
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Physical mechanisms driving cell sorting in Hydra

Permalink
https://escholarship.org/uc/item/3xh4n6bj

Author
Locke, Tiffany

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/3xh4n6bj#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xh4n6bj
https://escholarship.org/uc/item/3xh4n6bj#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO 

 

 

Physical mechanisms driving cell sorting in Hydra 

 

A Thesis submitted in partial satisfaction of the requirements for the degree  

Master of Science 

 

in  

 

Biology 

 

by 

 

Tiffany T. Locke 

 

 

 

Committee in charge: 

Eva-Maria Collins, Chair 

Ella Tour 

Deborah Yelon 

 

2017



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Tiffany T. Locke, 2017 

All rights reserved. 

  



 

 iii 

 

 

 

The Thesis of Tiffany T. Locke is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically:  

 

  

  

 

  

  

 

  

 Chair 

 

 

University of California, San Diego 

2017 

 

 

 

 

 

 



 

 iv 

TABLE OF CONTENTS 

Signature Page ...................................................................................................... iii 

Table of Contents ................................................................................................. iv 

List of Supplemental Files ..................................................................................... v 

List of Figures ...................................................................................................... vii 

Acknowledgements ............................................................................................ viii 

Abstract of the Thesis ........................................................................................... ix 

Chapter 1: Introduction .......................................................................................... 1 

Chapter 2: Results .................................................................................................. 8 

Dynamics of cell sorting in Hydra aggregates .................................................. 8 

Physical behavior of separated tissues ............................................................ 13 

Single cell dynamics during sorting ................................................................ 18 

DAH-based numberical simulations of cell sorting ........................................ 21 

Chapter 3: Discussion .......................................................................................... 26 

Fast dynamics of cell sorting ........................................................................... 26 

Distinguishing between models of cell sorting  .............................................. 28 

Chapter 4: Materials and Methods ...................................................................... 30 

References ........................................................................................................... 43 

 

 



 

 v 

LIST OF SUPPLEMENTAL FILES 

Locke_Figure_S1 

Locke_Figure_S2 

Locke_Figure_S3 

Locke_Figure_S4 

Locke_Figure_S5 

Locke_Figure_S6 

Locke_Figure_S7 

Locke_Figure_S8 

Locke_Figure_S9 

Locke_Figure_S10 

Locke_Figure_S11 

Locke_Table_S1 

Locke_Movie1 

Locke_Movie2 

Locke_Movie3 

Locke_Movie4 

Locke_Movie5 

Locke_Movie6 



 

 vi 

Locke_Movie7 

Locke_Movie8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vii 

LIST OF FIGURES 

Figure 1: Dynamics of cell sorting.  .................................................................... 12 

Figure 2: Rheology of individual tissues.  ........................................................... 17 

Figure 3: Single cell dynamics.  .......................................................................... 20 

Figure 4: DAH-based numerical simulations.  .................................................... 23 

 

 



 

 viii 

ACKNOWLEDGEMENTS 

Thank you to Professor Eva-Maria S. Collins for her never-ending support and 

patience as the chair of my committee. I will be ever grateful to be able join a lab with a 

dedicated and caring PI in research and professional development for each member of 

her lab. Her passion for science transferred to all of her work, students, and mentees. 

Dr. Collins not only provided me the mentorship in scientific experimentation, but also 

guided me to be a more confident collaborator and more efficient researcher. The 

invaluable time spend in her lab encouraged me and will guide my future career in 

science.  

I would like to thank Dr. Olivier Cochet-Escartin for his constant help 

throughout my time in the lab.  He was always open to answering my questions, no 

matter how elementary or detailed they were. Olivier’s knowledgeable and curious 

nature provided a vital pillar of support in driving forward our research. 

Thank you to all of the co-authors, Dr. Robert Steele for his guidance in all parts 

of the project and Winnie Shi for her image analysis to deduce fruitful meaning from 

raw data. Finally, thank you to all of the members in Collins Lab for making our 

everyday research memorable and intriguing.  

Chapter 1-4 has been submitted for publication of the material. Cochet-Escartin, 

Olivier; Locke, Tiffany T.; Shi, Winne H.; Steele, Robert E.; Collins, Eva-Maria S. 

“Forces driving cell sorting in Hydra”.  

 

 

 



 

 ix 

 

 

 

 

 

 

ABSTRACT OF THE THESIS 

 

 

Physical mechanisms driving cell sorting in Hydra 

 

by 

 

Tiffany T. Locke 

Master of Science in Biology 

University of California, San Diego, 2017 

Professor Eva-Maria S. Collins, Chair 

 

Cell sorting, whereby a heterogeneous cell mixture organizes into distinct 

tissues, is a fundamental patterning process in development. So far, most studies of cell 

sorting have relied either on 2-dimensional cellular aggregates, in vitro situations that 

do not have a direct counterpart in vivo, or were focused on the properties of single 

cells. Here, we report the first multiscale experimental study on 3-dimensional 



 

 x 

regenerating Hydra aggregates, capable of reforming a full animal. By quantifying the 

kinematics of single cell and whole aggregate behaviors, we show that no differences in 

cell motility exist among cell types and that sorting dynamics follow a power law. 

Moreover, we measure the physical properties of separated tissues and determine their 

viscosities and surface tensions. Based on our experimental results and numerical 

simulations, we conclude that tissue interfacial tensions are sufficient to explain Hydra 

cell sorting. Doing so, we illustrate D’Arcy Thompson’s central idea that biological 

organization can be understood through physical principles, an idea which is currently 

re-shaping the field of developmental biology. 
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Chapter 1: Introduction  

How a pattern emerges from an initially near-uniform cell population is a 

question that has long fascinated biologists and physicists alike, in particular d’Arcy 

Thompson. In his influential 1917 book On Growth and Form (Thompson, 1992), 

Thompson emphasized the fact that, when one is faced with such a complex 

phenomenon as the form of a living organism, there can be more than one explanation, 

depending on the level of understanding one aims to achieve (molecular, cellular, 

organismal). Although evolutionary and molecular processes play key roles in 

morphogenesis, Thompson insisted on the importance of studying this question from a 

purely physical perspective: “My sole purpose here is to correlate with mathematical 

statement and physical law certain of the simpler outward phenomena of organic growth 

and structure or form […]. But I would not for the world be thought to believe that this 

is the only story which Life and her Children have to tell” (Thompson, 1992).  

One of the simplest and best studied examples of pattern formation in which this 

approach has been fruitful is the separation of two cell populations which have been 

mixed to yield a heterogeneous cell suspension, in a process called cell sorting. Since 

the dynamics of cell sorting resemble the breaking up of an emulsion of different 

liquids, physically-based mechanisms have long been suggested to explain this process 

(reviewed in (Foty and Steinberg, 2013)). From a physics perspective, cell populations 

(tissues) are active, complex fluids. They are active because cell motility is driven by 

ATP consumption and not by thermal energy. They are complex because they exhibit 

elastic solid-like behavior on short timescales and viscous liquid-like behavior on long 

timescales (Forgacs et al., 1998). Examples of viscous liquid-type behaviors are 
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rounding of tissue pieces and fusion of tissues upon contact (Schötz et al., 2008). In 

liquids, both of these processes are driven by surface tension. Accordingly, the 

“Differential Adhesion Hypothesis” (DAH) proposed that cell sorting is a direct 

consequence of differences in tissue surface and interfacial tensions, similar to the 

breaking up of an emulsion (Steinberg, 1970). When cells from two tissue types are 

mixed and able to interact via cell adhesion, they will sort according to their respective 

tissue surface tensions, whereby the tissue with lower surface tension engulfs the tissue 

with the higher surface tension (Foty et al., 1996). Molecularly, tissue surface tensions 

were originally attributed to differences in adhesion alone (Duguay et al., 2003; Foty 

and Steinberg, 2005), but have since been shown to arise from an interplay between cell 

adhesion and cortical tension (Manning et al., 2010). 

In the theoretical work of Glazier and Graner (1992), a Cellular Potts Model 

(CPM) was created to simulate the behavior of single cells during cell sorting (Graner 

and Glazier, 1992). They demonstrated that differences in interfacial energies were 

sufficient to drive the spontaneous sorting of two cell populations (Glazier and Graner, 

1993; Graner, 1993). Since then, this and other models have been refined to include 

other mechanisms such as coherent motion (Belmonte et al., 2008), biochemical 

dynamics of adhesion molecules (Zhang et al., 2011), or chemotaxis (Vasiev and 

Weijer, 1999).  In all cases, differences in tissue surface tensions drive sorting, but the 

resulting dynamics are modified by these additional mechanisms. Furthermore, others 

have shown that sorting can occur in the absence of differences in tissue surface 

tension. Such models mostly rely on asymmetries of cell motility to explain sorting, 

either from intrinsic differences between cell types (Beatrici and Brunnet, 2011) or from 
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differences in a cell’s immediate surroundings (Strandkvist et al., 2014). However, there 

is disagreement on the rules regulating engulfment for two cell types with different 

locomotion properties. Jones and colleagues (1989) found that chick tissues sorted such 

that the fastest moving tissue ended up on the inside of a mixed cellular aggregate 

(Jones et al., 1989). In contrast, theoretical work showed that when full sorting 

occurred, faster cells surrounded slower ones and formed streams around them (Beatrici 

and Brunnet, 2011).  

The freshwater cnidarian Hydra has frequently been the model of choice for 

studies of cell sorting. Hydra is anatomically simple with radial symmetry and two 

epithelial tissue layers, ectoderm and endoderm. Hydra can be dissociated into 

individual cells which, when aggregated, can autonomously regenerate whole animals 

(Gierer et al., 1972). Cell sorting into a sphere-within-a-sphere configuration, with an 

inner endoderm and outer ectoderm, is the first step in this regeneration process and a 

necessity for subsequent developmental milestones - the formation of a hollow 

bilayered sphere, symmetry breaking, and axis formation (Gierer et al., 1972). 

Therefore, cell sorting in Hydra is experimentally accessible to quantitative studies 

while remaining physiologically relevant. 

Differential surface tension was hypothesized to be key to Hydra cell sorting. 

Support for this view came from centrifugation experiments, which showed that under 

similar centripetal forces, endodermal epithelial cells formed larger aggregates than 

ectodermal epithelial cells, indicating that endoderm has a higher tissue surface tension 

than ectoderm, in agreement with the DAH (Technau and Holstein, 1992).  



4 

 

A direct measurement of adhesion strength of epithelial cell pairs using optical 

traps (Sato-Maeda et al., 1994) found that adhesion between endodermal epithelial cells 

is stronger than adhesion between ectodermal epithelial cells, in agreement with a 

DAH-driven sorting process. However, the authors found that heterotypic cell-cell 

interactions were the weakest of all, in disagreement with the DAH framework which 

requires that the heterotypic interaction strength be intermediate between the strongest 

(endo/endo) and weakest (ecto/ecto) interactions. One possible explanation for this 

discrepancy is time-dependent changes in cell-cell interaction strengths. This idea was 

confirmed by more recent work which found that cell sorting of Hydra aggregates may 

have two phases: a short initial phase in which homotypic cell interactions dominate 

and ectodermal-endodermal interaction does not occur (Hobmayer et al., 2001), and a 

second longer phase, in which ectoderm displays a higher affinity for endoderm than for 

itself.  Since the aggregates investigated in this study were small and non-viable, 

whether the existence of a short initial phase is relevant for the sorting of large 

aggregates capable of regenerating into full animals (103-104 cells) is unknown.  

To test whether tissue surface tensions and adhesion differences between 

ectoderm and endoderm were sufficient to explain sorting or whether other parameters 

had to be considered, other studies investigated single cell behaviors. For example, 

Takaku et al. (2005), studied the behavior of isolated ecto- or endodermal cells when 

put in contact with a tissue sphere. They found that a single ectodermal cell in contact 

with an endodermal aggregate does not migrate into the aggregate, whereas a single 

endodermal cell in contact with an ectodermal aggregate does migrate to the interior 

(Takaku et al., 2005). They interpreted this finding as indicative of differences in cell 
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motility, although this behavior is also expected from the DAH. Additional experiments 

were performed that seemed to reveal such differences in motility. For example, they 

showed that epiboly, the process by which an ectoderm aggregate spontaneously 

engulfs an endoderm aggregate upon contact, depends on the motility of endodermal 

but not of ectodermal cells (Takaku et al., 2005). Furthermore, they found that in 

clusters of 4 cells (2 endodermal and 2 ectodermal), ectodermal homotypic adhesion 

was more stable than endodermal homotypic adhesion, seemingly in contradiction to the 

DAH (Takaku et al., 2005). However, since the stability of an adhesion depends not 

only on its strength but also on the activity of the cells forming it, and endodermal cells 

were observed to be more actively motile, it is possible that endoderm-endoderm 

adhesions only appeared weaker.  

Other studies have focused on quantifying cell motility during cell sorting and 

within homotypic tissues without addressing the underlying mechanism driving sorting.  

Rieu et al. quantified the motility of endodermal cells in aggregates of different 

compositions (Rieu et al., 1998; Rieu et al., 2000): pure endoderm, pure ectoderm, and 

evenly mixed. Overall, their results show that cells move in a mostly random fashion 

and are most mobile in a purely ectodermal environment. This result agrees with the 

finding in (Takaku et al., 2005), but is not conclusive regarding differential cell 

motility. Moreover, this result is also expected from the DAH, since an ectoderm 

aggregate would make for a less cohesive environment in which a single cell can move 

more freely.  In summary, both theoretically and experimentally, the existing data on 

Hydra cell sorting are insufficient to delineate whether sorting is driven by one of the 

two proposed classes of models. To achieve a definitive explanation, more quantitative 
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data on the behavior of individual cells and both tissues in a physiologically relevant 3-

dimensional setting, as well as direct measurements of tissue surface tensions, are 

needed.  

Here, we take advantage of transgenic Hydra (Wittlieb et al., 2006), to revisit 

this long standing question about the mechanisms of cell sorting through a multiscale 

approach. We first focus on 3-dimensional mixed aggregates - large enough to 

regenerate into polyps - and present quantitative data on the dynamics of sorting. To 

determine whether differential surface tensions can drive sorting, we performed 

rheological measurements of both tissues’ mechanical properties, in particular of their 

surface tensions. Next, we mapped single cell trajectories within mixed aggregates to 

address whether the two cell types possess intrinsically different motile properties. 

Finally, we developed numerical simulations using the 3D Cellular Potts Model (CPM) 

based on our experimental conditions, and compared the in silico results to our 

experimental data. We find that differences in tissue surface tensions are indeed 

sufficient to reproduce all of our experimental data. 

In summary, our work explains the physical mechanism by which Hydra cell 

aggregates sort into tissues. Surface tension-driven demixing of ectodermal and 

endodermal epithelial cells is the first critical step in the regeneration of the whole 

animal after complete dissociation. Thus, by explaining how cell sorting works in 

Hydra aggregates, we are one step closer to a complete understanding of biological 

pattern formation.  

Our work illustrates by one example the core idea of D’Arcy Thompson’s book. 

While cell sorting can be understood in terms of molecular mechanisms (motility, 
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adhesion, cortical tension), we show that it can also be understood, at a coarse-grained 

level, using the physics of liquids without detailed knowledge of the underlying 

molecular machinery. 
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Chapter 2: Results 

A natural starting point for distinguishing between the most prominent 

explanations of cell sorting in Hydra, i.e. differential tissue surface tension versus 

differential motility, is to perform measurements on the cell sorting dynamics. Second, 

as the ingredients in these models are either based on tissue rheological properties or 

single cell motility, we quantitatively assessed these two aspects. 

Dynamics of cell sorting in Hydra aggregates 

All models of Hydra cell sorting predict that the two initially mixed cell 

populations spontaneously separate, with ectoderm engulfing endoderm. The dynamics 

of sorting, however, depend on the model ingredients and their analysis could therefore 

possibly enable a distinction between the different mechanisms. To test this, we 

prepared cellular aggregates from transgenic Hydra in which the two epithelial layers 

express different fluorescent proteins. Initially, aggregates showed a random mixture of 

both cell types (Fig. 1A) and were disc-shaped, because cells are re-aggregated via 

centrifugation (see Methods). Over the course of 4-10 hours, the two cell populations 

spontaneously separated and the disc-shaped aggregate rounded up into a solid sphere 

(Movie 1). The ectodermal cells moved toward the outside while the endodermal cells 

moved toward the center of the aggregate, leading to a sphere-within-a sphere 

configuration. Once sorting was complete, the aggregates ejected excess cells as they 

transitioned into a hollow bilayer epithelial sphere. The bilayer sphere eventually broke 

symmetry and regenerated into an adult polyp (Fig. S1). Hydra cell aggregates are 

therefore a true in vivo system, despite their apparent simplicity. Indeed, regeneration 

from aggregates occurs even in epithelial Hydra which have been reduced to ectoderm 
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and endoderm through removal of the interstitial cell lineage (Marcum and Campbell, 

1978). Interstitial stem cells and their progeny thus do not significantly alter cell sorting 

and the system can be treated as a two-component mixture. The other potentially 

important player in cell sorting could be the extra-cellular matrix (ECM), which 

separates the two epithelial tissues in the intact animal. However, using antibody 

staining we verified that laminin, a major component of Hydra ECM, was undetectable 

during sorting (Fig. S2), in agreement with previous reports (Seybold et al., 2016). 

To allow for a direct comparison of our experimental results with existing 

theoretical models and predictions, we focused on measuring quantities that are 

commonly used in the field. One such quantity is the sorting index, which measures the 

average fraction of neighboring cells that are of the opposite type. In an evenly mixed 

aggregate, the initial value of the sorting index is 0.5. It decreases as sorting proceeds 

and saturates at a value that depends on the system size. The sorting index is difficult to 

measure experimentally as it requires knowledge of the position, neighbors, and identity 

of all cells within an aggregate. However, the sorting index is directly proportional to 

the length of the boundary (see Methods) between the tissues and therefore follows the 

same functional form. With the exception of a more complex model taking into account 

the biochemical dynamics of adhesion proteins (Zhang et al., 2011), models based on 

either DAH or differences in motility have both found that this decrease follows a 

power law. The exponents, however, vary depending on the details of the model such as 

the ratio of cells from both types (Nakajima and Ishihara, 2011) or the differences in 

motility built into the  model (Strandkvist et al., 2014). 
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Using automated image analysis (Fig. 1B), we measured the length of the 

boundary between endoderm and ectoderm as a function of time (see Methods). We 

found the boundary length decrease to follow a power law (Fig. 1C) with exponent -

0.74±0.24 (mean±STD n=17, Fig. S2). This exponent is significantly higher than those 

reported in various theoretical works which ranged from -0.025 to -1/3 (Beatrici and 

Brunnet, 2011; Belmonte et al., 2008; Nakajima and Ishihara, 2011; Strandkvist et al., 

2014), implying that the observed sorting is faster than previously suggested. We 

present a more detailed analysis and explanation of this result in the discussion section. 

Another quantity used in the field is the typical blob (cluster) size of both tissues 

as a function of time. The definition of the typical blob size varies from one study to the 

next. Since this measure is also commonly used in the study of phase separation through 

spinodal decomposition (Fan et al., 2016), we chose here to use the same definition (see 

Methods). This allowed us to directly compare our dynamics to a purely physical 

situation. The blob size is linked to the total sorting time, as sorting is complete once the 

typical blob size reaches a value comparable to the system size. 

We found that the typical blob size increases as a power law (Fig. 1D), with an 

exponent of 0.49±0.24 (mean±STD, n=17, Fig. S3). Again, this implies faster sorting 

than previously reported (Belmonte et al., 2008; Glazier and Graner, 1993; Nakajima 

and Ishihara, 2011). Of note, scaling rules imply that blob size and boundary ratio 

should have equal exponents of opposite sign. Our mean values are quite different (0.74 

versus 0.49) but still within experimental uncertainties of each other. The real exponent 

is likely intermediate between these values. 
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In summary, studying cell sorting dynamics is instructive, but was insufficient to 

distinguish between different sorting mechanisms. This is due to the fact that our 

experimentally determined exponents differ from published values; we therefore cannot 

draw conclusions on the sorting mechanism from these experiments alone.  

However, because the different models for cell sorting also make assumptions 

and predictions regarding the properties of each tissue separately and/or on the behavior 

of single cells within aggregates, we performed experiments at these scales to further 

probe the possible mechanisms explaining cell sorting.  
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Figure 1: Dynamics of cell sorting. A) Representative still images of sorting of Hydra 

watermelon aggregates capable of regeneration. The reduction in radius is a signature of 

the aggregate rounding up in three dimensions. B) Automated image analysis of the 

images in Panel A determining the position of both tissues. Scale bar: 200micron. C) 

Log-log plot of boundary ratio as a function of normalized time for six representative 

experiments. The dashed black line shows the behavior of a power law with exponent -

0.74. D) Log-log plot of normalized blob size as a function of normalized time for five 

representative experiments. The dashed black line shows the behavior of a power law 

with exponent 0.49. In panels C and D, the long term behavior shows saturation of these 

measurements and therefore deviation from a power law behavior. 
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Physical behavior of separated tissues 

The DAH is based on the assumption that each tissue behaves like a liquid on 

long time scales. Sorting is then driven by the effective interfacial and surface tensions 

of the two tissues. Cells, like liquid molecules, have a lower contact free energy with 

each other than with the medium. Cellular rearrangements thus tend to minimize the 

tissue’s contact area with this medium, which is similar to the effect of surface tension 

in liquids (Forgacs et al., 1998; Foty et al., 1994). 

For full sorting and engulfment to occur, these rheological quantities need to 

obey the following inequality (Foty et al., 1996): 

𝜎𝑒𝑛𝑑𝑜 > 𝜎𝑒𝑐𝑡𝑜 + 𝛾𝑒𝑛𝑑𝑜/𝑒𝑐𝑡𝑜 

Where 𝜎 represent the tissue’s surface tensions and 𝛾𝑒𝑛𝑑𝑜/𝑒𝑐𝑡𝑜 their interfacial 

tension. 

DAH thus predicts that each tissue flows on long time scales and that the 

effective surface tension of endoderm is higher than that of ectoderm. Because these 

questions have to be addressed for each tissue separately, this requires their physical 

separation. To do so, we adapted previously published protocols (Kishimoto et al., 

1996) (see Methods) to chemically dissolve the ECM which leads to the physical 

separation of the tissues.  

By this separation, we obtained tissue pieces containing only one of the two 

epithelial cell types, and then observed their long time behaviors. Tissue pieces rounded 

up (Movie 2) and fused (Movie 3) on time scales of minutes to a few hours, thus 

demonstrating liquid behavior. This justifies the usage of concepts like surface tension 

and viscosity. To determine both of these quantities, we used micro-aspiration 
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experiments (Fig. 2A-C, Movie 4), in which tissue pieces are aspirated into a micro-

pipet using negative pressure. The pressure needed to initiate aspiration is directly 

related to the surface tension of the tissue of interest (Guevorkian et al., 2010) according 

to: 

Δ𝑃𝐶 = 2𝜎(
1

𝑅𝑝
−

1

𝑅
) 

Where Δ𝑃𝐶 is the critical pressure required to trigger aspiration, 𝜎 is the surface 

tension, 𝑅𝑝 is the radius of the micro-pipet and 𝑅 that of the tissue piece. 

We estimated surface tensions this way and found the surface tension of 

endoderm to be higher than that of ectoderm (Fig. 2B, Table. S1), in agreement with the 

DAH (13.4 ± 1.1 dyn/cm and 9.1 ± 0.7 dyn/cm, respectively, mean ± SEM, n=13 and 

14). In addition, the first phase of aspiration (Fig. 2C) is dominated by the visco-elastic 

response of the tissues leading to an exponential relaxation. The characteristic time of 

this relaxation 𝜏 is given by (Guevorkian et al., 2010): 

𝜏 =
3𝜋𝜂

𝐸
 

Where 𝐸 and 𝜂 are the elastic modulus and viscosities, respectively. Using 

previous measurements of the elastic moduli with parallel plate compression (Carter et 

al., 2016), we found the viscosities of endoderm and ectoderm to be 3.7 ± 0.7 104 Pa.s 

and 4.8 ± 0.6 104 Pa.s, respectively (mean ± SEM, n=10 and 9, Table. S1), similar to 

measurements performed on other cell aggregates including from different chicken 

embryonic cells (Forgacs et al., 1998) and mouse sarcoma (Guevorkian et al., 2010; 

Marmottant et al., 2009).  
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The viscosity estimates can further be used to independently determine tissue 

surface tensions from rounding up experiments, because this behavior is driven by 

surface tension and slowed down by viscosity. Similar to what has been reported for 

other cellular aggregates (Mombach et al., 2005), the dynamics of a tissue piece 

rounding up, measured as the decrease of the piece’s aspect ratio over time, was 

exponential (Fig. 2E). The characteristic time 𝜏 of this exponential relaxation is given 

by: 

𝜏 = 𝐴
𝜂𝑅

𝜎
 

Here 𝑅 is the radius of the tissue piece and 𝐴 is a numerical pre-factor which 

depends on geometry. This numerical pre-factor has been estimated to be on the order 

of 0.95 in different circumstances (Gordon et al., 1972), but is unknown in our case. 

Since we are primarily interested in the relative differences between the surface tensions 

of both tissues, knowledge of this pre-factor is not crucial. Using the viscosity 

measurements obtained by micro-aspiration, we found a higher surface tension for 

endoderm when compared to ectoderm (3.3±0.6 and 1.5±0.2 dyn/cm, respectively, 

mean ± SEM, n=17 and 15) (Fig. 2F, Table S1). We attribute the difference of these 

absolute values from the micro-aspiration results to the undetermined prefactor in 

rounding. Importantly, however, the relative differences in surface tensions obtained 

through both methods are of the same order.  

In principle, fusion experiments could be similarly used to estimate surface 

tension. However, while endoderm tissue pieces readily fused (Movie 5), ectoderm 

pieces fused rarely and only if freshly cut surfaces were directly brought into contact 
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(Movie 5). We attribute this difference in behavior to the polarity of ectoderm pieces, 

which was previously reported (Takaku et al., 2005). Because of polarization, cells in 

contact with the outside may be non-adhesive to the outside and thus unable to fuse 

with a neighboring piece. This lack of boundary cell-cell interaction would have no 

effect on rounding up and micro-aspiration, and little effect on cell sorting, since 

polarization would only happen once ectodermal cells reach the aggregate boundary. 

Thus, while polarization can be neglected in these other experiments, it dominates 

ectoderm behavior during fusion and thus complicates estimates of tissue surface 

tensions from fusion experiments. 

Finally, we repeated a qualitative experiment, previously performed by Technau 

and Holstein (Technau and Holstein, 1992). We showed that under similar aggregating 

forces and at similar cell densities, endodermal cells made larger aggregates than 

ectodermal ones, a signature of their highest cohesiveness (Fig. S4), in agreement with 

experiments performed at the single cell level (Sato-Maeda et al., 1994). 

Overall, we demonstrated that both tissues show liquid-like behaviors on long 

time scales (rounding up, flowing) and that the endoderm has a higher surface tension 

than the ectoderm. The difference is high enough to explain cell sorting (Foty et al., 

1996). Our estimates of tissue viscosities and surface tensions are in good agreement 

with previously published values on aggregates of embryonic tissues from chicken 

(Forgacs et al., 1998; Foty et al., 1994; Foty et al., 1996) or zebrafish (Schötz et al., 

2008) which were all on the order of 104-105 Pa.s for viscosities and 1-30 dyn/cm for 

surface tensions. Together these results demonstrate that differential surface tension 

plays an important role during cell sorting in Hydra aggregates. 
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Figure 2: Rheology of individual tissues. A) Still sequence of micro-aspiration 

experiment performed on an endoderm tissue piece. B) Quantification of surface 

tensions from micro-aspiration experiments, the bars shows mean ± SEM, n=13 and 14 

for endoderm and ectoderm, respectively. C) Sample quantification of aspirated length 

of an endoderm piece as a function of time showing a short, visco-elastic phase used to 

estimate viscosity and a long linear phase. D) Still sequences of rounding up experiment 

on an ectoderm tissue piece. E) Quantification of aspect ratio as a function of time of 

the experiment shown in D), the dashed red line represents an exponential fit to the data 

in black.  F) Quantification of surface tensions from rounding up experiments, the bars 

show mean ± SEM, n=17 and 15 for endoderm and ectoderm, respectively. 
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Single cell dynamics during sorting 

Our results show that differences in surface tension can drive cell sorting but 

they do not exclude the involvement of other mechanisms such as differences in cell 

motility. To evaluate whether differential cell motility played a role in cell sorting, we 

tracked individual cells during the sorting process. To achieve single cell tracking 

within the aggregates, we prepared aggregates in which 5% of the cells were transgenic, 

expressing a fluorescent protein. These aggregates were analyzed using three 

dimensional 2-photon timelapse imaging. From the resulting videos, we reconstructed 

single cell trajectories for both tissues, in the first 4-6 h of sorting (Fig. 3A). We found 

cell speeds to be on the order of 50 m/h, constant throughout this time window, and 

comparable for both cell types (Fig. 3B). The mean square displacements (MSDs) of 

both cell types were weakly super-diffusive (power law with exponent of 1.3-1.4) and, 

again, similar (Fig. 3C). This indicates that cell motion was mostly random and thus 

that directed cell motility doesn’t play a role in cell sorting. This is further demonstrated 

by the fact that cell directionality was also similar for both cell types, despite their 

differing final positions (inside versus outside) (Fig. 3D). Quantitatively, the MSDs 

yielded diffusion coefficients on the order of a few hundred microns squared per hour, 

the same order of magnitude as was reported for two dimensional Hydra aggregates 

(Rieu et al., 1998).Finally, we found no differences in speed distributions and velocity 

auto-correlation functions between the two cell types (Fig. S5).  

Of note, we observed a general vertical trend in the displacement of the cells 

which is explained by the fact that aggregates start in a mostly flat state and round up as 

they sort. To test if our results were dominated by the global motion of the aggregate, 
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we performed experiments where all nuclei were stained to correct for this global 

motion and obtained similar results (Fig. S6). This shows that, although important, the 

global motion of the aggregate does not impact our conclusions. The main difference 

was that center-of-mass motion-corrected MSDs were basically linear (Fig. S6), 

implying that the coherent component of the cell motion is due to rounding up and not 

cell sorting, again in agreement with experiments performed in two dimensions (Rieu et 

al., 2000). 

In summary, our data at the single cell level do not reveal any intrinsic motility 

differences between the two tissue types. This implies that differential motility does not 

play a role in cell sorting in Hydra aggregates. 

 

 

 

 



20 

 

 

Figure 3: Single cell dynamics. A) Reconstructed cell tracks from 2-photon imaging 

color coded by time. Axes are in microns. B) Quantification of mean speeds of both 

tissues from one representative experiment.  C) Log-log plot of mean square 

displacements in the same experiment. The black dashed line shows the behavior of a 

power law with an exponent of 1, i.e. purely diffusive motion. This shows that cell 

motion is slightly super-diffusive. A linear fit yields diffusion constants of 564±63 

micron2/h and 657±23 micron2/h (best fit ±95% confidence interval) for endoderm and 

ectoderm, respectively.  D) Quantification of directionality from the same representative 

experiment. Directionality is averaged over all traceable cells and the bars represent 

mean±standard deviation (n=20 and 17 for endoderm and ectoderm, respectively).  
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DAH-based numerical simulations of cell sorting 

Since our experiments showed that differential surface tension governs cell 

sorting without differential motility playing a significant role, we used numerical 

simulations to probe the effects of both mechanisms and test their ability to reproduce 

our experimental data. We applied a cellular Potts model to simulate cell sorting using 

the freely available CompuCell 3d software (http://www.compucell3d.org/)(Swat et al., 

2012). The simulations are based on differential adhesive forces between pairs of cells 

depending on their identities. Individual cells tend to keep their volumes (finite 

compressibility) and their surface area (finite deformations). To mimic our experiments 

as closely as possible, simulations were run in 3 dimensions using different numbers of 

cells. Initially the aggregates were in a flat configuration with a thickness of 3 cells and 

the long sides were varied from 7.5 to 35 cells (Fig. 4A) leading to a total number of 

cells ranging from a hundred to a few thousand. Although the largest simulated 

aggregates were smaller than the largest aggregates in the experiments (on the order of 

104 cells), they were large enough to model aggregates capable of regeneration. In 

addition, we tuned the adhesion parameters to obtain a surface tension twice as high for 

the endoderm as for the ectoderm (see Methods), the same order of magnitude found in 

our experimental measurements. 

As expected, we found that these features were sufficient to drive both cell 

sorting (Fig. 4A, Movie 6) and the rounding up of the aggregate observed in 

experiments (Fig. 1A). 

Regarding single cell dynamics, both cell types showed similar motility 

behaviors as shown by their respective speeds, MSDs, or directionality (Fig. 4B-D). We 
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found the MSDs to be slightly super-diffusive (exponent of 1.2-1.3), in agreement with 

our experimental results (Fig. 3C). To quantitatively reconcile length scales between 

simulations and experiments, we used typical cell sizes (4 pixels in simulations and 20 

microns in experiments). In simulations, as in experiments, we found that individual 

cell speeds were constant and similar for both tissues. We thus decided to equalize the 

speeds that led to each simulation step to be on the order of 10s. This led to sorting 

times ranging from 1h to 10h, in agreement with experimental observations (Fig. S7). 
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Figure 4: DAH-based numerical simulations. A) Still sequence of the middle slice in 

a simulation. Endodermal cells are shown in magenta and ectodermal cells are shown in 

green. Stills are shown at 0, 300, 800, and 2000 simulation steps. B) Measurement of 

speeds over time for a representative simulation at the largest size. C) Log-log plot of 

the mean square displacement of the same simulation as in B). The black dashed line 

shows the behavior of a power law with an exponent of 1 or diffusive behavior. A linear 

fit yields diffusion constants of 0.084±0.004 pixel2/simulation steps and 0.07±0.004 

pixel2/simulation step (best fit ±95% confidence interval). D) Quantification of 

directionality from the same representative simulation. Directionality is averaged over 

all tractable cells and the bars represent mean±standard deviation (n=1837 for both 

tissues) E) Log-log plot of boundary length as a function of time for five different initial 

sizes. Each plot represents the mean of three independent simulations. The dashed black 

line shows the behavior of a power law with exponent -0.55. F) Log-log plot of blob 

size as a function of time for ten different initial sizes. Each plot represents the mean of 
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three independent simulations. The dashed black line shows the behavior of a power 

law with exponent 0.59. 

 

For aggregate-scale dynamics in the simulations we found that both the length of 

the boundary between the two tissues (Fig. 4E) and the typical blob size (Fig. 4F) 

followed power laws. For larger aggregates, these exponents were independent of size 

(Fig. S8). The boundary length decreased as the power -0.55±0.11 of time while the 

blob size increased as the power 0.59±0.03 (mean ± standard deviation, n=21 

simulations at seven different initial sizes). These values are both within error bars of 

what we obtained in the experiments. 

Finally, our model also correctly reproduced the fluid-like behavior of separated 

tissues as shown by simulations of fusion (Movie 7) and engulfment (Movie 8). Taken 

together, these results demonstrate that a numerical simulation based solely on DAH, 

reproducing the geometry of our experiments and with model parameters partly coming 

from experimental measurements (see Methods) was sufficient to reproduce the data we 

gathered at different scales. Therefore, we conclude that DAH is sufficient to explain 

cell sorting in three-dimensional Hydra aggregates. 

It is possible, however, that differential cell motility acts in addition to 

differential interfacial tensions and speeds up sorting. To test the effect of adding 

differential motility, we ran simulations including both mechanisms by separately 

tuning the effective temperatures of both tissues. Clearly, cellular processes are not 

driven by thermal fluctuations, but temperature here is a measure of the activity of cell 

extensions and thus models cell activity and motility. In accordance with previously 

published data suggesting that sorting might be driven by the activity of endodermal 
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epithelial cells only (Takaku et al., 2005), we decreased the effective temperature of 

ectodermal cells by a factor of 2 and measured the dynamics. We found that the 

aggregate scale dynamics (rounding up, blob size, and boundary length) were indeed 

accelerated slightly by this change (Fig. S9). However, as expected, this change induced 

a clear difference in cell speeds between the two tissues with the endodermal cells being 

faster than ectodermal ones (Fig. S9). This is in direct contradiction to our experimental 

results from single cell tracking experiments (Fig. 3). In addition, models of cell sorting 

based on differential motility evolve to a final configuration in which islands of slow 

moving cells are surrounded by coherent streams of motile ones (Beatrici and Brunnet, 

2011; McCandlish et al., 2012). The final state we obtained during cell sorting does not 

correspond to an internal stream of endodermal cells while the ectoderm remains 

passive. Indeed, we find no clear decrease in cell speeds as sorting proceeds (Fig. 3B). 

These results, in our opinion, clearly negate any central role for differences in cell 

motility in the process of cell sorting in Hydra aggregates. 
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Chapter 3: Discussion 

Fast dynamics of cell sorting 

Our quantitative analysis of cell sorting dynamics revealed that sorting in Hydra 

aggregates is faster than published theoretical predictions. In addition, our results 

disagree with previous work claiming that full sorting is not observed in Hydra 

aggregates, slows down logarithmically, and could take as long as 100h (Glazier and 

Graner, 1993; Graner and Glazier, 1992). The largest aggregates used in our study 

achieved full sorting in 6-10h (Fig. 1A and Fig. S7), prior to forming a central cavity. 

Moreover, we only observed partial sorting on shorter time scales and for the largest 

aggregates studied. Quantitatively, the speed of sorting is reflected by the exponents 

controlling the dynamics of blob sizes and boundary lengths.  

For blob size, our value of 0.49±0.24 is higher than the result reported by 

(Nakajima and Ishihara, 2011) (1/3) and (Belmonte et al., 2008) (0.28). Both papers use 

the DAH to explain sorting in two dimensions but differ from our experiments in some 

key aspects. In particular, (Nakajima and Ishihara, 2011) uses periodic boundary 

conditions in two dimensions making any effect of the outside medium irrelevant. 

(Belmonte et al., 2008) use a modified Vicsek model in two dimensions in which the 

ectodermal cells out-number the endodermal cells three to one.  

Similarly, models of sorting driven by differences in cell motility that are either 

intrinsic (Beatrici and Brunnet, 2011) or dependent on the cells’ local environment 

(Strandkvist et al., 2014) have found slower dynamics than we observed (exponents of -

0.22 and -0.17, respectively). Here too, the underlying models differ from our 

experiments. (Beatrici and Brunnet, 2011) also used a modified Vicsek model in two 
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dimensions in which both cell types have fixed velocities, once cell type being four 

times faster than the other one, which is not the case in our experimental data. Of note, 

they only predicted full sorting in the case where faster cells largely outnumbered 

slower ones and their final configuration was the opposite of what was suggested 

experimentally by (Jones et al., 1989). Finally, (Strandkvist et al., 2014) also use two 

dimensional simulations with periodic boundary conditions and tune the difference in 

cell motilities to be from 8-fold to 64-fold.  

We attribute this difference in dynamics to the specific initial conditions used in 

our experiments and simulations, i.e. a three dimensional flat configuration. The 

equivalent configuration in two dimensions would be a thin line that, to our knowledge, 

has never been investigated. Since we and others (Rieu et al., 1998) have established 

that cell motion is mostly random during Hydra cell sorting, the distance that an 

ectodermal cell has to travel to get in contact with the outside medium is greatly 

reduced in a flat geometry. Of note, rounding up of the initially flat aggregates took 

longer than cell sorting, like in the experiments (Fig. 1A, Fig. 4A), meaning that this 

effect of geometry applied throughout the process. To further probe this, we ran 

simulations modifying the initial geometry of the aggregates to make them spherical.  

This change in geometry induced only partial sorting on time scales in which 

similarly sized flat aggregates would fully sort. This is in agreement with previous 

results obtained from simulations of DAH in 2 dimensions from circular initial 

conditions (Graner and Glazier, 1992), the direct equivalent of the geometry tested here. 

Quantitatively, we found that changing the initial geometry decreased the exponent of 

blob size increase to 0.19 (Fig. S10), a value closer to the different theoretical 
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predictions discussed above. Of note, these simulations also showed that the MSDs of 

both cell types were then diffusive (Fig. S10), further confirming that the coherent 

component of motion observed both in our experiments and simulations stems from the 

rounding up of the aggregates which occurs during sorting. 

Finally, to confirm the important role of the initial geometry, we also varied the 

initial thickness of the square aggregates from 3 cell sizes to 7 and observed the effect 

of this change on sorting dynamics (Fig. S11). We indeed found that the thicker the 

initial aggregate, the slower the sorting further proving our hypothesis of the role of the 

initial geometry on sorting dynamics. 

Distinguishing between models of cell sorting 

We have shown through our own simulations that DAH is sufficient to 

recapitulate our experimental data on both the dynamics of sorting and the behavior of 

single cells. Furthermore, we have incorporated differential motility into the simulations 

in the form of different temperatures to test whether differences in motility acted in 

combination with DAH to drive the sorting. Of note, it has been demonstrated 

experimentally that the motion of retinal cells from chick embryos during sorting was 

properly captured by the cellular Potts model in which temperature models membrane 

fluctuations (Mombach and Glazier, 1996). Varying temperature separately for both 

tissues is thus a proper way of modelling intrinsic differences in cell activity and 

motility. As a result, in this situation we observed differences in single cell behavior 

that we did not observe in the experimental data. Therefore, we conclude that 

differences in motility do not play a role in Hydra cell sorting.  
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One possibly important process that we could not test with our experimental 

setup is the effect of the local environment on the motility of the cells. This has been 

shown to suffice to drive sorting  (Strandkvist et al., 2014) and has been observed 

experimentally (Rieu et al., 2000). Differences in motility in response to a cell’s 

immediate surrounding is expected from the DAH, however, and does not require 

intrinsic differences in motility. Indeed, in a purely endodermal cell aggregate, cell 

adhesions are expected to be stronger and thus cell motion to be more limited. We 

therefore believe that this aspect does not contradict our results. 

To conclude, our multi-scale, interdisciplinary approach has answered a long-

standing question regarding the mechanisms driving cell sorting in Hydra regeneration. 

We found that 1) differences in interfacial tensions between the tissues can drive sorting 

and 2) there are no intrinsic differences in cell motility between cell types. Our results 

thus rule out differential motility as a significant contributor to Hydra cell sorting. We 

confirmed these experimental results using numerical simulations. As the importance of 

studying physical features in the context of embryonic development is increasingly 

recognized, our work demonstrates that a similar approach is also fruitful in the context 

of regeneration, which is an exciting research area waiting to be explored in more depth 

with physical and biomechanical approaches. 
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Chapter 4: Materials and Methods 

Hydra Care 

Mass cultures of the watermelon transgenic Hydra vulgaris line (ectoderm 

GFP/endoderm DsRed2), the inverse watermelon line (ectoderm DsRed2/endoderm 

GFP), Wnt-GFP (ectoderm DsRed expression and GFP under the control of the Wnt3 

promoter (Hobmayer et al., 2000)), and AEP lines were used for experiments. AEP is 

the line from which embryos are obtained for making transgenic animals. Animals were 

kept in Hydra Medium (HM) composed of 1 mM CaCl2 (Spectrum Chemical, Gardena, 

USA), 0.1 mM MgCl2 (Fisher Scientific, Waltham, USA), 0.03 mM KNO3 (Fisher 

Scientific, Waltham, USA) 0.5 mM NaHCO3 (Fisher Scientific, Waltham, USA) 0.08 

mM MgSO4 (Fisher Bioreagents, Pittsburgh, USA) at a pH between 7 and 7.3 at 18°C 

in a Panasonic incubator. Animals were cleaned daily using standard cleaning 

procedures from (Lenhoff and Brown, 1970). The Hydra were fed two to three times 

per week with newly hatched Artemia (Brine Shrimp Direct, Ogden, USA). Animals 

used for experiments were starved for at least 48 hours.  

Tissue Separation 

The protocol is based on (Kishimoto et al., 1996) with some modifications. 

Animals were starved for 5-7 days before an experiment. About 10 Hydra were placed 

in 35 mm Petri dishes (CellTreat, Pepperell, USA) and cut, using sterile scalpel blades 

(Surgical Design Inc, Lorton, USA), below the tentacles to remove the head and above 

the budding zone to remove the peduncle and foot. The body columns were placed for 

about 2.5 minutes in ice cold HM solution, pH adjusted to 2.5 using 2 M HCl, then 

transferred to Dissociation Medium (DM) composed of 3.6 mM KCl (Research 
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Products International Corp., Mt Prospect, USA), 6 mM CaCl2 (Spectrum, Gardena, 

USA), 1.2 mM MgSO4 (Fisher Bioreagents, Pittsburgh, USA), 6 mM sodium citrate 

(LabChem Inc, Zelienople, USA), 6 mM sodium pyruvate (Alfa Aesar, Ward Hill, 

USA), 6 mM glucose (Sigma, St. Louis, USA), 12.5 mM TES (Sigma, St. Louis, USA), 

50 µg/mL rifampicin (Calbiochem, San Diego, USA), at pH 6.9 at room temperature 

(RT) following (Flick and Bode, 1983). The dishes containing body columns in DM 

were taped and swirled to promote separation of tissues.  Success rate was low with 

only around 10% of body columns fully separating and around 20% showing partial 

separation. In this latter case, ectoderm and endoderm pieces would be manually cut 

free. After separation, samples were further cut with scalpel blades to yield pure pieces 

of either tissue type. 

Cell aggregates 

Aggregates were prepared according to (Gierer et al., 1972), with some 

modifications. About 100 Hydra body columns from various strains were prepared by 

cutting off the head and peduncle/foot and washed 3 times with DM before 1 hour 

incubation in DM on ice. The body columns were mechanically dissociated into a single 

cell suspension with vigorous trituration. The cells were centrifuged in an Allegra X-

15R Centrifuge (Beckman Coulter, Brea, USA) at 4C, 200g, for 5 minutes and washed 

twice with ice cold DM. About 1 mL of cell suspension was made from 100 body 

columns by washing the pellet of single cells through a Flacon nylon 40 µm nylon mesh 

filter (Corning Incorporated, Corning, USA). 100 L aliquots of this cell mix were 

placed in separate wells of 96 well V-shaped plates (Nunc, Roskilde, Denmark) and the 

plate was centrifuged at 1,000g for 5 min. Aggregates were cultured in 100% DM for 
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the first 4 hours after which 100 L of HM was added to each well leading to a 50/50 

mix of HM and DM. At 24 hours, the aggregates were transferred using glass Pasteur 

pipets to a solution of 70:30 DM:HM. Finally, at 48h, they were transferred to 100% 

HM for the rest of regeneration. Throughout, aggregates were kept at 18°C. Imaging 

started 1 hour after the aggregates were made by carefully transferring them to 96 well 

flat-bottom plates (Nunc, Roskilde, Denmark). The aggregates were imaged every 2 to 

5 minutes using GFP and RFP channels and 3 planes z-stack on an Olympus IX81 

inverted microscope (Olympus Corporation, Tokyo, Japan) using an ORCA-ER camera 

(Hamamatsu Photonics, Hamamatsu, Japan) and Slidebook software (version 5, 

Intelligent Imaging Innovations, Inc, Denver, USA).  

By visually controlling cell density in the cell mix prior to centrifugation, we 

prepared aggregates of different initial sizes, ranging from 102 to 104 cells. Of note, 

only the largest of these (roughly over 103 cells) fully regenerate and we thus focused 

on these in our experimental analysis. 

Analysis of sorting dynamics 

Two channel z-stack images of aggregates were used for analysis to determine 

boundary ratio and blob size measurements. The z-stacks were first converted to 

maximum intensity projection RGB image sequences in ImageJ 

(http://imagej.nih.gov/ij/, NIH, Bethesda, USA). Using a semiautonomous MATLAB 

(MathWorks, Natick, USA) script, the red and green channels were normalized to each 

other based on each channel’s average intensity. The normalized image was then 

segmented into three regions—background, ectoderm, and endoderm—using the 

function kmeans (Fig. 1B). We measured the ‘length’ of the boundary between the 
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endoderm and the ectoderm by taking the sum of all the points between the ectoderm 

and endoderm segments. The boundary ratio was defined as this length divided by the 

perimeter of the aggregate. Of note, we find this measurement to be directly 

proportional to the sorting index used in other papers. This index is calculated as the 

fraction of neighboring cells which are of the opposite cell type, averaged over all cells. 

On average, each cell will thus have a boundary length equal to the mean sorting index 

times its contour length. Assuming that all cells have similar sizes, the total boundary 

length will then be the average boundary length per cell times the number of cells which 

is thus also proportional to the sorting index. 

For blob size, we calculated the segmented image’s 2-D Fourier transform 𝑆(𝑘⃗ ) 

and the typical blob size as: 

𝐵𝑙𝑜𝑏 𝑠𝑖𝑧𝑒 =
∑ |𝑆(𝑘⃗ )|

2

𝑘⃗ 

∑ |𝑆(𝑘⃗ )|
2
|𝑘⃗ |𝑘⃗ 

 

The blob size and boundary ratios from 17 aggregates (5 technical replicates) 

were individually linear fitted on a log-log plot to determine the power law exponent. 

The blob size and boundary exponents were averaged over these 17 measurements and 

their standard deviations calculated. For plotting purposes, blob sizes and times were 

normalized by dividing them by their initial value. Of note, this normalization doesn’t 

alter the exponents that were obtained.   

To estimate volumes from two-dimensional imaging, the aggregates were 

assumed to be ellipsoidal. We fit an ellipse over the segmented image in ImageJ and 

used its minor axis length for the width and girth and the major axis as the length of the 

ellipsoid.  
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The sorting time, the time it takes for the ectoderm and endoderm to be 

completely separated (no ectoderm cells remain inside the endoderm), was found by 

having two people watch the sorting videos and manually record the time points when 

the aggregates become sorted. We then averaged and calculated the standard deviation 

of the manually recorded sorting times.  

Micropipet aspiration 

Tissue pieces were used right after cutting following tissue separation. Glass 

capillaries (model 1B100F-4, World Precision Instruments, Sarasota, USA) were pulled 

into micro-pipettes using a horizontal laser based micropipette puller P-2000 (Sutter 

Instrument, Novato, USA). The resulting needles were manually cut to yield an opening 

of approximately 50 microns (smaller than pieces of interest but larger than one cell). 

Before the experiments, they were treated with Sigmacote (Sigma, St. Louis, USA) 

following the manufacturer’s protocol to make them non-adhesive.  They were then 

mounted onto a needle holder attached to an M-152 micromanipulator (Narishige USA, 

Amityville, USA). The assembly was connected by hermetically sealed tubing to a 

plastic syringe used as a water reservoir and mounted onto a stand allowing for manual 

variation of the syringe’s height. Using the micromanipulator, the needle tip was put in 

contact with the piece of interest before lowering the syringe’s level to apply negative 

pressure. The aspiration of the piece was imaged every 5-10s under a MZ16FA stereo 

microscope (Leica Microsystems, Wetzlar, Germany), using a SPOT RT3 camera 

(Model 25.1, Diagnostics Instruments, Sterling Heights, MI, USA) controlled by SPOT 

Basic 5.1 software (Diagnostic Instruments). For surface tension estimates, the radius of 

the piece was measured from the images in ImageJ as the square root of the projected 
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area divided by . The radius of the needle was also measured in ImageJ. The height 

difference between the water reservoir and the Petri dish containing the sample was 

slowly manually increased until aspiration began. The height difference was recorded at 

that time and translated into a critical pressure value according to: 

∆𝑃𝐶 = 𝜌𝑔∆ℎ 

Where ∆𝑃𝐶 is the critical pressure, 𝜌 is the density of the medium and ∆ℎ is the 

height difference between the water reservoir and the Petri dish. 

This led to a surface tension estimate per piece. The values presented in the 

results section are averaged from 13 independent endoderm and 14 independent 

ectoderm pieces.  

For viscosity estimates, the retracted length as a function of time was manually 

measured in ImageJ and fit in MATLAB as an exponential function of the form: 

𝑎 (1 − 𝑒
−𝑡

𝜏 ). 𝑎 and 𝜏 were fit parameters with: 

𝜏 =
3𝜋𝜂

𝐸
 

Where 𝐸 and 𝜂 are the elastic modulus and viscosities, respectively. This led to 

an estimate of the viscosity for each tissue piece. The values presented in the results 

section are averaged from 10 independent endoderm and 9 independent ectoderm 

pieces.  

Fusion 

The two tissue layers obtained from tissue separation were cut into smaller 

pieces. Within 5 minutes post-cutting, the two tissue pieces of interest were either put 

into contact using the hanging drop technique described in (Schoetz, 2008) or manually 
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brought in contact using hair pins. The fusion process was imaged every minute either 

on an Olympus IX81 inverted microscope or using an EVOS FL Auto Cell Imaging 

System (Thermo Fisher Scientific, Waltham, USA).  

Rounding up 

Pieces from either tissue were manually cut with sterile razor blades into oblong 

shapes in DM and imaged every minute for 2-3h under a Leica MZ16FA stereo 

microscope. Using ImageJ, each piece was fitted by an ellipse at each time point and the 

aspect ratio was computed as the ratio of the long axis to the short one as a function of 

time. The dynamics was then fit in MATLAB by an exponential decay function of the 

form  

𝑎𝑒
−𝑡

𝜏 + 𝑏. 

𝑎, 𝑏 and 𝜏 were fit parameters and the characteristic time 𝜏 was taken to be 𝜏 =

𝜂𝑅

𝜎
 with 𝜂 the viscosity of the tissue, 𝜎 its surface tension and 𝑅 the radius of the piece 

of interest (Mombach et al., 2005). Radii were measured as the geometric mean of the 

axes of the fitting ellipse at the final time point. Using viscosity estimates from micro-

pipet aspiration experiments, we measured the surface tension of each piece this way 

and the results presented are averaged over 17 independent endoderm and 15 

independent ectoderm pieces. 

Single cell dynamics 

Aggregates containing 5% of their cells from watermelon animals and 95% from 

AEP animals were prepared as described above. After 1h in DM, they were imaged on a 

Scientifica multiphoton imaging setup (Scientifica, Uckfield, UK) coupled to a MaiTai 
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ultrafast laser (Spectra Physics, Santa Clara, CA, USA) set to 980 nm through a 20x 

water immersion XLUMP PlanFL objective (Olympus Corporation, Tokyo, Japan). 

Optical slices in both the RFP and GFP channels were acquired at 3 microns-slices and 

averaged over 6 acquisitions. This procedure was repeated every 5 to 10 minutes over 

4-6h.  

Single cells were detected separately for each tissue using the 3d object counter 

plugin in ImageJ and their center of mass at each time point recorded. This data was 

analyzed in MATLAB by reconstructing single cell trajectories by usual tracking 

algorithms freely available online 

(http://www.mathworks.com/matlabcentral/fileexchange/42573-particle-point-

analysis?focused=3791012&tab=function). From these tracks, we calculated mean 

square displacements, speeds, auto-correlation functions and directionality according to 

the usual definitions. Values reported here are averaged over all trajectories for each 

cell type. The data presented in the results section are from one representative 

experiment out of eight. 

For center of mass corrections, we used mosaic aggregates containing 5% of 

cells from HyWnt3 promoter::GFP animals allowing us to track ectodermal cells in the 

RFP channel and 95% from AEP animals. During the 1h period in DM, aggregates were 

stained with a Syto12 nuclear dye (Thermo Fisher Scientific, Waltham, USA) diluted to 

1:500 in DM. Aggregates were washed twice in DM before imaging on the 2-photon 

microscope. The analysis was performed in the same way as above. Center of mass was 

calculated from the mean position of all detected nuclei at each time step and the center 
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of mass position was subtracted from both nuclei and ectodermal cell positions. The 

corrected positions were then used to calculate mean square displacements. 

Numerical simulations 

We used the freely available CompuCell3d (Swat et al., 2012) software to 

perform simulations of a Cellular Potts model. Details on how these simulations are 

performed can be found in the software’s manual (available at: 

http://www.compucell3d.org/Manuals). In our case, we used a Hamiltonian H 

composed of three contributions. The first one modeled cell-cell contacts and was 

written as follows: 

𝐻𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = ∑ 𝐽 (𝜏(𝜎(𝑖 )), 𝜏(𝜎(𝑗 )))

𝑖,𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(1 − 𝛿(𝜎(𝑖 ), 𝜎(𝑗 ))) 

Where the summation applies over all pairs of adjacent pixels 𝑖  and 𝑗 , 𝜎(𝑖 ) is the 

ID number of the cell occupying the pixel 𝑖  and 𝜏(𝜎(𝑖 )) the identity (endoderm, 

ectoderm, or medium) of that cell and 𝛿(𝑥, 𝑦) is the Kronecker function. This 

formulation means that energy only applies to neighboring pixels that belong to 

different cells and the energetic cost of that adhesion depends on the identity of both 

cells involved.  For the adhesion energies, we used the following parameters:  

Tissues J 

Endoderm/medium 300 

Ectoderm/medium 200 

Endoderm/endoderm 2 

Endoderm/ectoderm 75 

Ectoderm/ectoderm 100 

 

The relative values of these parameters were chosen to fulfill the following 

criteria: the adhesion energy between the two tissues has to be intermediate between the 
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two homotypic adhesion energies to account for complete engulfment; the effective 

surface tension of the endoderm has to be double that of the ectoderm, in agreement 

with experiments. The surface tension of one tissue was estimated as:  

𝜎𝑡𝑖𝑠𝑠𝑢𝑒 = 𝐽𝑡𝑖𝑠𝑠𝑢𝑒 𝑚𝑒𝑑𝑖𝑢𝑚⁄ −
𝐽𝑡𝑖𝑠𝑠𝑢𝑒 𝑡𝑖𝑠𝑠𝑢𝑒⁄

2
. 

The second contribution to the Hamiltonian was the limited compressibility of 

cells which means that they resist any deviation from a target volume leading to the 

following formulation: 

𝐻𝑣𝑜𝑙𝑢𝑚𝑒 = ∑𝜆𝑣𝑜𝑙(𝑉(𝜎) − 𝑉𝑡)
2

𝜎

 

Where the summation applies over all cells, 𝜆𝑣𝑜𝑙 is the inverse compressibility 

of the cells, 𝑉(𝜎) is the volume of cell 𝜎 and 𝑉𝑡 is the target volume. In our simulations, 

we used the same compressibility for both cell types with the following parameters 

𝜆𝑣𝑜𝑙 = 20 and 𝑉𝑡 = 64. 

The last contribution represents the cell’s membrane tension. Numerically, this 

means that there is an energy penalty for the surface of each cell if it deviates from a 

target value, leading to the following formulation: 

𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = ∑𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑆(𝜎) − 𝑆𝑡)
2

𝜎

 

Where the summation applies over all cells, 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the inverse membrane 

compressibility of the cells, 𝑆(𝜎) is the surface of cell 𝜎 and 𝑆𝑡 is the target surface. In 

our simulations, we used the same membrane compressibility for both cell types, with 

the following parameters 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 5 and 𝑆𝑡 = 96. 
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Overall, the Hamiltonian controlling the dynamics was the sum of the three 

contributions above. The activity of the cells was then represented as a temperature 

parameter that allows them to overcome local energy barriers to reach the energetically 

optimal situation. In our simulations, the temperature was set to 1000 with the exception 

of our simulations of differential motility that kept the same temperature for the 

endoderm but used 500 for the ectoderm. 

Simulations were initialized, in most cases, as rectangular random mixtures of 

cells (initialized as cubes with 4 pixel sides) from both cell types. The width and length 

of the rectangles were kept equal and were varied from 30 pixels to 140 pixels while the 

thickness was kept at 12 pixels, except for the data presented in Fig. S11. For sorting 

with spherical initial conditions, we initiated the simulation as a random mixture of both 

cell types in a sphere with a radius of 40 pixels. To simulate fusion, two spheres, in 

contact, for a single tissue type were initiated with a radius of 22 pixels each. 

For analysis, data were saved at intervals ranging from 2 to 30 simulation steps 

depending on the system size. An image representing the horizontal slice in the middle 

of the aggregate’s height was recorded and detailed data on the identity of each pixel 

were saved. The horizontal slices were used to calculate blob sizes and boundary 

lengths in the same way as described in the Sorting dynamics section. The saved time 

series data were used to reconstruct the three-dimensional dynamics of each cell’s 

center of mass. For cell sorting, we ran triplicates of the simulations at ten different 

sizes. For each size, one exponent for blob size and one for boundary length were 

obtained by linear fitting their dynamics on a log-log plot in MATLAB. The values 

reported are means of the values obtained for the seven largest aggregate sizes leading 
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to a total of 21 simulations. For single cell dynamics, the data presented come from a 

single simulation at the largest size studied, but which is representative of all 

simulations.  

Immunohistochemistry 

Aggregates from AEP animals were prepared as described above and fixed at 

different time points in 4% paraformaldehyde in HM for 15 min at RT. They were 

washed 3x10 min in phosphate buffered saline (PBS) and permeabilized for 5min in 

PBS supplemented with 0.5% Triton X-100 (Sigma, St. Louis, USA). A blocking 

solution was prepared using 1% bovine serum albumin (BSA) (Fisher Bioreagents, 

Pittsburgh, USA), 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, USA) 

and 0.1% Triton X-100 in PBS. Aggregates were blocked in that solution for 2h at RT. 

The samples were incubated in primary anti-Hydra laminin, mAb 52 antibody (Sarras et 

al., 1994), diluted to 1:200 in the blocking solution, overnight at 4°C. Negative controls 

were performed by omitting the primary antibody and using blocking solution alone. 

Next, samples were washed 6-8 times in PBS over the course of 3-5 hour at RT before 

incubating overnight in a 1:500 dilution, in blocking solution, of an anti-mouse HRP 

secondary antibody (Enzo Life Sciences, Farmingdale, USA). The next day, samples 

were again extensively washed in PBS before a 1h incubation in PBT (1:2000 Tween 

(Sigma, St. Louis, USA) and 0.2% BSA in PBS). Detection of the HRP secondary 

antibody was performed in PBT supplemented with 1:10000 H2O2 (Avantor, Central 

Valley, USA) and 1:1000 NHS-fluorescein (Thermo Fisher Scientific, Waltham, USA) 

for 30 min. Samples were washed multiple times at RT and overnight at 4°C in PBS. 

Samples were imaged on an Olympus IX81 inverted microscope. The resulting images 
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were analyzed by measuring the averaged signal intensity in the middle of the 

aggregate. This value was normalized by the same measurement performed on the 

negative controls. Results from four different experiments were averaged and their 

standard deviations calculated. 

Centripetal aggregations 

Endoderm and ectoderm tissue pieces were dissociated into single cell 

suspensions in the same way as in preparing cell aggregates. Cell concentrations were 

measured using a Brightline hemacytometer (Sigma, St. Louis, USA) and equalized by 

adding DM to the most concentrated cell suspension. 800 L of these suspensions were 

placed in wells of a 24well plate (Genesee Scientific, San Diego, USA) and placed on a 

DS-500E rotary shaker (VWR International, Radnor, USA) for 30min at 75rpm. The 

resulting aggregates were then imaged under a Leica MZ16FA stereo microscope. 

Images were analyzed in ImageJ to extract the projected area of each resulting 

aggregate. 

Chapter 1-4 has been submitted for publication of the material. Cochet-Escartin, 

Olivier; Locke, Tiffany T.; Shi, Winne H.; Steele, Robert E.; Collins, Eva-Maria S. 

“Forces driving cell sorting in Hydra”.  
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