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GEOMScope: Large Field-of-view 3D Lensless Microscopy with 
Low Computational Complexity

Feng Tian1, Junjie Hu1, Weijian Yang1,*

1Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, 
USA

Abstract

Imaging systems with miniaturized device footprint, real-time processing speed and high 

resolution three-dimensional (3D) visualization are critical to broad biomedical applications such 

as endoscopy. Most of existing imaging systems rely on bulky lenses and mechanically refocusing 

to perform 3D imaging. Here, we demonstrate GEOMScope, a lensless single-shot 3D microscope 

that forms image through a single layer of thin microlens array and reconstructs objects through an 

innovative algorithm combining geometrical-optics-based pixel back projection and background 

suppressions. We verify the effectiveness of GEOMScope on resolution target, fluorescent 

particles and volumetric objects. Comparing to other widefield lensless imaging devices, we 

significantly reduce the required computational resource and increase the reconstruction speed 

by orders of magnitude. This enables us to image and recover large volume 3D object in high 

resolution with near real-time processing speed. Such a low computational complexity is attributed 

to the joint design of imaging optics and reconstruction algorithms, and a joint application of 

geometrical optics and machine learning in the 3D reconstruction. More broadly, the excellent 

performance of GEOMScope in imaging resolution, volume, and reconstruction speed implicates 

that geometrical optics could greatly benefit and play an important role in computational imaging.
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A lensless single-shot 3D microscope which forms image through a single layer of thin microlens 

array is demonstrated. The imager reconstructs objects by an innovative hybrid algorithm 

developed through a joint application of geometrical optics and machine learning. The algorithm 

requires minimal computational resources and enables real-time 3D high-resolution imaging over 

a large field of view.

Keywords

3D imaging; 3D microscopy; computational imaging; lensless imaging; light field; microlens 
array; geometrical optics

1. Introduction

Three-dimensional (3D) imaging over large volume with high resolution, real-time 

processing speed and compact device footprint is important for many biological 

applications. Widefield microscopes are standard tools in biological imaging [1–3]. The 

limitations of conventional microscopes are their inability on imaging 3D volumetric 

objects. Besides, the objective lenses with large magnification typically have a small depth 

of field and can only image a very small field of view. Mechanical refocusing with the bulky 

optics is required to image samples at different depths. All these prevent fast and efficient 

3D imaging over a large field of view.

Light field imagers [4, 5] can capture 3D object information through single exposure. They 

encode the object into a 4D light field, and then use ray tracing to digitally refocus object 

at different depths. However, this often comes with a degraded resolution, as recording 

4D light field trades camera resolution for depth information. Moreover, conventional ray 

tracing methods have challenges in processing microscopy images where there is high extent 

of crosstalk between microlens units in the light field. Modified light field microscopes 

adopt iterative optimizations with a more precise forward model and point-spread function 

(PSF) than geometrical optics, but a large benchtop system is still required [6–9].

Lensless imaging devices [10–21] replace the bulk lenses in conventional imaging systems 

by a thin amplitude or phase mask [10–18], and enable compact 3D imaging through single 

exposure. However, they face challenges on the expensive computational cost in object 

reconstruction and tradeoffs among reconstruction quality, speed and volume. Lensless 

imagers reconstruct objects globally by solving the inverse problem of imaging through 

convex optimizations [10, 12–20] or deep neural networks [22–24]. Both require a large 

amount of computational resource that scales with both image size and object size. This 

limitation stems from that the entire object space has to be reconstructed altogether. The 

extremely high demand of computation not only slows the reconstruction speed but also 

limits the total number of object voxels that can be reconstructed [6, 25–27].

Here we report a widefield fluorescence microscope using a single layer of random 

microlens array and an innovative hybrid 3D reconstruction algorithm, which can achieve 

high resolution over a large volume with near real-time processing speed and reduce the 

computational resource by orders of magnitude. The hybrid reconstruction combines a 
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pixel back projection algorithm and a background suppression algorithm (Figure 1a–d). 

We term our microscope to be “GEOMScope” as we heavily utilize geometrical optics for 

object reconstruction. Compared with the prevailingly used iterative optimization techniques 

that reconstruct the object globally, our approach solves object information locally and 

independently through small amounts of image pixels. This results in orders of magnitude 

less computational memory and orders of magnitude faster processing speed (Figure 1e, 

Supporting Table S1).

We emphasize that our reconstruction through geometrical optics does not degrade the 

resolution, and we can achieve similar resolution as the iterative optimization techniques. 

In conventional wisdom, reconstruction through geometrical optics often results in a lower 

resolution than iterative optimization process, particularly in microscopic imaging, due to 

its inability to model complex PSF [6, 9, 28]. Here, we engineer GEOMScope such that 

the PSF is sparse and can be considered as a Dirac comb function. As a result, geometrical 

optics can leverage a precise image formation model, resulting in a resolution on par with 

iterative optimization.

Another feature of our reconstruction algorithm is that it can well handle volumetric objects 

with dense features, thought it requires low computational resources. This is attributed to 

the background suppression step after the pixel back projection. Our geometrical optics 

approach can reconstruct objects at different depths, as if they were imaged sequentially 

by mechanically adjusting the distance between the object and the lens in a conventional 

imaging system (Figure 1c). The reconstruction contains defocused light as the background. 

We sharpen the object features through the subsequent background suppression algorithms 

(Figure 1d). Such a hybrid approach enables faithful reconstructions of volumetric objects.

Thanks to the high efficiency and high resolution reconstruction, GEOMScope enables a 

large field-of-view imaging in high resolution, with a near real-time reconstruction speed. 

Using a single layer of microlens array (20×20 mm2), GEOMScope is capable of single-shot 

3D imaging across a large volume of ~23×23×5 mm3 with a lateral resolution of ~40 μm and 

an axial resolution of ~300 μm. A total of ~5.5×106 resolvable points can be reconstructed 

in 10s of second scale, which was not possible using existing approaches. We experimentally 

validated the 3D microscope through volumetric imaging of fluorescence beads and objects 

across a large volume. GEOMScope is particularly promising for biomedical applications 

that require real-time high resolution 3D visualization through miniaturized and implantable 

imaging devices.

2. Design of GEOMScope

2.1 Image formation

The system architecture of GEOMScope contains the microlens array with a filling factor 

of ~1, fluorescence emission filter, and the image sensor (Figure 2a). The microlens array 

and the image sensor has a similar size in the lateral dimension (on the orders of 10s mm), 

and they are located in close proximity (with a distance of v on the orders of a few mm), so 

the overall geometry of the integrated imager is flat. Each lens unit is randomly positioned 

in the microlens array (Figure 1b, Supporting Figure S1a). Compared with the periodically 
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arranged microlens array, the randomly arranged microlens array has non-periodic PSF 

(Figure 1a), which not only facilitates the suppression of lens unit crosstalk and thus 

background in the object reconstruction, but also provides a more balanced frequency 

support among different spatial frequency (Supporting Figure S1). We segment the object 

domain into a grid of small zones matching the spatial segmentation profile of individual 

lens units in the microlens array (Figure 2). As the dimension of each object zone is much 

smaller than the nominal working distance z, within individual object zone the PSF is spatial 

invariant in the lateral direction and scales linearly with the object depth. The reference 

object plane is segmented into N zones, with (xci, yci) being the centroid of each zone, 

where i=1,2…N and N is the number of microlens units. Defining f(x,y;z) as the object 

intensity, ui as a 2D circular boundary operator to select the objects in the ith zone, and ⨀ 
as an element-wise multiplication, the local object falling into the ith zone can be written as 

f(x,y;z)⨀ui(x−xci,y−yci) (Figure 2a).

The PSF can be derived from the arrangement of the microlens units. We define 

ℎ0 x′, y′ = ∑iδ x′ = xci′ , y′ = yci′  on the image plane, where xci′ , yci′  is the centroid of each 

microlens unit. In our imaging configuration, xci′ , yci′  has the same value as (xci, yci). Any 

object point can only be effectively imaged by a certain amount of lens units Ne (across 

AB in Figure 2a), onto an effective area Ae (across CD in Figure 2a) on the image sensor, 

due to the Lambert’s cosine law [29] of light intensity distribution falloff and geometric 

aberration of the lens unit. Therefore, we can use an envelope function C(x',y') to model the 

overall envelope of the PSFs (Figure 2b). The local PSF for the ith object zone can then be 

expressed as Dz ℎ0 x′, y′ * PSFo x′, y′ ⨀C x′ − xci′ , y′ − yci′ , where PSFo(x',y') is the PSF of 

an individual lens unit, * represents convolution, and Dz is a local scaling operator to scale 

the coordinates (with a factor of sz) to obtain the local PSF for different object depth z. sz 

can be expressed as

sz = CD
AB ≅ z + v

z (1)

The image on the image sensor b(x',y') can be expressed as the summation of local image 

from all zones and object depths. The local image in a certain zone and object depth 

is the convolution between the local objects and local PSFs, with an appropriate lateral 

magnification Mz of the microlens unit:

b x′, y′ = ∑
z

∑
i = 1

N
f x′ − xci′

Mz
+ xci,

y′ − yci′
Mz

+ yci; z ⨀ui

x′ − xci′
Mz

, y′ − yci′
Mz

∗Dz ℎ0 x′, y′ ∗PSFo x′ − xci′ , y′ − yci′ ⨀C

x′ − xci′ , y′ − yci′

(2)
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2.2 Object reconstruction

So far, nearly all the lensless imagers employ iterative optimization approach with sparsity 

constrains to reconstruct the objects. To overcome the challenge of high demand of 

computational resource, we developed a pixel back projection algorithm followed by 

background suppression. The required computational resource is greatly reduced, and scales 

linearly with the number of reconstruction voxel in the object.

The pixel back projection algorithm uses geometrical optics approach to solve the inverse 

process of Equation 2 and reconstruct the object at different depths (Figure 2a). As each 

object point projects to multiple points on the camera sensor through different lens units, 

our goal is to collect these points on the camera to recover the object points. While each 

lens unit could image a point source into multiple pixels on the camera sensor (defined by 

PSF0), to simplify the process, we only pick up the centroid pixel, as the others are typically 

much weaker (Figure 2a). We start with a calibration process of Dz ℎ0 x′, y′ , by finding the 

scaling factor sz between the local PSF for object depth z and the microlens arrangement 

pattern h0(x',y') (Equation 1). The magnification Mz of each lens unit can be approximated 

through the scaling factor sz (Figure 2a):

Mz ≅ sz − 1 (3)

Once we have Dz ℎ0 x′, y′  and Mz, we can locate all the pixels for a voxel of interest at 

depth z. The reconstructed voxel value is the sum of all mapped pixel values across the 

effective image area Ae, which can be determined based on the field of view of the single 

lens unit (Materials and Methods). Such a reconstruction strategy avoids considering all 

pixels in the image sensor to reconstruct a single object voxel, which is the key difference 

from the global iterative optimization approach. It is this local reconstruction strategy that 

significantly reduces the required computational resource.

The reconstructed results in each depth from pixel back projection contain both the in-focus 

objects and artifacts, which includes the defocused light from objects locating at other 

depths and possible ghost objects. The ghost objects originate from the “one-to-many 

mapping” nature of the microlens array so a single pixel on the camera could come 

from multiple object points. All these contribute to the background and becomes more 

severe when the object is less sparse. The second step of our reconstruction process is to 

suppress these backgrounds, by either a particle clustering algorithm [30] or a U-net based 

convolutional neural network [31] (Supporting Figure S2).

For sparse, discrete and isolated point objects in 3D, we developed a particle clustering 

algorithm to remove the ghost object points and the defocused light in the 3D stack 

reconstructed from the pixel back projection algorithm (Materials and Methods, Supporting 

Section S1, Figure S2–3). The clustering algorithm is based on graph connectivity. For 

less sparse 3D objects which contains continuously connected features, we developed 

a convolutional neural network to suppress the background (Materials and Methods, 

Supporting Section S2, Figure S2, S4). It slices overlapped objects in depth and picks out 

focused objects from background light. The output image from the neural network contains 

sharper contrast and the defocused features are largely removed.
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2.3 Design of microlens array

We designed the microlens array in GEOMScope so it can image dense fluorescent objects 

(~520 nm central wavelength) across a large volume (~23×23 mm2 field of view and ~5 mm 

depth of field) with a lateral resolution ~40 μm. The microlens array and the image sensor 

both have a size ~20×20 mm2, matching the field of view. To reduce the thickness of the 

microscope, we minimize the distance between the microlens array and the image sensor to 

be v<5 mm. For a convenient placement of samples, we set the nominal working distance 

z as 20~30 mm. Based on this performance metrics, we can optimize the design parameters 

of the microlens array (Materials and Methods, Supporting Section S3, Figure S5–7). For 

a single lens unit, our major optimization interests are depth of field, lateral resolutions 

and aberrations. For the performance of the entire lens array, our optimization focuses on 

balancing 3D resolving ability and image reconstruction speed. We summarize the design 

parameters and performance metrics in Table 1.

3. Simulation results

To verify the design of GEOMScope, we first simulated its ability to image a single point 

source. We used ray tracing algorithm (OpticsStudio) to form an image of a single point 

source (Figure S8). Reconstruction of the object shows a FWHM ~40 μm and ~300 μm in 

the lateral and axial direction respectively (Figure S8a–b). We then simulated its ability to 

resolve two point sources separated laterally by 40 μm at a depth of 20 mm. The two point 

sources could be clearly distinguished in the reconstructed object (Figure S8c), where the 

intensity drops below ~85% of the peak object intensity in between the two reconstructed 

points. Similarly, two points sources that are separated by 300 μm along the same axial axis 

could be distinguished in the reconstruction (Figure S8d). These simulation results agree 

with our design.

We then simulated the image formation and object reconstruction for 3D distributed 

fluorescent point sources (Figure 3a) and a 3D volumetric objects (Figure 3b), which are 

placed at a distance of 18~22 mm from the front surface of lens array. The images are 

again formed by ray tracing algorithm. The pixel back projection algorithm reconstructs the 

objects at different depths. These reconstructed object stacks are then fed to the particle 

clustering algorithm (Figure 3a) or convolutional neural network (Figure 3b) for background 

suppression. The objects in 3D can then be faithfully reconstructed.

4. Experimental results

4.1 Imaging of point source and resolution target

We fabricated the microlens array using optical transparent polydimethylsiloxane (PDMS) 

with a negative 3D printed mold (Materials and Methods, Figure S10a). To quantify the 

image quality of GEOMScope across the 3D volume, we measured the FWHM of the lateral 

and axial reconstruction profile of a point source (created by illuminating a 10 μm pinhole) 

located at different positions in the object space. Here, we removed the filter so the imaging 

wavelength is ~457±25 nm. The lateral and axial reconstruction profile of the point source 
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maintains stable for a depth range over ~5 mm when it is placed ~20 mm from the lens array 

(Figure S9), in an overall good agreement with the design (Supporting Section S4).

To further quantify the imaging resolution, we imaged a negative 1951 USAF resolution 

target. We inserted a diffuser (600 Grit) between the LED and the resolution target to 

increase the angular spread of light passing through the target, so that the target acted 

like an isotropic source as a fluorescence sample. We placed the target at different depth, 

captured single-shot images, and performed image reconstruction in 3D for each case 

(Figure 4). For 2D objects, the pixel back projection step alone can already achieve a high 

quality reconstruction, so no background suppression algorithm is used. The reconstruction 

at different depths clearly demonstrated the effectiveness of our algorithm: the objects 

reconstructed at the correct focal plane show the highest sharpness. We can clearly resolve 

group 3 element 2, which has a line space of 55 μm (Figure 4b). This is in a good agreement 

with the simulated two-point resolution.

4.2 Imaging of 3D fluorescence and phosphorescent samples

We fabricated a 3D fluorescent sample by embedding fluorescent beads [Firefli Fluorescent 

Green (468/508 nm), 5.0 μm, Thermo Scientific] into PDMS. The sample is 35 mm 

in diameter and ~2.5 mm thick, where clusters of fluorescent beads were randomly 

distributed. We captured the fluorescence image through GEOMScope, and a benchtop 

inverted microscope with a 1x objective lens as a control (Figure 5). The 1x objective lens 

provides a large field of view, but at a tradeoff of a poor axial resolution in the benchtop 

microscope. Nonetheless, it requires multiple exposures and subsequent image stitching to 

cover the entire field of view (23 mm×23 mm). The depth information is lost due to the poor 

axial resolution. In comparison, only a single exposure is needed in GEOMScope to cover 

the entire field of view, and the bead clusters at different depths can be resolved. This clearly 

demonstrates the strength of GEOMScope: the ability to capture 3D images across a large 

field of view. We note that for fluorescent particles with a wide intensity range, signal from 

very weak particles might be covered by background light or ghost images of particles that 

are much larger and brighter. In this scenario, those object points with very weak intensity 

could be rejected in the background suppression algorithm, and thus may not be resolved 

(Figure 5f). We note that this is a general challenge in solving inverse problems, including 

the commonly used iterative optimization approaches.

We next tested the GEOMScope on resolving large scale 3D volumetric object, which is not 

sparse in spatial domain (Figure 6). We 3D printed a snowflake mold with feature thickness 

of 0.25 mm on a clear substrate. Glowing powders in green color was mixed with PDMS 

and spread onto the mold to form phosphorescent features. The target was tilted with respect 

to the lens array surface and spanned a depth range of 20~25 mm from microlens array. 

While the object was relatively dense so different sub-images overlapped (Figure 6a), the 

reconstruction algorithm successfully recovered the 3D information (Figure 6b–c, e). There 

are a total number of ~5×106 voxels and ~1014 pixel-voxels pairs in this 3D reconstruction. 

The processing time is ~18 second in total using a workstation (8 threads parallelization).
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5. Object reconstruction speed of GEOMScope and comparison with 

iterative optimization algorithms

A key advantage of GEOMScope is that its object reconstruction has a much lower 

computational cost and achieves a much faster reconstruction than existing algorithms. 

To quantitatively validate this assessment, we compared the object reconstruction time 

using pixel back projection and the iterative optimization algorithms such as ADMM or 

Richardson–Lucy (R-L) deconvolution, for small data scales with pixel (camera)-voxel 

(object) pair number from ~106 to ~109 on a workstation (Figure 7, see also Supporting 

Table S1). We conducted the comparison for both featureless discrete/isolated point objects 

(Figure 7a–d, Supporting Figure S11) and 3D objects with continuous features (Figure 

7e–h, Supporting Figure S12). In each set of comparison, we kept the same pixel-voxel 

ratio for different pixel-voxel pair numbers. For data size within the physical RAM limit, 

the computation time increases very fast with the number of pixel-voxel pairs when using 

optimization solvers and R-L deconvolutions, while pixel back projection method has a 

stable computation time on the order of tens of milliseconds (Figure 7a, e). The ADMM 

solver exceeds physical RAM limit when the number of pairs reach ~109, resulting in 

a rapidly increased computing time. The process time of both R-L deconvolution and 

ADMM solvers increase linearly with the number of pixel-voxel pair. This is expected as 

the number of elements in the system matrix in image formation (and thus the number of 

scalar multiplication in matrix operation) equals to (scales with) the number of pixel-voxel 

pair. In pixel back projection, for each voxel, we only pick one pixel in one sub-image of 

the lens unit within the effective image area, so the computation time only scales with the 

number of reconstructed voxel, resulting in a sublinear relationship with the pixel-voxel pair 

number. We note that the increase of pixel number in the image could increase the resolution 

and thus the object complexity that the reconstruction algorithm can handle. However, it will 

not increase the processing time, which is one advantage of our algorithm. In terms of RAM 

usage, deconvolution and optimization solver requires additional RAM to store the entire 

system matrix and operate the matrix algebra, while our method only requires a minimum 

amount of RAM as only one pixel-voxel pair is traced at each step. Our method using 

geometrical optical prior from microlens arrangement is thus much more suitable to solve 

large scale image reconstruction problems, though it suffers from a poorer reconstruction 

quality resulted from ghost objects. The reconstruction quality is greatly improved with 

the background suppression algorithm and becomes similar as those using ADMM solver 

or Richardson-Lucy deconvolution for both the featureless discrete/isolated point objects 

using particle clustering for background suppression (Figure 7b–d, Supporting Section 

S5, Supporting Figure S11), and 3D objects with continuous features using convolutional 

neural network for background suppression (Figure 7f–h, Supporting Section S5, Supporting 

Figure S12). We note that particle clustering algorithm is highly computational efficient, 

and only slightly increases the computation time compared with pixel back projection itself. 

Convolutional neural network requires more computational resources, but it is still greatly 

reduced compared with the iterative optimization algorithms.

Benefited from its local reconstruction nature, the speed of the pixel back projection 

algorithm can be further increased by parallelizing the pixel-voxel ray matching in 
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reconstruction. Multi-thread processing can be applied to resolve objects in each local 

region across different depths while maintaining the overall reconstruction rate. In our 

tests, the effectiveness of parallel computing is significant when the data size or number 

of voxel-pixel pairs is larger than 2×107. Compared with parallelized optimization process 

using gradient descent, our multi-threading method is straightforward and simple to conduct. 

For 16 depths reconstruction in our method (~1014 voxel-pixel pairs), parallel computing 

with 4 threads on a desktop or 8 threads on a workstation yields a speed increase of 230% 

with 30 sec total computing time or 380% with 18 sec total computing time respectively. 

Through further optimization on data structure and more threads, we expect reconstruction 

of large 3D volume with speed close to video frame rate.

6. Summary and Discussion

We demonstrated a lensless integrated microscope that can perform 3D imaging across 

a large field of view with high resolution and fast object reconstruction speed (Figure 

1). The pixel back projection algorithm, in combination with efficient background 

suppression algorithm, significantly reduces the computational cost and increases the object 

reconstruction speed, while preserving a good resolution. It enables large field-of-view 

microscopic imaging with mega pixel reconstruction of the object, which would consume 

an unrealistic amount of computational resource and processing time using the prevailing 

iterative optimization algorithms or the more recently proposed deep neural network. We 

designed our microlens array based on the performance metrics of individual lens unit 

as well as lens array in both geometrical and wave optics aspects. We demonstrated the 

performance of our methods in theoretical modeling (Table. 1), numerical simulation (Figure 

3, S8) and experiment (Figure 4–6, S9), and showed excellent results across different types 

of samples ranging from point source (Figure S9), resolution target (Figure 4), fluorescent 

particles (Figure 5) and volumetric objects (Figure 6). We also verified the efficiency of our 

reconstruction algorithm by a quantitative comparison on the reconstruction speed with the 

iterative optimization approaches (Figure 7). This work presents a promising approach of 

applying miniaturized lensless imaging device for high speed, high throughput imaging.

Compared to conventional cameras and microscopes where there is a one-to-one pixel 

mapping between the object plane and the sensor through the bulk lenses, lensless imagers 

map a single voxel in 3D objects to multiple pixels on a 2D camera through a thin piece 

of optics [10, 11, 13–17, 32–34]. Depending on the imaging optics, which fundamentally 

determines the measurement matrix from object to image, there have been two major classes 

of lensless cameras reported (Supporting Table S1). The first class is amplitude mask [11, 

15, 35–37]. In Ref. [11, 15], the amplitude mask was designed such that the measurement 

matrix could be broken down to two small matrices, which greatly reduces the required 

memory and improves speed in object reconstruction. Its major drawback is the low light 

throughput and high sensitivity to alignment between the mask and the camera. The second 

class, which employs a phase mask such as a diffuser [10, 17, 38] or a microlens array [13, 

14, 16, 39, 40], increases the light throughput. Diffusers have a dense PSF requiring large 

spatial support, and it is not suitable for pixel back projection. When using a microlens array, 

the PSF is relatively sparse. This could increase the signal-to-background ratio in the images 

and thus relax the general requirement of sparse objects in lensless imaging. We thus choose 
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a random layer of microlens array as the imaging optics. The random position of lens units 

reduces the ambiguous crosstalk between lenses, which facilities the pixel back projection 

algorithm.

Our method solves the general challenges of lensless imagers where there is a high demand 

of computational resources for object reconstruction. In the prevailing iterative optimization 

algorithms, the object is solved by mapping the entire object world to the camera sensor 

and performing a global optimization with appropriate regularizations. While this could 

typically achieve a reconstruction result in high fidelity, the global mapping could contain 

high redundancy when an object feature is only effectively imaged by a local part of phase 

mask. In addition, it requires complex operation on a large matrix with the number of 

matrix elements being the product of camera pixel count and object voxel count, leading 

to a very high computational cost. This restrains the application in high resolution large 

field of view imaging. In GEOMScope, the random microlens array has a relatively sparse 

PSF and a near identity transformation matrix between the object and each sub-image. This 

allows us to use the pixel back projection algorithm, which reconstructs each object voxel by 

summing the corresponding camera pixels according to the geometry of the microlens array. 

This essentially turns the global optimization into local reconstruction, where different voxel 

reconstruction can run independently. Such approach shows excellent scalability with the 

data size. The field of view can be increased by increasing the number of lens unit, without 

increasing the reconstruction complexity of each object voxel. In GEOMScope, we pair the 

large-area microlens array with a high-pixel-count large-sensor-area camera. This enables a 

high resolution large field of view imaging with a fast reconstruction speed, which would 

otherwise consume a very expensive computational resource using global optimization 

algorithm. Furthermore, the local reconstruction nature of our algorithm works very well 

with parallelized processing. Our computation imaging strategy combining a sparse PSF 

design and localized reconstruction through pixel back projection is thus an effective way 

for large field of view lensless microscopic imaging.

We note that GEOMScope has a high reconstruction resolution through geometrical optics. 

The PSF of each lens unit is well confined within the 3D resolving range, and this ensures 

a high efficacy of reconstruction using geometrical optics. We achieve a resolution close 

to that determined by wave optics (Materials and Methods). This is very different from the 

early generation of light field camera [41] or light field microscopy [4] (Figure 8a). There, 

the PSF is not locally sparse, so reconstruction through geometrical optics suffers from a 

large uncertainty, bounded by the size of the microlens unit [4, 41, 42]. In GEOMScope, 

we configure the microlens units and the system magnification such that the PSF behaves 

as a Dirac comb function. This results in a highly precise image formation modeled 

by geometrical optics, and thus a high resolution reconstruction without using iterative 

optimization approach.

GEOMScope shares some similarity with focused plenoptic camera [5] as the PSFs in both 

are well confined. Though both of their reconstruction algorithms are based on geometrical 

optics, they are fundamentally different (Figure 8b). The reconstruction algorithm in the 

focused plenoptic camera is designed for photography application in macroscale, and would 

fail for microscopy application. There, the object is reconstructed by selecting sub-images 
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from each microlens and stitching them together [5]. Each region of the reconstructed 

object only uses one patch from a single sub-image. For microscopic imaging, the system 

magnification becomes much larger, leading to a substantial crosstalk between the sub

images of microlens units. Using image-patches to fill up the reconstruction space will 

thus generate a lot of artifacts. In contrast, the pixel back projection algorithm used 

in GEOMScope reconstructs each voxel by collecting a single image pixel from each 

sub-image and summing them across multiple sub-images. Such strategy makes it highly 

effective to handle crosstalk and generate high quality reconstruction.

Another feature of our work is the innovative implementation of background suppression 

after the pixel back projection algorithm. Unlike global optimization approach, background 

such as the out-of-focus light or ghost object is inevitable in pixel back projection 

as it performs local reconstruction without consideration of other object source points. 

An additional background suppression step is thus critical to enhance the overall 

reconstruction performance. It greatly improves the signal-to-background ratio, and brings 

the reconstruction quality similar to those of iterative optimization algorithms. We note that 

this extra step only minimally increases the computation time, particularly for the particle 

clustering algorithm. The convolutional neural network requires a bit more computational 

resource (~40 ms inference time for each object slice, Intel Xeon CPU @2.30GHz, NVIDIA 

Tesla T4 GPU), but still significantly lower than the iterative optimization algorithms or 

the deep neural network directly mapping the images to the objects. For sparse samples 

with featureless characteristics (i.e. discrete / isolated points), we adopt particle clustering 

algorithm because of its simplicity and fast processing time. For 3D object with continuous 

connected features, convolutional neural network is used as it has a better scalability to 

dense and overlapped objects, and better generalization to object shapes and sizes, compared 

to other object detection methods such as circle detection through Hough transform [43] 

and bag of words feature recognition [44]. While the current convolution neural network is 

highly effective to suppress the background, it may occasionally mispredict some features. 

This could be due to the subtle inaccuracy of the out-of-focus background model in 

generating the training data (Materials and Methods, Supporting Section S2, Figure S4). In 

the future work, we aim to enhance the performance of neural network by using real images 

as training data, adapting more advanced network structures, and including the physical 

mechanism of pixel back projection to form trainable inversion module of the network.

In current work, we aim for a large field of view imaging and thus choose a camera 

with large sensor area. The working distance and system magnification are restricted by 

mechanical casting of off-the-shelf camera, which determine the upper limits of resolution 

and thus the number of resolved voxels (Materials and Methods). Nevertheless, we achieve 

a resolution close to that dictated by wave optics. By implementing board level camera and 

further optimizing the microlens design, GEOMScope could achieve a higher resolution and 

more resolved voxels.
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7. Materials and Methods

7.1 Design consideration of the GEOMScope

We choose the design parameters of GEOMScope, including the pitch, focal length, total 

size of the microlens array, as well as object-microlens-array distance, and microlens-array

camera distance, based on the performance metrics.

7.1.1. Lateral resolution—The lateral resolution of GEOMScope depends on the Abbe 

diffraction limit of a single lens unit. At light wavelength λ, the minimum resolvable 

distance of image spots on sensor is λ/(2NA), where NA represents the numerical aperture 

of a single lens unit. The theoretical diffraction limited lateral resolution rxy0 can be 

expressed as

rxy0 = λ
2NA × 1

Mz
(4)

Considering the finite pixel size dp on the camera sensor, the final lateral resolution is 

expressed as

rxy = max λ
2NA , dp × 1

Mz
(5)

7.1.2. Axial resolution—The object movement in the axial direction results in a lateral 

shift of its images on the sensor. We can thus model the axial resolution rz as the distance 

change of an object point that leads to a shift of the image point at the boundary of the 

effective sensing area Ae in a distinguishable value rxy (Figure S5):

rz = rxy × z
Ae/π (6)

where Ae/π is the radius of effective imaging area on sensor. Here, we assume the axial 

movement is small compared to the object distance, thus the variation of lateral resolution 

can be ignored.

7.1.3. Depth of field—For small object-lens distance z and low numerical aperture, the 

depth of field is determined by the confusion circle of each lens. When the object moves 

away from the focal plane, the imaged spot on the camera sensor will spread out in the 

lateral direction, forming a confusion circle. We set the diameter of the confusion circle to 

be two-pixel size on the sensor, and the corresponding depth of field DOF can be calculated 

following the geometrical optics [45] (Supporting Section S3, Figure S6):

DOF = zF − zN ≅ 2F#cz2f2

f4 − F#
2c2z2 (7)
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zN = zf2

f2 − cF#f + cF#z
, zF = zf2

f2 + cF#f − cF#z
(8)

where c is the dimeter of the confusion circle, and F#=f/D is the f-number of the individual 

lens unit, f and D being the focal length and diameter of the lens units respectively.

7.1.4. Field of view—The field of view is measured as the lateral range of objects 

within the depth of field distance range that can be effectively imaged onto the camera 

sensor. Unlike the conventional microscope where the field of view is much smaller than 

the imaging optics, GEOMScope can have a field of view in a similar size as the microlens 

array.

One related concept is the field of view of an individual lens. A larger field of view of a 

single lens unit is equivalent to a larger Ne, i.e. more lens unit could image a single object 

point, thus increasing the accuracy of reconstruction through pixel back projection. The field 

of view of a single lens unit can be evaluated when the Strehl ratio of the PSF falls below a 

threshold. The Strehl ratio Strehl can be approximated through the RMS wavefront error Δw 
from coma (Δwc), and spherical aberration (Δws+Δwd) [46]:

Streℎl ≅ exp − 2πΔw 2
(9)

Δw = Δwc + Δws + Δwd (10)

In general, a smaller lens diameter D and a larger focal length f would reduce the aberration 

and thus result in a larger field of view of a single lens unit.

7.1.5. Consideration of object sparsity—As one object point source is imaged by Ne 

microlens units, some level of sparsity is required on the object so as to reconstruct objects 

effectively without regularization. If there is a substantial overlap between the sub image 

from each lens unit, the reconstruction becomes ill-posed. From the perspective of pixel 

projection, we define an occupancy parameter V to describe the percentage of the camera 

sensor area being illuminated when an object occupies the entire field of view at a single 

depth:

V = Ne × Mz
2 (11)

In general, a small V allows denser objects to be imaged and reconstructed.

7.1.6. Design of the microlens array—We aim to design GEOMScope such that 

it can image fluorescent objects (~520 nm central wavelength) across a large volume 

~23×23×5 mm3 with a lateral resolution ~40 μm. The distance between the microlens array 

and the image sensor is <5 mm whereas the nominal working distance is 20~30 mm. We 

choose an off-the-shelf camera (DALSA Genie Nano-CL M5100 NIR, Teledyne) equipped 
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with PYTHON25K CMOS image sensor (ON Semiconductor) as it has a large sensor area 

(23×23 mm2), pixel count (5120×5120), and a small pixel size of 4.5×4.5 μm2, suitable for 

large field-of-view high resolution imaging.

The working distance and the object-microlens-array distance determines the magnification 

Mz~0.15 for each lens unit. To resolve objects 20~30 mm away from the microlens array 

with ~5 mm depth of field (radius of confusion circle ~2dp), the numerical aperture of the 

individual lens unit should be less than NAmax≅0.20 (Eq. 7~8) when we set a ~4 mm focal 

length. A larger numerical aperture is allowed when we reduce the focal length. Meanwhile, 

the lateral resolution and the magnification sets a lower limit of the numerical aperture 

NAmin≅0.045 (Eq. 5). The number of lens on the lens array could impact the computational 

cost in object reconstruction (pixel back projection), the occupancy parameter (Eq. 11), and 

the 3D resolving capability. On the one hand, to reduce the computational cost in object 

reconstruction and the occupancy parameter, the total number of lens should be small. 

On the other hand, more lens units to image an object point could provide more angular 

information of the light rays and thus improve the 3D resolving ability. Considering all the 

above factors, we set the diameter D and the focal length f of an individual lens unit as 2 

mm and 4.65 mm respectively. A total of 213 lens units are randomly positioned across the 

20×20 mm2 lens array area, with a fill factor ~1. The partial overlap between the lenses 

results in a reduced pitch size to ~1.23 mm on average, leading to an effective NA of ~0.13 

for each lens. We simulate the aberration of the lens unit (Supporting Section S4, Figure 

S7). Setting a Strehl ratio above half of its peak value, we determine that the diameter of the 

effective field of view of each lens unit is ~6 mm, and one object point can be imaged by 

Ne~20 lens units (corresponding to an effective image area ~9π mm2). With Mz~0.15, we 

have the ratio between total area of sub images and sensor area ~0.4 (Eq. 11). This allows 

imaging dense 3D objects. The design parameters and the calculated performance metrics 

are summarized in Table 1.

7.2 Fabrication of microlens array and setup of GEOMScope

Based on the design parameters, we generated a 3D layout of the microlens array where 

individual lens units are randomly distributed across a 20×20 mm2 area. We ensured 

a relatively uniform lens density across the array, with a near unity fill factor and a 

desired distance range between lenses (mean 1.23 mm, standard deviation 0.09 mm). A 

negative mold of the microlens array was manufactured through 3D optics microfabrication 

(Luximprint). We then transferred the pattern into a lens array with 1 mm thick substrate 

using optical transparent PDMS (SYLGARD® 184, refractive index ~ 1.43) (Figure S10a). 

We use a blue LED with a 457/50 nm bandpass filter as an illumination source to the object. 

A fluorescent emission bandpass filter (525/45 nm) is attached to the microlens array, which 

is then positioned in front of the camera sensor (with an adjustable distance) (Figure S10b).

7.3 Background suppression through a particle clustering algorithm

Particle clustering algorithm is developed to suppress the background after the pixel back 

projection, and is suitable for sparse, featureless objects (i.e. discrete / isolated points) 

(Figure S2b and S3). It is based on graph connectivity. We first separate and cluster the 

3D volumetric object into isolated groups through a combined operation of thresholding 
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and clustering. The thresholding could remove the ghost objects and the system noise (e.g. 

stray light, camera readout noise), as they typically have much lower intensity than both 

the focused light and defocused light from the real object. This essentially cleans up the 

background between groups of object points isolated from each other. Different groups of 

object points are then clustered based on their pixel connectivity. For each object group, we 

reiterate the above process with multiple threshold values so as to remove the defocused 

light and separate the group into smaller clusters that contain the focused light. For each 

cluster, we then find the voxel that has peak intensity to represent the position of the 

object point in focus. Results from different thresholds are unionized to maximize the 

possibility of separating agminated object points. The clustering method does not require 

training nor down sampling of large size of image stacks, thus allowing high reconstruction 

resolution. While this resolution could be arbitrarily small, it is ultimately determined by 

the meaningful reconstruction voxel size, which depends on system magnification and 3D 

resolving ability. See more details in Supporting Section S1.

7.4 Background suppression through a convolutional neural network

For less sparse 3D objects with continuous features, we developed a convolutional neural 

network to suppress the background (Figure S2c). It slices overlapped objects in depth and 

picks out focused objects from background light. The network contains five levels of down 

sampling and up sampling. To train the network, we generate polygon shapes with random 

intensity and they are randomly distributed in different depths. We stack ten such slices 

together to form one set of training data, and in each slice we superimpose the features in 

current slice and the Gaussian blurred features from its nearby slices (Supporting Section 

S2, Figure S4). The slices have a lower weight when they become farther away. We also 

add 5% of additive noise on the image. The network is trained with single slice each time 

with RMSprop optimizer [47] and we use mean squared error as the loss function. The 

output image from the neural network contains sharper contrast and the defocused features 

are largely removed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Architecture of GEOMScope.
(a) Experimental PSF measurement from single point source. Scale bar: 2 mm; inset, 

200 μm. (b) Schematic of GEOMScope. Raw image is simulated through ray tracing in 

OpticStudio. MLA, microlens array. (c) Initial reconstruction at different depths through 

pixel back projection. (d) Resolved objects with background suppression through a 

trained neural network. (e) Comparison between GEOMScope and other lensless imagers 

(FlatScope [11], DiffuserCam [10], 3D Miniscope [14], MLA Mesoscope [16]) on the 

number of camera pixel and object voxel pair versus computation time (with the processor 

type and required RAM) in reconstruction. The number of object voxel is either the reported 

value or the derived value as the ratio of imaged volume and 3D resolution.
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Figure 2. Image formation and object reconstruction.
(a) Each point source is effectively imaged by Ne lens units, and forms images across an area 

Ae on the image sensor. For each object point q to be reconstructed, all the imaged points 

p on the image sensor are found within the effective imaging area Ae through the local PSF 

and the lateral magnification Mz. The two insets show the experimentally measured PSF of 

two adjacent object points q0 and q1 imaged by two lens units. The centroids of the PSF are 

indicated by red arrows, which will be used in the pixel back projection algorithm. Scale bar, 

60 μm for ∆d=952 μm. (b) Local PSF for the individual point sources. The intensity falloff 

is characterized by the envelop function C(x',y'), attributed to the angular distribution of the 

point source intensity and the geometric aberration of the lens units. As q0 and q1 are two 

object points in the same local zone, they share the same local PSF.
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Figure 3. Simulated image formation and reconstruction of fluorescent objects in 3D.
(a) Imaging and reconstruction of 3D distributed fluorescent particles, for a depth of 18 

mm, 20 mm, 22 mm. Left column: reconstructed objects through pixel back projection only; 

middle, final reconstructed objects after background suppression through particle clustering 

algorithm; right, ground truth object. The point objects are smoothed on intensity profile 

to make their positions more visible. Scale bar, 2 mm. (b) Imaging and reconstruction of a 

3D snowflake fluorescent object, for a depth of 18 mm, 20 mm, 22 mm. Left column: top, 

3D ground truth object; middle, raw image; bottom, reconstructed depth-resolved volumetric 

object. Middle column, reconstructed objects through pixel back projection only; right 

column, final reconstructed objects after background suppression through convolutional 

neural network. Scale bar: 2 mm.
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Figure 4. Imaging and reconstruction of 1951 USAF resolution target for group 2 and 3.
(a) Object reconstruction at various depths, when the target was positioned at a depth of 18 

mm, 18.64 mm, 19.27 mm, 19.91 mm, 20.54 mm, and 21.18 mm. The best reconstruction 

corresponding to the actual target depth is labeled by a red dashed boundary. No background 

suppression was employed for this 2D sample. (b) Zoom-in view of the best reconstruction 

of target at 18 mm depth, and the line profiles of the horizontal line pairs and vertical line 

pairs of group 3, element 2.
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Figure 5. Imaging of 3D distributed fluorescent particles.
(a) Reconstruction from pixel back projection algorithm for different depth. (b) Background 

suppression of (a) through the particle clustering algorithm. Different particle clusters are 

separated at different depths. The clustered particles are intentionally blurred for a clearer 

visualization. (c) 3D volumetric view of the reconstructed volume. Each point has a fixed 

axial span, the same as the depth interval between adjacent slice in the reconstruction. Inset: 

raw captured image. (d) Maximum intensity projection view of the reconstructed particle 

clusters in 3D at xy, xz and yz plane. (e) Images captured by a benchtop microscope and 

stitched for same field of view as (c-d). (f) zoomed-in view of the same selected regions 

identified by the dashed line in (d) and (e). Scale bar for (a-e): 2 mm; (f): 500 μm.
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Figure 6. 3D imaging of large scale phosphorescent objects.
(a) Raw image. (b) Reconstruction from pixel back projection algorithm for different depth. 

(c) Background suppression of (b) through a convolutional neural network. (d) Macroscopic 

photo of the phosphorescent object. (e) Reconstructed depth-resolved volumetric object. 

Scale bar for (a-c), (e): 2 mm; (d): 5 mm.
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Figure 7. Comparison between hybrid reconstruction method (pixel back projection followed by 
background suppression) and iterative-optimization-based methods on computational cost and 
reconstruction quality merit.
(a-d) Comparison for object containing featureless discrete / isolated points, where particle 

clustering was used for background suppression. The computation was conducted on 

a workstation (Intel Xeon E5–2686 v4, 128 GB system RAM, MATLAB 2019b). (a) 

Computational cost. (b) Peak signal-to-noise ratio (PSNR) of the reconstruction. (c) 

Structure similarity index (SSIM) of the reconstruction. (d) Mean squared error of the 

reconstruction. (b)-(d) is compared to ground truth. (e-h) Same as (a-d), but for comparison 

for 3D object containing continuous features, where a convolutional neural network was 

used for background suppression. The computation was conducted on a workstation (2x 

Intel Xeon E5–2667 v3, 384 GB system RAM, MATLAB 2019b). The computational cost 

of the two optimization-based methods, ADMM and Richard-Lucy deconvolution increases 

rapidly with data scale, while it only increases modestly in our hybrid reconstruction 

method. When paired with background suppression algorithms, the pixel back projection 

method has a greatly improved reconstruction quality, similar as those from the two 

iterative-optimization-based methods.
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Figure 8. Comparison between GEOMScope and light field cameras.
(a) Comparison between GEOMScope (left) and traditional light-field microscope using ray

tracing for object reconstruction (right). The resolution in traditional light-field microscope 

(rxy_LF) is limited by the size of microlenses. TL, tube lens. (b) Comparison between 

GEOMScope (top) and focused plenotpic camera (i.e. light field camera v2, bottom). 

Existing geometrical optics based reconstruction algorithm in focused plenoptic camera only 

works when the magnification is small (i.e. macroscopic imaging in photography setting) 

and there is no substantial overlap between sub-images from each microlens unit.
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Table 1.

Design parameters and the derived/simulated performance of GEOMScope.

Design parameters Performance metrics

Working distance z 18~30 mm MLA-camera distance v ~4 mm Lateral resolution ~40 μm

Lens array area 20×20 mm2 Number of lenses 213 Axial resolution ~300 μm

Average pitch size 1.23 mm Lens focal length f ~4.65 mm Field of view ~23×23 mm2

Lens refractive index 1.43 Lens radius of curvature 2 mm Depth of field ~5 mm

Effective imaging lens 
number for single point 
object Ne

15~20 Diameter of the effective field 
of view of single lens unit 
2 Ae/π

~ 6 mm Magnification Mz 0.1–0.15

Camera pixel size dp 4.5×4.5 μm2 Emission wavelength 500–530 nm Sensor occupancy parameter 

V = Ne × Mz
2

~0.4
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