces of labellings (in latter case considered only up to rooted

isomorphism). The first fact we will want is that in many cases the choice of label spaces do

not matter. First, in the Borel setting we have the following:

Theorem 1.4.14. [ST16] For any Polish space A and group Γ, there is a Borel homomor-

phism from the shift action Γ ↷ Free(AΓ) to the shift Γ ↷ Free(2Γ).

In particular, since the action of Γ is free in both cases, the homomorphism restricts to

a graph embedding on each orbit of Γ ↷ Free(AΓ). It follows that if we have some Borel

decoration of Free(2Γ), then we can pull it back to a decoration of any Free(AΓ), in particular

to S(Gamma,E).

In the approximate setting, the Abért–Weiss theorem says that we can transport approx-

imate decorations between the shift graphs on Free(AΓ) for various Γ. In fact it says a great

deal more, see Subsection 1.4.5 and Theorem 1.4.24.

2These names are somewhat unfortunate as they are easily confused with the phrase Bernoulli shift, but
the three objects are distinct. These names are also somewhat standard.
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For measurable decorations, matters are a little more complicated, but we have the

following:

Definition 1.4.15. Given p.m.p. actions of a group Γ on space probability spaces a : Γ ↷

(X,µ) and b : Γ ↷ (Y, ν), say that a factors onto b if there is an equivariant measure

preserving map f : X → Y .

Theorem 1.4.16 ([Bow19]). If Γ is nonamenable, then then any two shifts Γ ↷ (AΓ, µΓ),

Γ ↷ (BΓ, νΓ) factor onto each other.

For amenable groups, ([0, 1]Γ, λΓ) (where λ is a Lebesgue measure) factors onto any other

shift. So, measurable decorations can always be lifted from any Bernoulli shift to S(Γ, E),

and if Γ is nonamenable then decorations can be transported from S(Γ, E) to any other shift.

Probabilists often want to know when a measure is a factor of independent identically

distributed variables or FIID.

Definition 1.4.17. A p.m.p. action Γ ↷ (X,µ) is Γ-FIID if there is a factor map

f : ([0, 1]Γ, λΓ) → (X,µ).

The general problem of testing when a measure is FIID is usually referred to as Ornstein

theory (after foundational results of Ornstein for the case Γ = Z.) When we speak of a

Γ-FIID solution to some labelling problem on a countable graph G (where Γ ≤ Aut(G),

we mean a Γ-FIID measure on the space of solutions. It turns out Γ-FIID labellings of

Cay(Γ, E) are equivalent to measurable labellings of S(Γ, E):

Proposition 1.4.18. Let φ be any LCL, Γ be a group with a finite generating set E

1. Cay(Γ, E) admits a Γ-FIID φ-decoration if and only if the shift graph S(Γ, E) admits

a measurable φ-decoration

2. Cay(Γ, E) admits a Γ-FIID approximate φ-decoration if and only if S(Γ, E) admits an

approximate φ-decoration
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Proof. We prove the proposition for vertex labellings. The proof for general labellings is

much the same.

For (1), suppose Φ is a measurable d-labelling of S(Γ, E) and x ∈ Free(Γ, E). Define

F (x)(γ) = Φ(γ−1 · x). (1.2)

Then,

F (δ · x)(γ) = Φ(γ−1δ · x)

= F (x)(δ−1γ)

= δ · F (x)(γ),

so F is a factor map. And if a factor map F is given, the same algebra shows we can define

a measurable labelling Φ via (1.2).

Since γ 7→ γ−1 · x is an isomorphism from Bn(e) to Bn(x), Φ meets φ at x if and only if

F (x) meets φ at e. So the pushforward measure of F is a Γ-FIID φ-decoration if and only

Φ is a measurable φ-decoration. Applying this argument to each decoration in a sequence

separately yields the approximate result, (2).

Something similar holds S̃(G): Aut(G)-FIID labellings of G are equivalent to measurable

labellings of S̃(G). First we need a more careful analysis of S̃(G). We restrict to the case

G = Cay(Γ, E) to ease notation (and because this is the main case we will be interested in.)

Proposition 1.4.19 ([CKT12, Lemma 7.9]). Let G = Cay(Γ, E). For any x ∈ Free(Γ, E),

the map γ 7→ (R⟨γ⟩) ·x is an isomorphism between G and the component of R ·x in S̃(Γ, E).

Sketch of proof. For any x ∈ Free, γ 7→ ⟨γ⟩ · x embeds G into S(Γ, E), so we need to show

the quotient map

π : S(Γ, E) −→ S̃(Γ, E)

x 7−→ R · x
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restricts to a graph isomorphism on components. Injectivity is clear as we are working in

Free(Γ, E).

Since any automorphism in R permutes the elements of E and their inverses, the relation

(1.1) above tells us that any element of r⟨γ⟩ · x ∈ R⟨γ⟩ · x is matched up with an element

R · x by an edge in S(Γ, E) corresponding to the group element r(γ−1)−1. This means the

quotient map preserves edges and non-edges between elements of the same component, and

applied inductively shows that the quotient map is surjective between components.

Note that it follows from the proof that S̃(G) preserves the quotient measure λG/R.

Proposition 1.4.20 ((c.f. the proof of [CKT12, theorem 7.7])). Let φ be any LCL, G be a

G be a vertex transitive graph. Then G admits an Aut(G)-FIID (approximate) φ-decoration

if and only if the graph S̃(G) admits a measurable (approximate) φ-decoration.

Proof. Again, we prove the proposition for vertex labellings.

Let Γ be a countable group that acts transitively on G, and abbreviate Aute(G) as R.

If Φ̃ is a measurable (approximate) φ-decoration of S̃(Γ, E), then Proposition 1.4.19 implies

that Φ(x) = Φ̃(R · x) is a measurable (approximate) labelling of S(Γ, E) which is invariant

under the action of R. As above, this gives rise to a Γ-factor map F . Since Aut(G) = ΓR,

it suffices to check that F is also an R-factor map. By the relation 1.1, for any γ ∈ Γ,

⟨γ⟩−1r = r′⟨r−1(γ)⟩−1 for some r′. Then

F (r · x)(γ) = Φ((⟨γ⟩−1r) · x)

= Φ(r′⟨r−1(γ)⟩−1 · x)

= Φ(⟨r−1(γ)⟩−1 · x)

= F (x)(r−1(γ))

= (r · F (x))(γ).
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If F is an Aut(G)-FIID φ-decoration, then as above F gives rise to an R-invariant mea-

surable decoration of S(Γ, E), Φ̃. Since Φ̃ is R-invariant Φ(R·x) = Φ̃(x) defines a measurable

φ-decoration of S̃(Γ, E). Again the approximate version follows from the same argument.

The last fact we need about these graphs is that they are expansive when Γ or G is

nonamenable.

Theorem 1.4.21. Let Γ be a nonamenable group and G be a nonamenable graph.

1. The p.m.p. graph S(Γ, E) (equipped with the measure λΓ) is expansive [LN11].

2. The p.m.p. graph S̃(G) (equipped with the quotient measure) is expansive [CKT12].

1.4.5 Weak containment and continuous model theory

We will often be interested in when a problem can be solved off of an arbitrarily small (though

not necessarily null) set. Weak containment and the model theory of measure algebras are

useful language for these approximate problems. Weak containment of actions is well-known

among descriptive set theorists and extends to p.m.p. graphs with only some minor technical

subtleties. We record some of the basic ideas here.

The main sticking points are that (1) without an action to give canonical names to edges,

it is not clear that any labelling of a graph can be coded by vertex labellings, and (2) it is

not clear how to define the ultraproduct of a general relation on a measure space. It turns

out that general labellings can always be coded by vertex labellings following the approach

of Hatami, Lovász, and Szegedy, so (1) is easily sidestepped [HLS14]. To fix (2) we define

ultraproducts only for marked graphs, i.e. graphs equipped with a sequence of generating

involutions, and we note that graph theoretic questions do not depend on the choice of

marking.

We will work in the simplified case of p.m.p. graphs where all components are vertex

transitive and vertex transitive, say to a graph G with root e. In particular, all of our LCLs
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will all be given by configurations supported on Bn(e) for some n.

Definition 1.4.22. For a probability space (X,µ), graph Borel graph G on X, and r, k ∈ N,

the set of (r, k)-local statistics of G is the set of measures on k-labellings of the rooted

graph Br(e) induced by µ and measurable labellings of G. In symbols, for f ∈ L(G, k), let

Pr(f) be the measure on L(Br(e), k) defined by

Pr(f)(A) = µ({x : f ↾ Br(x) ∈ A}).

Then the set of local statistics is

Qr,k(G) = {Pr(f) : f ∈ L(G, e) is measurable}.

We similarly define the (r, k)-local vertex statistics of G as

Qv
r,k(G) = {Pr(f) : f is a measurable vertex labelling}.

An action a : Γ ↷ X weakly contains an action b : Γ ↷ Y if for all r, k, Qv
r,k(Sch(b, E)) ⊆

Qv
r,k(Sch(a,E)) where the closure is taken in the weak topology on the space of measures.

Similarly, a p.m.p. graph G weakly contains a p.m.p. graph H if for all r, k, Qr,k(H) ⊆

Qr,k(G).

Weak containment was first defined for actions, and it is straightforward to check that

weak containment of actions implies weak containment of of their Schreier graphs using the

fact that edges in an action are indexed by generators of the group. But it turns out that

this extra group structure is unnecessary to code labellings as vertex labellings.

Lemma 1.4.23 ([HLS14, Section 2]). For all r, k ∈ N there are R,K so that, if Qv
R,K(H) ⊆

QV
R,K(F ) then Qr,k(H) ⊆ Qr,k(F )

Proof. Say H is d-regular. We want to show that the local statistics of vertex colorings

captures all of the local statistics. We will sketch the main idea for undirected edge colorings,

the general case is almost identical. Given an edge labelling in Br,k of H, say f , using a
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coloring result of Kechris–Solecki–Todorcevic we can find N large enough (depending only

on H) and an edge N -labelling of H g so that g(e) ̸= g(e′) when e, e′ are within distance 3

in the line graph. Then f̃(x) = {(f(e), g(e)) : e ∈ Br(x)} has the property that if e = {x, y}

then f̃(x) ∩ f̃(y) = {(f(e), g(e))}. So, we can recover f and g from f̃ and vice versa.

Note that if φ is an LCL with radius of definition r, then H has a φ-decoration if and

only there is a measure in Qr,k(H) supported on the configurations allowed by φ. And φ

has an approximate φ-decoration if and only if there is such a measure on Qr,k(H). Indeed,

ρφ(H) can be computed from Qr,k(H) for the appropriate r, k.

The Abért–Weiss theorem says that S(Γ, E) is minimal with respect to weak containment

among all Γ-Schreier graphs [AW11]. A theorem of Hatami, Lovász, and Szegedy says S̃(G)

is similarly minimal among all graphs which have all components isomorphic to G. (In fact

they prove a more general result for unimodular random graphs, but we only need this simple

case).

Theorem 1.4.24. [HLS14, Theorem 1.6] If H is a p.m.p. graph and every component of H

is isomorphic to G, then H weakly contains S̃(G).

Weak containment is intimately tied up with ultraproducts of actions (see, for instance

[CKT12]). We will use the language of model theory of metric structures to extend this to

p.m.p. graphs (see [BHU06] for proofs and background). In particular, we will define ultra-

products model theoretically via the measure algebra and note that they can be represented

by graphs on nonstandard measure spaces using the Löb measure construction.

Definition 1.4.25. For a p.m.p. graph H, a marking is a sequence ⟨fi : i ∈ N⟩ such that

G = {(x, fi(x)) : x ∈ X, x ̸= fi(x), i = 1, ..., n}. A marked graph is a p.m.p. graph

equipped with a marking.

If H is a bounded degree p.m.p. graph, then by standard coloring results, H has a marking

with finitely many functions. For instance, the Kechris–Solecki–Todorcevic [Pik21, Theorem

5.12] coloring theorem says that 2∆ + 1 is sufficient (where ∆ is a degree bound for G).

30



Definition 1.4.26. For a complete measure space (X,µ), the measure algebra of X,

M(X) is the following structure:

M(X) := (MALG(X), dµ, µ,∪,∩,¬)

where MALG(X) is the Boolean algebra of measurable (equivalently Borel, equivalently Gδ)

sets modulo the null sets, dµ(A,B) = µ(A△B), and ¬A = {x ∈ X : x ̸∈ A}.

We conflate a marked p.m.p. graph (H, g1, ..., gn) on vertex set X with the associated

metric structure is (M(X), g1, ..., gn), where gi : MALG(X) → MALG(X) is the set-wise

action of Gi:

gi(A) = {gi(x) : x ∈ A}.

For function symbols over X f1, ..., fn with codomain X and predicate symbols over X

r1, ..., rm with codomain [0, 1], a formula is a formal composition of infX , supx, f1, ..., fn, r1, ..., rm,

and operations on the interval so that the domain is Xn and the codomain is the interval.

For instance infA1 µ(A1 ∪ A2)/2 is a formula for measure algebras.

A formula is a sentence if it has no free variables and it is quantifier free if sup and inf

do not appear in it. For a formula φ and x1, ..., xn ∈ X, we write

X ⊨ φ(x1, ..., xn) ≤ ϵ

to mean that the function obtained by interpreting the function and predicate symbols as

indicated by X takes value at most ϵ at x1, ...xn.

We say structures equipped with the same function and relation symbols are elementary

equivalent and write X ≡ Y if X ⊨ φ ≤ ϵ⇔ Y ⊨ φ ≤ ϵ for every sentence φ. And we say that

X is an elementary substructure of Y and write X ≺ Y if X ⊆ Y and for any x1, ..., xn ∈ X

and formula φ

X ⊨ φ(x1, ..., xn) ≤ ϵ⇔ Y ⊨ φ(y1, ..., yn).

Given a sequence of metric structures Xi (all with the same function symbols) and an

nonprincipal ultrafilter U , the ultraproduct is the structure
∏
U Xi defined as follows. For
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x, y ∈
∏

iXi say f ∼U g if {i : d(x(i), y(i)) ≤ ϵ} ∈ U for all ϵ > 0. The ultraproduct has

domain
∏

iXi/ ∼U , and we interpret a function symbol f by f([x]) = [⟨fi(x(i)) : i ∈ ω⟩] and

predicate r by r(x) = y :⇔ {i : |ri(x(i)) − y| < ϵ} ∈ U for all ϵ > 0.

In the case that the Xi are all the same structure X, we write XU :=
∏
U Xi and this

structure an ultrapower.

The most important facts about the ultraproduct is  Loś’s theorem.

Theorem 1.4.27. For any sentence φ,
∏

i Xi ⊨ φ ≤ ϵ if and only {i : Xi ⊨ φ ≤ ϵ} ∈ U . In

particular, any ultrapower of X is always elementary equivalent to X

It will also be convenient in our context to know that the ultraproduct is realized by

p.m.p. functions on a (nonstandard) measure space, and that separable elementary sub-

structures of the ultrapower are represented by p.m.p. graphs on standard measure spaces.

Lemma 1.4.28. If (H, g1, ..., gn) is a marked p.m.p. graph and U is a non-principle ul-

trafilter then there is a (nonstandard) measure space X with p.m.p functions f1, ..., fn

so that (H, g1, ..., gn)U ∼= (M(X), f1, ..., fn). Further, if X is a separable structure and

X ≡ (H, g1, ..., gn), then X is isomorphic to the structure associated with some marked

p.m.p. graph.

Proof. Proposition Number in [CKT12] tells us that (M(Y ), g)U is realized by a p.m.p. func-

tion. Applying this separately to each gi gives the first statement. The second statement

similarly follows from from the results in [BHU06, Chapter 18].

Given a nonstandard space X and f1, ..., fn as in the above theorem, we can consider the

graph on X generated by f1, ..., fn. Abusing notation slightly, we refer to this graph as HU .

Now  Loś’s theorem can be reformulated for p.m.p. graphs as follows:

Lemma 1.4.29. For any p.m.p. graphH and nonprincipal ultrafilter U , Qr,k(H) = Qr,k(HU).
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Proof. By Proposition 1.4.23, it is enough to work with vertex labellings. We can code

vertex labellings by tuples in the measure algebra: for A = ⟨Ad : d ∈ D⟩ ∈ MALG(X)D,

gA(x) = d :⇔ x ∈ Ad ∖
⋃

d′d̸=dAd′ .

By  Loś’s theorem, it suffices to show that, for any probability measure p on L(Br(e), k)

there is some quantifier free φ so that H ⊨ φ(A) = |p− g̃A|TV :

|p− g̃A|TV = max{|p(f) − µ({x : (gA ↾ Bn(x)) ∼= f})| : f ∈ L(Bn(e), d)}

and {x : (gA ↾ Bn(x)) = f}) can be constructed from A using Boolean combinations and the

marking of H.

The last fact we will need is a version of the Lowenheim–Skolem theorem.

Theorem 1.4.30. For any structure X and x1, ..., xn ∈ X there is a separable elementary

substructure Y ≺ X so that x1, ..., xn ∈ Y.

As one a consequence, if there is a p.m.p. graph H with an approximate φ-decoration

for some LCL φ, then there is an elementary equivalent p.m.p. graph with a measurable

φ-decoration. This is because the ultrapower of any marking of H has a measurable φ-

decoration, and by Lowenheim–Skolem we can take some separable elementary equivalent

substructure of the ultrapower containing the partition corresponding to this φ-decoration.

1.4.6 Borel counterexamples: Baire category and determinacy

In the purely Borel setting, Baire category is by far the most common method for obtaining

counterexamples. Recall that Baire’s theorem says any countable intersection of dense Gδ

sets in a complete metric space is again dense and Gδ. This gives us notion of largeness (or

dually smallness) we call being comeager (or meager).

Definition 1.4.31. A set A in a complete metric space is comeager if it contains a dense

Gδ set. And A is Baire measurable if A△U is meager for some open set U .
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A function f : X → Y is Baire measurable if f−1(U) is Baire measurable for every

open set U ⊆ Y .

Every Borel set is Baire measurable and a theorem of Solovay (using an inaccessible

cardinal) and Shelah (in ZFC) says that, absent choice, it is consistent for every set to be

Baire measurable [She84].

Let us illustrate how Baire category is used with a simple example:

Proposition 1.4.32. There is an acyclic Borel graph with no Baire measurable 2-coloring.

Proof. Let R be an irrational rotation of S1, and consider the graph G on S1 given by

(x, y) ∈ G :⇔ x = R(y) or y = R(x).

Since R is irrational, G is acyclic. If f : S1 → {0, 1} is Baire measurable 2-coloring, then

f−1(i) is be nonmeager for some i. That is, for some meager M and open U , f is constant

on U ∖M .

Since R is irrational, every orbit under R2 is dense. This means R2n+1(U) ∩ U ̸= ∅ for

some n. Also R2n+1(M) is still meager. So R2n(U)∩U ∖ (M ∪R2n(M)) ̸= ∅. But this means

f(x) and f(R2n+1(x)) agree, so f is not a 2-coloring.

Corollary 1.4.33. It does not follow from ZF + DC that every acyclic graph is 2-colorable

We will see that for CSPs, every problem that has a Borel instance with no solution

comes from a Baire category argument.

Tools for producing Borel counterexamples which do not rely on measure or Baire cate-

gory are few and far between. The most widely applicable is Marks’s determinacy method.

Mark’s main lemma is below. The proof (which we omit) relies on Martin’s celebrated Borel

determinacy theorem, a deep result with provable set theoretic heft.
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Theorem 1.4.34. For any countably infinite groups Γ,∆ and Borel set A ⊆ Free(NΓ⋆∆),

either there is an equivariant embedding from Γ ↷ Free(NΓ) into Γ ↷ A or there is an

equivariant embedding from ∆ ↷ Free(N∆) into ∆ ↷ Free(NΓ⋆∆) ∖ A.

As an application, we can compute the Borel chromatic number of free groups.

Theorem 1.4.35. There is no Borel 2n coloring of S(Fn, E) where E is the usual generating

set.

Proof. We proceed by induction. For n = 1, Proposition 1.4.32 says that there is some Z

action with no Borel 2-coloring and Theorem 1.4.14 then says that S(Z) has no 2-coloring.

Suppose f : 2Fn+1 → 2(n+ 1) is a Borel proper coloring. Let A = {x : f(x) ∈ 2n}. By the

lemma, either 2Fn embeds into A or 2Z embeds into 2Fn \ A. In the former case, we get an

n-coloring of 2Fn and in the latter case we get a 2-coloring of 2Z, these are both impossible

by the induction hypothesis.

Note that this is optimal by Kechris–Solecki–Todorcevic [Pik21, Theorem 5.12].

1.4.7 Dichotomies, Gandy–Harrington forcing, and complexity

The search for dichotomy theorems is something of an industry in Borel combinatorics. The

G0 dichotomy of Kechris–Solecki–Todorcevic is a prototypical example.

Definition 1.4.36. Let ⟨σn : n ∈ ω⟩ be a sequence of binary strings so that |σn| = n and so

that any string has some σn as an extension. Define a graph G0 on 2ω by

(x, y) ∈ G0 :⇔ (∃i ∈ 2, z ∈ 2ω, n ∈ ω) x = σ⌢
n i

⌢z ∧ y = σ⌢
n (1 − i)⌢z

Theorem 1.4.37 ([KST99]). For any Borel graph G, either G has a countable Borel coloring

or there is a Borel homomorphism from G0 to G.

For a proof see [Mar19, Theorem 3.20]. Miller has shown that a great deal of classical

descriptive set theory can be deduced from this theorem. For instance, one can recover
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the Luzin–Novikov theorem and Silver’s theorem on Borel equivalence relations (i.e. the

continuum hypothesis for Borel quotients) from the G0 dichotomy.

Other dichotomies include the Harrington–Kechris–Louveau dichotomy characterizing

smooth equivalence relations [HKL90], Hjorth and Miller’s dichotomies on end selection

[HM09], and Solecki’s dichotomy characterizing Baire class 1 functions [Sol98]. These di-

chotomies typically have effective proofs via Gandy–Harrington forcing which give slightly

more information. For instance, the effective version of the G0 dichotomy is:

Theorem 1.4.38. For any parameter p, if G is a ∆1
1(p) graph, then either G has a ∆1

1(p)

countable coloring or there is a continuous homomorphism from G0 into G.

Corollary 1.4.39. If G is ∆1
1, then G has a Borel countable coloring if and only if G has a

∆1
1 countable coloring

Corollary 1.4.40. The set of Borel countably coloring graphs is Π1
1 in the codes.

Proof. Let C be the set of codes for graphs of Borel countably colorable graphs. The set of

codes for Borel graphs is Π1
1, and

c ∈ C :⇔ c codes a graph, and (∃f ∈ ∆1
1(c))(∀x ̸= y) f(x) ∈ ω ∧ f(x) ̸= f(y).

There are countably many ∆1
1(c) codes and there is a Π1

1 coding of ∆1
1 sets, so this is a

Π1
1 definition.

In general, this kind of effectivization or complexity result can be viewed as a weak

dichotomy theorem. Most of the effectivization and complexity consequences of the Gandy–

Harrington forcing method are packaged in the lemma below. Readers unfamiliar with the

technique can treat this lemma as a black box. We include a brief sketch of the argument

for readers who are familiar.

Definition 1.4.41. We say that a property Φ(A) of a set is an independence property

if there is some ∆1
1 property ϕ such that

Φ(A) ⇔ ¬(∃x, y) x ∈ Ak and ϕ(x1, ..., xn, y).
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A property Ψ(A) of sets is a closure property if there is a ∆1
1 property ψ so that Ψ(A)

if and only if

(∀x ∈ Ak)(∀y, z) ψ(x, y, z) → z ∈ A.

For a closure property Ψ and set A, the Ψ-closure of A is AΨ :=
⋃

m f
m(A), where

f(A) := A ∪ {z : (∃x ∈ Ak)(∃y)ψ(x, y, z)}.

Theorem 1.4.42. Let Φ be an independence property and Ψ be a closure property. Suppose

X ∈ ∆1
1 and X ⊆

⋃
i∈ω Bi, where each Bi is a Borel set so that (Φ ∧ Ψ)(Bi). Then there is

a ∆1
1 sequence of ∆1

1 sets ⟨Ai : i ∈ ω⟩ so that Φ(Ai) for all i and X ⊆
⋃

i∈ω Ai.

Proof sketch. Let Pn be Gandy–Harrington forcing on N n, i.e. the set of nonempty Σ1
1

subsets of N n. Suppose A ∈ P1 ⊩ ẋ ∈ Ḃ, where ẋ is a name for the generic real

and B is a Borel set so that Φ(B). Then, we must have that Φ(A) as well, otherwise

p := {(x, y) ∈ A2 : ϕ(x, y)} ∈ P2 and

p ⊩ ẋ, ẏ ∈ Ḃ ∧ ϕ(ẋ, ẏ)

contradicting the absoluteness of Φ(B). By a similar argument, we have that if A ⊩ ẋ ∈ Ḃ

and Ψ(B), then AΨ ⊩ ẋ ∈ Ḃ.

Now suppose A ⊩ ẋ ∈ Ḃ where (Φ ∧ Ψ)(B). Combining the above observations,

(Φ ∧ Ψ)(AΨ). By iteratively taking closures and using the reflection theorem [Mar19, Theo-

rem 2.27] we can find A ⊆ A′ ∈ ∆1
1 where (Φ ∧ Ψ)(A′).

Suppose toward contradiction that X is not covered by ∆1
1 sets satisfying (Φ ∧ Ψ), but

is covered by Borel sets with this property. Define

X ′ := X ∖
⋃

{A ∈ ∆1
1 : (Φ ∧ Ψ)(A)}.

Note that X ′ is nonempty and Σ1
1, so X ′ ⊩ ẋ ∈

⋃
i Ḃi, where each Ḃi is Borel and satisfies

(Φ∧Ψ). But then we can refine X ′ to find a condition A and index i with A ⊩ ẋ ∈ Ḃi. But

then A is contained a ∆1
1 set satisfying (Φ ∧ Ψ) and is disjoint from X ′.
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Lastly, we can convert from a covering to a sequence as follows. Being a covering by ∆1
1

sets satisfying (Φ ∧ Ψ) is a Π1
1 on Π1

1 property. The set of all such sets is a Π1
1 covering, so

by reflection, there is a ∆1
1 covering, which admits a ∆1

1 enumeration.

The last step in the proof where we use reflection to enumerate a cover is typical. It lets

us, for instance, construct a countable coloring of a graph given that the graph is covered

by independent ∆1
1 sets.

The proof above relies on the fact that if Φ is a closure or independence property,

A ⊩ ẋ ∈ Ḃ, and Φ(B), then there is a ∆1
1 superset of A which also satisfies Φ. The pa-

per [Tho21] gives more details, generalizations, and applications. As a quick application, we

can effectivize the Luzin–Novikov and Feldman–Moore theorem.

Theorem 1.4.43. If R is a ∆1
1 locally countable relation, then R =

⋃
i fi, where each fi is

a ∆1
1 partial function. Further if R is an equivalence relation, then each fi can be taken to

be an involution.

Proof. Being a partial function contained in R is an independence property:

f ⊆ X2 is a partial function in R :⇔ f ⊆ R ∧ (∀x, y, z)(x, y) ∈ f ∧ (x, z) ∈ f → y = z.

Being a partial involution is the conjunction of a closure and independence property:

f is a partial involution :⇔ f is a partial function, and (∀x, y)(x, y) ∈ f → (y, x) ∈ f.

By the classical Luzin–Novikov and Feldman–Moore theorems, Theorems 1.4.2 and 1.4.3,

if R is a locally countable ∆1
1 (equivalence) relation, then R is a union of countably many

partial injections (or involutions). Then by Theorem 1.4.42, R is a union of ∆1
1 partial

injections (or involutions). And if R is a union of partial involutions, then we can extend

each partial involution to a total involution by setting f(x) = x for x ̸∈ dom(f).
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Note that, under any reasonable interpretation of the phrase, a dichotomy theorem also

gives a nontrivial complexity upper bound of ∆1
2 for a Borel combinatorial problem (a so-

lution exists if and only if some canonical obstruction does not exist). So to rule out di-

chotomies (and effectivization etc.), it suffices to prove a complexity lower bound. The most

spectacular example of this is Todorcevic and Vidnyansky’s result on Borel 3-coloring.

Theorem 1.4.44 ([TV21]). The set of Borel 3-colorable locally finite graphs is Σ1
2-complete

in the codes.

In the chapter on CSPs, we will use some algebraic machinery to propagate this lower

bound to all NP-complete CSPs.

39



CHAPTER 2

Locally Checkable Labelling Problems

In this chapter we try to solve (or present obstructions to solving) various locally checkable

labelling problems (or LCLs). And, we try to fit our results into the picture of local com-

plexity outlined in the introduction. As discussed in the introductions, our results sharpen

the bounds for definable versions of the Lovász local lemma and answer some open questions

in measurable combinatorics.

2.1 Orientations

Our first family of LCLs amounts to the following: What is the minimum outdegree we need

to orient a given graph?

Definition 2.1.1. For G a graph on a set X, we say that an orientation o of G is a k-

orientation if supx∈X outo(x) ≤ k.

Equivalently, a k-orientation is an φk-decoration where φk is the set of oriented radius 1

graphs where the root has outdegree at most k.

The orientation number of G, o(G), is the least cardinal k so that G is k-orientable.

o(G) := min
{
k : there is a k-orientation of G

}
.

We get the standard descriptive variants. For X a standard Borel space, µ a Borel measure

on X, and G a graph of X:

oB(G) := min
{
k : there is a Borel k-orientation of G

}
.
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oµ(G) := min
{
k : there is a µ-measurable k-orientation of G

}
.

For example, o(G) = ⌈d/2⌉ whenever G is a d-regular finite graph, o(G) = 1 whenever

G is acyclic, an undirectable forest of lines (as in [KM04, Example 6.8]) is equivalent to a

2-regular Borel graph with oB(G) = 2, and Marks finds 3-regular graphs with oB(G) = 3 in

[Mar13].

This kind of orientation problem shows up when we want to recover functions which

generate a given graph. The Luzin-Novikov uniformization theorem says that if oB(G) ≤ ℵ0,

then it is equal to the number of functions f1, ..., fk so that

(x, y) ∈ G⇔ (∃i) y = fi(x) or x = fi(y).

This is closely related to the parameter kB studied by Csóka, Lippner, and Pikhurko [CLP16].

And, later, we will use orientations as a stepping stone to recovering group actions generating

regular trees.

Orientation numbers provide an interesting test case for adapting methods from finite

combinatorics. In the classical setting, o(G) is well understood in terms of partitions of G

into sidewalks.1

Proposition 2.1.2. For any graph G on any set X,

o(G) = min
{
|S| : S ⊆ P(G),

⋃
S = G, and (∀s ∈ S) s is a sidewalk

}
and if o(G) is finite,

o(G) = max
S⊆X finite

⌈∑
x∈S |Gx ∩ S|

2ρ(S)

⌉
where ρ(S) = |S| − #acyclic components of G ↾ S.

The first statement is elementary. For the second, observe that the sidewalks in a graph

are the independent sets of a matroid (usually called the bicircular matroid). The result

1A sidewalk is graph where each component has at most 1 cycle, i.e. where bicycles are not allowed. These
are sometimes called psuedoforests.
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then follows from compactness and the Edmonds covering theorem [SU13, Theorem 5.3.2].

Curiously, this characterization in terms of sidewalk covering fails in definable contexts (see

Theorem 2.1.19), but we can still recover a measurable version of the Edmonds formula:

Theorem 2.1.3 (See Corollary 2.1.7). If G is a p.m.p. graph with bounded degree, and k

is an integer with k > cost(G ↾ A) for µ(A) > 0, then oµ(G) ≤ k.

In many cases, this upper bound turns out to be optimal, and we also have a sharper

analysis for expansive graphs (see Theorem 2.1.10). Our proof of Theorem 2.1.3 is robust in

the sense that it gives a bound on oµ for µ quasi-invariant in terms of the essential supremum

of the Radon–Nikodym cocycle (see Theorem 2.1.7). As in Conley–Tamuz [CT20], this yields

a Borel result for graphs of subexponential growth.

These results are enough to compute the measurable orientation numbers of many nat-

urally arising graphs. In particular, we can find optimal FIID orientations for nonamenable

groups. We also compute Borel orientation number of some graphs, such as the Hadwiger–

Nelson unit distance graph.

2.1.1 Measurable constructions

For this section, G will be a locally countable Borel graph, the letter µ will always stand

for a G-quasi-invariant Borel probability measure on X, ρ(x, y) stands for the associated

Radon–Nikodym cocycle, and ρ := ess supx,y ρ(x, y). In particular µ is G-invariant if and

only if ρ = 1. We can express the handshake lemma in terms of orientations as follows:

Proposition 2.1.4. For any µ, orientation o,∫
x∈X

ino(x) dµ ≤ ρ

∫
x∈X

outo(x) dµ.

We use similar propositions throughout this section without comment. Readers unfa-

miliar with quasi-invariant measures can consult [KM04], or consider the p.m.p. case where

ρ = 1 to get a gist of the arguments.
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Definition 2.1.5. Let αµ(G) = sup{cost(G ↾ A) : A ⊆ X,µ(A) > 0}, where the cost of a

restriction is computed with respect to the normalized measure µ/µ(A). That is,

cost(G ↾ A) =
1

2µ(A)

∫
x∈A

|Gx ∩ A| dµ.

For example, if G is d-regular, αµ(G) = d
2

regardless of the measure µ. And, if G is a

finite graph equipped with counting measure, this is essentially the Edmonds formula for o.

Proposition 2.1.6. For any µ,

oµ(G) ≥
⌈

2αµ(G)

1 + ρ

⌉
.

In particular, if µ is G-invariant, oµ(G) ≥ ⌈αµ(G)⌉.

Proof. Since oµ(G ↾ A) ≤ oµ(G) when µ(A) > 0, it suffices to show

oµ(G) ≥ 2

1 + ρ
cost(G).

Suppose G has an orientation o with outdegree bounded by n. Then,∫
X

|Gx| dµ ≤
∫
X

outo(x) dµ+

∫
X

ino(x) dµ.

≤ (1 + ρ)

∫
X

outo(X) dµ

so

cost(G) =
1

2

∫
X

|Gx| dµ ≤ 1 + ρ

2

∫
X

outo(x) dµ ≤ 1 + ρ

2
n.

The next theorem says that, for bounded degree graphs with ρ small this lower bound is

close to sharp.

Theorem 2.1.7. If G has bounded degree, then for any k ∈ N, there is a Borel orientation

o such that, for any measure µ, if k > ρ2αµ(G), then

µ({x : outo(x) > k}) = 0.
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Proof. We will use an augmentation argument. We conflate an orientation with its charac-

teristic function. Let ∆ be a degree bound for G. Given an orientation o of G, Define

Oo := {x : outo(x) > k}, and Io := {x : outo(x) < k}.

So, if φk is the set of diameter-1 graphs oriented with outdegree bounded by k, Oo = E(φk, o).

So, by Lemma 1.4.11, it suffices to show that if o admits no r-augmentation and µ is as in the

theorem statement, then µ(Oo) ≤ cr for some 0 ≤ c < 1. One way to get an augmentation

is to find a path p = (x0, x1, ..., xn) which is an oriented path from Oo to Io, i.e. such that

1. (xi, xi+1) ∈ o for 1 ≤ i ≤ n, and

2. outo(x1) > k and outo(xn) < k.

We can augment p by flipping every edge along the p: o′(e) = 1 − o(e) for e an edge in p.

Then, the degree of vertices in p only changes for endpoints of the path, and these move

towards k.2

Fix µ and abbreviate α := αµ(G). We verify that if o has no augmenting chains of length

at most n, then µ(Oo) ≤
(
ρα
k

)n
. Recall

B+
n (A) := {y : there is an oriented path of length at most n from some x ∈ A to y}

and B+(A) := B+
1 (A). Notice that B+

n+m(A) = B+
n (B+

m(A)).

Claim: If every point in A ⊆ G has outdegree at least k, then

µ
(
B+(A)

)
≥ k

ρα
µ(A).

Using the facts that every edge coming out of A ends in B+(A) and that in(x) + out(x) =

2Technically, this is not exactly an r-augmentation as we may not satisfy φk on the nose anywhere new,
but Lemma 1.4.11 easily adapts.
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deg(x) for the graph G ↾ B+(A), we have

k µ(A) ≤
∫
x∈A

outo(x) dµ

≤ 1

2

(∫
x∈A

outo↾B+(A)(x) dµ+ ρ

∫
x∈B+(A)

ino↾B+(A)(x) dµ

)
≤ ρ

2

∫
x∈B+(A)

(
outo↾B+(A)(x) + ino↾B+(A)(x)

)
dµ

≤ ρ

2

∫
x∈B+(A)

∣∣Gx ∩B+(A)
∣∣ dµ

= ρ cost
(
G ↾ B+(A)

)
µ
(
B+(A)

)
≤ ρα µ

(
B+(A)

)
.

Now suppose that o admits no augmenting chains of length at most n. In this case, any

oriented path starting in Oo of length at most n must fail to reach Io. That is, for i ≤ n,

B+
i (Oo) satisfies the hypotheses of the claim. So,

1 ≥ µ
(
B+

n (Oo)
)
≥
(
k

ρα

)n

µ(Oo).

Since initial publication, if has been pointed out that the above argument follows a very

similar outline to the algorithm given by Ghaffari and Su in [GS17]. Their algorithm runs

in polylog rounds in the CONGEST model. Note that polylog time in the LOCAL model is

insufficient to draw any descriptive set theoretic conclusions. The CONGEST model tracks

not only the number messages sent, but the size of these messages. It is open if this model

is as intimately connected to descriptive combinatorics as the LOCAL model, but the above

theorem suggests that such connections are possible.

For p.m.p. graphs, we get the following.

Corollary 2.1.8. If G is p.m.p. with measure µ, then

oµ(G) ∈ [αµ(G), αµ(G) + 1].

In particular, if αµ(G) is not an integer, oµ(G) = ⌈αµ(G)⌉.
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It follows that any d-regular p.m.p. graph can be generated by ⌈(d+ 1)/2⌉ functions.

Similar results have been obtained by Greb́ık and Pikhurko [GP20, Theorem 1.7]. Using an

idea from Conley and Tamuz [CT20], we can get a Borel result for slow-growing graphs.

Corollary 2.1.9. If G has subexponential growth and is d-regular, then oB(G) ∈ [d
2
, d
2

+ 1].

Proof. In this case, for any vertex x of G, there is an atomic measure with ρ <
√

1 + d whose

support contains x. The Borel orientation given by Theorem 2.1.7 witnesses oµ(G) ≤ d
2

+ 1

for all of these atomic measures, so witnesses oB(G) ≤ d
2

+ 1. Similarly, Proposition 2.1.6

gives a lower bound.

We can also sharpen the analysis for expansive regular graphs. If G is expansive, then

edge boundaries in G are large. So cost(G ↾ A) is bounded away from αµ(G) when A has

measure less than 1/2. If G is regular, the problem is symmetric enough that we only need

to consider these small sets.

Theorem 2.1.10. If µ is G-invariant, and G is d-regular and expansive then

oµ(G) =

⌈
d

2

⌉
.

Proof. It is enough to consider the case with d even. We modify the proof of Theorem 2.1.7,

making use of the following symmetry. For any orientation o, let o−1 = {(x, y) : (y, x) ∈ o}.

That is, o−1 is o with every edge flipped. We have outo(x) = ino−1(x), B+
o (A) = B−o−1(A),

and

Io = {x : outo(x) < d/2} = {x : ino(x) > d/2} = Oo−1 .

Claim 1: There is c > 1 such that, for any orientation o, ifA ⊆ X satisfies 0 < µ (B+(A)) ≤ 1/2

and outo(x) ≥ d/2 for all x ∈ A, then

c µ(A) ≤ µ
(
B+(A)

)
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Let λ be the expansion constant of G. Then

d

2
µ(A) ≤

∫
x∈A

outo(x) dµ

≤ 1

2

∫
x∈B+(A)

(
deg(x) − |Gx ∖B+(A)|

)
dµ

≤ 1

2
(d− λ)µ

(
B+(A)

)
.

So, c = d
d−λ works.

Symmetrically, if µ (B+(A)) ≤ 1
2

and outo(A) ≤ d/2 for x ∈ A, then applying Claim 1 to

o−1 gives

c µ(A) ≤ µ
(
B−(A)

)
.

As in the proof of 2.1.7, we derive an exponential bound on min(µ(Oo), µ(Io)).

Claim 2: There is c > 1 such that, if o admits no augmenting chains shorter than length

2n, then min (µ(Io), µ(Oo)) < c−n.

In such an orientation, B+
n (Oo)∩B−n (Io) = ∅. So one of them must have measure bounded

by 1/2. Possibly replacing o with o−1, we can assume µ (B+
n (Oo)) ≤ 1/2. By claim 1,

1

2
≥ µ

(
B+

n (Oo)
)
≥ cn µ(Oo)

for some c > 1. Thus, µ(Oo) ≤ 1
2cn

Now the same augmentation argument as in Theorem 2.1.7 gives an orientation, o, of G

with either Oo or Io empty. In the former case, o is a (d/2)-orientation, in the latter case

o−1 is a (d/2)-orientation.

Note that the orientations produced by the above theorem are balanced.

Corollary 2.1.11. If G is d-regular with d even and µ is G-invariant, then any measurable

(d/2)-orientation of d has indegree (d/2) µ-a.e.

47



Proof. Otherwise, a = µ({x : outo(x) < d/2}) > 0, and

d/2 =
1

2

∫
x

deg(x) dµ =

∫
X

out(x) dµ ≤ (d/2)(1 − a) + (d/2 − 1)a < d/2

Greb́ık has show that every even-degree Borel graph admits an approximate balanced

orientation [Gre22].

2.1.2 Examples and applications

The most widely studied class of Borel graphs are the Schreier graphs associated to actions

of finitely generated groups. Recall that we are allowed to take inverses from a generating

set to generate a group, and we do not allow the identity to be an element of our generating

sets. So, for any free action a, Sch(a,E) is regular with degree |E ∪ E−1|. In particular, if

E contains no involutions, Sch(a,E) is 2|E|-regular. So, if a is a free p.m.p. action, then

oµ (Sch(a,E)) ≥ 1
2
|E ∪ E−1| by Proposition 2.1.6. Clearly, oB (Sch(a,E)) ≤ |E|. We then

have

Proposition 2.1.12. If E does not contain γ and γ−1 for any γ, and a is a p.m.p action of

G, then oµ (Sch(a,E)) = oB (Sch(a,E)) = |E|.

The situation is much more interesting for groups with 2-torsion. We equip NΓ with any

non-atomic product measure µ.

Proposition 2.1.13. Let Γ = C∗22 := ⟨a, b : a2 = b2 = 1⟩ and E = {a, b}. Then,

oµ (S(Γ, E)) = 2.

In particular, there are p.m.p. graphs with oµ(G) ̸= ⌈αµ(G)⌉.

Proof. Each component of S(Γ, E) is an infinite path. Suppose toward contradiction that o is

a measurable 1-orientation, so o assigns a direction to each component of S(Γ, E). Consider
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A = {x : (x, ax) ∈ o}. The group element ab acts ergodically and A is invariant under this

action. Thus almost every point is in A or almost no point is in A. In either case, some edge

must be missed by o, which is a contradiction.

Generalizing this construction, Bencs, Hrušková, and Tóth have found 2d-regular graphs

with no measurable d-orientation, showing that for general graphs Theorem 2.1.7 is optimal

[BsT21]. And more recently, Kun has given acyclic examples.

Theorem 2.1.14 (ess [Kun22]). For any d, there is a 2d-regular acyclic p.m.p. graph with

no balanced orientation.

Proof. Kun constructs, for every d, a d-regular graph with no nonzero bounded circulation,

and of course a balanced orientation gives a circulation by sending 1 unit along every edge

in the direction of the orientation.

Shift graphs of nonamenable groups are expansive (see e.g. [LN11, Section 3]). So by

Theorem 2.1.10, oµ (S(Γ, E)) = ⌈n
2
⌉ when Γ = C∗n2 with standard generating set E. Using a

determinacy argument, we can show that these graphs have strictly larger Borel orientation

numbers.

Theorem 2.1.15. For Γ = C∗n2 = ⟨a1, ..., an : a2i = 1⟩ and E = {a1, ..., an},

oB (S(Γ, E)) = n

Proof. It suffices to consider the case when n is even. We proceed by induction. The base

case is Proposition 2.1.13.

For the induction step, we use Marks’s determinacy argument, Theorem 1.4.34. Suppose

the shift graph for C
∗(n−2)
2 does not admit an (n − 3)-orientation, and suppose o is an

orientation of S(Γ, E) with outo(x) < n for all x. Set H = ⟨a1, a2⟩ and K = ⟨a3, ..., an⟩, and

let

A = {x : (x, a1x) ̸∈ o or (x, a2x) ̸∈ o}.
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By the lemma, there is an equivariant embedding either of sS(H, {a1, a2}) into A or of

S(K,E ∖ {a1, a2}) into X ∖ A.

In the first case, if f is the embedding, let õ be the pullback orientation on S(H,E), i.e.

for i = 1, 2

(x, aix) ∈ õ⇔ (f(x), aif(x)) ∈ o.

By the definition of A, õ is a 1-orientation of S(H,E), contradicting the base case.

In the second case, again suppose f is the embedding and let õ be the pullback orientation

of S(Γ, E ∖ {a1, a2}). Then for all x,

(f(x), a1f(x)), (f(x), a2f(x)) ∈ o

so

|õx| =
∣∣{ai : (f(x), aif(x)) ∈ o, i ̸= 1, 2}

∣∣ = |of(x)| − 2 < n− 2.

But then we have an n−3 orientation of S(K,E∖{a1, a2}), which contradicts the induction

hypothesis.

As pointed out by Bernshteyn, this implies that the locality bounds on the Borel Lovász

local lemma, Theorem 1.1.8 are sharp. Note that for the instance of the local lemma defining

sinkless orientations of the d-regular tree, vdeg(G,φ) = 2, ord(G,φ) = d, and p(G,φ) = 1/2d

(see Definition 1.1.5). So, Theorem 1.1.8 cannot be improved to p · vdegord ≤ 1. Indeed this

shows many known definable versions of the local lemma are sharp. Interestingly, lower

bounds on distributed algorithms for the Lovász local lemma were first established using

sinkless orientations. See [Ber21] for further discussion.

Another nice class of graphs generalizes the Hadwiger–Nelson graph.

Definition 2.1.16. For a Polish group G and E ⊆ G Borel, the associated generalized

distance graph is

D(G,E) :=
{
{x, y} : xy−1 ∈ E

}
.
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When E is countable, this is just the Schreier graph of ⟨E⟩ acting on G by translation.

It turns out, when E is uncountable, oB (D(G,E)) = |R|.

Theorem 2.1.17. For any Polish group G and E ⊆ G Borel, oB (D(G,E)) ≤ ℵ0 if and only

if E is countable.

Proof. If E is countable, then D(G,E) is locally countable, and oB(D(G,E)) ≤ ℵ0. So,

suppose E is uncountable and fix a sequence of Borel functions ⟨fi :∈ N⟩ with fi ⊆ G for

each i. We will show that
⋃

i fi is not an orientation of G. We may assume E is symmetric,

and by the perfect set theorem we may replace E with one of its uncountable closed perfect

subsets.

Equipped with the subspace topology, D(G,E) ⊆ G2 is homeomorphic to G×E. There

are two natural identifications; a point (x, e) ∈ G × E can map to either (x, ex) or (ex, x).

We can translate between the two via a self-homeomorphism of G× E, (x, e) 7→ (ex, e−1).

Define f̃i : G → E by f̃i(g) = fi(g)g−1. Then f̃i is Borel and so has a meager graph in

G× E. That is,

{(x, e) ∈ G× E : (x, e) ̸= (x, f̃i(x))} = {(x, e) : (x, ex) ̸= (x, fi(x))}

is comeager. Symmetrically, {(x, e) : (x, ex) ̸= (fi(ex), ex)} = {(x, e) : (ex, e−1) ̸∈ f̃i} is

comeager. So, for a comeager set of (x, e), then (x, ex), (ex, x) ̸∈
⋃

i fi.

For G = Rn and E = Sn−1, we get the following.

Corollary 2.1.18. The unit distance graph in Rn (n ≥ 2) does not have a countable Borel

orientation.

This differs from the classical case. In ZFC, the unit distance graph on Rn always admits

a countable orientation, independent of the size of the continuum. See, for example, [AZ18,

Theorem 6.2].
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Note that the orientation and sidewalk covering numbers can be arbitrarily far apart in

the Borel setting.

Theorem 2.1.19. For every n ∈ N∪{ℵ0, |R|}, there is an acyclic Borel graph (in particular

a sidewalk) with oB(G) = n. Further, if n ≤ ℵ0, G can be taken to be locally countable.

Proof. For n ≤ ℵ0, Fn, the free group with n generators, is torsion free. So if E is the

usual set of generators, oB(S(Fn, E)) = n. And the Schreier graphs of Fn actions are locally

countable.

For n = |R|, label the standard generators for F2n as En = {aσ : σ ∈ 2n} and let

gn : F2n → F2n−1 be the homomorphism determined by gn(aσ) = aσ↾(n−1). Define

Γ = lim
←
F2n = {f ∈

∏
n

F2n : (∀n) gn(f(n)) = f(n− 1)}

E = {f ∈ Γ : (∀i) f(i) ∈ Ei}.

Then E is closed in Γ and uncountable, so by Theorem 2.1.17, oB(G(Γ, E)) > ℵ0. Also,

since every finite subset of E freely generates a free group, D(Γ, E) is acyclic.

We end this section by placing some orientation problems on the diagram in Figure 1.1.1.

Proposition 2.1.20. The LCL BO is in the class FIID, but not MEASURE. The LCL SO

is in the class MEASURE, but not BOREL.

Proof. Since S(Tn) is expansive when n > 2, trees have FIID balanced orientations by

Theorem 2.1.10. The fact that BO ̸∈ MEASURE is Theorem 2.1.14.

For sinkless orientations, Theorem 2.1.7 implies SO can be solved measurably, and The-

orem 2.1.15 says SO is not in the class Borel.

Note this proposition leaves it open if φso is in the class RLOCAL(O(log log(n))). This

is indeed the case, see [BCG21b].
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2.1.3 Complexity

We end this section with some metamathematical considerations. First we prove effectiviza-

tion for 1- and ℵ0-orientations.

Theorem 2.1.21. If G is ∆1
1, and oB(G) ≤ ℵ0, then o∆1

1
(G) ≤ ℵ0.

Proof. Note that G ⊆ N 2 admits a countable orientation if and only if G ⊆
⋃

i(fi ∪ f
−1
i ),

where each fi is a Borel partial function. A set f ⊆ N 2 is a partial function when

(∀(x, y), (a, b) ∈ f) ¬(x = a and y ̸= b).

This is an independence property, so by Theorem 1.4.42 if G is ∆1
1 and admits a cover Borel

by partial functions, G admits a cover by ∆1
1 partial functions.

Corollary 2.1.22. The set of ℵ0-orientable Borel graphs is Π1
1-complete in the codes.

See Appendix A for some details on coding. This argument does not yield a dichotomy

theorem, but one is given in [Tho21]. We can also prove effectivization for 1-orientations,

refining Hjorth and Miller’s analysis of end selection [HM09].

Theorem 2.1.23. If G is ∆1
1 and admits a Borel 1-orientation, then G admits a ∆1

1 1-

orientation.

Proof. First note that G must be a sidewalk. Since cycles are unique when they exist in

the components of G, the acyclic part of G is ∆1
1. And, G admits a ∆1

1 selector on the

components with a cycle, so G admits a 1-orientation if and only if the acyclic part of G

admits a 1-orientation. So, we may restrict our attention to acyclic graphs.

For edges e = (x, y) and e′ = (a, b) in G, say that e points at e′, or ePe′, if x, a are in the

same component and y is on the unique simple path from x to a. Say e, e′ are inconsistent,

or eIe′, if x, a are in the same component, e does not point at e′, and e′ does not point at
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e. And, say that e is below e′, or e ≺ e′ if ePe′ but not e′Pe. Note that these are all ∆1
1

relations, .

We show that G admits a (Borel or ∆1
1) 1-orientation if and only if G ⊆

⋃
i(Ai ∪ A−1i )

where each Ai is I-independent and closed downwards under ≺, and does not contain (x, y)

and (y, x) for any x, y. Then Theorem 1.4.42 gives the result.

Suppose o is a 1-orientation and eIe′. Say the simple path from x to a contains n + 1

vertices (including x and a). If both e and e′ are in o, then there are at most n − 1 edges

on this path oriented out of vertices on the path, but there are n edges total. so o must be

I-independent. If e ≺ e′ and e′ ∈ o, then the reverse of e, (y, x) is inconsistent with e′, so

e ∈ o. Thus, o is closed downwards. And, since o is an orientation, (x, y) and (y, x) are not

both in o for any x, y.

Conversely, suppose that G ⊆
⋃

iAi with each Ai closed downwards and independent

and does not contain any edge and its reverse. Define Bi inductively as follows:

• B0 = A0

• Bi+1 = Bi ∪ (Ai+1 ∖B−1i ).

Then, the Bi are increasing and independent, and their union contains exactly one of (x, y)

or (y, x) for every edge (x, y). By independence, we cannot have (x, y) and (x, y′) ∈ Bi for

any i unless y = y′, so
⋃

iBi is a 1-orientation of G.

Hyperfinite Borel equivalence relation are equivalent to countable Borel relations admit-

ting a 1-orientable graphing. (By a graphing of an equivalence relation E we mean a graph

G with EG = E.) Determining the complexity of such relations is a longstanding open

problem. That problem is still out of reach, but we can settle the complexity of general

relations admitting a 1-orientable graphing. The following proposition says it is enough to

give a lower bound on the complexity of equivalence relations admitting a Borel selector.
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Proposition 2.1.24. For E smooth (but not necessarily countable), the following are equiv-

alent:

1. E admits a 1-orientable graphing

2. E is treeable

3. E admits a Borel selector

Proof. (2) and (3) are equivalent by a result of Hjorth [Hjo08]. To see that (3) implies (1),

note that if f is a Borel selector for E, then f generates a graphing of E.

Now we show (1) implies (2). Suppose that oB(E) ≤ 1 and fix an graphing G witnessing

this. SinceG is a sidewalk, each component is either a tree or contains a unique cycle. Tossing

out the least edge in each cycle (relative to some Borel linear ordering of the underlying space)

yields a treeing of E.

For X Polish, let F (X) be the Effros Borel space of closed subsets of X.

Theorem 2.1.25. The set

Sel := {E ∈ F (N 2) : E is an equivalence relation with a Borel selector}

is Σ1
2 complete.

Proof. We prove this in two steps. Define

Uni := {R ∈ F (N 2) : E admits a Borel uniformization}.

We will show

FBU ≤B Uni ≤B Sel

where FBU is the set of relations with full domain admitting Borel uniformization. Then,

by a theorem of Adams and Kechris [AK00], Sel is Σ1
2 complete.
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FBU ≤B Uni: We want to take a relation R and extend it to a relation R′ with full domain

in such a way that the R′ cannot be uniformized over all the points added to the domain.

If R has cofinite domain this cannot be done, so we will replace R by N ×R, and then add

noise to extend it to a full domain relation.

Let N ⊆ N 3 be such that N(x,y) ⊆ N ∖ ∆1
1(x, y). Note that if f is a ∆1

1(p) function

whose graph is contained in N , then dom(f) ∩ {p} × N = ∅.

Given R ⊆ N 2 closed, let R′ = (N ×R) ⊔ N . If R admits full Borel uniformization,

say via f , then so does R′, via f ′(x, y) = f(y). If R′ admits Borel uniformization, say via

f ∈ ∆1
1(p), then for any x,

f(p, x) ∈ R′(p,x) ∩ ∆1
1(p, x) ⊆ R′(p,x) ∖N(p,x) = Rx.

So R admits full Borel uniformization via f ′(x) = f(p, x).

Identifying N 2 with N via a Borel isomorphism as usual, the map R 7→ R′ is a reduction

from FBU to Uni.

Uni ≤B Sel: If R ⊆ N 2 is closed, define

(x, y)ER(x′, y′) :⇔ x = x′ ∧ [(x, y), (x, y′) ∈ R ∨ y = y′] .

Then, ER is a closed equivalence relation.

If R admits Borel uniformization, say via f , then ER has a Borel selector g defined by

g(x, y) =

 (x, f(x)) (x, y) ∈ R

(x, y) else

If ER admits a selector, g, then R admits uniformization f via f(x) = y :⇔ g(x, y) =

(x, y) ∧ (x, y) ∈ R.

Again, N 4 and N 2 can be identified, and the map R 7→ ER is Borel. So we have a

reduction as claimed.
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Note that, by Harrington–Kechris–Louveau [HKL90], the set of smooth equivalence re-

lations is Π1
1 in the codes. So the preceding theorem gives a strong reason why admitting a

selector is not the same as being smooth.

2.2 Cayley diagrams

The second class of LCLs we’ll study are Cayley diagrams, a kind of labelling problem that

encodes a free action of a given finitely generated group. In the measurable setting, Cayley

diagrams turn out to be intimately tied up with the problem of lifting Γ-factor maps to

Aut(G)-factor maps when G = Cay(Γ, E). And special cases of Cayley diagrams include

edge colorings and Schreier decorations for trees as in [Tot21].

To start with, let’s define Cayley diagrams:

Definition 2.2.1. For (Γ, E) a marked group with E finite, let φΓ
n be the set of edge labellings

of Bn(e) in Cay(Γ, E) by elements of e satisfying the following:

(i) for every vertex x and every γ ∈ E there is at most one neighbour with d(x, y) = γ

(ii) for every vertex x of degree |E| and every γ ∈ E, there is some neighbour with

d(x, y) = γ.

(iii) for any path (x0, ..., xn) in H, d(xn−1, xn)...d(x0, x1) = e if and only if x0 = xn.

(Note that φΓ
n depends on E, so this is a slight abuse of notation).

A Cayley diagram for a is an edge labelling which is a φΓ
n-decoration for all n. A

measurable graph H admits an approximate Cayley diagram if ρΓn(H) = 0 for all n.

For example, a Cayley diagram for C∗n2 with the usual generators is an n-coloring of an

n-regular acyclic graph. And, a Cayley diagram for Z with the usual generator is a balanced

orientation of the 2-regular acyclic graph.
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Note that a graph H admits a (not necessarily measurable) Cayley diagram if and only

if every component of H is isomorphic to Cay(Γ, E). And, any Schreier graph of a free Γ

action admits a Cayley diagram given by d(x, γ · x) = γ. (In fact, every Cayley diagram

comes from such an action, see Proposition 2.2.4). In particular, Cay(Γ, E) admits a Γ-FIID

Cayley diagram for any marked group (Γ, E). The question of which Cayley graphs admit

an Aut(G)-FIID Cayley diagram is much more complicated.

Our main theorems about Cayley diagrams are in the measurable and FIID settings. We

show that lifting a Γ-FIID Cayley diagram to an Aut(G)-FIID Cayley diagram is essentially

equivalent to lifting any FIID solution to a locally checkable labelling problem3. And, we

show that lifting approximate Cayley diagrams is equivalent to lifting approximate solutions

to LCLs (see Theorems 2.2.7 and 2.2.8).

We also establish some general results on when this is possible. Amenable groups and

trees always admit Aut(G)-FIID approximate Cayley diagrams, and ergodicity considera-

tions can rule out FIID Cayley diagrams for many groups. These general results let us

transport some deep work on Aut(Tn)-FIID combinatorics to the study of free groups. In

particular, we get an asymptotic calculation of the measurable independence number of the

shift graph of Fn, giving a partial answer to [KM04, Problem 5.57] (See Prop 2.2.21).

And we have a number of examples hinting at a rich structure for these Cayley diagram

problems. In particular we can build an example of a nilpotent group with an Aut(G)-FIID

Cayley diagram, and we show that any such group must have torsion. This construction

relies on Morris, Morris, and Verret’s classification of automorphisms for nilpotent Cayley

graphs. We show that (for a natural choice of generators) the lamplighter group does not

admit an Aut(G)-FIID Cayley diagram, but that a finite extension of it does. And lastly,

we build a nonamenable group without even an approximate Aut(G)-FIID Cayley diagram.

3More exactly, G admits an Aut(G)-FIID Cayley diagram if and only if every Γ-FIID solution to a
countable sequence of LCLs lifts to an Aut(G)-FIID solution. This is equivalent to lifting solutions to single
problems if, for instance, Γ is finitely presented
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Our construction is sharp enough to answer a question of Weilacher about coloring graphs

with isomorphic Cayley graphs (See Theorem 2.2.24).

Returning the Borel setting, we compute the complexity of the set of Schreier graphs of

free Borel action of Zn. These graphs in fact admit a finite basis theorem generalizing Miller’s

work on directable forests of lines, though the size of the basis we obtain is super-exponential

in n.

Before we proceed, we will want a few conventions and pieces of notation in place.

Throughout, (Γ, E) will be a marked group with E finite, and G will be Cay(Γ, E). Re-

call that the group Γ acts naturally by automorphisms on G by

γ · x = xγ−1.

To belabour the point, our Cayley graphs are defined as the Schreier graph of left multipli-

cation, so to get graph automorphisms we have our group act by right multiplication.

Definition 2.2.2. We write ⟨γ⟩ for the image of γ under the natural embedding of Γ into

Aut(G) described above. We write Aute(G) for the group of “rotations” in Aut(G):

Aute(G) = {r ∈ Aut(G) : r(e) = e}.

We will only write ⟨γ⟩ when we want to make the distinction between group elements

and automorphisms clear. And we often abbreviate Aute(G) as R.

Note that every element of Aut(G) factorizes uniquely as ⟨γ⟩r or r′⟨γ′⟩ where γ, γ′ ∈ Γ

and r, r′ ∈ Aute(G). These two factorizations are related as follows:

r⟨γ⟩ = ⟨r(γ−1)⟩−1(⟨r(γ−1)⟩r⟨γ⟩) (1.1)

where (⟨r−1(γ−1)⟩r⟨γ⟩) ∈ Aute(G). We refer to the identity (1.1) as the commutation

relation.

Many of our questions trivialize when Aute(G) is just the identity. Indeed, in this case,

there is a unique Cayley diagram on G, so the action of Aut(G) on the space of Cayley
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Figure 2.1: A GRR for D∞ = ⟨r, s : rsrs = s2 = e⟩ induced by {r, s, sr, r2s}

diagrams is already (trivially) FIID (see Proposition 2.2.4). In this case G is a so-called

graphic regular representation, or GRR, of Γ. A GRR for the infinite dihedral group is

shown in Figure 2.1. We will often state theorems only for the nontrivial case where (Γ, E)

does not induce a GRR.

2.2.1 Measurable constructions

Throughout this section, we rely on a correspondence between actions, rotations, and Cayley

diagrams.

Definition 2.2.3. Let CD be the space of Cayley diagrams on Cay(Γ, E)

Proposition 2.2.4. For any d ∈ CD there is a unique rotation rd ∈ Aute(G) and action

·d : Γ ↷ G so that for all x ∈ Γ, γ ∈ E the following diagram commutes:

x
rd //

γ

��

rd(x)

d(x,γx)
��

γx
rd // γ ·d rd(x)

meaning

rd(γx) = d(x, γx)rd(x) = γ ·d rd(x).

Similarly, any rotation or action gives a unique way to fill out this diagram.

Proof. Uniqueness is clear since rd(e) = e and the definition tells us how to compute rd(γ)

for γ = γn...γ2γ1 by filling out the diagram

e→ γ1 → γ2γ1 → ...→ γ.
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For existence, it suffices to note that item (iii) in the definition of Cayley diagram tells us

that any two expressions for γ in terms of generators gives the same value of rd(γ) in this

computation.

It will be useful to know how this translation interactions with automorphisms.

Proposition 2.2.5. Let Aute(G) act on CD by shifting indices. For r ∈ Aute(G), γ ∈ Γ

and d ∈ CD, we have

rr·d = rd ◦ r−1, and r⟨γ⟩·d = ⟨rd(γ)⟩rd⟨γ⟩−1

Proof. Let h = ⟨rd(γ)⟩rd⟨γ⟩−1. We have that, for any x ∈ Γ, δ ∈ E, (r · d)(x, δx) =

d(r−1(x), r−1(δx)) and (⟨γ⟩ · d)(x, δγ) = d(⟨γ⟩−1(x), ⟨γ⟩−1(δx)) = d(xγ, δxγ). And, h(x) =

rd(xγ)rd(γ)−1. So the following diagrams commute:

x
rdr

−1
//

δ

��

(rdr
−1)(x)

(r·d)(x,δx)
��

x
h //

δ

��

rd(xγ)rd(γ)−1

(⟨γ⟩·d)(x,δx)
��

δx
rdr

−1
// (rdr

−1)(x) δx h // rd(δxγ)rd(γ)−1

The proposition then follows by the uniqueness of rd.

Corollary 2.2.6. The action of Aute(G) on CD is free and transitive. In particular, CD

admits a unique Aut(G)-invariant measure.

Proof. From the computation of rr·d we can see that, for any d0 ∈ CD, the map r 7→ r · d0

has inverse d 7→ r−1d rd0 . Since the group R := Aute(G) is compact it has a unique 2-sided

invariant Haar measure, h. And since the diagram d0(x, γx) = γ is invariant under the action

of Γ, we get an invariant measure

µ(A) =

∫
r∈R

1r·de∈A dh.

Conversely, any invariant measure µ on CD gives an invariant measure h̃ on R by

h̃(A) = µ(A · d0)

which must agree with h.
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Note that this last corollary means that checking if there is an Aut(G)-FIID Cayley

diagram amounts to checking if this unique measure µ is Aut(G)-FIID. This puts the question

squarely in the realm of Ornstein theory, i.e. the business of determining which measures

are FIID.

Our first theorem on Cayley diagrams is the lifting theorem for exact solutions to LCLs.

This is essentially folklore (see the comments after [Lyo16, Question 2.4]), but we record

a proof here for completeness. The basic idea is to once again average over the action of

Aute(G), this time using our Cayley diagram to choose a random rotation and resample our

variables.

Theorem 2.2.7. Suppose that G admits an Aut(G)-FIID Cayley diagram. Then for any

LCL φ, G admits an Aut(G)-FIID φ-decoration if and only if G admits a Γ-f.i.i.d φ-

decoration.

Proof. For clarity we will distinguish between γ ∈ Γ and its canonical image in Aut(G), ⟨γ⟩.

Let F be an Aut(G)-factor map from [0, 1]Γ to CD, and let Φ be a Γ-factor map giving

a φ-decoration. We can associate to x ∈ [0, 1]Γ an element of Aute(G) given by hx := rF (x),

where rd is as in Proposition 2.2.4. From the previous proposition hr·x = hxr
−1 and hγ·x =

⟨rd(γ)⟩rd⟨γ⟩−1

We will build a factor map out of ([0, 1]2)Γ (this is of course isomorphic to [0, 1]Γ). Set

Φ̃(x, y) = h−1x · Φ(hx · y).

With probability 1, Φ̃ yields a φ-decoration. We just need to show that Φ̃ is Aut(G)-

equivariant. We check against automorphisms ⟨γ⟩ and r ∈ Aute(G) separately. If γ ∈ Γ,

Φ̃(⟨γ⟩ · (x, y)) = h−1⟨γ⟩·x · Φ(h⟨γ⟩·x⟨γ⟩ · y)

=
(
⟨hx(γ)⟩hx⟨γ⟩−1

)−1 · Φ(⟨hx(γ)⟩hx⟨γ⟩−1⟨γ⟩ · y)

= ⟨γ⟩h−1x · Φ(hx · y)

= ⟨γ⟩ · Φ̃(x, y)
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and

h−1r·x · Φ(hr·xr · y) = rh−1x · Φ(hx · y).

To get an approximate version of the theorem, we will use an ultraproduct argument.

Theorem 2.2.8. Suppose that G admits an approximate Aut(G)-FIID Cayley diagram.

Then for any φ, G admits an approximate Aut(G)-FIID φ-decoration if and only if G admits

an approximate Γ-FIID φ-decoration. In fact, ρφ(S̃(G)) = ρφ(Γ)).

Proof. Suppose G admits an approximate Aut(G)-FIID Cayley diagram. Let U be a non-

principal ultrafilter and let f1, ..., fn be a marking of S̃(G). By  Loś’s theorem for weak

containment (Lemma 1.4.29), the ultrapower S := (S̃(G), f1, ..., fn)U has a measurable Cay-

ley diagram. By the Lowenheim–Skolem theorem (Theorem 1.4.30), there is a separable

elementary substructure of S′ < S containing (the partition coding) this Cayley diagram.

Since S′ is separable and admits a Cayley diagram, S′ is isomorphic to the metric structure

associated to a p.m.p. action of Γ on a standard probability space. By Abert–Weiss (or

Hatami–Lovász–Szegedi), 1.4.24, S′ weakly contains S̃(G). So ρφ(S′) ≥ ρφ(S̃(Γ) for any

φ. But S′ and S̃(G) are elementary equivalent, so ρφ(S̃(G)) ≥ ρφ(S(Γ, E)). The reverse

inequality is trivial.

2.2.2 Examples and applications

Given the results of the previous subsection, the obvious question is: which Cayley graphs

admit an Aut(G)-FIID Cayley diagram? In this section we lay out some general theorems

and several examples. We start with amenable groups.

Amenable groups always admit Aut(G)-FIID approximate Cayley diagrams. In fact, if

Γ is amenable we can show S̃(Γ, E) is hyperfinite, all but settling the approximate theory of

amenable groups.
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Theorem 2.2.9. If Γ is amenable and G = Cay(Γ, E) for some finite generating set E, then

for any LCL φ the following are equivalent

1. G admits a φ-decoration

2. G admits a Γ-FIID approximate φ-decoration

3. G admits an Aut(G)-FIID approximate φ-decoration.

Proof. The implication from (3) to (2) is clear. To get (1) from (2) note that if (2) holds,

then for any n there are decorations meeting φ at every point in Bn(e). This implies (1) by

compactness.

To get (3) from (1) we will show that S̃(Γ, E) is hyperfinite, i.e. that we have increasing

finite equivalence relations En whose union is the connectedness relation for S̃(Γ, E). That

done we have ⋃
n

{x : Bi(x) ⊆ [x]En} = S̃(Γ, E),

so there is some n with Bi(x) contained in the En-class of x for all but ϵ-many x. By (1) and

Luzin–Novikov we can choose a φ-decoration on each of the En-classes to get a φ-decoration

off a set of measure ϵ.

To get hyperfiniteness we will show that the connectedness relation of S̃(Γ, E) is amenable

(as in [KM04, Chapter 9]). Since Γ is amenable, we have amenability measures νx for the

action of Γ on Free(Γ, E). Abbreviate Aute(G) as R. Define

νR·x =

∫
r∈R

νr·x dh(r)

where h is the Haar measure on R.

This is a well defined measurable assignment of finitely additive measures. We check that

this is invariant. Note that if R · x is connected to R · y, then by Proposition 1.4.19 we can

take y to be γ · x for some γ ∈ Γ. We have

r⟨γ⟩ · x = ⟨r(γ−1)⟩−1⟨r(γ−1)⟩r⟨γ⟩ · x
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and ⟨r(γ−1)⟩rγ ∈ R. The map r 7→ ⟨r(γ−1)⟩r⟨γ⟩ is a measure preserving bijection with in-

verse r′ 7→ ⟨r′(γ)⟩r′⟨γ−1⟩. So, if we letRδ = {r ∈ R : r(γ−1) = δ}, thenR =
⊔

δ Rδ =
⊔

δ δRδγ.

So, using the Γ-invariance of ν and unimodularity of R we have∫
R

νr⟨γ⟩·xdh =
∑
δ

∫
Rδ

νδ−1δrγ·x dh

=
∑
δ

∫
Rδ

νδrγ dh

=
∑
δ

∫
δRδγ

νr·x d(δ · h · γ)

=

∫
R

νr·x dh.

Finding exact diagrams is trickier. A theorem of Ornstein and Weiss implies that it

suffices to understand when the unique Aut(G)-invariant measure on CD is Γ-FIID [OW87,

Theorem 10]. The following proposition says we can instead look for FIID measures on

Aute(G). The extra group structure here will make our analysis easier.

Proposition 2.2.10. Let h be Haar measure on Aute(G) and let Γ act on Aute(G) by

γ · r = ⟨r(γ−1)⟩−1r⟨γ−1⟩. Then Γ ↷ (Aute(G), h) is isomorphic to Γ ↷ (CD, µ), where µ is

the unique Aut(G) invariant measure on CD.

Proof. The map d 7→ rd is an isomorphism.

The following proposition is simple, but useful in ruling out many cases.

Proposition 2.2.11. Suppose there is a subgroup H < Aut(G) where Γ ⊆ H and

1 < [Aute(G) : H ∩ Aute(G)] <∞.

Then G does not admit an Aut(G)-FIID Γ-Cayley diagram.
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Proof. In this case, Aute(G) ∩ H is invariant under the action of Γ on Aute(G), and has

Haar measure 1/[Aute(G) : H ∩Aute(G)]. So the action of Γ on (Aute(G), h) is not ergodic,

and by Proposition 2.2.10 neither is the action of Γ on (CD, µ). But since the shift action

of Γ is ergodic, every Γ-FIID measure is ergodic.

Corollary 2.2.12. If Γ is torsion-free and nilpotent and E is any set of generators which does

not induce a GRR of Γ, then Cay(Γ, E) does not admit an Aut(G)-FIID Cayley diagram.

Proof. By [MMV16, Theorem 1.2], Aute(G) is the set of group automorphism which preserve

E. In particular, Aute(G) is finite. Thus Γ∩Aute(G) = {e} is finite index and the previous

proposition applies with H = Γ.

Indeed, this proposition applies to any CIf group (in the sense of [Mor16]). The next

theorem shows that the assumption that Γ is torsion-free is necessary for the corollary above.

Consider the discrete Heisenberg group

H3(Z) :=




1 a b

0 1 c

0 0 1

 : a, b, c ∈ Z

 .

This is a torsion-free nilpotent group generated by the matrices

A =


1 1 0

0 1 0

0 0 1

 B =


1 0 0

0 1 1

0 0 1


Theorem 2.2.13. Define F a marking of H3(Z), a group Γ, and E a marking of Γ as follows:

F := {A,B,A2, A2B,B2} ⊆ H3(Z), Γ = C2 ×H3(Z), and E = C2 × (F ∪ F−1).

Then G = Cay(Γ, E) admits an Aut(G)-FIID Cayley diagram and |CD| = |Aute(G)| > 1.

Proof. Let G′ = Cay(H3(Z), F ). By inspection of the unit ball in G′, this is a GRR of H3(Z).

The Cayley graph G is obtained from G′ by replacing each edge in G′ with a copy K4.
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If r ∈ Aute(G) is an automorphism of G, then by [MMV16, Theorem 1.11] it descends

to an automorphism of G′, which must be trivial. So r decides independently for each

m ∈ H3(Z) whether or not to swap (0,m) and (1,m), i.e. r(a,m) = (a+ x(m),m) for some

x ∈ CG′
2 with x(I) = 0. This is clearly FIID, we check the details below. The action of Γ on

Aute(G) translates to C
G′∖{I}
2 as ((b, ℓ) · x)(m) = x(ℓ) + x(ℓm).

Consider CΓ
2 equipped with the product of counting measure (this is the same as Haar

measure, viewing CΓ
2 as a compact abelian group). Define F : CΓ

2 → C
G′∖{I}
2 by

F (y)(m) = y(0,m) + y(1,m) + y(0, I) + y(1, I).

Then F is a surjective a group homomorphism so pushes Haar measure onto Haar measure.

It suffices to show that F is Γ equivariant, where Γ acts on CΓ
2 by shifting and on C

G′∖{I}
2

as above:

F ((b, ℓ) · y)(m) = y(1, ℓ−1m) + y(0, ℓ−1m) + y(1, ℓ−1) + y(0, ℓ−1)

= ((b, ℓ) · F (y)) (m).

For solvable groups, or more general group extensions, we can sometimes lift obstructing

subgroups of Proposition 2.2.11 up from the Cayley graphs of a quotient or subgroup. To

illustrate, we will work out an example with the lamplighter group.

Definition 2.2.14. The lamplighter group is the wreath product L = C2 ≀ Z. More

concretely,

L = {(n,A) ∈ Z× P(Z) : A is finite}

with the product

(n,A) · (m,B) = (n+m,A△(n+B)).

The Diestel–Leader generators for L are

D := {(−1, ∅), (1, ∅), (1, {0}), (−1, {−1}).}
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Figure 2.2: Two copies of T3 and the Diestel–Leader graph

Let T3 = (V, F ) be the three regular tree, and let h : T3 → Z be a height function so that

every vertex v has exactly one neighbour w with h(v) = h(w) + 1 and two neighors with

h(v) = h(w) − 1. Then, the Diestel–Leader graph is the subgraph of T3 × T3 with vertex

set {(v, w) : h(v) + h(w) = 0} and edges {((v, w), (v′, w′) : (v, v′), (w,w′) ∈ F}.

The Cayley graph Cay(L,D) is isomorphic the Diestel–Leader graph [BNW06, Corollary

3.14]. It turns out that in this case, every automorphism of Cay(L,D) descends to automor-

phism of Cay(Z, {1,−1}). The subgroup we use to apply Proposition 2.2.11 in this case is

the preimage of Z under this quotient. Equivalently, we look at the set of automorphisms

preserving the quasi-order

(n,A) ≤ (m,B) :⇔ n ≤ m.

This order translates to the product of trees presentation of the Diestel–Leader graph as

(v, w) ≤ (v′, w′) :⇔ h(v) ≤ h(v′) (⇔ h(w) ≥ h(w′)) .

We will work with this product of trees presentation throughout.

Proposition 2.2.15. The Cayley graph G = Cay(L,D) does not admit an Aut(G)-FIID

Cayley diagram.
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Proof. Let H be the group of order preserving automorphisms. Shifting by an element of L

does not affect the order, so it suffices to show H ∩ Aute(G) has index 2.

For a vertex x of G let N(x) = B2(x) ∖ {x}. Then, N(x) has two components: the

vertices above x and the vertices below x. Fix r ∈ Aute(G). Since r preserves distances and

fixes e, r restricts to an automorphism of N(e). Induction on Bn(e) shows that r is order

preserving if and only if it does not swap the two components of N(e). Define s ∈ Aute(G)

by t(x, y) = (y, x). The automorphism t swaps the two components of N(e), so either r ∈ H

or tr ∈ H. Thus H ∩ Aute(G) has index 2.

A similar argument applies to other Cayley graphs for the lamplighter group and other

extensions of amenable groups. However, this obstruction we found for the lamplighter group

is fragile in the sense that it can be circumvented by taking a finite extension.

Theorem 2.2.16. There is a finite extension of the lamplighter group Γ with a finite generat-

ing set E so that G = Cay(Γ, E) has the Diestel–Leader graph as a quotient, |Aute(G)| > 1,

and G admits an Aut(G)-FIID Cayley diagram.

Proof. Let H be the group of order preserving automorphisms of Cay(L,D). First we show

that H ∩ Aute(Cay(L,D)) equipped with Haar measure is H-FIID . Then we construct an

appropriate extension of L, Γ and a generating set E so that Aute(G) ∼= H.

For any g ∈ H there are g0, g1 ∈ Aut(T3) so that g(v, w) = (g0(v), g1(v)) (see [BNW06,

Proposition 2.7]). Further g0 and g1 must preserve the height function h. So, each of g0 and

g1 is given by deciding independently for each vertex v ∈ T3 whether or not to swap the two

subtrees below v.

Translating this to CD via Proposition 2.2.10, the Cayley diagrams corresponding to

elements of H∩Aute(Cay(L,D)) are given as follows: for each v, w ∈ T3 with h(v)+h(w) = 1,

assign labels from (1, ∅), (1, {0}) to the 4 edges of the form ((v, x), (y, w)) in Diestel–Leader
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Figure 2.3: B1(x) in G

graph so that every pair of edges incident to a common vertex receives two different labels.

(One set of such edges is illustrated in bold in Figure 2.2.2.) The H invariant measure makes

these assignments independently and uniformly at random. This is clearly Γ-FIID.

Now we want to build a marked group whose automorphisms correspond to order pre-

serving automorphisms of Cay(L,D). Let Γ be the subgroup of Aut(Cay(L,D)) generated

by the lamplighter group and the swap t. More concretely,

Γ := C2 ⋉ L

where C2 has generator t which acts on the lamplighter group by t · r = r−1 for any r ∈ D

(so in Γ, tr = r−1t). Let E = D ∪ {t, t · (1, ∅), t · (1, {0})}. Note that every group element in

E ∖D is an involution, so E is symmetric.

The Cayley graph G = Cay(Γ, E) is two copies of Cay(L,D) with edges between the

two copies corresponding to t and to ascending edges in Cay(L,D). Any automorphism in

H ∩ Aute(Cay(L,D)) extends to an automorphism of G by h(vt) = h(v).

Let H̃ be the image of this embedding, and note that H̃ is closed in Aute(G). By

inspection of B1(e), for any r ∈ Aute(G) there is some h ∈ H̃ so that hr restricts to the

identity on B1(e). By induction, there is a sequence ⟨hi : i ∈ N⟩ so that hir restricts to the

identity on Bi(e), meaning limi hi = r−1. Since H̃ is closed, we have r ∈ H̃. The same

argument that Haar measure on H ∩ Aute(Cay(L,D)) is FIID shows that Haar measure on

AutG(G) is FIID.

Every positive example we gave above relied on making independent choices of elements
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from finite groups. Perhaps this is always the case:

Problem 2.2.17. Is there a marked torsion-free (amenable) group (Γ, E) where G =

Cay(Γ, E) admits an Aut(G)-FIID Cayley diagram?

Adams’s very weakly Bernoulli characterizations of Γ-FIID systems implies that the set

of marked amenable groups admitting an Aut(G)-FIID Cayley diagram is Borel in any

reasonable coding of groups [Ada92]. This may be the best one can say, but perhaps there

is a more concrete characterization of such groups.

Problem 2.2.18. Is there a marked amenable group (Γ, E) where the action of Γ on CD is

mixing, but where G = Cay(Γ, E) does not admit an Aut(G)-FIID Cayley diagram?

Of course matters are much more open for nonamenable groups. Ergodicity arguments

likes those in the previous section can again rule out FIID Cayley diagrams in many cases.

And, there are simple examples of groups which admit Aut(G)-FIID Cayley diagrams. Let

Cn be the cyclic group of order n.

Proposition 2.2.19. If Γ = C2 ∗ C3 = ⟨a, b : a2 = b3 = e⟩ and E = {a, b, b−1}, then G =

Cay(Γ, E) admits an Aut(G)-FIID Cayley diagram.

Proof. The edge set of G decomposes into single edges and 3-cycles, and the Aut(G)-invariant

measure on CD corresponds to an i.i.d. random orientation of each cycle.

However, at the moment there is nothing like a comprehensive Ornstein theory for non-

amenable groups. Indeed it could be that the groups admitting an Aut(G)-FIID Cayley

diagram form a strictly analytic set.

Unlike in the amenable case, nonamenable groups have an intricate approximate theory.

We can show that trees admit Aut(G)-FIID approximate Cayley diagrams.

Theorem 2.2.20. For any (Γ, E), if G = Cay(Γ, E) is an n-regular tree, then G admits an

Aut(G)-FIID approximate Cayley diagram.
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Proof. Recall that if the Cayley graph of Γ is a tree, then Γ = C∗n2 ∗ Fm for some n,m ∈ N.

We proceed by induction on n. We may assume we have n + 1 independent labels on each

vertex of G.

If n = 0, then we want a Cayley diagram for a free group. If m = 1, then Γ is amenable,

and we can apply Theorem 2.2.9. Otherwise let o be a balanced orientation of S̃(Γ, E).

One exists by [Tho22, Theorem 2.8]. We want to label edges so that, away from a set of

measure ϵ, every vertex has one in-edge and one out-edge with each label. This is equivalent

to approximately edge coloring the graph (S̃(Γ, E) × {0, 1}, {{(x, 0), (y, 1)} : (x, y) ∈ o}).

This can be done by Tóth’s approximate version of König’s line coloring theorem [Tot21].

If m = 0 and n = 1 or 2 then again Γ is amenable, and so so we can apply Theorem

2.2.9.

Now suppose that n + 2m > 3. Then Γ is nonamenable, so by the Lyons–Nazarov

matching theorem [LN11, Theorem 2.4] we can use the nth independent variable on each

vertex to produce an Aut(G)-FIID perfect matching M . Throwing away the edges in M

reduces us to looking at the (n− 1) case, and we’re done by induction.

This proof shows that every 2d-regular shift graph admits an approximate action of a free

group. Greb́ık has recently shown that this can be extended to all 2d-regular p.m.p. graphs

[Gre22], and Bencs, Tóth, and Hrušková have found measurable Fd actions on the shift graph

of planar lattices [BsT21].

As pointed out by Bernshteyn, the above result along with with some deep results from

probability and our approximate lifting lemma give us an asymptotic calculation of the

independence number of S(Fn, E), where E is the usual set of generators.

Proposition 2.2.21. For a p.m.p. graph H, let i(H) be the supremum of measures of

independent sets in H, let χµ(H) be the measurable chromatic number of H, and let χϵ(H)
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be the approximate chromatic number of H. Then,

(1 − o(n))
2n

log(n)
≤ 1/i(S(Fn, E)) ≤ χϵ(S(Fn, E)) ≤ χµ(S(Fn, E)) ≤ (1 + o(n))

2n

log(n)

Proof. The middle two inequalities are straightforward. The right hand inequality follows

from (e.g.) [Ber19]. For the left-hand inequality, Rahman and Virag [RV17] showed that

i(S̃(T2n)) ≤ (1 + o(n))
log(n)

2n
.

And it follows from Theorems 2.2.8 and 2.2.20 that the same holds for S(Fn, E).

On the other hand, there are groups with no Aut(G)-FIID Cayley diagram. In fact, the

difference between Aut(G)- and Γ-FIID combinatorics can be reflected in vertex colorings.

Recall that the approximate chromatic number of a marked group (Γ, E) is the minimal n

so that S(Γ, E) admits an approximate n-coloring. We will construct marked groups with

isomorphic Cayley graphs but different approximate chromatic numbers, answering [Wei20,

Problem 2].

Consider the groups

Γ = C∗32 × C3 = ⟨a1, a2, a3, b : a2i = [ai, b] = b3 = 1⟩

E = {a1, a2, a3, b}

and

∆ = ⟨a1, a2, a2, b : a2i = b3 = abab = e⟩,

F = {a1, a2, a3, b}.

Note that ∆ is the semidirect product C∗32 ⋊ C3, where C2 acts on C3 by inversion, and

Cay(Γ, E) ∼= Cay(∆, F ).

Theorem 2.2.22. Cay(Γ, E) admits a Γ-FIID 3-coloring.
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Proof. As in [Wei20] it suffices to find a measurable independent set A which intersects

each C3 orbit in [0, 1]Γ. Then we can have a 3-coloring of the shift graph given by c(v) =

min{i : bi · x ∈ A}. We construct such an A by a measurable augmentation argument.

Any independent set meets each C3 orbit at most once. And if an independent set cannot

be extended to meet a C3 orbit then is must meet each of the three adjacent orbits. If we

have any two such missing orbits in the same component, say at distance r in G/C3, we can

form a 3r augmentation of A on the path between these orbits as follows.

Given an independent set A, say that x, v1, ..., vn, y is a good path of length n for A if x

and v1 are neighbours, vn and y are neighbours, x, y ̸∈ A, vi ∈ A, and C3 · x,C3 · v1, ..., C3 · y

is a simple path in G/C3.

We show that if p = (x, v1, ..., vn, y) is a good path A, then there is an independent set

A′ such that A′△A ⊆ C3 · p, and A′ meets the C3 orbit of x and every vi.

If x has a neighbour outside of C3 · p as well, then by pigeonhole there is some point of

C3 · x with no neighbour in A, say x′. Set A′ = A ∪ {x′}. Otherwise, for each i, C3 · vi

contains two points not adjacent to elements of A outside of p, say vi, v
′
i. Put x in A′ and

swap v1 for v′1. If v′1 is adjacent to v2, swap v2 for v′2. Continue in this manner until we we

no longer need to swap. This process must terminate when we reach y.

So, if A admits no 3r-augmentation, it admits no good paths of length n, and the C3

orbits which avoid An are spaced at least n vertices apart in G/C3. Thus the set of vertices

whose orbits miss A has measure at most 3cn for some c < 1. Thus there is a measurable

independent set which meets every orbit and a Γ-FIID 3-coloring by Lemma 1.4.11

Theorem 2.2.23. Cay(∆, F ) does not admit a ∆-FIID approximate 3-coloring.

Proof. Suppose f is a measurable vertex labelling of the shift graph which meets the 3-

coloring constraint on the C3-orbit of x and all of its neighbours. Again following [Wei20],

let cf (x) = f(b · x) − f(x) ∈ C3. Then

74



1. cf takes values in {±1}, otherwise f(b · x) = f(x)

2. cf is constant on C3 orbits, otherwise we have f(b2 · x) = f(x) + 1− 1 = f(x) for some

x.

3. cf is different on adjacent orbits, otherwise for some j, f(bi · x) = f(x) + i, and

f(ajb
i · x) = f(b−iaj · x) = f(aj · x) − i, which is a contradiction since m + i = n − i

always has a solution mod 3.

Thus an approximate 3-coloring of S(∆, F ) yields an approximate 2-coloring of S(C∗32 , {a1, a2, a3})

as follows. Define

g : ([0, 1]3)C
∗3
2 → [0, 1]∆

by

g(x1, x2, x3)(γb
i) = xi(γ)

for γ ∈ C∗32 . Then if ⟨fn : n ∈ N⟩ is an approximate 3-coloring of S(∆, F ), we have an

approximate 2-coloring of S(C∗32 , {a1, a2, a3}) given by ⟨cfn ◦ g : n ∈ N⟩. But then each color

set is approximately invariant under the group elements of even length, contradicting strong

ergodicity (as in [KT08]).

Corollary 2.2.24. Cay(Γ, E) does not admit an Aut(Cay(Γ, E))-FIID approximate Cayley

diagram.

Typically, when we show that some nonamenable group does not admit a Γ-FIID φ

decoration for some φ, we can also show that it does not a Γ-FIID approximate φ-decoration.

The following question seems to require more delicate tools for analyzing FIID measures for

nonamenable groups:

Problem 2.2.25. Is there a torsion free nonamenable marked group (Γ, E) where G =

Cay(Γ, E) admits an Aut(G)-FIID approximate Cayley diagram but no Γ-FIID Cayley dia-

gram?
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Indeed, the following is still frustratingly open:

Problem 2.2.26. Does the n-regular tree admit an Aut(G)-FIID Cayley diagram for any

group?

2.2.3 Complexity

We end by returning to the Borel setting. We can compute the complexity of Schreier graphs

of free Zd actions and not necessarily free C∗32 actions. It turns out that Zd-Cayley diagrams

admit effectivization while the set of C∗32 Schreier graphs is Σ1
2-complete.

Theorem 2.2.27. The set of Schreier graphs of C∗32 is Σ1
2-complete in the codes.

Proof. This is simply the class of edge 3-colorable 3-regular graphs. The classical gadget

reduction from 3-coloring to edge 3-coloring also works in the Borel setting. See Appendix

A for details.

It is tempting to conjecture that every NP-complete LCL has a Σ1
2-complete Borel ana-

logue. We will see that this is true for CSPs (see Theorem 3.4.3), though the case of LCLs

seems to be tied up with deep problems in computer science about what kind of reductions

can capture NP-completeness

Recall that for an edge (x, y), we write −e = (y, x).

Theorem 2.2.28. If G is ∆1
1 and induced by a free Borel action of Zd, then G is induced

by a free ∆1
1-action of Zd.

Proof. To ease notation, we prove this in the case d = 2. The general case is not conceptually

harder.

All components of G isomorphic the square lattice. In particular G is locally countable.
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Definition 2.2.29. A straight line is a directed path so that no other path of the same or

shorter length has the same endpoints. A rectangle is a simple directed cycle that can be

divided into 4 straight lines.

Two directed edges e, e′ are parallel if they lie on some straight line together or if (−e)

and e′ are on opposite sides of a rectangle. We write e∥e′. We say e, e′ are anti-parallel

if (−e)∥e. And we say e, e′ are perpendicular if they are in the same component and are

neither parallel nor anti parallel. We write e ⊥ e′.

Note that all of these relations are ∆1
1.

Definition 2.2.30. Let {a, b,−a,−b} be the usual generating set for Z2. For a graph G,

say that a partial function f : G→ {a, b,−a,−b} is a partial diagram if for all e, e′,

1. if e∥e′, then f(e) = f(e′)

2. if e∥(−e′) then f(e) = −f(e′)

3. if e ⊥ e′ then f(e) and f(e′) have different letters (i.e. f(e) ̸= ±f(e′)).

We first check that a Cayley diagram is the same as a partial diagram whose domain

is all of G. If a : Z2 ↷ N is an action generating G, then any straight line is of the form

{nγ · x : n ∈ Z} for some generator γ of Z2. It follows that any Cayley diagram satisfies

(1−3) above. Conversely, given a partial diagram f with total domain, note that for any x, y

f(x, y) = −f(y, x) so (γ−γ) ·x = x, and (x, a ·x, (b+a) ·x, (−a+b+a) ·x, (−b−a+b+a) ·x)

must be a rectangle, so x = (−b − a + b + a) · x. This shoes that f is a Cayley diagram as

Z2 has finite presentation ⟨a, b : ab = ba⟩.

Since being a partial diagram is an independence property, by Theorem 1.4.42 it suffices to

show that any sequence of partial diagrams whose domains cover G can be patched together

into a Cayley diagram.

Suppose we have two ∆1
1 partial diagrams f and g. We show how to modify and glue
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them together to get a partial diagram whose domain is the union of their domains. The

result then follows by induction. Define h by

1. if e ∈ dom(f), then h(e) = f(e)

2. if e ∈ dom(g) ∖ [dom(f)]G, h(e) = g(e)

3. else if e ∈ dom(g) and e∥e′ for some e′ ∈ f (or e∥(−e′)), then h(e) = f(e′) (or −f(e′)).

4. else if e ⊥ e′ ∈ dom(f), h(e) has the sign of g(e) and the opposite letter of f(e′).

It is straightforward to check that h is a partial diagram.

In fact, one can find a finite basis theorem for Schreier graphs of Zn generalizing Miller’s

theorem on undirectable forests of lines. The paper [Tho21] gives the details for n = 2.
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CHAPTER 3

Constraint Satisfaction Problems

3.1 Introduction

This chapter is about Borel versions of the following general problem: for a fixed finite

relational structure D, when does a structure X in the same language admit a homomorphism

into D? We call D the template and X an instance of D, and we sometimes refer to a

homomorphism as a solution to X . For example:

1. If D = Kn, then an instance of D is a directed graph and a solution is a (vertex)

n-coloring.

2. If D has domain {0, 1} and relations
{

(x1, ..., xk) :
∨

i<j ¬xi ∨
∨

i≥j xi

}
then an instance

of D is an instance of kSAT and a solution is a satisfying assignment.

3. If D is a finite field F equipped with one relation for each affine subspace, then an

instance of D is a system of linear equations, and a homomorphism in D is a solution

to the system.

Following example (2) above, computer scientists refer to these as constraint satisfaction

problems (CSPs). We adopt this convention:

Definition 3.1.1. For D a finite relational structure, CSP(D) is the set of finite structures

which admit a homomorphism into D, and CSPB(D) is the set of codes for Borel structures

which admit Borel homomorphisms into D.
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To be precise, we should specify presentations and codings for our structures. For finite

structures, the details will not be important in this work, but see [FV98]. For Borel struc-

tures, any standard coding should work. Appendix A gives some details of a convenient

coding.

Some of the typical first questions we ask about a Borel combinatorial problem are: Is

a classical solution enough to guarantee a Borel solution? Is there some kind of dichotomy

theorem for this problem? Is a Borel solution equivalent to a (lightface, effective) ∆1
1 solution

for ∆1
1 instances? As an example consider the problem of countably coloring graphs. The

G0 graph of Kechris, Solecki, and Todorcevic is an is an instance of the countable coloring

problem with a solution but no Borel solution. The G0 dichotomy says that G0 admits a

homomorphism into any Borel graph with no Borel countable coloring. And, the proof of the

G0 dichotomy implies that any ∆1
1 graph with a Borel countable coloring has a ∆1

1 countable

coloring [KST99]. A positive answer to any of our first pass questions implies an upper

bound on the projective complexity of the problem. So, a Σ1
2-completeness result rules out

all of these niceties. See Subsection 1.4.7 in the introduction for more discussion.

In computer science, similar first pass questions about a problem include: Is this problem

in P? Can it be solved by linear relaxation or by constraint propagation? Is there a finite

list of minimal instances with no solution? Remarkably, these problems have all been solved

for CSPs.

Indeed, the class of CSPs was isolated by Feder and Vardi in the 1990s as a rich class

of problems where complexity questions could be settled. Despite Ladner’s theorem, which

says that (assuming P ̸=NP) there must be many intermediate classes between P and the

NP-complete[Lad75], most natural problems seem to fall into one of the two extremes. As a

partial explanation of this phenomena Feder and Vardi conjectured that all problems of the

form CSP(D) must be either in P or NP-complete [FV98].

Not too long after Feder and Vardi made their conjecture, Jeavons showed that this

conjectured dichotomy must come down to a question about polymorphism algebras [Jea98].
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Definition 3.1.2. A polymorphism of D is a homomorphism from the categorical product

Dn to D.

So a polymorphism takes in n solutions to an instance of D and returns another solution.

Several examples are given after Definition 3.2.1. A classical theorem of universal algebra

says that polymorphism algebras ordered by containment are in Galois correspondence with

structures under a notion of simulation called pp definability. And, Jeavons showed that pp

definitions yield polynomial time reductions. (This has since been generalized greatly, see

Theorem 3.2.6).

About a decade later, Bulatov, Jeavons, and Krokhin conjectured an algebraic divid-

ing for polynomial time solvability1 [BJK05]. After decades of work in computer science,

combinatorics, and universal algebra, the conjectures of Feder–Vardi and Bulatov–Jeavons–

Krokhin were confirmed independently by Bulatov and Zhuk in 2017:

Theorem 3.1.3 (CSP Dichotomy Theorem, [Bul17][Zhu17]). For a finite relational structure

D, CSP(D) is polynomial time solvable if there is a polymorphism f of D satisfying

(∀a, e, r) f(r, a, r, e) = f(a, r, e, a).

And CSP(D) is NP-complete otherwise.

In this chapter, we give partial algebraic answers to some of our basic questions from

Borel combinatorics.

3.1.1 Results and conjectures

Here we lay out the main results of this chapter and some related open problems. To state

these results we start with a number of definitions.

1The form of the CSP dichotomy theorem given here is somewhat anachronistic. The original conjecture
was in terms of Taylor operations. See the comments after Theorem 3.2.9
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Definition 3.1.4. Say that CSPB(D) is essentially classical if any time a Borel instance

of D admits a solution it admits a Borel solution.

Say that CSPB(D) is effectivizable if anytime a ∆1
1 instance admits a Borel solution it

admits a ∆1
1 solution.

These properties say that classical and effective tools respectively are sufficient to un-

derstand the Borel problem. Effectivizability plays a surprisingly important role in Borel

combinatorics. As discussed in the introduction, most nontrivial complexity upper bounds

come with an effectivization result.

In the finitary setting, similar classes of problems are closed downward under so-called

pp constructions (see Definition 3.2.3). Since pp construction can be characterized by the

polymorphism algebras of D and E (see Theorem 3.2.6), it follows abstractly that there is

some algebraic characterization of these finitary classes. The same is nearly true in the Borel

setting, but for technical reasons we need to assume equality is part of our structures.

Theorem 3.1.5 (See Corollary 3.3.9). Suppose D is a structure which includes equality as

a relation and E is pp constructible in D. If CSPB(D) is Π1
1, effectivizable, or essentially

classical then so too is CSPB(E).

The case of dichotomy theorems is somewhat mysterious. See the comments before

Theorem 3.2.15. It remains to make the algebraic characterizations of these classes explicit

and to test how far these results extend beyond structures with equality.

Definition 3.1.6. Say that an operation f : Dn → D is

1. totally symmetric if f(x1, ..., xn) only depends on {x1, ..., xn}

2. Siggers if n = 4 and f(r, a, r, e) = f(a, r, e, a)

3. A dual discriminator if n = 3 and f(x, y, z) is the repeated values among x, y, and

z if there is on and x otherwise.
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Our first results says that the intractable fork of the CSP dichotomy adapts to the Borel

setting.

Theorem 3.1.7 (See Theorem 3.4.3). If D does not admit a Siggers polymorphism, then

CSPB(D) is Σ1
2-complete.

Corollary 3.1.8 (P̸=NP). If CSP(D) is NP-complete, then CSPB(D) is Σ1
2-complete

This theorem gives several interesting new examples of Σ1
2-complete problems in Borel

combinatorics. We can also use this theorem to import other finitary complexity dichotomy

wholesale. For instance, Corollary 3.4.5 gives a descriptive set theoretic analog of the Hell–

Nešetřil theorem on graphs.

It is natural to ask if the converse of Theorem 3.1.7 holds:

Problem 3.1.9. Is there some D with CSPB(D) ∈P but CSPB(D) Σ1
2-complete?

More generally, we can ask if a Borel CSP complexity dichotomy holds. The answer is

yes if we assume Σ1
2-determinacy [TV21, Remark 3.3], but it is open if this holds in ZFC:

Conjecture 3.1.10. For every D, CSPB(D) either Π1
1 or Σ1

2-complete.

Our second main result gives a complete characterization of essentially classical struc-

tures. This builds on the characterization of width 1 structures by Dalmau and Pearson

3.2.11.

Theorem 3.1.11. For any finite relational structure D, CSPB(D) is essentially classical if

and only if D admits totally symmetric polymorphism of arbitrarily high arity.

One direction is Theorem 3.5.2 and the other is Theorem 3.5.7. Totally symmetric

polymorphisms are quite strong, so the main content of this theorem is to rule out exotic

essentially classical problems. Roughly, the only method to prove a problem is essentially

classical is the reflection theorem. By examining the proof, we can get the following:
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Corollary 3.1.12. If CSPB(D) is essentially classical, it is effectivizable.

For effectivizable CSPs in general, we have the following partial result.

Theorem 3.1.13 (See Theorem 3.6.2). If D has a dual discriminator polymorphism, then

CSPB(D) is effectivizable.

This theorem along with Theorem 3.1.7 gives a descriptive analog of the Barto–Kozik–

Niven theorem on smooth digraphs, Corollary 3.6.3. The structures indicated in the above

theorem are the simplest from the class of bounded width structures (see definition 3.2.12).

The following question is natural:

Problem 3.1.14. Is every bounded width Borel CSP effectivizable?

These results are almost enough to recover a descriptive set theoretic analog of Schaefer’s

dichotomy for Boolean CSPs [Sch78].

Definition 3.1.15. For k ∈ N, kSAT is the structure on {0, 1} equipped with each of the

following relations: for 0 ≤ i ≤ k

Di(x1, ..., xk) :⇔

(∨
j≤i

¬xj

)
∨

(∨
j>i

xj

)
= 1

For F a finite field, we write F(k) with the structure whose domain is the same as F equipped

with one relation for each affine subset of Fk, i.e. each set of the form{
(x1, ..., xn) :

∑
i

aixi = an+1

}
for a1, ..., an+1 ∈ F.

Note that an instance of kSAT is a Boolean formula in kCNF. This is abusing notation

slightly as computer scientists typically refer to CSP(kSAT) as kSAT, but hopefully this will

not cause confusion. And, it turns out that all of the structures F(k) are equivalent for all

k ≥ 3 (see the comments after Definition 3.2.3).
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Corollary 3.1.16 (See Corollary 3.6.4). If D is a structure on {0, 1}, one of the following

holds:

1. D has a totally symmetric polymorphism and CSP(D) is essentially classical and ef-

fectivizable

2. D is pp constructible in 2SAT and CSPB(D) is effectivizable

3. CSP(D) is NP-complete and CSPB(D) is Σ1
2-complete, or

4. D is pp constructible in F2(3) and vice versa.

This leaves us with the burning question of projective complexity of linear algebra:

Problem 3.1.17. Is CSPB(F(3)) Σ1
2-complete for every F?

If the answer to Questions 3.1.17 and 3.1.14 are both positive, then Conjecture 3.1.10 is

true, and further we get the following:

Conjecture 3.1.18. For any finite structure D, CSPB(D) is Π1
1 if and only if it is effec-

tivizable.

3.2 Background on CSPs

In this section, we review some of the basic algebraic theory of CSPs. The material we cover

here is minimal. For a more detailed survey, see [BKW17].

Definition 3.2.1. For two relational structures in the same language, X = (X, τ) and (D, τ),

a homomorphism from X to D is a function f : X → D so that

(∀R ∈ τ, x1, ..., xn ∈ X) (x1, ..., xn) ∈ RX → (f(x1), ..., f(xn)) ∈ RD.

Or, in words, if M is an array where all rows are in R, then applying f to the columns gives

another element of R.
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A polymorphism of X is a homomorphism from X n to X , where we take the so-called

categorical product. That is, f is a polymorphism of D if, given ⟨xij : i ≤ n, j ≤ k⟩ ∈ Dn×k

and a relation R ∈ D

((∀i ≤ n) R(xi1, ..., Rik)) ⇒ R(f(⟨xi1 : i ≤ n⟩), ..., f(⟨xik : i ≤ n⟩))

For any structure D, Pol(D) is the algebra of polymorphisms of D.

A clone is an algebra equipped with every projection operation and whose collection of

operations is closed under compositions. For a set of operations A, ⟨A⟩ is the smallest clone

whose operations contain A. We say A generates ⟨A⟩.

The following examples are straightforward to verify:

1. For any structure D, Pol(D) is a clone

2. For any finite field F, Pol(F(3)) is the collection of linear functionals

f(x1, ..., xn) =
∑
i

aixi

with
∑

i ai = 1

3. The dual discriminator on {0, 1}, also called the majority function or maj, generates

Pol(2SAT).

4. HornSAT is satisfaction problem for Horn sentences. More specifically, HornSAT has

domain {0, 1} and includes the unary predicates {0} and {1} and each relation of the

form

R(x1, ..., xn, y) ⇔ (x1 ∧ ... ∧ xn) → y.

The binary min, ∧, generates Pol(HornSAT)

5. NAE is the 2-coloring problem for ternary hypergraphs, i.e.

NAE = ({0, 1}, {(x1, x2, x3) : ¬(x1 = x2 = x3)}).

Negation generates Pol(NAE).
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6. For the directed 3-cycle D = ({r, p, s}, {(p, r), (r, s), (s, p)}), f ∈ Pol(D) if and only if

the cyclic permutation π = (rps) is an automorphism of f . For instance, Pol(D) con-

tains π, the dual discriminator on {r, p, s} and the binary rock-paper-scissors operation,

(⋆):

⋆ r p s

r r p r

p p p s

s r s s

Note that HornSAT is not finite, but it will turn out that it is pp definable in a finite

number of its relations. For item (3), note that for any 3 × 2 matrix over F2, applying

the majority function to each column returns one of the rows. So, the majority function

preserves all binary relations on {0, 1}.

Definition 3.2.2. We say X is a core if any homomorphism f : X → X is an automorphism

(i.e. bijective).

Two structures D and E are homomorphically equivalent if there are homomorphisms

f : D → E and g : E → D.

Any structure D is homomorphically equivalent to a (unique up to isomorphism) core,

which we refer to as the core of D.

Note that if D and E are homomorphically equivalent, then CSP(D) = CSP(E). For

example, Kn is a core for all n, and the core of any bipartite graph is K2.

Definition 3.2.3. If D and E are two structures with the same domain, we say E is pp

definable in D if every relation R of E can be written as a positive primitive formula over

D, i.e.

R(x1, ..., xn) ⇔ (∃y1, ..., yk)
∧
i

αi(x1, ..., xn, y1, ..., yk)

where each αi either asserts a relation from D or an equality.
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We say E is pp interpretable in D if it is interpretable in the model-theoretic sense

with positive primitive formula, i.e. E is a quotient of a pp definable structure of some power

of D along a pp definable equivalence relation.

And, we say E is pp constructible in D if there is a chain of structures

D = E1, E2, ..., En = E

so that for each i, one of the following holds:

1. Ei+1 is pp interpretable in Ei

2. Ei is homomorphically equivalent to Ei+1

3. Ei is a core and Ei+1 is Ei expanded by a singleton unary relation U(x) ⇔ x = a

For example, given any a1, a2, a3, a4, b ∈ F

a1x1 + a2x2 + a3x3 + a4x4 = b

if and only if

(∃y1, y2) a1x1 + a2x2 = y1 ∧ a3x3 + y1 = y2 ∧ a4x4 + y2 = a.

So F(3) pp constructs F(4) for any finite field F. A similar trick shows that F(3) pp constructs

every F(k) and that HornSAT is pp definable in a finite number of its relations.

Since every Boolean formula can be converted to a formula in 3CNF by introducing new

variables as above, 3SAT pp defines every structure on {0, 1}. Further, by considering binary

expansions of a general relation, one can show that 3SAT pp interprets every structure.

Because NAE has a nontrivial automorphism, it does not pp define 3SAT, but one can check

that it pp constructs 3SAT (and thus all structures).

The basic idea of the algebraic approach to CSPs is that pp constructions preserve all

complexity-theoretic information about a CSP, and that pp constructibility of structures
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is captured by the (height 1) varieties of their polymorphism algebras. For completeness,

we will explain this correspondence in general, though we will only refer to a handful of

well-understood varieties in this work.

Definition 3.2.4. For an algebra A, an identity is a true statement of the form

(∀x1, ..., xn, y1, ..., ym) τ(x1, ..., xn) = σ(y1, ..., ym)

where σ and τ are compositions of operations from A. An identity is height 1 if each of σ

and τ contain exactly one function symbol (without repetition). As is somewhat standard

convention, we will often leave the universal quantifier implicit when defining identities.

The variety generated by A, Var(A), is the class of all algebras (in the same signature)

which satisfy the same identities as A. The h1 variety generated by A, Varh1(A) is the

class of algebras which satisfy the same height 1 identities.

The identities defining Siggers and totally symmetric polymorphisms are height 1, but

associativity and idempotence are not. The variety generated by Pol(3SAT) is the class of

all projection algebras. On the other hand, the majority function satisfies

maj(x, x, y) = maj(x, y, x) = maj(y, x, x)

so Pol(2SAT) and Pol(3SAT) generate different h1 varieties.

We will need a more detailed analysis of Var(A).

Definition 3.2.5. We say that B is a reduct of A if B has the same domain as A and is

equipped with a subset of the operations from A. In this case, we write B ⊆ A.

We say that B is a subalgebra of A if the domain of B is a a subset of the domain of A,

and B comes equipped with all of the restrictions of operations from A.

For C a class of algebras, we define:

H(C) := {f(A) : A ∈ C, f a homomorphism}

89



S(C) := {B : (∃A ∈ C) B a subalgebra of A}

P (C) := {Aκ : A ∈ C, κ is a cardinal}

We write H(A) for H({A}) and likewise for S(A) and P (A).

The operations H and S will be important for us later.

Theorem 3.2.6. For finite relational structures D and E

1. D pp defines E iff Pol(E) ⊆ Pol(D)

2. D pp interprets E iff a reduct of Pol(E) is in Var(Pol(D)) = HSP(Pol(D)) iff every

identity satisfied by elements of Pol(D) is satisfied by elements of Pol(E)

3. D pp constructs E iff a reduct of Pol(E) is in Varh1(Pol(D)) iff every height 1 identity

satisfied by elements of Pol(D) is satisfied by elements of Pol(E).

Proof. Statement (1) was proven independently in 60s by Geiger and Bodnarchuk, Kaluzh-

nin, Kotov, and Romov [Gei68][BKK69]. The fact that Var(A) = HSP(A) is Birkhoff’s HSP

theorem [Bir35]. The equivalence to pp interpretation is essentially by definition and is im-

plicit in Bulatov, Jeavons, and Krokhin [BJK05]. Statement (3) is due to Barto, Kozik, and

Pinsker [BOP15].

In fact slightly more is true of item (2). For A = Pol(D), the polymorphism algebras

in H(A), S(A), and P (A) correspond to pp definable quotients, pp definable substructures,

and powers of D respectively.

Corollary 3.2.7. For structures D and E , E is a pp definable quotient of a pp definable

substructure of D if and only if Pol(E) ∈ HS(Pol(D)).

Proof. We will show that any E with Pol(E) ∈ HS(Pol(D)) is a quotient of a substructure.

The converse is straightforward.
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Fist note that a subalgebra of Pol(D) is a subset of D which is closed under the operations

in Pol(D). By Theorem 3.2.6, this is the same as a pp definable subset of D.

Now suppose that φ : D → E is a homomorphism of algebras from Pol(D) onto Pol(E),

and extend φ to a homomorphism φ : Dn → En. For any operation f ∈ Pol(D), if

φ(x1, ..., xn) = φ(y1, ..., yn) then

φ(f(x1, ..., xn)) = f(φ(x1, ..., xn))

= f(φ(y1, ..., yn))

= φ(f(y1, ..., yn))

So the kernel of φ, i.e. the equivalence relation φ(x) = φ(y), is invariant under Pol(D) and

is pp definable in D. Similarly, the pullback of any relation in E is pp definable.

As a corollary of Theorem 3.2.6, any class of structures which is closed under pp construc-

tions (or interpretations or definitions) admits an algebraic description in terms of height 1

identities (or identities or polymorphisms). We survey several such classes and their algebraic

descriptions below.

Bulatov, Jeavons, and Krokhin showed that if D pp constructs E then CSP(E) is poly-

nomial time reducible to CSP(D) [BJK05]. The CSP dichotomy theorem gives the corre-

sponding algebraic characterization of the polynomial time complexity classes for CSPs. We

collect a few equivalent characterizations here.

Definition 3.2.8. If D admits a Siggers term, we say D is tractable. We say D is intractable

otherwise.

So the CSP dichotomy theorem says that if P ̸=NP then intractable is synonymous with

NP-complete and tractable is synonymous with polynomial time solvable.

Theorem 3.2.9. D is tractable iff any of the following hold:
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1. Pol(D) contains a Taylor operation, i.e. an operation T so that for every i there are

z1, ..., zn ∈ {x, y} so that T satisfies an identity of the form

T (z1, z2, ..., zi−1, x, zi+1, ..., zn) = T (z1, z2, ..., zi−1, y, zi+1, ..., zn).

2. There is a weak near unanimity (or WNU) polymorphism W ∈ Pol(D), i.e. an opera-

tion satisfying

W (y, x, x, ..., x) = W (x, y, x, ..., x) = W (x, x, y, ..., x) = ... = W (x, x, x, ..., y)

3. For all but finitely many primes p, D has cyclic polymorphism of arity p, i.e. there is

C ∈ Pol(D) satisfying

C(x1, x2, x3, ...., xp−1, xp) = C(x2, x3, x4, ..., xp, x1)

4. D does not pp constructs every finite relational structure

Proof. Taylor proved an idempotent algebra A admits Taylor term if and only if Var(A)

does not contain a projection algebra [Tay77]. Since the Taylor identities are height 1, this

implies Pol(D) does not contain a Taylor term if and only if D pp constructs every finite

relational structure. The equivalence of Taylor terms and WNU terms is shown in [MM08],

the equivalence with cyclic terms in [BK12], and the equivalence with Siggers terms in [Sig10]

and [KMM14].

Historically, the Taylor identities were the first to appear in the literature. In the 1970s,

Motivated by questions in algebraic topology, Taylor showed that these identities charac-

terize idempotent varieties which omit projection algebras. Bulatov, Jeavons, and Krokhin

originally stated the algebraic CSP dichotomy conjecture in terms of Taylor identities, and

many of the equivalent forms above were motivated by computational complexity questions.

We include WNU operations here as they seem to show up most often in the literature.

92



The second class of structures we look at is described by a simple constraint propagation

algorithm. Given an instance X , assign to each variable x ∈ X a unary constraint Ux,

initialized to D. This Ux will represent to possible values x can take. If we ever see that

R(x, y1, ..., yn), but that d ∈ Ux cannot be matched to elements of the Uyis to get an element

of R, then remove d from Ux. Repeat until this each Ux stabilizes. If any Ux is empty there

is no solution. We say that a problem is width 1 if every instance with each Ux nonempty

has a solution. More formally:

Definition 3.2.10. Say that an instance X of D is arc-consistent if there are unary

predicates Ux ⊆ D for x ∈ X which are pp definable in D so that, if (x1, ..., xn) ∈ RX , then

πi(Ux1 × ...× Uxn ∩RD) = Uxi
.

A structure is width 1 if every arc-consistent instance has a solution.

Width 1 structures will play an important role in Section 3.5. An example of a width

1 structure is HornSAT. The arc consistency algorithm in this case amounts to classical

unit propagation. A Theorem of Dalmau and Pearson algebraically characterizes width 1

structures.

Theorem 3.2.11 ([DP99]). A structure D is width 1 if and only if it admits a totally

symmetric polymorphism of arbitrarily high arities.

Indeed, HornSAT has the n-ary
∧

as a polymorphism for all n.

Arc-consistency only considers unary information, We can generalize this to consider bi-

nary interactions between constraints. For instance, the usual algorithm testing 2-colorability

of graphs involves testing for odd length chains of binary relations.

Definition 3.2.12. A path in a relational structure X is a sequence

P = (x1, (e1, R1), x2, (e1, R2), ..., xn)
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if each xi ∈ X, each ei ∈ Ri, and for each i there are ji, ki so that (xi, xi+1) = πjkei. We say

that P has coordinates (j1, k1, j2, k2, ..., jn−1, kn−1).

A closed path in a relational structure X is a path (x1, (e1, R1), ..., (en−1, Rn−1), xn) with

x1 = xn.

An instance X of D is cycle-consistent if it is arc-consistent as witnessed by predicates

Ux and for any closed path P with coordinates (j1, k1, ..., jn−1, kn−1),

(∀a1 = an ∈ Ux1)(∃a2, a3, ..., an−1)
∧

1≤i≤n−1

(Uxi
(ai) ∧ πji,kiRi(ai, ai+1)) .

A structure has bounded width if every cycle-consistent instance has a solution.

Really, this definition hides a theorem. One could generalize arc-consistency in any

number of ways to consider tuples of arbitrary large arity, but these all turn out to be

redundant. See [Bar14] [Bra19]. Barto and Kozik characterized the bounded width CSPs,

resolving another conjecture of Feder and Vardi.

Theorem 3.2.13 ([BK09]). A structure is bounded width iff HSP(Pol(D)) does not contain

Pol(F) for any finite field F iff HS(Pol(D)) does not contain Pol(F) for any finite field F.

Cycle-consistency will be important in Section 3.5, and the bounded width structures

will play a role in Section 3.6.

Our last example is a class of structures which is not closed under pp constructions, but

still has an algebraic description.

Definition 3.2.14. A basis for CSP(D) is a set of structures F so that X ∈ CSP(D) if and

only if no element of F admits a homomorphism into X . Bases for CSPB(D) are defined

mutatis mutandis.

Bases are also called complete obstructing sets in the computer science literature. De-

scriptive set theorists are very interested in the question of when CSPB(D) has a finite basis.
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The corresponding classical question can be answered in terms of polymorphisms with extra

tolerance (which require reference to the relational structure to define).

Theorem 3.2.15 ([LLT06]). For any structure D, CSP(D) has a finite basis if and only if

D admits a polymorphism f so that

f(y, x, x, ..., x) = f(x, y, x, ..., x) = f(x, x, y, ..., x) = ... = f(x, x, x, ..., y) = x

and if k − 1 of the tuples e1, ..., ek are in R for some relation R of D, then

f(e1, ..., ek) ∈ R.

We will not use this theorem in this thesis, though bases will play a role in several places.

Note that the above theorem does not refer only to Pol(D). Indeed, it is not true that a

finite basis for CSP(D) will pass through a pp definition to give a finite basis for CSP(E).

3.3 Simple constructions

We would like a Borel analogue of the polynomial time reductions induced by pp construc-

tions. Unfortunately, the finitary construction generally requires taking a quotient, which

is not always possible in the descriptive setting (for instance, R/Q is not a standard Borel

space). Here we introduce a stronger notion of simulation, which we call a simple con-

struction, which does not present this difficulty. And, we prove some combinatorial lemmas

relating simple and pp constructions.

Definition 3.3.1. For E and D structures on the same domain, say that D simply defines

E if every relation in E can be written as an existentially quantified conjunction of relations

in D. We call the formulas defining E in terms of D relations a simple definition.

Say that D simply interprets E if E is a quotient of a structure simply definable in a

power of D. We call the defining formulas a simple interpretation.
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And, say that D simply constructs E if E can be built from D by a chain of simple

interpretations, homomorphic equivalences, and singleton expansions of cores. We call this

sequence a simple construction.

That is, simple constructions are pp constructions where we do not use equality (unless

our structures come equipped with equality as a relation). Our first main lemma about

simple constructions comes from a careful analysis of the proof that singleton expansions of

cores do not change computational complexity.

Lemma 3.3.2. For any finite core structure D and c ∈ D, the following predicate is simply

definable in D:

(=c) := {(x, x) : (∃f ∈ Aut(D))f(c) = x}.

Proof. Suppose D = {1, 2, ..., n} and c = 1. The predicate H given by

H(x1, ..., xn) :⇔ d 7→ xd defines an endomorphism of D

⇔
∧
R

∧
e∈R

R(xe1 , ..., xen)

is simply definable. So, it suffices to show that

a =c b⇔ (∃x2, ..., xn) H(a, x2, ..., xn) ∧H(b, x2, ..., xn).

If a =c b, then there is some isomorphism f : D → D with f(c) = a. Then the assignment

xd = f(d) satisfies H(a, x2, ..., xn) ∧H(b, x2, ..., xn).

Conversely, if H(a, x2, ...., xn) ∧H(b, x2, ..., xn), then we have homomorphisms f, g with

f(c) = a, g(c) = b and f(d) = g(d) for d ̸= c. These homomorphisms must be automorphisms

since D is a core. And if a ̸= b, we must have that one of f or g is not onto, which is

impossible. So, a =c b.

Corollary 3.3.3. If D has a transitive automorphism group and D pp constructs E , then

D simply constructs E .
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Proof. We can replace D by its core, which will still be transitive. Then, by the above lemma

D simply constructs (=c) = (=).

Our second main lemma comes from a careful analysis of the proof that Pol(D) invariant

relations are pp definable in D.

Definition 3.3.4. Say that a relation R implies an equation if R(x1, ..., xn) implies xi = xj

for some i, j, i.e. πij(R) ⊆ (=).

Lemma 3.3.5. If R does not imply any equations and R is pp definable in D, then R is

simply definable in D.

Proof. Let M be a matrix whose rows are the tuples in R, and let σi be the ith column

of M . Note that R not implying any equations means that the σis are all distinct. Since

RD
n
(σ1, ..., σk) holds in the product, if there is a polymorphism f ∈ Pol(D) so that f(σi) = xi,

then R(x1, ..., xk). Conversely, if R(x1, ..., xk), say (x1, ..., xk) is the jth row of M , then the

projection πj is a polymorphism with πj(σi) = xi. Thus,

R(x1, ..., xk) ⇔ (∃f ∈ Pol(D)) f(σi) = xi.

Since the σi are all distinct, we can eliminate equality in the above definition by replacing

each instance of σi with xi. More formally, Suppose Dk = {σ1, ..., σk, σk+1, ..., σm}, and let

P (x1, ..., xm) :⇔ σi 7→ xi is a polymorphism of D.

Then P is simply definable, and we have a simple definition of R given by

R(x1, ..., xk) ⇔ (∃xk+1, ..., xm) P (x1, ..., xm).

Corollary 3.3.6. If no relation in E implies an equation and Pol(E) ∈ HS(Pol(D)), then D

simply constructs E .

97



Proof. If E is in HS(Pol(D)), then E is a pp definable quotient of a pp definable substructure

of D, i.e. there is some U ⊆ D and some f : U → E with U and f−1(R) pp definable for each

relation R in E . No unary predicate can imply an equation, and since no R in E implies an

equation neither does any f−1(R). So by our lemma, all of these are in fact simply definable

in D.

Corollary 3.3.7. If D is not bounded width, then D simply constructs F(3) for some finite

field F.

We’re ready to prove our descriptive analog of Bulatov and Jeavons’s theorem about

polynomial time reductions. Since we have not specified our coding, we will leave it to the

reader to verify that the construction below is ∆1
1 in the codes, though this is straightforward

using the coding described in the appendix and Lemma A.0.7.

Theorem 3.3.8. If D simply constructs E , then CSPB(E) Borel reduces to CSPB(D). In

fact, there are maps F,G, and H which are ∆1
1 in the codes so that:

1. If X is an instance of E then F (X ) is an instance of D

2. If g is a solution to X , then G(g) is a solution to F (X )

3. If h is a solution to F (X ), then H(h) is a solution to X .

And there is some finite N so that, if each x ∈ X appear in fewer than κ tuples in relations

X , then each y ∈ F (X ) appears in fewer than N × κ tuples in F (X ).

This last clause means that F sends bounded degree, locally finite, and locally countable

instances to the same.

Proof. It suffices to consider two cases: (1) D is a core and E is an expansion of D by

singleton unary predicates, and (2) E is simply interpretable in D.
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For (1) the main difficulty is controlling degrees, i.e. meeting the last clause of the

theorem. We may assume (=c) is in the signature of D for each c ∈ D and E = D ∪ {Ud},

where Ud(x) ⇔ x = d. If we did not want to worry about degree, we could let F (X ) be

X along with a copy of D and extra relations saying x =d d whenever UXd (x). Then any

solution to X , say g, extends to a solution G(g) of F (X ) by setting G(g)(c) = c for c ∈ D.

And if h is a solution to F (X ), then h restricts to an automorphism f on the copy of D. So,

we have a solution to X given by H(h) = f−1 ◦ h on X .

In the construction we just sketched, the copy of D ends up having quite large degree.

To correct this, we give each variable in X its own copy of D. So, define F (X ) as follows:

F (X ) has domain X ⊔ (X ×D) and the following relations

• For R a relation in D with R ̸= (=c) for any c

RF (X ) = RX ⊔ {((x, a1), ..., (x, ak)) : x ∈ X,RD(a1, ..., ak)}

• For c ̸= d

(=c)
F (X ) = (=c)

X ⊔ {((x, c), (y, c)) : (x, y) share some relation in X}

• And,

(=d)
F (X ) = (=d)

X ⊔ {(x, (x, d)) : UXd (x)}

Similar to the above, any solution g to X gives a solution G(g) to F (X ) equal to the

identity on any copy of D. And if h is a solution to F (X ), h̃x(d) := h(x, d) defines an

automorphism of D for each x. Further h̃x = h̃y whenever x, y share some relation in X , so

we get a solution to X H(h)(x) = (h̃−1x ◦ h)(x).

For (2), the construction of F (X ) is identical to the Bulatov and Jeavons construction,

but we use the Luzin–Novikov theorem to find G. Suppose we are given the following data

from the definition of simple interpretation:
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1. An onto function c : A→ E with a simple definition for A ⊆ Dn:

x̄ ∈ A⇔ (∃z̄)
∧
i

αA,i(x̄, z̄)

2. For each relation R ∈ E a simple definition for c−1(R):

x̄1, ..., x̄k ∈ c−1(R) ⇔ (∃z̄)
∧
i

αR,i(x̄1, ..., x̄k, z̄).

we construct an instance F (X ) of D as follows. For each variable x ∈ X introduce tuples

of variables ȳx (with arity n as in item 1 above) and z̄A,x (with the same arity as z̄ in the

definition of item 1), and for each tuple (x1, ..., xn) ∈ RX introduce tuples z̄R,x1,...,xn (with

the same arity as in the definition in item 2). For each variable x add in the relations

αA,i(ȳx, z̄A,x)

and for each (x1, ..., xn) ∈ RX add in relations

αR,i(ȳx1 , ..., ȳxn , z̄R,x1,...,xn).

Given a solution g to F (X ) we get a solution G(g) to X given by G(g)(x) = c(g(ȳx)) (where

we apply g coordinatewise to ȳx). And if we have a solution g to X , we can get a solution to

F (X ) by using the Luzin–Novikov theorem to choose values from c−1(g(x)) for each ȳz and

to choose values for each z̄A,x and z̄R,x̄ from the witnesses to

(∃z̄)
∧
i

αA,i(ȳx, z̄) and (∃z̄)
∧
i

αR,i(ȳx1 , ..., ȳxk
, z̄).

If D has equality in its signature, then the distinction between simple and pp construc-

tions collapses and we get the following:

Corollary 3.3.9. Suppose D is a structure which includes equality as a relation and E is

pp constructible in D. If CSPB(D) is Π1
1, effectivizable, or essentially classical then so too

is CSPB(E).
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It follows that these classes all have algebraic characterizations when restricted to struc-

tures with equality, though the identities involved may be quite complex.

3.4 Intractable CSPs

One of the consequences of the CSP dichotomy theorem is that (assuming P̸=NP) any

structure with CSP(D) complete for polynomial time reductions is in fact maximal for pp

constructions. Using a lemma from the previous section and a lemma of Bulatov and Jeavons,

we can show that, in fact, any such structure is maximal for simple constructions. This, along

with Todorcevic and Vidnyánszky’s Σ1
2-completeness theorem for 3-coloring [TV21], gives a

number of new projective complexity bounds.

Lemma 3.4.1 (Bulatov–Jeavons [BJ01]). If D is intractable and includes all singleton unary

predicates, then HS(Pol(D)) contains a projection algebra.

Proof. This lemma appears in a seemingly unpublished technical report, so we give a sketch

of their proof here.

Let A = Pol(D) and let B ≤ An be a subalgebra with some homomorphism f : B → X

onto a nontrivial projection algebra. For I ⊆ {1, ..., n} and ā ∈ AI , let B ↾ (I, a) = πI = ā.

Fix I maximal with f not constant on B ↾ (I, ā). Without loss of generality, we may assume

I = {1, ..., k} and ā = (a1, ..., ak).

Since D contains all unary predicates, A is idempotent. Thus, B′ = B ↾ (I, ā) is a

subalgebra of B. And we have that f(B′) is a nontrivial projection algebra.

Let A′ = πk+1(B′). If there is some a ∈ A′ with f is not constant on π−1k+1(a) ∩B′, then I

is not maximal. So, f factors through πk+1 and a nontrivial subalgebra of X is an image of

A′ as well.

Corollary 3.4.2. If D is intractable, D simply constructs all structures.
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Proof. We may assume D is a core with all singleton unary relations. Then, by the lemma

above, Pol(3SAT) ∈ HS(Pol(D)). Since 3SAT does not imply equations, by lemma 3.3.5,

D simply constructs 3SAT. And since 3SAT simply defines equality and is maximal for pp

constructions, E simply constructs all structures.

Since there is a Σ1
2-complete Borel CSP, we get the following:

Theorem 3.4.3. If D is intractable, then CSPB(D) is Σ1
2-complete.

Proof. Todorcevic and Vidnyánszky showed that CSPB(K3) is Σ1
2-complete [TV21]. By the

above theorem, if D is intractable, then CSPB(K3) Borel reduces to CSPB(D).

Corollary 3.4.4 (P̸=NP). If CSP(D) is NP-complete, then CSPB(D) is Σ1
2-complete.

In fact, since the instances from the Todorcevic–Vidnyánszky theorem are locally finite,

these problems are Σ1
2-complete even when we restrict to locally finite instances. This can

be improved to bounded degree by recent work of Brandt, Chang, Greb́ık, Grunau, Rozhoň,

and Vidnyánszky [BCG21a]. We can use this theorem to lift results from finitary complexity

theory wholesale. For instance, the Hell–Nešetřil theorem [HN90] yields:

Theorem 3.4.5. For a simple graph G, the following are equivalent

1. G is bipartite

2. G is tractable

3. CSPB(G) is effectivizable

4. CSPB(G) is Π1
1

5. CSPB(G) is not Σ1
2-complete

Proof. (1) ⇒ (2) is an unpublished result of Louveau and also follows from Theorem 3.6.2;

(3) ⇒ (4) ⇒ (5) are all clear; (5) ⇒ (2) is the theorem above. The equivalence of (1) and
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(2) is essentially the classical Hell–Nešetřil theorem. For completeness, we sketch a proof

below.

If G is bipartite, the core of G is K2, so G is tractable. If G is tractable, then it admits

a cyclic polymorphism of all large enough prime arities. If G is not bipartite, then there

is some closed walk of large prime length p, say (x1, ..., xp). If c is a cyclic polymorphism

of arity p, then there is a loop at c(x1, ..., xp) = c(x2, ..., xp, x1), but G is supposed to be a

simple graph.

A more general version for so-called smooth digraphs is given in Corollary 3.6.3. We can

also generalize Todorcevic and Vidnyánszky’s theorem on graph coloring to hypergraphs

Corollary 3.4.6. For any arity k and any number n ≥ 2, the problem of Borel n-coloring

k-ary hypergraphs is Σ1
2-complete.

Proof. The hypergraph coloring problem is equivalent to the CSP(D) for D = ({1, ..., n}, {(x1, ..., xk) :

¬(x1 = ... = xk)}). These are known to be intractable.

And, we can find some exotic examples of Σ1
2-complete problems.

Corollary 3.4.7. The directed graph shown in Figure 3.1 has a Σ1
2-complete Borel CSP.

Proof. Barto, Kozik, Maróti, and Niven showed that this structure is intractable [BKM09].

We give a last example relating to the theory of LCLs.

Definition 3.4.8. A graph with parallels is a graph G with a specified set of pairs of

directed edges P . An orientation of a graph with parallels (G,P ) is an orientation o of G

so that e ∈ o iff f ∈ o whenever (e, f) ∈ P . And orientation is balanced if the indegree of

every vertex is the same as the outdegree.
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Figure 3.1: An intractable directed graph

Corollary 3.4.9. The set of Borel 4-regular graphs with parallels which admit a Borel

balanced orientation is Σ1
2-complete.

Proof. Given a vertex v incident to (undirected) edges e1, e2, e3, e4 and and orientation o, let

f(ei, v, o) be 1 if ei is oriented toward v and −1 otherwise. Then o is balanced if and only if∑
i f(ei, v, o) = 0 for all v, and this is true even if the sum is taken mod 3. This gives us a

way to code 3 variable linear equations with nonzero solutions, a problem which turns out

to be NP-complete.

Consider F×3 (3) the structure on {−1, 1} equipped with all relations of the form

a1z1 + a2z2 + a3z3 + a4 = 0

for a1, a2, a3, a4 ∈ {−1, 1}. It is straightforward to check that F×3 (3) is intractable (using, for

instance, Schaefer’s theorem). Write Ra1,a2,a3,a4 for the relation {(x, y, z) : a1x+ a2y+ a3z+

a4 = 0}.

Given an instance X of F×3 (3), define a graph with parallels f(X ) as follows. For a

directed edge (x, y), write −1 · (x, y) for (y, x). Let T4 be the infinite 4-regular tree, and

fix some vertex v0 ∈ T4 incident to (directed) edges ei = (v0, vi) for i = 1, 2, 3, 4. Then the
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graph of f(X ) is a large disjoint union of copies of T4:

V = {(v, x) : v ∈ T4, x ∈ X or x ∈ RX for some R}

(v, x)E(v′, x′) :⇔ vEv′ and x = x′.

And, the parallels of f(X ) are as follows:

1. For e = (x1, x2, x3) ∈ RXa1,...,a4 , ((v0, xi), (v1, xi)) is parallel to ai · ((v0, e), (vi, e)),

2. For e ∈ RXa1,...,a4 and e′ ∈ RXb1,...,b4 , ((v0, e), (v4, e)) is parallel to (a4b4) · ((v0, e
′), (v4, e

′))

Suppose o is a balanced orientation of f(X ). Because of the parallels in item (2), for

e ∈ Ra1,...,a4 , whether ((v0, e), (v4, e)) is in o or not only depends on a4. Possibly replacing o

with its opposite orientation, we may assume ((v0, e), (v4, e)) ∈ o if and only if a4 = 1. For

any edge e in the graph of f(X ) define

g̃(e) =

 1 e ∈ o

−1 otherwise

Then, I claim that X has a solution given by g(x) = g̃((v0, x), (v1, x)). Indeed, if e =

(x1, x2, x3) ∈ RXa1,a2,a3,a4 , then by the parallels in item (1) above g(xi) = ai · g̃((v0, e), (vi, e)).

By our normalization, g̃((v0, e), (v4, e)) = a4. And, since o is balanced,
∑

i g((v0, e), (vi, e)) =

0.

Conversely, if X has a solution g, we get a partial balanced orientation o of f(X ) by

setting

((v0, x), (v1, x)) ∈ o⇔ g(x) = 1

for x ∈ X , and for e = (x1, x2, x3) ∈ RXa1,...,a4 and i = 1, 2, 3,

((v0, e), (vi, e)) ∈ o⇔ aig(xi) = 1

and

((v0, e), (v2, e)) ∈ o⇔ a4 = 1.
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Then o assigns an orientation to every edge which occurs in the set of parallels of f(X ),

and every vertex is incident to either 1 or 4 edges assigned an orientation by 0. Then since

the graph of f(X ) is acyclic and has a smooth connectedness relation, o extends to a balanced

orientation on all of f(X ).

Of course all of the complexity in the above construction is carried by the parallels.

We would like to compute the complexity of graphs with balanced orientations, or of Borel

LCLs in general, but these are not in general exactly equivalent to CSPs. Indeed every

NP-language is equivalent to an LCL.

Problem 3.4.10. Is the Borel version of every NP-complete LCL Σ1
2-complete?

3.5 Essentially classical CSPs

From the point of view of descriptive set theory, essentially classical structures are trivial.

Interestingly, though, these structures turn out to be exactly the width 1 structures from

computer science, i.e. those solved by arc-consistency. We first give a characterization of

arc-consistency which is convenient for reflection arguments.

Definition 3.5.1. For an instance X of D, a say f : X → P(D) is closed if,

(∀(x1, ..., xn) ∈ RX , i ≤ n, a ∈ D)
∧

e∈π−1
i (a)

e ̸∈ R∖ Πjf(xj) ⇒ a ∈ f(xi).

The closure of f is function f obtained by iteratively adding points to each f(x) to satisfy

the above condition.

A good witness for X is a closed function f so that, for all x, f(x) ̸= D.

So, a structure is width 1 iff every structure with a good witness has a solution. And, X

has a good witness iff the closure of ∅ is a good witness. Recall Theorem 3.2.11 says that

a structure is width 1 if and only if it has a totally symmetric polymorphism of arbitrarily

high arity.
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Theorem 3.5.2. If D is a finite width 1 relational structure, then CSPB(D) is essentially

classical and effectivizable.

Proof. Suppose X is an arc-consistent ∆1
1 instance of X . We first show that X has a ∆1

1

1-minimal witness, then we mimic the proof that X has a solution to get a ∆1
1 solution.

Write Φ(f) to mean that f is a good witness for X . Note that, if f is Σ1
1, so is f̄ . Also Φ

is Π1
1 on Σ1

1, so the first reflection [Mar19, Theorem 2.27] theorem says any Σ1
1 set satisfying

Φ is contained in a ∆1
1 set satisfying Φ. Since taking the closure and applying the reflection

theorem can be done uniformly in the codes we have an increasing ∆1
1 sequence of sets

f0 = ∅ ⊆ f 0 ⊆ f1 ⊆ f 1 ⊆ f2...

where each Ai is ∆1
1 and satisfies Φ. Then f̃ :=

⋃
i fi is a ∆1

1 good witness for X .

Let N be the largest arity of a relation in D and let T be a totally symmetric polymor-

phism of D of arity n ≥ |D|×N . By the Lusin–Novikov theorem, there is some f : X → Dn

so that

D ∖ f̃(x) = {f(x)1, ..., f(x)n}.

I claim that T ◦ f is a solution to X . To see this, suppose (x1, ..., xk) ∈ RX , let M be an

k × n matrix whose columns are in R and whose rows enumerate Uxi
, and let σi be the ith

row of M . This possible since n ≥ |D|×k and f̃ is a good witness. Then by total symmetry

T ◦ f(xi) = T (σi) and since T is a polymorphism, (T ◦ f(x1), ..., T ◦ f(xk)) ∈ R.

The converse requires a little more work. A theorem of Feder and Vardi says that a

structure is width 1 if and only if it admits a basis of acyclic structures. So, if D is not

width 1, there is some unsolvable instance X where every acyclic lift of X has a solution.

We sharpen this a bit to find an instance X with a point x so that any acyclic lift of X has a

solution, but there is an acyclic lift which has a solution that is constant on the fiber over x.

Then a modification of the G0 construction gives an acyclic lift of X with no Borel solution.
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Definition 3.5.3. A simple path in X is a path (x1, (e1, R1), ..., (en−1, Rn−1), xn) so that

(x1, (e1, R1), x2, (e2, R1), ..., xn−1, (en, Rn)) is an injective sequence.

A cycle is a simple path (x1, (e1, R1), x2, (e2, R2), ..., xn) with x1 = xn A structure is

acyclic if it does not contain any cycles.

A lift of X is a structure Y with a homomorphism f : Y → X .

Note that if we impose any unary constraints on an acyclic structure it remains acyclic.

The following lemma is essentially equivalent to tree duality for width 1 structures [FV98].

We include a proof for completeness

Lemma 3.5.4. An instance X of D is arc-consistent if and only if any acyclic lift of X has

a solution.

Proof. First suppose that X is arc-consistent as witnessed by predicates Ux, Ux0(a), f : Y →

X is an acyclic lift of X . If A ⊆ Y is connected, i.e. there is a simple path between any two

points in A, and R(y1, ..., yn) holds with some yi ∈ A and yj ̸∈ A, then in fact {y1, ..., yn}

contains only one element of A and no other relations of Y meet A ∪ {y1, ..., yn} at some

element of {y1, ..., yn}. Otherwise would be able to find a cycle in Y . So, by arc-consistency,

any partial solution to Y with connected domain has an extension and a total solution must

exist.

For the other direction, we build acyclic structures which encode the steps in the obvious

algorithm for checking arc-consistency. Fix a linear order on pairs (x, e, R) where x is a

coordinate of e and e ∈ RX . Say (x, e, R) is bad for ⟨Ux : x ∈ X⟩ if x is the ith coordinate of

e = (x1, ..., xn) and Ux ̸= πi(R∩Ux1 × ...×Uxn). For i ∈ N and x ∈ X define U i
x inductively

as follows:

1. U0
X = D for all x

2. If there is no (x, e, R) bad for ⟨U i
x : x ∈ X⟩ set U i+1

x = U i
x for all x
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3. If (x, e, R) is the least bad triple set U i+1
x′ = U i

x for x ̸= x′ and set U i+1
x = πi(R∩Ux1 ×

...× Uxn).

By construction, X is not arc-consistent if and only if U i
x = ∅ for some i and some x. We

will show by induction that there are acyclic lifts f i
x : Y i

x → X and points yix ∈ (f i
x)−1(x) so

that

{g(yix) : g is a solution to Y i
x} = U i

x.

For the base case, let Y0
x and have domain {yix}, have RY

0
x empty if R has arity greater

than 1, and U(y0x) ⇔ U(x) for all unary relations, and set f i
x(yix) = x. If i is as in case (2)

of the induction or if x is not in the least bad triple at step i, set Y i+1
x = Y i+1

x . Otherwise,

suppose (x, (x1, ..., xn), R) is the least bad tuple at step i, x = xk, and define

Y i+1
x =

n⊔
j=1

Y i
xj

with relations

RY
i+1
x = {(yix1

, ..., yixn
)} ∪

n⊔
j=1

RY
i
xj

and SY
i=1
x is just the union of the S relations from each Y i

xj
for any relation S besides R.

Also, put f i+1
x (y) = f i

xj
(y) if y ∈ Y i

xj
and put yi+1

x = yix. Then, g is a solution Y i+1
x if and

only if g ↾ Y i
xj

is a solution to Y i
xj

for each j and (g(yix1
), ..., g(yixn

)) ∈ R. So by the inductive

hypothesis

{g(yi+1
x ) : g is a solution to Y i+1

x } = πk(R ∩ ΠjU
i
xj

)

= U i+1
x

In particular, if X is not arc-consistent, then U i
x = ∅ for some i, x, so some acyclic lift of

X has no solution.

To make sure the lift we construct in the next lemma is acyclic, we will need to introduce

some new, simply definable relations. This is no issue since, whenever D is width 1 or

essentially classical, so is any structure which is simply definable in D.
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Definition 3.5.5. For a structure D, let ⟨⟨D⟩⟩ be the structure with the same domain as D

equipped with every relation simply definable in D.

Note that ⟨⟨D⟩⟩ will not be finite even if D is finite. But since it is simply definable in

D, most theorems about finite structures will apply.

Lemma 3.5.6. If there is an instance of D which is arc-consistent but not cycle-consistent,

then there is a finite arc-consistent instance X of ⟨⟨D⟩⟩ with a finite acyclic lift f : Y → X

and some x ∈ X so that Y has no solution which is constant on f−1(x).

Proof. Similar to the arc-consistency algorithm sketched above, we can test cycle-consistency

of an instance X with arc-consistency witnesses Ux by iteratively going through each closed

path P = (x1, (e1, R1), ..., xn, (en, Rn), x1) with coordinates (j1, k1, ..., jn, kn), imposing a new

unary constraint UP (x1) on x1 with

UP (a1) :⇔ (∃a2, a3, ..., an)
∧
k

(Uxk
(ak) ∧ πik,jkRk(ak, ak+1)) ,

and then refining the witnesses to arc-consistency. Stopping this process one step early we

can assume X is arc-consistent but X ∪ {UP} is not arc-consistent.

By the previous lemma, there is an acyclic lift f : Y → X ∪ UP with no solution.

We can convert Y into an acyclic lift f ′ : Y ′ → X with no solution which is constant on

f−1(x1) as follows. Note that, since UXP = {x1}, UYP ⊆ f−1(x). For each y ∈ UYP introduce

new variables, z2,y, z3,y, ..., zn,y, and impose constraints πik,jkRk(zk,y, zk+1,y), Ux1(y), and

Uxk
(zk). And, extend f to f ′ by setting f(zk,y) = xk for each new variable zk,y. Then Y ′

is an acyclic lift of X . If g is a solution to Y ′ which is constant on f−1(x), then whenever

y ∈ UYP , g(z2,y), ..., g(zn,y) witness that g(y) ∈ UP , so g restricts to a solution to Y , which is

a contradiction.

Now with X and Y as above, a simple modification of the G0 construction gives an

acyclic lift Y0 of X which contains many copies of Y so that any Borel (in fact any Baire

measurable) map g : Y → D must be constant on the fiber of y in some copy of Y .
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Theorem 3.5.7. If D is finite and not width 1, then there is a Borel instance of D with a

solution but no Baire measurable solution.

Proof. We may assume D = ⟨⟨D⟩⟩. Either D is bounded width or, by Theorem 3.2.13, D

simply constructs F(3) for some finite field F. In either case, there is an arc-consistent but not

cycle-consistent instance of D. Then by the previous lemma, we can find X arc-consistent,

f : Y → X a finite acyclic lift, and x ∈ X so that Y has no solution which is constant on

f−1(x).

Let f−1(x) = {x1, ..., xn} and define an n-ary relation R by

R(a1, ..., an) :⇔ xi 7→ ai extends to a solution to Y .

Then, R is simply definable in D, any acyclic instance of R has a solution, and there is no

solution to any instance of R which constant on any tuple of R.

Fix a sequence ⟨σi : i ∈ N⟩ with σi ∈ {1, ..., n}i so that every string in {1, ..., n} extends

to some σi. Let Y0 be the instance of R with domain {1, ..., n}ω and

RY0(s1, ..., sn) :⇔ (∃1 ≤ i ≤ n, t ∈ {1, ..., n}ω)
n∧

j=1

sj = σ⌢
i j

⌢t.

Since Y0 is acyclic it has a solution. But suppose g : Y0 → D is Baire measurable.

There is some a ∈ D with g−1(a) nonmeager. Then g−1(a) is comeager in some basic

neighborhood Nσi
. Since the maps which cycle the (i + 1)th coordinate of a sequence are

self-homeomorphisms of Nσi
, there is some t so that (σ⌢

i j
⌢t) ∈ g−1(a) for j = 1, ..., n. But

then g is constant on some tuple which is a contradiction.

Corollary 3.5.8. The set of essentially classical structures is decidable.

Corollary 3.5.9. If D is essentially classical it is effectivizable.

Proof. If D is essentially classical, then by the above theorem D admits a totally symmetric

polymorphism. So by Theorem 3.5.2, D is effectivizable.
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3.6 Effectivizable CSPs

In this section, we give a number of examples of effectivizable structures. In particular we

show that any structure with a dual discriminator polymorphism is effectivizable. This is

modest progress, but it is enough to compute the complexity of any so-called smooth directed

graph and any Boolean structure except F2(3).

Proposition 3.6.1 (Folklore). Suppose that E has domain D and a dual discriminator

polymorphism. Then E is simply definable in the structure D with the following relations:

• Every unary predicate

• For a, b ∈ A, each predicate

Ra,b(x, y) :⇔ x = a ∨ y = b

• For f ∈ Sym(A), each predicate

Rf (x, y) :⇔ y = f(x)

Proof. Let T : D3 → D be the dual discriminator. It is straightforward to check these

relations are all preserved by T . Suppose that R ⊆ Dn is preserved by T . We first show

that R is a conjunction of binary predicates. Suppose that πi,j(a) ∈ πi,j(R). We check by

induction on |J | that πJ(a) ∈ πJ(R) for any J ⊆ {1, ..., n}. Pick some J with |J | = ℓ + 1

and pick J1, J2, J3 ⊆ J distinct with |J1| = |J2| = |J3| = ℓ. By induction, there are b1, b2,

and b3 ∈ R with πJi(bi) = πJi(a). Then, b := T (b1, b2, b3) ∈ R and for any j ∈ J , there are at

least 2 values of i with j ∈ Ji, meaning the majority of b1, b2, b3 agree with a in coordinate

j. Thus πJ(a) = πJ(b).

Now suppose that R is a binary relation which is invariant under T . We show that it is

a conjunction of relations of the above form. Let A = π2(R) and B = π2(R). Note that if
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a ∈ D can be paired with two different elements b, b′ so that (a, b), (a, b′) ∈ R, then for any

(c, d) ∈ R, we have

d((c, d), (a, b), (a, b′)) = (a, d) ∈ R.

So if a can be paired with two different elements of B, then a can be paired with with

anything in B. Thus R is the either A × B or the intersection of A × B with a relation of

the form Rπ or Ra,b.

Effectivization for CSPB(D) follows fairly easily from the main theorem of [Tho21].

Theorem 3.6.2. If D has a dual discriminator polymorphisms, then CSPB(D) is effectiviz-

able.

Proof. We may assume that D is of the form indicated in the previous proposition with

domain D = {1, ..., n}. Fix a ∆1
1 instance X of D. For f ⊆ N ×D, write Φ(f) to mean

1. f is a partial function, i.e. (∀x, y, z) ¬ ((x, y), (x, z) ∈ f, y ̸= z)

2. For all x ∈ X , unary predicates U with UX (x), and d ̸∈ U , (x, d) ̸∈ f

3. For all x, y ∈ X and a, b ∈ D with (x, y) ∈ RXa,b, if there is c ̸= a with (x, c) ∈ f then

(y, b) ∈ f (and likewise if (y, c) ∈ f for some c ̸= b then (x, a) ∈ f

4. For all x, y ∈ X and g ∈ Sym(D) with (x, y) ∈ RXf , if (x, a) ∈ f , then (y, g(a)) ∈ f

(and likewise, if (y, a) ∈ f , then (x, g−1(a)) ∈ f).

I claim that X has a (∆1
1) solution if and only if there is a sequence of (∆1

1) sets ⟨fi : i ∈ N⟩

such that Φ(fi) for all i and N =
⋃

i dom(fi). Then since the properties above are all closure

and independence properties the theorem follows by [Tho21, Theorem 3.6].

If f is a solution to X then f satisfies all of the above properties and dom(f) = N .

Conversely, suppose ⟨fi : i ∈ N⟩ is such a sequence and define

n(x) := min{i : x ∈ dom(fi)}, f(x) := fn(x)(x).
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We check that f preserves all of the relations in D.

• If UX (x) for some unary U , then by property (2) U(fi(x)) holds for all i with x ∈

dom(fi). Thus U(f(x)).

• If RXa,b(x, y), then suppose without loss of generality n(x) ≤ n(y). If fn(x)(x) = a, then

f(x) = a. If fn(x)(x) ̸= a, then by property (3) (y, b) ∈ fn(x), so n(x) = n(y) and

f(y) = b. In either case Ra,b(f(x), f(y)).

• If RXg (x, y), then suppose without loss of generality n(x) ≤ n(y). If (x, a) ∈ fi, then

by property (4), (y, g(a)) ∈ fi, so n(y) = n(x) and Rg(f(x), f(y)).

We can now generalize Corollary 3.4.5 to so-called smooth digraphs. If we could generalize

this to all directed graph, then we would have Conjecture 3.1.10 [BDJ15].

Corollary 3.6.3. If D is a directed graph with no sources or sinks (these are sometimes

called smooth digraphs), then CSPB(D) is effectivizable if and only if it is Π1
1 if and only if

D is tractable.

Proof. By a theorem of Barto, Kozik, and Niven [BKN09], for such graphs either D is

intractable or the core of D is a disjoint union of directed cycles. A disjoint union of cycles

is the graph of a permutation, so any tractable smooth digraph admits a dual discriminator

polymorphism.

We can also compute the complexity of most Boolean structures.

Corollary 3.6.4 (c.f. Schaefer’s theorem [Sch78]). If D is a structure on {0, 1}, one of the

following holds:

1. D has a totally symmetric polymorphism and CSP(D) is essentially classical
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2. D is pp constructible in 2SAT and CSPB(D) is effectivizable

3. D is intractable and CSPB(D) is Σ1
2-complete, or

4. D is pp constructible in F2 and vice versa.

Proof. We’ll take the opportunity to use a bit of a sledgehammer here. In the 1940’s Post

classified all clones on {0, 1}, see [Pos41]. By inspecting the minimal elements in the lattice

of clones, one can see that D falls into one of the following cases:

1. Pol(D) contains a constant function, ∨, or ∧

2. Pol(D) contains the majority function

3. Pol(D) ⊆ ⟨¬⟩ (the algebra generated by the negation function)

4. Pol(D) is one of the following: ⟨x⊕ y ⊕ z⟩ or ⟨x⊕ y ⊕ z,¬⟩.

All of the operations in the first case are totally symmetric. In the second case, CSP(D) is in

fact pp definable in 2SAT. Note that ⟨¬⟩ = Pol(N), where N is the not-all-equal predicate.

So in the third case, D is intractable. And either of the algebras in the last class correspond

to structures which are equivalent F2.

And, we have one last example.

Theorem 3.6.5. Let D be the structure on {r, p, s} equipped with all relations which are

preserved by the rock-paper-scissors operation, (⋆) (see item (6) after Definition 3.2.1). Then

Borel solutions to locally countable instances of D are effectivizable.

Proof. D is generated under pp definitions by the following relations:

• Rπ, the graph of the cyclic permutation π = (rps).

• R⋆(x, y, z) :⇔ x ∈ {p, s} ∧ (x = s ∨ y = z).
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Let X be a locally countable ∆1
1 instance of D with a Borel solution f̃ . Let A be the

1-minimal closure of ∅. Since X is locally countable, A is ∆1
1. Let Ux = {d : (x, d) ̸∈ A}.

Note that Ux is a witness to arc-consistency for X .

Say that x is fixed if |Ux| = 1 and critical if |Ux| = 2 and free otherwise. Let G be the

weighted directed Borel graph with edges (x, y) and (y, x) of weight 0 whenever R(z, x, y)

with z fixed and p ∈ Uz, edges (x, y) of weight 1 whenever Rπ(x, y), and edges (y, x) of

weight -1 whenever (x, y) is an edge of weight 1. Then, let d(x, y) be the sum of weights

along a directed path from x to y modulo 3 if such a path exists and ∞ otherwise. This is

well defined since X must be cycle-consistent. Note that if d(x, y) < ∞ and x is free (or

critical or fixed) then so is y. If d(x, y) = i < ∞ and f is a solution to X , we must have

f(y) = πi(x).

Define f as follows:

• for x fixed, set f(x) = a if a ∈ Ux

• for x critical with Ux = {a, b}, set f(x) = a ⋆ b

If d(x, y) = i and f(x) = a (in particular x is not free), then Uy = πi(Ux), so f(y) = πi(x).

And, if R⋆(x, y, z), we must have that x is not free. If x is critical, then Ux = {p, s}, so

f(x) = s and this instance of R⋆ is satisfied by any extension of f (in particular f is a partial

homomorphism). If x is fixed, then this instance of R⋆ will be satisfied by an extension g of

f if and only if g(y) = g(z).

So, we want to find a ∆1
1 function g on the free variables so that d(x, y) = i implies

g(y) = πi(g(x)). We know that we have a Borel such function (namely the restriction of f̃

to the free variables). And, such functions are effectivizable by the previous theorem.

This last example is archetypal of bounded width structures, which can be solved by

an intricate greedy algorithm. However Problem 3.1.14 remains open even if we restrict to
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locally countable instances. We end with a conditional result:

Proposition 3.6.6. If every bounded width structure is effectivizable and every structure

of the form F(3) is Σ1
2-complete, then the following are equivalent:

1. CSPB(D) is effectivizable

2. CSPB(D) is Π1
1

3. CSPB(D) is not Σ1
2-complete

Proof. (1) ⇒ (2) ⇒ (3) is clear. If (3) holds, then CSPB(D) must not pp construct F(3) for

any finite field F. In particular, Pol(F(3)) ̸∈ HS(Pol(D)), but then D is bounded width, and

(1) holds.

It is not clear how plausible the assumptions in this proposition are, but the resulting

equivalences are appealing.
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APPENDIX A

Codings and edge coloring

In this appendix, we prove that the set of Borel edge 3-colorable graphs is Σ1
2-complete. Since

edge coloring involves a restricted class of instances, this does not follow from Theorem 3.4.3,

but the classical proof that edge 3-coloring is NP-complete still adapts to the Borel setting.

We also take this as an opportunity to show in detail how to verify that a construction is

∆1
1 in the codes.

First, we recall the classical NP-completeness proof. Roughly, we will reduce 3SAT to 3

edge coloring by coding variables as pairs of edges, and the values that the variable can take

will be coded into whether the corresponding edges can receive the same color. We need

some lemmas.

Lemma A.0.1 (Inverter lemma). There is a graph I with distinguished edges a, b, c, d, e so

that a 3-coloring f of a, b, c, d, e extends to a coloring of H if and only if one of the following

holds:

f(a) = f(b) and f(e) ̸= f(c) ̸= f(d) ̸= f(e)

or

f(c) = f(d) and f(e) ̸= f(a) ̸= f(b) ̸= f(e)

Proof. Such a graph is pictured below in Figure A.1.

We will represent H diagramatically as in the right image of Figure A.1. In the following,

we will refer to a, b, c, d, and e as coding edges. And, we will not include the degree 1
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Figure A.1: An inverter component and diagram representation

vertices when we refer to vertices of H. (The coding edges will connect to vertices in other

components).

Lemma A.0.2 (Variable setting lemma). For any n, there is a graph Vn with n pairs of

distinguished edges ei,0, ei,1 so that a 3 coloring f of e1,0, e1,1..., en,0, en,1 extends to an edge

3-coloring of Vn if and only if one of the following holds

(∀i) f(ei,0) = f(ei,1)

or

(∀i) f(ei,0) ̸= f(ei,1)

Proof. An example of S4 is drawn in Figure A.2, with the ei,js being the eight edges connected

to vertices of degree one. One can build Sn for general n by following a similar pattern (or

chaining together copies of S4.)

As above, we will refer to the ei,js as coding edges and ignore the degrees one vertices in

the following.

Lemma A.0.3 (Or gate lemma). There is a graph O with three distinguished pairs of edges

ei,j for i = 1, 2, 3 and j = 0, 1 so that a 3 coloring f of the ei,j extends to a coloring of O if

and only if f(ei,0) = f(ei,1) for some i.
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Figure A.2: A variable setting component

Proof. Such a graph is shown in Figure A.3, where the ei,js are the 6 edges along the bottom

of the image.

H H H

Figure A.3: An or gate

Once again, we will refer to the ei,js as coding edges and ignore the degree one vertices

incident to coding edges.

Combining these lemmas, the reduction from 3SAT is straightforward

Theorem A.0.4. There is a polynomial time reduction from 3SAT to 3 edge coloring

Proof. Given an instance X of 3SAT in CNF, build a graph g(X ) with one copy of Sn for

each variable which appears in n disjunctions, one copy of O for each disjunction of X . Wire

each of the outgoing pairs of edge of each copy of Sn into the appropriate copy of O, passing
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them through a copy of H if the corresponding variable appears negated in the disjunction.

See Figure A.4 for an example.

By construction, an edge 3-coloring of g(X ) yields a satisfying assignment of X by as-

signing a variable True if the coloring agree on the outgoing pairs of edges in its copy of Sn

and False otherwise. And any satisfying assignment gives a partial coloring of the edges by

the same scheme, which then extends an edge 3-coloring.

Figure A.4: The reduction applied to (¬v1 ∨ v2 ∨ ¬v3) ∧ (v1 ∨ ¬v2 ∨ v3)

We will verify that the same construction can be carried out for locally finite instances

of Borel 3SAT. First, we fix a coding for Borel sets. The important point is Lemma A.0.7,

which lets us easily check that a construction is ∆1
1 in the codes.

Theorem A.0.5. There is a good ω-parameterization of Π1
1, i.e. a Π1

1 set U ⊆ ω × N so

that

1. For every Π1
1 P ⊆ N there is an e so that P = Ue = {x ∈ N : (e, x) ∈ U}.
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2. For every Π1
1 P ⊆ ωk ×N there is a recursive function S : ωk → ω so that, for n ∈ ωk,

(n, x) ∈ P ⇔ (S(n), x) ∈ U

Fix such a good ω-parameterization U .

Definition A.0.6. Fix a ∆1
1 set B. A simple code for B is a pair ⟨e, i⟩ ∈ ω2 so that

Ue = N ∖ Ui = B

for some good U .

A nice coding is a triple (C,DΠ,DΣ) where

1. C ⊆ ω is a Π1
1 set, referred to as the codes

2. DΠ,DΣ ⊆ ω ×N , DΠ is Π1
1, and DΣ is Σ1

1

3. For every e ∈ C, DΠ
e = DΣ

e

4. For every ∆1
1 set B ⊆ N there is a code e ∈ C with B = Dπ

e = DΣ
e

5. There are recursive functions f, g so that, for every B,

e is a nice code for B → f(e) is a simple code for B

⟨e, i⟩ is a simple code for B → g(e, i) is a nice code for B

One can obtain nice codes from the simple codes by a uniform application of separation.

See [Mos09, Section 3.3]

We’ll fix simple and nice codings for ∆1
1(N k) for all k, and for e ∈ C write De for DΠ

e .

Lemma A.0.7. Fix a ∆1
1 linear order ⪯ of N . The following maps are ∆1

1 in the codes:

1. (A,B) 7→ A ∪B
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2. (A,B) 7→ A ∩B

3. (A,B) 7→ A×B

4. A 7→ dom(A), where A is a relation with countable sections.

5. (A, f) 7→ f(A), where f is a countable-to-one function

6. A 7→ f where A is a relation with finite sections, and

f(x, i) = y ⇔ y is the ith element of Rx according to ⪯

That is, there is a function f : ω2 → ω so that, if e, i are nice codes for A and B, then f(e, i)

is a nice code for A ∪B (and likewise for the other items).

Proof. We’ll prove (1) and (4) and sketch (6), the other items are easy once you’ve seen the

general idea.

Using item (5) of the definition of nice codes, it suffices to show that, for our good

ω-parameterization U , there are ∆1
1 functions P, S so that, for any e, i, j, k ∈ ω, if

A = Ue = N ∖ Ui B = Uj = N ∖ Uk

then

UP (e,i,j,k) = N ∖ US(e,i,j,k) = A ∪B.

Define

RP (e, i, j, k, x) :⇔ (e, x) ∈ U or (j, x) ∈ U

RS(e, i, j, k, x) :⇔ (i, x) ∈ ω ×N ∖ U or (k, x) ∈ ω ×N ∖ U.

Then RP is Π1
1 and RS is Σ1

1. By item (2) of the definition of good ω-parameterizations,

there are recursive functions P, S so that, for any e, i, j, k ∈ ω and x ∈ N

RP (e, i, j, k, x) ⇔ P (e, i, j, k) ∈ U
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RS(e, i, j, k, x) ⇔ S(e, i, j, k) ̸∈ U

as desired.

Similarly, for item (4) we want ∆1
1 functions S, P so that, if ⟨e, i⟩ is a simple code for

a relation A ⊆ N 2 with countable sections, then ⟨S(e, i), P (e, i)⟩ is a simple code for the

domain of A. Define

RP (e, i, x) ⇔ (∃y ∈ ∆1
1(x)) (e, x, y) ∈ Ue

RS(e, i, x) ⇔ (∃y) (e, x, y) ∈ Ue

Note that RP is Π1
1 and RS is Σ1

1. By the effective perfect set theorem, if A is relation

with countable sections, and ⟨e, i⟩ is a simple code for A, then for any x, RP (e, i, x) ⇔

RS(e, i, x) ⇔ x ∈ dom(A). So, again we can find recursive functions as desired.

For (6), we use the following definition of f : f(x, i) = y if and only if

(∃y1, ..., yi ∈ Rx) [y1 ≺ ... ≺ yi = y]

and

(∀y1, ..., yi+1 ∈ Rx) [y1 ≺ ... ≺ yi+1 ⇒ yi+1 ̸= y] .

And, either quantifier can be taken to range over ∆1
1(x).

This lemma can be usually be used a black box without the need to delve into the details

of the coding.

Definition A.0.8. E is the set of (nice) codes for Borel graphs with Borel edge 3-colorings,

where we view a graph as a vertex set V ⊆ N and a symmetric subset of edges E ⊆ V 2.

That is E is

{⟨v, e⟩ ∈ C2 : De ⊆ D2
v and De is symmetric and Borel edge 3-colorable}

CSPlf
B (3SAT) is the set of codes for locally finite Borel instances of 3SAT with Borel satisfying

assignments.
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It follows from the comments following 3.4.3 that CSPlf
B (3SAT) is Σ1

2-complete.

Theorem A.0.9. CSPlf
B (3SAT) ≤B E.

Proof. The construction in Theorem A.0.4 works in the Borel setting. We will describe this

construction formally so that it is clear that GX is generated from X using operations from

Lemma A.0.7, and then use the Luzin–Novikov theorem to verify that this gives a reduction.

Fix an locally finite Borel instance X of 3SAT in CNF with variables V and constraints

C = {c1, ..., cm}. We may assume no variable shows up twice in any ci. We define the

following parameters:

• for a variable v, r(v) is the number of constraints v or ¬v appears in

• for any variable v, cv1, ..., c
v
r(v) lists the constraints v or ¬v appears in

• for any constraint c, vc1, v
c
2, v

c
3 lists the variables which appear in c

• N = {(v, c) ∈ V × C : ¬v appears in c}

The vertex set of Gx is

VX :=
⋃
v∈V

{v} × Sr(i) ∪
⋃
c∈C

{c} ×O ∪
⋃

(v,c)∈N

{(v, c)} ×H.

Note that VX can built from X and the components of O,H, and Sr(n) using products,

intersections, and unions. Since O,H, and Sr(n) all have computable codes, X 7→ VX is ∆1
1

in the codes.

The edge set of GX , EX , includes the following edges:

1. Any {x} × e ∈ V 2
X with e a non-coding edge

2. {(v, u), (c, w)} where v appears in c and u,w are on corresponding coding edges, i.e.

where c = cvi , v = vcj , (v, c) ̸∈ N , and u is on ei,k in Sr(v) and w is on ej,k in O for some

k ∈ {0, 1}.
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3. {(v, u), (v, c, w)} where (v, c) ∈ N , c = cvi , and either u is on ei,0 in Sr(v) and w is on a

in H or u is on ei,1 and w is on b.

4. {(v, c, w), (c, u)} where v = vcj , (v, c) ∈ N , and either u is on ej,0 in O and w is on c in

H or u is on ej,1 and w is on d.

Again, EX can built from codes for X , O, H, and Sr(n) using operations from Lemma

A.0.7, so X 7→ GX = (VX , EX ) is ∆1
1 in the codes.

As before, any Borel edge 3 coloring of Gx induces a Borel satisfying assignment of X by

setting a variable to True if the coloring agrees on corresponding pairs of edges and False

otherwise.

For the converse, suppose we have a Borel satisfying assignment of X . Then there is a

Borel partial coloring f of the corresponding edges in each copy of Sn which extends to a

not-necessarily Borel edge 3-coloring. On each copy of Sn, H, and O, there is are finitely

many edge colorings consistent with f . Using the Luzin–Novikov theorem, we can select a

such coloring on each of these components and get a Borel edge 3-coloring of GX .
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and Zoltán Vidnyánszky. “On Homomorphism Graphs.” arXiv: 2111.03683,
2021.

[BCG21b] Sebastian Brandt, Yi-Jun Chang, Jan Greb́ık, Christoph Grunau, Václav Rozhoň,
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[Pik21] Oleg Pikhurko. “Borel combinatorics of locally finite graphs.” arXiv: 2009.09113,
2021.

[Pos41] Emil Leon Post. The Two-Valued Iterative Systems of Mathematical Logic. Lon-
don: Oxford University Press, 1941.

[RV17] Mustazee Rahman and Bálint Virág. “Local algorithms for independent sets are
half-optimal.” Annals of probability., 45(3):1543–1577, 2017.

[Sch78] Thomas J. Schaefer. “The Complexity of Satisfiability Problems.” In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, p.
216–226, New York, NY, USA, 1978. Association for Computing Machinery.

[She84] Saharon Shelah. “Can you take Solovay’s inaccessible away?” Israel Journal of
Mathematics, 48:1–47, 1984.

[Sig10] Mark Siggers. “A strong Mal’cev condition for locally finite varieties omitting
the unary type.” Algebra Universalis, 64:15–20, 10 2010.

[Sol98] Slawomir Solecki. “Decomposing Borel sets and functions and the structure of
Baire class 1 functions.” Journal of the American Mathematical Society, 11, 07
1998.

131



[ST16] Brandon Seward and Robin D. Tucker-Drob. “Borel structurability on the 2-shift
of a countable group.” Ann. Pure Appl. Log., 167:1–21, 2016.

[SU13] Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory: a
Rational Approach to the Theory of Graphs. Dover Publications, Minola, N.Y.,
2013.

[Tay77] Walter Taylor. “Varieties Obeying Homotopy Laws.” Canadian Journal of Math-
ematics, 29(3):498–527, 1977.

[Tho21] Riley Thornton. “∆1
1 Effectivization in Borel Combinatorics.” arXiv:

2105.04063, 2021.

[Tho22] Riley Thornton. “Orienting Borel graphs.” Proceedings of the American Mathe-
matics Society, 150:1779–1793, 2022.
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