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Similarity-transformed perturbation theory on top of truncated

local coupled cluster solutions: Theory and applications to

intermolecular interactions.

Richard Julian Azar∗ and Martin Head-Gordon†

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,

University of California, and, Chemical Sciences Division,

Lawrence Berkeley National Laboratory, Berkeley CA 94720.

Abstract

Your correspondents develop and apply fully-nonorthogonal, local-reference perturbation theo-

ries describing non-covalent interactions. Our formulations are based on a Löwdin partitioning

of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local

CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If

considerations are limited to a single molecule, the proposed intermolecular similarity-transformed

perturbation theory (iSTPT) represents a frozen-orbital variant of the “(2)”-type theories shown to

be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on

the zeroth- and first-order amplitudes are explored in the context of large-computation tractability

and elucidation of non-local effects in the space of singles and doubles. To accurately approximate

CCSD intermolecular interaction energies, a quadratically-growing number of variables must be

included at zeroth-order. Keywords: intermolecular interactions, coupled cluster, perturbation

theory
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I. INTRODUCTION

With the formal foundations well-established for the routine computation of a host of

molecular properties in density-functional and wavefunction frameworks, quantum chem-

istry has undoubtedly emerged as a mature field with considerable predictive power in

the past few decades1. These advances coupled to ever-increasing improvements in com-

puting power have served to steadily shift its scope of applied focus to larger systems

of molecular clusters, extended surfaces, and even solvated biomolecules. To this end,

much emphasis has been placed on the development of low-scaling approximations to

high-level model chemistries, e.g., RI/density-fitting2–7 for two-electron integrals, explicitly-

correlated F12/R128–16 formulations, spin-component-scaled Laplace-transformed17,18, and

rank-reducing tensor decompositions19–27 in Möller-Plesset (MP) and coupled cluster (CC)

methodology, hybrid QM/MM28,29 embedding approaches, and domain fragmentation for

low-scaling local correlation methods.

Chief among the observables for which these efforts at economization have proved essential

are binding energies. Perhaps the most popular of non-supermolecular schemes is symmetry-

adapted perturbation theory (SAPT),30,31 a many-body generalization of Heitler-London

theory that treats the two-body Hamiltonian as a perturbation to monomer wavefunctions

complete to some order in MP theory, furnishing decomposable interaction energies directly,

that is, without subtraction. It has seen immense development in wavefunction and DFT32,33

flavors, and even extention to the realm of molecular clusters with the use of pairwise-additive

many-body techniques34–36. Among the most sophisticated coupled cluster-level variants are

the CCD+ST(CCD)37,38 and SAPT(CCSD)39–42 methods. The former computes dispersion

by solving intermonomer ring-CCD equations on top of CCD monomers and treats singles

and triples perturbatively, and has recently been treated in a reduced ”natural” orbital

representation43. The latter computes dispersion from frequency-dependent polarizabili-

ties of CCSD-level monomer wavefunctions and adds non-iterative triples and quadruples.

These methods have shown themselves to be very accurate when applied to two-body in-

teractions, but extending SAPT in its purest form to non-pairwise-additive interactions has

proved far from straightforward34–36,44–47. Other direct methods tackle the problem via ap-
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plication of the many-body expansion (MBE) separating pairwise, three-body, and higher

terms. The fragment MO method48–51, many-overlapping-body52, divide-and-conquer,53–57

and incremental58 approaches, for instance, have produced encouraging energetics for calcu-

lations on large clusters, and are generally amenable to large-scale parallelization. Moreover,

low-order truncations can furnish surprisingly accurate results while obviously conferring

huge computational savings.

Non-constructive/supermolecular techniques generally seek to recover a given level of

canonical treatment of the supersystem by carving out domains defining individual correla-

tion problems, oftentimes in localized orbital representations. Such approaches are motivated

by the inherent locality of dynamical correlations, and thus, neglecting distant correlations

should effect lower scaling of the supermolecular computation without forfeiting accuracy.

Pulay59 and Saebø60–63 did the first seminal work in this field, developing an iterative MP2

scheme retaining only a quadratic number of domain-pair amplitudes but recovering more

than 98% of the canonical correlation energy in a basis of localized occupied orbitals and a

non-orthogonal, redundant set of atomic orbitals projected into the virtual space (termed

PAOs). Their approach has since inspired the non-iterative fixed-domain dimers- (DIM)

and triatomics-in-molecules (TRIM)64,65 models for MP2-level correlation and a fourth-

order triples model66,67, the local coupled cluster methods68–73 introduced by Werner and

Schütz and developed by others, purely AO-based algorithms74–77, and mixed CC-MBPT

approaches78–80. Other local correlation methods similar in spirit to the MBE approaches

eschew non-orthogonality and its attendant complications, e.g., linear-dependence, rank di-

lation, and retention of overlap integrals in the spin-orbital equations, opting instead for

localized orthogonal orbitals and domain specification based on the relative locality of the

occupied subspace, allowing straightforward use of standard-package codes and facile paral-

lelization of completely independent (albeit sometimes overlapping) subdomain calculations.

These include the divide-expand-consolidate approach81–83, natural linear scaling coupled

cluster84,85, the clusters in molecules86,87 method, and other higher-order methods88,89.

In our view, some qualities a local correlation model should possess include:

• Simple, physically-motivated domain identification

• Monotonic convergence to the (upper-bound) untruncated/canonical correlation energy

as the model space is augmented to full-rank
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• A consistent treatment of occupied and virtual subspaces

• No use of empirical parameters or numerical tolerances

• Significant cost-savings relative to the canonical result while remaining accurate for

relative energies

• Extension (at least in principle) to arbitrary correlation rank

• Guaranteed smoothness on the potential energy surface

In this work, we introduce a hierarchy of local correlation theories which we feel satisfies

all of the above criteria. Guided by the ethos of perturbation theory, we assume that

the intermolecular interaction energy is substantially smaller than the total energy. Mak-

ing use of Löwdin partitioning90–94, we define a zeroth-order wavefunction as the solution

of truncated, non-orthogonal, molecule-centered coupled cluster equations of at most a

quadratic number of variables, and treat the non-local excitations using second-order sim-

ilarity transformed perturbation theory (STPT). Our reference determinant shall be built

from absolutely-localized molecular orbitals (ALMOs)95–100, determined as the variational

solution of locally-projected (SCFMI) equations95,96 constraining the coefficient matrix to be

block-diagonal in the molecules. Such a reference has treated induction effects to infinite-

order (or satisfied Brillouin’s condition on-site), but remains an upper bound to canonical

Hartree-Fock (HF), increasingly accurate as inter-site Brillouin matrix elements vanish, e.g.,

for interactions between insulators or interactions approaching the long range. The theory

necessary to precisely specify our models is developed in Sec. II.

With a series of test applications, in Sec. III we explore the extent to which our mod-

els represent attractive non-iterative alternatives to canonical MP2 where an absence of

higher-order terms is responsible for a poor description of dispersion101,102. First, we uncover

general properties of our intermolecular STPT models as applied to elementary dispersion

interactions, including the convergence behavior of the binding energy and terms on basis set

extension, BSSE effects, and performance on application to small clusters. A discussion of

intra- and intermolecular relaxations due to the interplay of orbital choice and single excita-

tions entering in the correlation problem will follow. Next, we discuss potential tractability

gains achieved on subspace orthogonalization. In a final assessment of the generality of our

conclusions, we compute statistical errors on application to the A24103 data set of various
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non-covalent interactions. Our conclusions are summarized in Sec. IV.

II. THEORY

Coupled cluster (CC) theory is an exponential reformulation of the Schrödinger equation

that, unlike its linear parent, remains size-extensive after truncation. The CC ground state,

|Ψ⟩ = eT̂ |0⟩ is written as the action of a cluster operator, T̂ on a single reference configuration,

|0⟩. The cluster operator generally contains amplitudes, t, in the full Hilbert space of n-

electron Slater determinants, |h⟩ = |0⟩ + |s⟩ + |d⟩ + |t⟩ + |q⟩ + ... , where |s⟩ are single

substitutions from |0⟩, |d⟩ are doubles, and so forth. Substituting the CC ground state into

the Schrödinger equation, premultiplying by e−T̂ and projecting with all ⟨h|, yields the exact

ground state energy, E, and amplitudes, t:

E = ⟨0|e−T̂ ĤeT̂ |0⟩ = H̄00, and (1)

0 = ⟨h|e−T̂ ĤeT̂ |0⟩ = H̄h0, (2)

where we have introduced the similarity-transformed Hamiltonian, H̄ = e−T̂ ĤeT̂ , and its

matrix elements. Similarity transformations leave the eigenvalue spectrum of Ĥ unchanged,

implying a coupled cluster solution of full rank n will be equivalent to full configuration

interaction (FCI). Such a limit is obviously infeasible, so eqs.1 and 2 are generally treated in

a small subspace of |h⟩, denoted as |p⟩, solving H̄p0 = 0 for tp and neglecting all projections

onto the complementary space, denoted as |q⟩.

A. Similarity transformed perturbation theory

Viewing a solution to a standard low-rank CC problem in |p⟩ as a well-defined zeroth-

order wavefunction, we can account for q-space components non-iteratively, using perturba-

tion theory as follows. The vector of subspace cluster amplitudes, tp, defines H̄, and we

seek approximations to the energy and eigenvectors of H̄, not just in the subspace |p⟩, but

in the full space |h⟩. Due to the similarity transformation, there are distinct right and left

eigenvectors, which we denote as r̂|0⟩ and ⟨0|̂l†, with biorthogonal amplitudes r and l respec-
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tively. The transformed Schrödinger equation, H̄ r̂|0⟩ = Er̂|0⟩ is projected with ⟨h| to yield

the matrix form, H̄r = Er. The energy itself is obtained by premultiplying by the adjoint of

the left eigenvector amplitudes:

E = l†H̄r. (3)

Splitting H̄ = H̄(0) + H̄(1), r = r(0) + r(1)+..., and l = l(0) + l(1)+..., and expanding eq. 3, we

obtain corrections to the energy through second-order:

E(0) = l†(0)H(0)r(0),

E(1) = l†(0)H(1)r(0), and

E(2) = l†(0)H(1)r(1).

(4)

We will choose H(0) = H̄pp + Fqq, H
(1) = H̄pq + H̄qp + V̄qq + F̄qq − Fqq, r

(0) = 1p, and

l(0) = (1p +Λp), where Λp are the left-hand amplitudes from the coupled cluster pseudo-

Lagrangian104–106. With these choices, we’re guaranteed i) a zeroth-order eigenfunction of

the transformed Hamiltonian equivalent to the p−space coupled cluster energy, E(0) = ECC,

ii) E(1) = 0 since q- and p-space determinants cannot connect across the first-order Hamil-

tonian, and iii) uncoupled first-order amplitude equations following a basis transformation

diagonalizing the energy difference.

Identifying the scope of |p⟩ determines the correlation model. Taking |p⟩ = |0⟩+ |s⟩+ |d⟩,

|h⟩ = |t⟩+ |q⟩, and H
(0)
qq = F̄qq, for example, one obtains the “(2)” correction to CCSD107 of

Gwaltney et. al. A choice of bare Fqq instead gives the “(2)TQ”
108–110 corrections of Hirata.

Neglecting quadruples, approximating Λ = t†, and retaining only binary contractions in the

triples moment, one obtains CCSD(T). Though all are orbitally-invariant, a transformed one-

body operator in the q space requires a fifth-order transformation to a set of biorthogonal

eigenstates to diagonalize the amplitude equations. We therefore take the untransformed

operator in the q space here.

After a change of basis and expansion of eq. 3, the equations for the first-order wavefunc-
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tion are

D(0)
ss r

(1)
s = H̄

(1)
s0 + H̄(1)

ss r
(0)
s + H̄

(1)
sd r

(0)
d + H̄

(1)
st r

(0)
t ,

D
(0)
ddr

(1)
d = H̄

(1)
d0 + H̄

(1)
ds r

(0)
s + H̄

(1)
ddr

(0)
d + H̄

(1)
dt r

(0)
t + H̄

(1)
dqr

(0)
q ,

D
(0)
tt r

(1)
t = H̄

(1)
t0 + H̄

(1)
ts r

(0)
s + H̄

(1)
td r

(0)
d + H̄

(1)
tt r

(0)
t + H̄

(1)
tq r

(0)
q , and

D(0)
qq r

(1)
q = H̄

(1)
q0 + H̄

(1)
qdr

(0)
d + H̄

(1)
qt r

(0)
t + H̄(1)

qq r
(0)
q .

(5)

where D
(0)
qq ≡ {E(0)1qq− H̄

(0)
qq}. Applying these to the expression for the second-order energy

above, we obtain

E(2) = H̄
(1)
0s rs

(1) + H̄
(1)
0s rd

(1)+(
Λs

(0)
)
H̄(1)

ss rs
(1) +

(
Λd

(0)
)
H̄

(1)
ds rs

(1) +
(
Λs

(0)
)
H̄

(1)
sd rd

(1) +
(
Λd

(0)
)
H̄

(1)
ddrd

(1)+(
Λs

(0)
)
H̄

(1)
st rt

(1) +
(
Λd

(0)
)
H̄

(1)
dt rt

(1) +
(
Λd

(0)
)
H̄

(1)
dqrq

(1).

(6)

The generality of a similarity-transformed perturbation theory no doubt affords one a

flexible framework within which various correlation models can be dreamt up and, as has

been discussed, where others can be subsumed. It has proven itself a natural framework

for extending active-space correlation to the external domains of orbital-optimized111,112 and

pair references113,114, excited-state theories115–118, and other formulations. Below, we couch a

description of intermolecular interactions in a (2)-type model partitioning the configuration

space to obtain molecule-centered coupled cluster states as zeroth-order wavefunctions.

B. Nonorthogonal local correlation models for clusters using STPT

Beginning with a solution to the ALMO SCF problem, call it |0⟩, we restrict the pri-

mary space to include |0⟩ and the set of singly- and doubly-substituted determinants where

excitations are confined to one molecular site,

|p⟩ = |0⟩+ |s{ia}⟩+ |d{iajb}⟩, (7)

where the braces indicate that the associated indices are restricted such that all are associated

with a single molecule (which we will also refer to as a “center”). Its complement includes two-

center single excitations through four-center double excitations, as well as full-rank triples,
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quadruples, etc., though in the present work we choose to restrict our attention to singles

and doubles in order to benchmark non-locality errors against standard CCSD,

|q⟩ = |s{i}{a}⟩+ |d{ia}{jb}⟩+ |d{i}{a}{jb}⟩+ ...+ |d{i}{a}{j}{b}⟩. (8)

Applying this Hilbert-space partitioning and the same definitions as above for the Hamilto-

nian and the left and right zeroth-order states to eqs. 4, we obtain a coupled cluster-quality

description of local excitations, and a non-iterative treatment of the interaction complete to

fourth order in MP theory. Because the number of p-space variables scales linearly with the

number of molecules, we refer to this theory henceforth as the “linear” model. Its instructive

value notwithstanding, we shall expect to find this model wanting when higher-order corre-

lations become significant.

Given free rein to specify |p⟩, one can imagine developing a hierarchy of schemes augment-

ing it to completeness in the space of singles and doubles, whereby the zeroth-order solution

would be exact and there would be no perturbative correction to the energy and wavefunction.

A first logical improvement to the linear reference would be to include a quadratic number

of dispersion-type configurations explicitly coupling two bodies, but confining hole-particle

excitations to emanate from either center, e.g., {|d{ia}{jb}⟩}, in the reference space. Such an

ansatz is reminiscent of the DIM-MP2 model for atom-centered local correlations64,65, and

an evaluation of the zeroth-order energy with first-order amplitudes should produce exactly

that model. Promoting this class of excitations from a fourth- to an infinite-order treatment,

we should expect to recover the bulk of the truncation error in dispersion interactions, where

inductive and dative/charge-transfer-type effects are vanishing and repulsions dominate the

mean-field interaction.

Further augmentation of the p space with a quadratic number of non-local singles (nls), e.g.

{|s{i}{a}⟩}, is expected to relax the local-orbital reference with respect to inter-site occupied-

virtual rotations, recovering the bulk of the truncation error in cases where charge-transfer

effects - which are omitted in the ALMO reference determinant - are substantial.

Still better, adding in the remaining non-local doubles defines a quartic model with the

same number of variables as canonical CCSD, which is of course equivalent if |0⟩ = |HF⟩.

This model shall thus serve as a useful Hylleraas bound to assess the performance of our
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model |d⟩ |s⟩
linear {iajb} {ia}

linear+nls {iajb} {i}{a}
quadratic {ia}{jb} {i}{a}
quartic {i}{a}{j}{b} {i}{a}

TABLE I: Model specifics. Enclosed indices are restricted such that they are all associated
or tagged to a single molecule (or “center”). Each model is named for its cost-scaling in the

number of monomers.

upper-bound truncation models. We summarize their properties in Table I.

Since our models are defined in a Hilbert space of excitations from a non-orthogonal

ALMO reference, we shall derive working equations for the p-space CC reference, and the

q-space perturbation correction that make no assumption of spin-orbital orthogonality. We

emphasize that the following equations are appropriate in any representation and reduce ex-

actly to the conventional expressions with orthogonal orbitals diagonalizing the Fock matrix

in the occupied and virtual sub-blocks. We begin in the biorthogonal119,120 representation

where given local occupied and virtual orbitals are covariant. Where they occur, repeated

indices imply Einstein summation and contra- and covariant indices may be inter-converted

by multiplication with the overlap gpq or the inverse overlap gpq metric, e.g., Cij
ab = gikgjlCklab.

Given any choice of |p⟩, the symmetric component of the zeroth-order energy and amplitude

equations in the natural representation are

E(0) = ECCSD = f i
at

a
i +

1

4
vijabt

ab
ij +

1

2
vijabt

a
i t

b
j,

⟨ai |H̄|0⟩ = fa
b t

b
i − tajf

j
i + Aa

i (t1, t2) = 0, and

⟨abij |H̄|0⟩ = fa
c t

cb
ij + f b

dt
ad
ij − tabkjf

k
i − tabil f

l
j +Bab

ij (t1, t2) = 0.

(9)

In eqs.9, it is understood that the index pairs included in ⟨ai | and ⟨abij | are restricted according

to the definition of |p⟩. Spin-orbital expressions for the second-rank tensor, Aa
i , and the

fourth-rank tensor, Bab
ij , in the covariant integral representation are given in Appendix A 1.

Applying the virtual-block metric to eliminate the left-hand inverses and the occupied

metric to bring the amplitudes to contravariance, we recast the above equations in the co-
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variant integral representation and regroup terms obtaining,

ECCSD = fiat
ai +

1

4
vijabt

abij +
1

2
vijabt

aitbj,

{fjigab − fabgij}tbj = Aai(t̄), and{
{fljgbd − fbdgjl}gkigac + {fikgac − facgik}gbdgjl

}
tcdkl = Babij(t̄).

(10)

With orthogonal orbitals, Kronecker deltas would replace the metrics and we’d need only

pseudocanonicalize the orbitals to uncouple the amplitude equations. In a basis of non-

canonical, non-orthogonal orbitals, our task will thus be to find a transformation that simul-

taneously orthogonalizes and pseudocanonicalizes the orbitals. Exploiting the direct-product

structure of eq. 10, we define G(ia)(jb) = gijgab and D(ia)(jb) = {fijgab−fabgij} for convenience

and rewrite the equations combining hole-particle pairs into compound indices “(ia)”. This

will be useful for thinking about pairwise truncations in our model spaces later on.

D(ia)(jb)t
(jb) = A(ai)(t̄), {D(bj)(ld)G(ia)(kc) +G(bj)(ld)D(ia)(kc)}t(kc)(ld) = B(ai)(jb)(t̄). (11)

Applying the transformation T
(ai)
(AI) = G

− 1
2
(ai)

(jb) U
(jb)
(AI) where U

(jb)
(AI) diagonalizes the energy-

difference direct product, the amplitude equations assume a convenient diagonal form, Dpt̄
p =

Rp. Without making use of sparse linear algebra solvers, the diagonalization scales as O(P )3,

where P is the number of correlated occupied-virtual pairs. The amplitudes must be back-

transformed before updating the right-hand side, and special care must be taken to ensure all

contractions in RP respect the covariant integral representation, keeping the amplitudes con-

travariant. Moreover, consistent formulation of truncated flavors of eq. 11 requires that the

two-particle direct product be formed in the same basis at the outset. For example, consider

the quadratic model detailed above. There, the amplitude equations take a two-center metric

composed strictly of overlaps spanning up to two fragments. The scope of the correlation

problem is therefore fixed at the beginning by this designation.

The left-hand problem for Λ̂ is isomorphic to the right-hand projection problem and, as

such, must be consistently framed, e.g., if truncations were made in T̂ , the left-hand equa-

tions must also bear them out. We begin from the natural representation and again seek to

recast these in the more convenient covariant matrix integral representation. Projecting the

left-hand eigenvalue problem ⟨0|L̂H̄ = ⟨0|L̂E onto the p-space singles and doubles, we obtain
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the linear equations

X i
a ≡ ⟨0|H̄|ai ⟩+ λj

b⟨
b
j|H̄|ai ⟩+ λjk

bc ⟨
bc
jk|H̄|ai ⟩ = λi

aE, and

Y ij
ab ≡ ⟨0|H̄|abij ⟩+ λj

b⟨
b
j|H̄|abij ⟩+ λjk

bc ⟨
bc
jk|H̄|abij ⟩ = λab

ijE.
(12)

The spin-orbital equations for the matrix elements in the covariant representation are given

in Appendix A 2. After subtracting the diagonal and applying the virtual block metric to take

λ to the contravariant space and the occupied metric to make the left-hand side covariant,

we obtain the similar form

Xia = λjb{fjigab − fabgij}, and

Yijab = λklcd
{
{fljgbd − fbdgjl}gkigac + {fikgac − facgik}gbdgjl

}
.

(13)

The same transformation as before diagonalizes the energy difference. Again, the covariant

representation must be respected when updating the left-hand side and evaluating residuals.

By this point we have detailed the working equations sufficient to solve a non-orthogonal

CCSD problem permitting truncations. Regarding our local cluster amplitudes as zeroth-

order quantities, we proceed with a discussion of some features of the perturbation theory. As

in the case of the zeroth-order amplitude equations, the scope of the perturbation will be fixed

by the transformation applied to bring the first-order amplitude eqs.5 to diagonal form. Thus,

a first-order amplitude describing an excitation across fragments, e.g.,
[
r(1)

]{i}{jab}
, can only

be consistently determined in a basis where the corresponding direct-product elements are

taken into account, which means either the full-rank two-particle metric must be constructed

and diagonalized as above, or one may equivalently solve for the first-order amplitudes in

the biorthogonal representation. There, the amplitude equations are uncoupled after pseudo-

canonicalization of the biorthogonal (non-Hermitian) Fock operator, at the risk of obtaining

complex eigenvalues. Spin-orbital equations in the covariant integral representation for the

first-order amplitudes and intermediates are given in Appendix A 3.

III. APPLICATIONS

All models were implemented in a modified version of Q-Chem121,122 taking spin-orbital

expressions for matrix elements of the transformed Hamiltonian generated by applying Wick’s
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theorem in an independent Mathematica code. The implementation relies on the tensor li-

brary recently developed123 to facilitate Q-Chem’s conventional coupled cluster capabilities.

Scripts are available from your correspondents by request.

By our applications below, we aim to understand the extent to which non-local contribu-

tions will require an infinite-order treatment for prototypical interactions, or in other words,

which components of the interaction are sufficiently small to be confidently relegated to a

second-order STPT treatment. We take the truncated and quartic models to represent upper

and lower bounds to the coupled cluster energy. The task of the perturbation theory is to

bridge from one to the other. The success or failure of STPT in this task will be a measure

of the physical appropriateness of the truncated CC reference.

A. Helium dimer

We have chosen the helium dimer interaction for initial studies. Given that the zeroth-

order solution in any truncation scheme is exact at infinite separation for this case, we may

cleanly ascribe any binding to the STPT at finite separation. Moreover, the purely dispersive

nature of the interaction should, in the limit of a complete one-particle basis set, remove the

effects of the orbital reference (any binding at the SCF level is an artifact of BSSE, while the

constrained nature of the ALMO solution makes it an upper bound to full SCF), which is an

important consideration when appraising candidate models against conventional CCSD. We

plot He2 potential curves furnished by STPT models with linear and quadratic doubles plus

either linear or quadratic singles in Figure 1. It is evident that the difference in binding on

the inclusion of non-local singles is relatively small for any truncation model, so we focus first

on differences stemming from the level of treatment of the doubles. Examining the top two

curves, it is clear that augmenting the on-site model with dispersion-type amplitudes binds

the complex at zeroth-order, albeit shallowly and more distantly compared to the quartic

model, which overlays canonical CCSD here. Treating all non-local doubles by the (2) cor-

rection to the linear model produces a bound state, but with a protracted, shallow minimum.

On the other hand, an infinite-order description of dispersive doubles followed by a perturba-

tive treatment of the rest propels the quadratic model to near-exactness, with any difference

against the Hylleraas bound due to higher-than-fourth-order non-local effects in the doubles.

We conclude that infinite-order dispersive doubles are critical to describe this interaction,
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FIG. 1: He2 potential curves in meV, computed in the aug-cc-pVTZ basis124,125. The local
CCSD references (denoted ”(0)”) involve restricting some or all of the indices of the single

and double substitution amplitudes to single centers to lower the complexity, as
summarized in Table I. Indices enclosed in braces are restricted to a center: as in the case

of the {ia} singles.

while higher-order effects due to other non-local doubles are apparently negligible. Other

tests shall be required to demonstrate the generality of these conclusions.

Returning to the non-local singles, it is no real surprise that they’re uninteresting here,

since the canonical and ALMO SCF solutions are rapidly approaching equivalence away

from the repulsive wall. Nevertheless, we should expect in this incomplete basis that an

infinite-order treatment of singles should recover more of the mean-field locality error than

a perturbative treatment. To examine the difference, we compare the second-order contri-

bution to eq. 6 due to linear singles against the infinite-order non-Brillouin term of eq. 10

garnered by quadratic singles, taking quadratic zeroth-order doubles in both cases. These

are plotted alongside the ALMO error for the He2 dimer in Figure 2, where it is confirmed

that infinite-order singles recover more of the ALMO error than their perturbative cousins

across the entire coordinate. We expect this difference to play a more significant role in cases

where strong inter-fragment occupied-virtual interactions and/or inadequacies in the basis

set produce a poor local reference. Indeed, glancing at Table II, we see the largest reduction

in error due non-local singles in smaller, un-augmented basis sets. All errors have converged

by the augmented quadruple-zeta level where non-local singles do not improve binding, and

where including dispersion-type doubles in the p space results in a ten-fold reduction of error

relative to a second-order treatment.
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FIG. 2: Comparison of the magnitude of the energy recovered from perturbative (2) and
infinite-order (inf) treatment of the non-local singles for He2 in the aug-cc-pVTZ basis set

relative to the magnitude of the error in the ALMO SCF calculation (SCFMI) versus
unconstrained SCF. Perfect recovery would yield a singles curve identical with the ALMO

error curve.

basis {ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {i}{j}{a}{b} MP2 Ebind
CCSD

DZ 0.027 0.017 0.012 0.002 0.000 0.004 -0.131

TZ 0.071 0.057 0.019 0.005 0.000 0.017 -0.235

QZ 0.128 0.118 0.019 0.009 0.000 0.044 -0.315

aDZ 0.424 0.355 0.150 0.081 0.001 0.105 -1.081

aTZ 0.344 0.340 0.039 0.035 0.000 0.167 -0.749

aQZ 0.343 0.344 0.032 0.032 0.000 0.165 -0.763

TABLE II: CCSD/(aug-)cc-pVXZ interaction errors in meV relative to canonical CCSD for
He2 at its equilibrium internuclear separation. The “XZ” labels indicate the Dunning

cc-pVXZ basis124,125, while “aXZ” indicates the Dunning aug-cc-pVXZ124,125.

How does a consideration of basis set superposition error affect our conclusions? By con-

struction, our ALMO reference excludes BSSE, and all of our truncation models exclude from

the p space determinants coupling inter-site occupied-virtual pairs (see Table I). BSSE must

lurk in the non-local correction to the energy, then. To find out where, we computed BSSEs

by the standard Boys-Bernardi counterpoise (CP) correction126, compiling them alongside

the change in the error in Table III. In all cases, CP correction results in an error reduction

because intrinsic correlations are better represented. BSSE does not depend on the quality

of the doubles, but does depend on the order at which the non-local singles are treated,

with a non-zero contribution due to higher-order relaxation of t1 even at the quadruple-zeta

level. Taking the difference in BSSEs computed between any model with non-local singles

and the quartic model will give the contribution to BSSE of higher-than-second-order non-
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basis {ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {i}{j}{a}{b} HF+CCSD

aDZ 0.626 / -0.11 0.687 / -0.05 0.626 / -0.11 0.687 / -0.05 0.737 / 0.00 0.737 / -

aTZ 0.109 / -0.05 0.116 / -0.00 0.109 / -0.05 0.116 / -0.00 0.119 / 0.00 0.119 / -

aQZ 0.064 / 0.00 0.068 / -0.00 0.064 / 0.00 0.068 / -0.00 0.068 / 0.00 0.068 / -

TABLE III: BSSE correction (left)/change in binding error on counterpoise correction
(right) for (2) corrections for the He2 interaction at its equilibrium separation. “aXZ”

indicates the Dunning aug-cc-pVXZ basis. BSSE and binding error changes both decrease
as the basis set approaches completeness.

local doubles. These effects die more steeply with basis than non-local singles because their

contributions are much smaller.

The fact that BSSE is nearly invariant to the reference is very interesting, and seems to

have clear physical implications. We know from Table II that the perturbative correction

to the linear doubles model, {iajb}, performs quite poorly relative to the quadratic doubles

model, {ia}{jb}. Yet the BSSE error is recovered almost perfectly by the same approach.

By this, we infer that the BSSE is not associated with the subclass of pair correlations which

is treated poorly by the (2) correction to the linear model, and therefore must lie in the

charge-transfer-type doubles.

B. Larger helium clusters

Do the conclusions we’ve drawn pertaining to the dimer also hold for small clusters of

helium? Answering this question will inform us of the extent to which our local constructions

can capture non-local effects coupling more than two bodies, which may seem daunting at

first since, as the reader will recall, neither the linear nor quadratic model is able to couple

more than two molecules explicitly at zeroth-order. We saw for the dimer that a Hilbert-space

partitioning placing on-site and dispersion-type doubles in the p space and the rest in the q

space proved adequate to recover the full-rank result, or in other words, that a second-order

description of non-local doubles between two bodies sufficiently approximated the infinite-

order description. There is no apriori guarantee that this should apply to larger interactions

simply because the number of non-local doubles scales quartically with cluster size while the

number of zeroth-order variables can only increase quadratically. Of course, one may argue on

the basis of the intrinsic locality of dynamic correlations that the most important interactions

in a cluster of weakly-interacting subsystems, though they may not be the most numerous,
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{ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {i}{j}{a}{b} MP2 Ebind
CCSD

D3/n = 3 0.93 0.93 0.11 0.10 0.00 0.46 -8.70

Td/n = 4 1.10 1.08 0.12 0.10 0.00 0.55 -11.60

C4v/n = 5 2.68 2.58 0.33 0.24 0.00 1.30 -14.50

D5h/n = 7 5.39 5.17 0.71 0.50 0.00 2.62 -20.30

TABLE IV: Binding errors (kJ/mol) for the second-order perturbation theory with various
zeroth-order references (shown in the top row) relative to canonical CCSD/aug-cc-pVTZ.

Higher-order dispersion is required. Structures are pictured in Fig. 4.

are two-body in nature, and therefore expect to have no issue relegating effects entangling

more than two fragments to a perturbative treatment. If one adopts this optimistic outlook,

one should expect the cluster problem to look like a collection of weakly-coupled dimeric

ones, and thus expect the error to be most sensitive to two-body errors. Our local models,

by construction, put us in good position to examine higher-order effects in clusters. As we

have seen, the difference in performance between the linear and quadratic models reflects

higher-order dispersion-like excitations coupling two bodies, while the difference between the

quadratic and quartic models is a measure of the strength of higher-order inter-site couplings

entangling up to four bodies. For the remainder of this discussion, well refer to these as

higher-order local and non-local doubles. Taking an idealized linear cluster of helium atoms

as our test application, we plot the dependence of higher-order contributions on cluster size

in Fig. 3. In the limit of an infinite chain length, the one-dimensionality forces any two

n-body interactions to be identical, and also guarantees the number of important n-body

interactions to grow linearly, eliminating certain confounds in our benchmark. Examining

the plot, we conclude that most of the higher-order contribution is in the local doubles, and

moreover, that at least an infinite-order treatment there is indispensable.

We turn our attention to a set of more realistic clusters of helium, shown in Figure 4.

Examining the models’ binding errors relative to canonical CCSD in Table IV, we see in

all cases, again, that the interaction error decreases roughly ten-fold on the inclusion of the

quadratic dispersion amplitudes in the zeroth-order reference. The fact that a narrow 1-

3% error bracket is achieved suggests again that higher-order non-local effects on binding are

small. In particular, it is encouraging that the quadratic reference model yields errors roughly

a factor of five smaller than MP2 theory, while it is interesting that the linear reference model

yields errors roughly two-fold larger.
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FIG. 3: Infinite-order local (two-body dispersion-type) and non-local (two- through
four-body charge-transfer-type) doubles contributions to the correlation binding energy

computed as a function of helium chain length. Local doubles are responsible for the bulk
of binding effects. Calculations were performed in the aug-cc-pVDZ basis, and the

geometries use a He-He spacing of 3.0Å.

D3 / n=3 Td / n=4

C4v / n=5 D5h / n=7

FIG. 4: Hen clusters. Geometries were optimized at the CCSD/aug-cc-pVTZ level.

C. Role of orbital non-orthogonality

Studies on clusters invite the important consideration of whether further tractability gains

can be achieved by simplifying the implementation and costly operations required to diag-

onalize eq. 11 and compute matrix elements, all of which require contraction with explicit

overlap metrics in both subspaces (see the Appendix). Up to this point, we have taken a

reference determinant of fully non-orthogonal ALMOs. It shall be useful to consider the

extent to which orthogonalization of either or both orbital subspaces will distort the domain

definitions implied by the iSTPT and thereby degrade performance. Ideally, we’d prefer

to orthogonalize both subspaces since then we’d only have to diagonalize the occupied and

virtual blocks of the covariant Fock matrix to uncouple the amplitude equations and forgo
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dealing with any two-particle metric altogether, not to mention all one-body overlaps in the

matrix elements reduce to Kronecker deltas. This approach is, of course, not expected to

work, especially with the inclusion of more diffuse AO functions, a requirement for these

applications. We return to the helium dimer interaction, computing the change in the inter-

action error going to orthogonal orbitals, compiling the data in the first rows of Table V. The

insensitivity of the change in error to higher-order effects and a proportional increase with

basis set extension reflects difficulty (and foolhardiness) in imputing orthogonalized orbitals

to molecular centers, rendering a domain-definition framework ill-begotten. This is not to say

that a localization technique will do nothing to improve the result insofar as symmetric or-

thogonalization will treat all functions on even footing, arguably producing the worst possible

orthogonal functions. The second set of rows in Table V suggest the preliminary application

of a localization scheme127 furnishing atom-centered orthogonal virtuals and Boys-localized

occupied orbitals does not help much.

One nevertheless has recourse in the argument that electing to orthogonalize the occupied

space alone should not distort a given domain too much. This position is expected to be valid

in the regime where inter-site overlaps are small (as is surely the case in helium clusters),

and in cases where it minimally damages the locality, it will still effect speedup. The change

in error starting from this “half-non-orthogonal” set of ALMOs is given in the final rows of

Table V. Encouragingly, this procedure has no deleterious effects. Small “improvements” are

likely the consequence of delocalization degrees of freedom the ALMOs enjoy on orthogonal-

ization and should grow in proportion to charge-transfer and BSSE effects. We shall conduct

more tests below to assess whether this result is the general case.

D. Inductive and dative interactions

We have yet to explore any interplay between local t1 and the choice of orbital reference,

e.g., whether there is a synergy or perhaps redundancy in optimizing t1 beginning from

a reference of ALMOs for which an intra-fragment Brillouin condition has been satisfied,

e.g., induction has been treated to infinite-order. One can also imagine beginning from

an un-optimized reference determinant of “frozen” orbitals - constructed from concatenating
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orthogonalization {ijab}(2) {ijab}+ {i}{a}(2) {ia}{jb}(2) {ia}{jb}+ {i}{a}(2)
symmetric

aDZ 1.79 1.82 1.80 1.83

aTZ 2.15 2.76 2.17 2.77

aQZ 3.20 4.10 3.23 4.13

symmetric, localized

aDZ 1.78 1.81 1.79 1.82

aTZ 2.12 2.72 2.14 2.74

aQZ 3.15 4.04 3.18 4.06

half-non-orthogonal

aDZ -0.01 -0.01 -0.01 -0.01

aTZ -0.01 -0.01 -0.01 -0.01

aQZ 0.00 -0.01 0.00 -0.01

TABLE V: Change in He2 equilibrium interaction error on orthogonalization. Energies are
in meV. Orthogonalization of both subspaces destroys domain identification, whereas
orthogonalization of the occupied subspace alone preserves accuracy while conferring

cost-savings. “aXZ” indicates the Dunning aug-cc-pVXZ basis.

fragment-blocked coefficient matrices determined as the SCF solutions of molecules in vacuum

- and relying on the projective optimization of t1 to polarize the orbitals. Surely the leading

occupied-virtual Fock elements, which unambiguously account for mean-field polarization,

will play a significant role in the optimization, but the extent to which the simultaneous

optimization of correlations will influence the mean-field induction and vice versa is, at

this point, unclear. The other question is whether neglecting t1 altogether is compensated

by choosing an ALMO starting point, in which case there can be no t1-mediated mutual

interaction of induction and correlation at zeroth-order.

We shall have to be careful when addressing these questions to choose a test system for

which the ALMO solution is a good approximation to Hartree-Fock, e.g., where attractions

attributed to dative effects are negligible and polarizations dominate mean-field binding. To

this end we have chosen the interaction of helium with lithium cation. We conclude glancing

at the first column of Table VI that repulsions destabilize the “frozen” wavefunction (FRZ)

but are overridden by inductive effects described nearly perfectly going to the ALMOs, leaving

a small “delocalization” error relative to canonical HF of 0.3 kJ/mol. Beginning from a frozen

reference, we shift the onus onto intramonomer t1 to recover mean-field polarization.

We apply our local models to the interaction beginning from both references, with and
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SCF model HeLi+ NH3BH3

FRZ 1.24 105.20

ALMO -5.35 -44.30

HF -5.65 -146.54

TABLE VI: aug-cc-pVDZ Mean-field interaction energies for a predominantly inductive
interaction (HeLi+) and a predominantly dative interaction (NH3BH3) in kJ/mol. The
geometries were optimized at the CCSD/aug-cc-pVDZ level. The ALMO orbitals are
quantitative for the principally-inductive HeLi+ interaction, but largely inadequate to

describe the charge-transfer-dominated NH3BH3 interaction.

wavefunction CCD CCSD CCSD

truncation model {iajb} {ia}{jb} {iajb} {ia}{jb} {i}{a}{j}{b}
HeLi+(FRZ) 2.25 2.24 0.09 0.08 0.00

HeLi+(FRZ)+{i}{a} - - 0.05 0.04 -

HeLi+(ALMO) 0.10 0.09 0.09 0.08 0.00

HeLi+(ALMO)+{i}{a} - - 0.05 0.04 -

NH3BH3(FRZ) 112.26 102.08 63.17 53.72 14.12

NH3BH3(FRZ)+{i}{a} - - 31.26 23.38 -

NH3BH3(ALMO) 50.71 46.83 51.06 44.94 9.62

NH3BH3(ALMO)+{i}{a} - - 23.19 17.96 -

TABLE VII: Errors (in kJ/mol) relative to the canonical CCSD equilibrium binding energy
computed in aug-cc-pVDZ taking various zeroth-order models. ”{i}{a}” indicate the

inclusion of non-local zeroth-order singles amplitudes. CCSD indicates that intramolecular
singles are included at zero order, while they are excluded in CCD. ECCSD

bind (NH3BH3)=
177.07 kJ/mol. ECCSD

bind (HeLi+)= 6.65 kJ/mol. Intramolecular t1 emulates the effects of
ALMO optimization. Accounting for higher-order effects due to intermolecular t1 is

required to describe dative interactions.

without explicit singles in the correlation model. Interaction errors relative to canonical

CCSD are given in the first rows of Table VII. In stark contrast to the helium results, there

is virtually no dependence of the error on higher-order doubles. Moreover, it one arrives

at the same error opting either to begin from ALMOs and neglecting singles altogether, or

beginning from frozen orbitals and optimizing intramonomer t1. Including non-local singles

in the reference, we recover most of the remaining error, concluding, in line with our intuition,

that infinite-order one-body effects trump infinite-order dispersion-type doubles in this case.

Another important question to consider is the extent to which the perturbation theory

is viable when the ALMO reference is poor, such as when dative effects become important.

Here, larger-magnitude intermolecular fov elements and smaller band gaps no doubt elevate
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intermolecular occupied-virtual rotations to such a significance that the ALMO error is no

longer small. The reader will recall that for iSTPTs taking only on-site singles at zeroth-

order, charge-transfer effects first enter at second order, so a description of dative interactions

will likely suffer. We have chosen the C3v-symmetry ammonia-borane dative interaction to

measure the extent. It represents a particularly challenging case for a frozen-orbital reference

(see the second column of Table VI), unstable by a walloping two-thirds of its canonical

binding energy. ALMO relaxation adds some 150kJ/mol to the interaction, but it’s still

missing some 100kJ/mol of delocalization. Thus, a perturbative treatment beginning with

either local reference will have a lot to clean up.

Examining the second set of rows of Table VII, one can see that augmenting the local

models with (on-site) singles (i.e. compare the CCD vs CCSD entries) drastically improves

the frozen-orbital models while scarcely affecting the relaxed-reference results. There is a

similar improvement going from unrelaxed to relaxed orbitals neglecting local singles. Adding

non-local singles to CCSD on top of either a frozen or relaxed orbital reference reduces the

error against the quartic model most considerably, with the improvement relatively insensitive

to truncation model. In view of these applications, we anticipate that the inclusion of non-

local singles at zeroth-order will effect substantial accuracy gains when applied to cases where

the local reference is wanting.

E. Tests on the A24 dataset

Until now, we have focused on exposing properties of our local theories by applying them

to model interactions. It remains to be seen how general our conclusions are. To this end,

we apply our standard models and half-non-orthogonal variants thereof to the A24 dataset

of non-covalent interactions which includes a varied set of hydrogen-bonded (HB), mixed-

character (MIX), and dispersion-dominated (DISP) interactions103. Root-mean-square errors

(RMSE) measured against canonical CCSD are given in Table VIII. Refer to Table IX in

Appendix B for individual quantities. Calculations were performed in aug-cc-pVDZ using

the frozen core approximation.

Unsurprisingly, the quartic model furnishes energetics virtually identical to CCSD across

all interactions, so we can safely eliminate orbital-reference effects as a source of error. Thus,

truncation model errors are almost entirely due to the Hilbert space partitioning. Including
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{ijab}(2) {ijab}+ {i}{a}(2) {ijab}+ {i}{a}(2)hno {ia}{jb}(2) {ia}{jb}+ {i}{a}(2) {ia}{jb}+ {i}{a}(2)hno {i}{j}{a}{b} MP2

total 2.47 1.59 1.47 1.93 1.00 0.92 (0.65) 0.21 1.51 (1.32)

HB 3.68 1.88 1.63 3.01 1.21 1.05 (0.73) 0.21 1.38 (1.19)

MIX 2.51 1.76 1.59 1.93 1.09 0.96 (0.68) 0.25 1.38 (1.20)

DISP 1.09 1.13 1.09 0.67 0.71 0.67 (0.55) 0.17 1.72 (1.52)

TABLE VIII: A24 statistical errors in kJ/mol relative to CCSD. All calculations were
performed in the aug-cc-pVDZ basis. The “hno” (half non-orthogonal) subscript means the

occupied orbitals alone were symmetrically orthogonalized. Parenthetical numbers
represent counterpoise-corrected quantities. Models taking quadratic singles and doubles at

zeroth-order are nearly quantitative.

all singles in the p space substantially improves the RMSE for any doubles model, weighing

most heavily on hydrogen-bonded and mixed interactions, but minimally affecting dispersion,

as our test cases showed. Quadratic p-space doubles, on the other hand, yield significant im-

provements in the RMS errors for all classes of interactions. To beat MP2, these data suggest

quadratic singles and doubles at zeroth-order are required in the HB and MIX categories,

though any truncation model wins out for dispersion, suggesting steep improvement beyond a

first-order MP treatment there. Our most promising truncation model incorporates quadratic

singles and doubles at zeroth-order, and is superior to MP2 for all interaction types. The

margin is more than a factor of two for the dispersion interactions. Similar conclusions are

drawn for the half-non-orthogonal models, which again show uniform improvement relative

to the fully-non-orthogonal models. While our pilot code confines us to smaller basis sets,

we believe that improvements in our (2) results over MP2 in larger basis sets may be even

more dramatic, because, based on our helium results in Table III, intrinsic correlations are

better captured there. Indeed, counterpoise correction (given in parentheses) results in RMS

error reductions much larger for the half-non-orthogonal model than for MP2.

IV. CONCLUSIONS

We have developed and applied a hierarchy of fully-non-orthogonal coupled cluster corre-

lation models treating intermolecular interactions at second-order in similarity transformed

(Löwdin) perturbation theory. Having cataloged the importance of various higher-order con-

tributions in a host of applications, we have determined that infinite-order non-local singles

are indispensable for dative interactions, while quadratic doubles are required for disper-

sion, and, indeed, most other intermolecular interactions. Benchmark computations indicate
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our quadratic models nearly quantitatively approximate canonical CCSD, and further cost-

reduction is achieved without a loss of accuracy by orthogonalizing the occupied subspace.

Future directions include characterization of fully-non-iterative models substituting first-

order amplitudes for CCSD ones, and orbital optimization in the field of correlation to remove

the singles amplitudes, as well as analysis of n-body effects in clusters and extension of the

q space to include triple and quadruple excitations. In the regime where a perturbative

treatment is valid, ALMO-based iSTPT models taking only a linear or quadratic number of

zeroth-order CC variables represent natural routes to local coupled cluster theory.
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5 O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
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Appendix A: Spin-orbital expressions in the covariant integral representation

Occupied and virtual orbitals are indexed (i, j, k, l, I, J,K, L...) and (a, b, c, d, A,B,C,D...),

respectively, with upper-case indices implying external hole/particle excitations and lower-

case (internal) indices implying summation. The operator apq is an antisymmetrizer, e.g.,

apqXpqrs = Xpqrs − Xqprs. The tensors fpq and vpqrs are the Fock and antisymmerized inte-

grals, respectively. t, λ, r are the cluster, left, and first-order right amplitudes. The following

intermediates are used in the expressions below.

XaI
h = XajgjI (A1)

XAi
p = gAbX

bi (A2)

XabIJ
h = gIjX

abjJ (A3)

XABij
pp = gAagBbX

abij (A4)

XbBiI
hp = gijgbcX

cBjI (A5)

XbBiI
hp′ = gIjgBcX

bcij (A6)

Xbcij
hph = gjkX

bcik
hp (A7)

Xbcij
hpp = gcaX

baij
hp (A8)
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1. CCSD amplitude equations

AAI(t̄) =

fAI (A9)

fait
aAiI
hp (A10)

−1.fait
aI
h t

Ai
p (A11)

−0.5gaAvbiIjt
abij (A12)

−0.5gIjvaAbit
abij (A13)

−1.taivaAiI (A14)

−1.tajvaiIjt
Ai
p (A15)

−0.5gaAvbcijt
acijtbIh (A16)

taivabijt
AbIj
hp (A17)

−0.5gIkvabijt
abjktAi

p (A18)

−1.tbivaAbit
aI
h (A19)

−1.tbjvabijt
aI
h t
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BAB
IJ (t̄) =

−1.gaBaIJfbit
bJ
h taAiI
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−1.faiaABgjJt
Bi
p taAIj

hp (A22)

vABIJ (A23)

0.5viIjJt
ABij
pp (A24)

−1.aABaIJvaAiIt
aBiJ
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0.5vaAbBt
abIJ
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aJ
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−1.aABvabijt
aBiI
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0.25vabijt
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2. Left-hand singles and doubles equations

λj
b⟨bj|H̄|AI ⟩ =

faAλ
aI
h (A51)
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h t
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−1.vAbjJt
abij
hp λaBiI

hp (A146)

1.vAbIjt
abij
hp λaBiJ

hp (A147)

0.5gabgjkvAcIJt
acijλbBik

hp (A148)

−0.5gabgiJvBcjkt
acjkλAbiI

hp (A149)

1.vbBjJλ
aAiI
hp tabijhp (A150)

−1.vbBIjλ
aAiJ
hp tabijhp (A151)

−0.5gabgjkvBcIJt
acijλAbik

hp (A152)

−0.5gbBgikvacjJt
acjkλAbiI

hp (A153)

0.5gbBgikvacIjt
acjkλAbiJ

hp (A154)
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0.25gbBgjkvacIJt
acijλAbik

hp (A155)

−1.vAijJt
aj
p λ

aBiI
hp (A156)

1.vAiIjt
aj
p λ

aBiJ
hp (A157)

1.vBijJt
aj
p λ

aAiI
hp (A158)

−1.vBiIjt
aj
p λ

aAiJ
hp (A159)

−1.gbBt
ajvaijJλ

AbiI
hp (A160)

1.gbBt
ajvaiIjλ

AbiJ
hp (A161)

0.5gAbt
ajvaiIJλ

bBij
hp′ (A162)

−0.5gbBt
aivaIjJλ

Abij
hp (A163)

−0.5giJt
ajvAbBjλ

abiI
hp (A164)

0.5giIt
bjvaABjλ

abiJ
hp′ (A165)

1.giJt
bjvaAbjλ

aBiI
hp (A166)

−1.vaAbJt
bi
h λ

aBiI
hp (A167)

1.vaAbIt
bi
h λ

aBiJ
hp (A168)

−1.giJt
bjvabBjλ

aAiI
hp (A169)

1.vabBJt
bi
h λ

aAiI
hp (A170)

−1.vabBIt
bi
h λ

aAiJ
hp (A171)

0.5giJt
ajvABjkt

bk
p λabiI

hp (A172)

1.giJt
bkvAbjkt

aj
p λ

aBiI
hp (A173)

1.vAbjJt
aj
p t

bi
h λ

aBiI
hp (A174)

−1.vAbIjt
aj
p t

bi
h λ

aBiJ
hp (A175)

−1.giJt
bkvbBjkt

aj
p λ

aAiI
hp (A176)

−1.vbBjJt
aj
p t

bi
h λ

aAiI
hp (A177)

1.vbBIjt
aj
p t

bi
h λ

aAiJ
hp (A178)

−1.gbBt
cjvacjJt

ai
h λ

AbiI
hp (A179)

1.gbBt
cjvacIjt

ai
h λ

AbiJ
hp (A180)

0.5gbBt
aivacIJt

cj
hλ

Abij
hp (A181)
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3. r(1) equations and intermediates

Hq0
AI =

fAI (A182)

fait
aAiI
hp (A183)

−1.fait
aI
h t

Ai
p (A184)

−0.5gaAvbiIjt
abij (A185)

−0.5gIjvaAbit
abij (A186)

−1.taivaAiI (A187)

−1.tajvaiIjt
Ai
p (A188)

−0.5gaAvbcijt
acijtbIh (A189)

taivabijt
AbIj
hp (A190)

−0.5gIkvabijt
abjktAi

p (A191)

−1.tbivaAbit
aI
h (A192)

−1.tbjvabijt
aI
h t

Ai
p (A193)
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Hq0
ABIJ =

−1.gaBaIJfbit
bJ
h taAiI

hp (A194)

−1.faiaABgjJt
Bi
p taAIj

hp (A195)

vABIJ (A196)

0.5viIjJt
ABij
pp (A197)

−1.aABaIJvaAiIt
aBiJ
hp (A198)

0.5vaAbBt
abIJ
h (A199)

aABvAiIJt
Bi
p (A200)

aIJvaABIt
aJ
h (A201)

−1.aABvabijt
aBiI
hp tAbjJ

hp (A202)

0.25vabijt
abIJ
h tABij

pp (A203)

−0.5gaBgJkvbcijt
bcjktaAiI

hp (A204)

−0.5gaBaABgJkvbcijt
acijtAbIk

hp (A205)

−0.5gaBgIkvbcijt
bciktaAjJ

hp (A206)

viIjJt
Ai
p tBj

p (A207)

aABaIJvaiIjt
Bi
p taAjJ

hp (A208)

0.5aIJvaiIjt
aJ
h tABij

pp (A209)

−1.gaBaIJt
bivbiIjt

aAjJ
hp (A210)

aABaIJvaAiIt
aJ
h tBi

p (A211)

0.5aABvaAbit
Bi
p tabIJh (A212)

aABaIJvaAbit
aJ
h tbBiI

hp (A213)

−1.aABgjJt
aivaAbit

bBIj
hp (A214)

vaAbBt
aI
h t

bJ
h (A215)

aIJvaiIjt
aJ
h tAi

p tBj
p (A216)

0.5vabijt
Ai
p tBj

p tabIJh (A217)

−1.aABaIJvabijt
aJ
h tBi

p tAbIj
hp (A218)
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−1.aABgJkt
aivabijt

Bj
p tAbIk

hp (A219)

0.5vabijt
aI
h t

bJ
h tABij

pp (A220)

gaBaIJt
civbcijt

bJ
h taAIj

hp (A221)

aABvaAbit
aI
h t

bJ
h tBi

p (A222)

vabijt
aI
h t

Ai
p tbJh tBj

p (A223)

⟨AI |H̄|ai ⟩ria =

faAr
aI
h (A224)

−1.fiIr
Ai
p (A225)

−1.fair
aI
h t

Ai
p (A226)

−1.fait
aI
h r

Ai
p (A227)

−1.raivaAiI (A228)

−0.5gaAvbcijt
acijrbIh (A229)

raivabijt
AbIj
hp (A230)

−0.5gIkvabijt
abjkrAi

p (A231)

raivaiIjt
Aj
p (A232)

−1.tajvaiIjr
Ai
p (A233)

−1.tbivaAbir
aI
h (A234)

raivaAbit
bI
h (A235)

−1.tbjvabijr
aI
h t

Ai
p (A236)

−1.tbjvabijt
aI
h r

Ai
p (A237)

−1.raivabijt
Aj
p tbIh (A238)
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⟨AI |H̄|bcjk⟩r
jk
bc =

1.fair
aAiI
hp (A239)

−0.5gaAvbiIjr
abij (A240)

−0.5gIjvaAbir
abij (A241)

0.5gIkvabijr
abiktAj

p (A242)

1.tbjvabijr
aAiI
hp (A243)

0.5gaAvbcijr
abijtcIh (A244)
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⟨AB
IJ |H̄|bj⟩r

j
b =

−1.gaBaIJfbir
bJ
h taAiI

hp (A245)

−1.faiaABgjJr
Bi
p taAIj

hp (A246)

aABvAiIJr
Bi
p (A247)

aIJvaABIr
aJ
h (A248)

aABaIJvaiIjr
Bi
p taAjJ

hp (A249)

0.5aIJvaiIjr
aJ
h tABij

pp (A250)

−1.gaBaIJr
bivbiIjt

aAjJ
hp (A251)

0.5aABvaAbir
Bi
p tabIJh (A252)

aABaIJvaAbir
aJ
h tbBiI

hp (A253)

−1.aABgjJr
aivaAbit

bBIj
hp (A254)

−1.aABviIjJt
Aj
p rBi

p (A255)

aABaIJvaAiIt
aJ
h rBi

p (A256)

aABaIJvaAiIr
aJ
h tBi

p (A257)

−1.aIJvaAbBr
aJ
h tbIh (A258)

−1.aABaIJvaiIjt
aJ
h tAj

p rBi
p (A259)

aIJvaiIjr
aJ
h tAi

p tBj
p (A260)

−0.5aABvabijt
Aj
p rBi

p tabIJh (A261)

−1.aABaIJvabijt
aJ
h rBi

p tAbIj
hp (A262)

−1.aABaIJvabijr
aJ
h tBi

p tAbIj
hp (A263)

aABgJkt
ajvabijr

Bi
p tAbIk

hp (A264)

−1.aABgJkr
aivabijt

Bj
p tAbIk

hp (A265)

−0.5aIJvabijr
aJ
h tbIh t

ABij
pp (A266)

gaBaIJt
civbcijr

bJ
h taAIj

hp (A267)

−1.gaBaIJr
bivbcijt

cJ
h taAIj

hp (A268)

aABvaAbit
aI
h t

bJ
h rBi

p (A269)

−1.aABaIJvaAbir
aJ
h tbIh t

Bi
p (A270)

−1.aABvabijt
aI
h t

Aj
p tbJh rBi

p (A271)

−1.aIJvabijr
aJ
h tAi

p tbIh t
Bj
p (A272)43



⟨AB
IJ |H̄|bcjk⟩r

jk
bc =

−1.gaBaIJfiJr
aAiI
hp (A273)

1.faBaABgiJr
aAiI
hp (A274)

1.gaBaIJfbit
bI
h r

aAiJ
hp (A275)

1.faiaABgjJt
Ai
p raBIj

hp (A276)

0.5gaAgbBviIjJr
abij (A277)

−1.aABaIJvaAiIr
aBiJ
hp (A278)

0.5giIgjJvaAbBr
abij (A279)

1.aABaIJvabijr
aBiJ
hp tAbIj

hp (A280)

0.25gIkgJlvabijr
abkltABij

pp (A281)

−0.5gaBaABgJkvbcijt
acijrAbIk

hp (A282)

−0.5gaBaIJgJkvbcijt
bcjkraAiI

hp (A283)

0.5gaBaIJgJkvbcijr
bciktaAIj

hp (A284)

0.5gaBaABgJkvbcijr
abijtAcIk

hp (A285)

0.25gaAgbBvcdijr
abijtcdIJh (A286)

1.aABaIJvaiIjt
Aj
p raBiJ

hp (A287)

1.gaBaIJt
bjvbiIjr

aAiJ
hp (A288)

0.5gaAaIJgbBvciIjr
abijtcJh (A289)

1.aABgjJt
bivaAbir

aBIj
hp (A290)

0.5aABgIjgJkvaAbir
abjktBi

p (A291)

1.aABaIJvaAbit
bI
h r

aBiJ
hp (A292)

1.aABgJkt
bjvabijt

Ai
p raBIk

hp (A293)

−1.aABaIJvabijt
Aj
p tbIh r

aBiJ
hp (A294)

0.5gIkgJlvabijr
abkltAi

p tBj
p (A295)

1.gaBaIJt
cjvbcijt

bI
h r

aAiJ
hp (A296)

0.5gaAgbBvcdijr
abijtcIh t

dJ
h (A297)
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Appendix B: A24 binding energies

complex / model {ijab} {ijab}+ {i}{a} {ia}{jb} {ia}{jb}+ {i}{a} {i}{j}{a}{b} MP2 CCSD

01 water ... ammonia -21.48 -24.37 -22.36 -25.29 -26.84 -29.10 -27.09

02 water dimer -17.25 -19.09 -17.92 -19.72 -20.72 -21.94 -20.93

03 HCN dimer -19.38 -20.31 -19.85 -20.81 -21.60 -23.57 -21.90

04 HF dimer -15.99 -17.79 -16.50 -18.30 -19.05 -19.30 -19.09

05 ammonia dimer -10.47 -11.30 -11.14 -11.97 -12.90 -14.15 -12.94

06 HF ... methane -5.53 -5.86 -6.07 -6.45 -6.91 -7.79 -7.08

07 ammonia ... methane -3.14 -3.52 -3.52 -3.85 -4.31 -4.77 -4.40

08 water ... methane -2.68 -2.89 -2.97 -3.14 -3.48 -3.85 -3.52

09 formaldehyde dimer -12.69 -14.99 -13.61 -15.99 -18.34 -20.18 -18.30

10 water ... ethene -8.79 -9.63 -9.46 -10.30 -11.10 -13.44 -11.43

11 formaldehyde ... ethene -5.95 -6.24 -6.53 -6.82 -7.70 -9.13 -7.79

12 ethyne dimer -6.70 -7.12 -7.12 -7.54 -7.95 -9.84 -8.37

13 ammonia ... ethene -5.36 -5.78 -5.86 -6.24 -6.78 -8.58 -7.08

14 ethene dimer -4.27 -4.56 -4.94 -5.23 -5.86 -8.25 -6.24

15 methane ... ethene -2.51 -2.64 -2.81 -2.97 -3.43 -4.23 -3.48

16 borane ... methane -2.43 -3.27 -3.64 -4.52 -5.53 -7.24 -5.95

17 methane ... ethane -3.64 -3.64 -4.31 -4.31 -4.69 -5.86 -5.02

18 methane ... ethane -3.10 -3.10 -3.64 -3.64 -4.02 -4.65 -4.14

19 methane dimer -2.68 -2.64 -3.10 -3.10 -3.48 -3.98 -3.52

20 Ar ... methane -1.30 -1.30 -1.51 -1.55 -1.72 -2.34 -1.97

21 Ar ... ethene -0.67 -0.71 -0.84 -0.88 -1.09 -1.88 -1.26

22 ethene ... ethyne 4.48 4.61 4.06 4.19 3.39 0.54 3.22

23 ethene dimer 4.61 4.73 4.06 4.19 3.18 0.59 3.06

24 ethyne dimer 5.82 5.95 5.48 5.61 4.94 1.93 4.81

TABLE IX: A24 binding energies in kJ/mol for fully-non-orthogonal truncation models and
canonical MP2 and CCSD computed in aug-cc-pVDZ using the frozen core approximation.

The horizontal lines delineate sets of hydrogen-bonded, mixed-character, and
dispersion-dominated interactions.
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