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Abstract

Phylodynamics is a set of population genetics tools that aim at reconstructing demographic history 

of a population based on molecular sequences of individuals sampled from the population of 

interest. One important task in phylodynamics is to estimate changes in (effective) population 

size. When applied to infectious disease sequences such estimation of population size trajectories 

can provide information about changes in the number of infections. To model changes in the 

number of infected individuals, current phylodynamic methods use non-parametric approaches 

(e.g., Bayesian curve-fitting based on change-point models or Gaussian process priors), parametric 

approaches (e.g., based on differential equations), and stochastic modeling in conjunction 

with likelihood-free Bayesian methods. The first class of methods yields results that are hard 

to interpret epidemiologically. The second class of methods provides estimates of important 

epidemiological parameters, such as infection and removal/recovery rates, but ignores variation in 

the dynamics of infectious disease spread. The third class of methods is the most advantageous 

statistically, but relies on computationally intensive particle filtering techniques that limits its 

applications. We propose a Bayesian model that combines phylodynamic inference and stochastic 

epidemic models, and achieves computational tractability by using a linear noise approximation 

(LNA) — a technique that allows us to approximate probability densities of stochastic epidemic 

model trajectories. LNA opens the door for using modern Markov chain Monte Carlo tools 

to approximate the joint posterior distribution of the disease transmission parameters and of 

high dimensional vectors describing unobserved changes in the stochastic epidemic model 

compartment sizes (e.g., numbers of infectious and susceptible individuals). In a simulation study, 

we show that our method can successfully recover parameters of stochastic epidemic models. We 

apply our estimation technique to Ebola genealogies estimated using viral genetic data from the 

2014 epidemic in Sierra Leone and Liberia.
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1. Introduction

Phylodynamics is an area at the intersection of phylogenetics and population genetics 

that studies how epidemiological, immunological, and evolutionary processes affect 

viral genealogies/phylogenies constructed based on molecular sequences sampled from 

the population of interest (Grenfell et al., 2004; Volz, Koelle and Bedford, 2013). 

Phylodynamics is especially useful in infectious disease modeling because genetic data 

provide a source of information that is complementary to the traditional disease case count 

data. Here we are interested in inferring parameters governing infectious disease dynamics 

from the genealogy/phylogeny estimated from infectious disease agent molecular sequences 

collected during the disease outbreak. Working in a Bayesian framework, we develop 

an efficient Markov chain Monte Carlo (MCMC) algorithm that allows us to work with 

stochastic models of infectious disease dynamics, properly accounting for stochastic nature 

of the dynamics.

Infectious disease phylodynamics methods handle densely and sparsely sampled outbreaks 

differently (but see (Smith, Ionides and King, 2017; Vaughan et al., 2019) for potentially 

universal methods). In a densely sampled outbreak scenario, it is possible to simultaneously 

infer infectious disease dynamics parameters and a transmission network (Ypma, van 

Ballegooijen and Wallinga, 2013; Jombart et al., 2014; Klinkenberg et al., 2017). When 

an outbreak is sampled sparsely, a setting we are interested in this paper, it is impossible to 

determine who infected whom, so additional modeling is needed to connect sampled hosts 

to the unobserved population dynamics. Currently, learning about population-level infectious 

disease dynamics from a sparse sample of molecular sequences can be accomplished using 

three general strategies. The first strategy relies on the coalescent theory — a set of 

population genetics tools that specify probability models for genealogies relating individuals 

randomly sampled from the population of interest (Kingman, 1982; Griffiths and Tavaré, 

1994; Donnelly and Tavare, 1995). Using a subset of these models (Griffiths and Tavaré, 

1994), it is possible to estimate changes in effective population size — the number of 

breeding individuals in an idealized population that evolves according to a Wright-Fisher 

model (Wright, 1931). Such reconstruction can be done assuming parametric (Kuhner, 

Yamato and Felsenstein, 1998; Drummond et al., 2002) or nonparametric (Drummond et 

al., 2002, 2005; Minin, Bloomquist and Suchard, 2008; Palacios and Minin, 2013; Gill 

et al., 2013) functional forms of the effective population size trajectory. In the context of 

infectious disease phylodynamics, nonparametric inference is the norm and the estimated 

effective population size is often interpreted as the effective number of infections or the 

effective number of infectious individuals. However, reconstructed effective population size 

trajectories are not easy to interpret and estimation of parameters of disease dynamics is 

difficult to accomplish if one wishes to maintain statistical rigor (Pybus et al., 2001; Frost 

and Volz, 2010).

Another way to learn about infectious disease dynamics from molecular sequences is to 

model explicitly events that occur during the infectious disease spread and to link these 

events to the genealogy/phylogeny of sampled individuals using birth-death processes. 

For example, a Susceptible-Infectious-Removed (SIR) model includes two possible events: 
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infections and removals (e.g., recoveries and deaths), represented by births and deaths in the 

corresponding birth-death model (Stadler et al., 2013; Kühnert et al., 2014). Other SIR-like 

models (e.g., SI and SIS models) differ by the number and types of the events that are 

needed to accurately describe natural history of the infectious disease (Leventhal et al., 

2013).

Structured coalescent models provide the third strategy of inferring parameters governing 

spread of an infectious disease (Volz et al., 2009; Volz, 2012; Dearlove and Wilson, 2013). 

These models assume infectious disease agent genetic data have been obtained from a 

random sample of infected individuals, allowing for serial sampling over time. Although 

similar to the birth-death modeling framework, the structured coalescent models have two 

advantages. First, one does not have to keep track, analytically or computationally, of extinct 

and not sampled genetic lineages. Second, the density of the genealogy can be obtained 

given the population level information about status of individuals: for example, in the SIR 

model it is sufficient to know the numbers of susceptible, S t , infectious, I t , and 

recovered, R t , individuals at each time point t. The second advantage comes with two 

caveats: 1) such densities can be obtained only approximately and 2) evaluating densities of 

genealogies is not straightforward and involves numerical solutions of differential equations. 

Even in cases when these caveats are manageable, the density of the assumed stochastic 

epidemic model population trajectory remains computationally intractable. One way around 

this intractability assumes a deterministic model of infectious disease dynamics (Volz et 

al., 2009; Volz, 2012; Volz and Pond, 2014), which potentially leads to overconfidence in 

estimation of model parameters. Particle filter MCMC offers another solution (Rasmussen, 

Ratmann and Koelle, 2011; Rasmussen, Volz and Koelle, 2014).

In this paper, we develop methods that allow us to bypass particle filter MCMC with 

the help of a linear noise approximation (LNA). LNA is a low order correction of the 

deterministic ordinary differential equation describing the asymptotic mean trajectories of 

compartmental models of population dynamics defined as Markov jump processes (e.g., 

chemical reaction models and SIR-like models of infectious disease dynamics) (Kurtz, 1970, 

1971; Van Kampen and Reinhardt, 1983). LNA can also be viewed as a first order Taylor 

approximation of Markov population dynamics models represented by stochastic differential 

equations (Giagos, 2010; Wallace, 2010). A key feature of the LNA method is that it 

approximates the transition density of a stochastic population model with a Gaussian density 

(Komorowski et al., 2009).

Inspired by recent applications of LNA to analysis of Google Flu Trends data (Fearnhead, 

Giagos and Sherlock, 2014) and disease case counts (Buckingham-Jeffery, Isham and 

House, 2018), we develop a Bayesian framework that combines LNA for stochastic 

models of infectious disease dynamics with structured coalescent models for genealogies 

of infectious disease agent genetic samples. Our approach yields a latent Gaussian Markov 

model that closely resembles a Gaussian state-space model. We use this resemblance to 

develop an efficient MCMC algorithm that combines high dimensional elliptical slice 

sampler updates (Murray, Adams and MacKay, 2010) with low dimensional Metropolis-

Hastings (MH) moves. Using simulations, we demonstrate that this algorithm can handle 

reasonably complex models, including an SIR model with a time-varying infection rate. We 
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apply this SIR model to a recent Ebola outbreak in West Africa. Our analysis of data from 

Liberia and Sierra Leone illuminates significant changes in the Ebola infection rate over 

time, likely caused by the public health response measures and increased awareness of the 

outbreak in the population.

2. Methodology

2.1. Genealogy as data

We start with n infectious disease agent molecular sequences obtained from infected 

individuals sampled uniformly at random from the total infected population. Further, we 

assume that a phylogenetic tree, or genealogy, g relating these sequences has been estimated 

in such a way that the tree branch lengths respect the known sequence sampling times. 

Such estimation can be performed with, for example, BEAST — a software package for 

Bayesian phylogenetic inference (Suchard et al., 2018). The genealogy is represented by a 

tree structure with its nodes containing two sources of temporal information: coalescent and 

sampling times. The coalescent times correspond to the internal nodes of the tree, which are 

defined as the times at which two lineages in the tree are merged into a common ancestor. 

The sampling times, corresponding to the tips of the tree, are the times at which molecular 

sequences were sampled. Note that sampling times are observed directly, while coalescent 

times are estimated from molecular sequences during phylogenetic reconstruction.

To perform inference about infectious disease dynamics using the above genealogy we 

need a probability model that relates the genealogy and infectious disease dynamics model 

parameters. We assume that the infectious disease is spreading through the population 

according to the SIR model — a canonical compartmental model that at each time 

point t tracks the number of susceptible individuals S t , number of infected/infectious 

individuals I t , and number of removed individuals R t  (Bailey, 1975; Anderson and May, 

1992). We assume that the population is closed so S t + I t + R t = N for all times t, 
where N is the population size that we assume to be known. This constraint implies that 

vector X t = S t , I t  is sufficient to keep track of the population state at time t. We 

follow common practice and model X t  as a Markov jump process (MJP) with allowable 

instantaneous jumps shown in Figure 1 (O’Neill and Roberts, 1999). The assumed MJP 

process X t  is inhomogeneous, because we allow the infection rate β t  and removal rate γ t
to be time-varying.

The structured coalescent models assume that only coalescent times c1 < c2 < ⋯ < cn − 1

provide information about the population dynamics. These times are modeled as jumps of 

an inhomogeneous pure death process with rate λ t , where each “death” event corresponds 

to coalescence of two lineages and λ t  is called a coalescent rate. Then the density of the 

genealogy, which serves as a likelihood in our work, is written as

Pr(g) ∝
k = 2

n
λ ck − 1 exp −

ck − 1

ck

λ(τ)dτ ,
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where cn denotes the most recent sequence sampling time. The dependence of coalescent rate 

on the assumed population dynamics can be complicated and mathematically intractable, but 

luckily approximations exist for some specific cases. For the SIR model the approximate 

coalescent rate can be obtained via the following formula:

λ(t) = λ(l(t), β(t), X(t)) = l(t)
2

2β(t)S(t)
I(t) , (1)

where l(t) is the number of lineages present at time t (Rasmussen, Ratmann and Koelle, 

2011; Volz, Koelle and Bedford, 2013). The coalescent rate in the SIR model can be 

interpreted as the rate of infection events between sampled lineages present at time 

t:λ(t) ≈ l(t)
2

I(t)
2 ⋅ β(t)S(t)I(t), where β(t)S(t)I(t) is the total infection rate in the population 

and 
l(t)
2

I(t)
2  corresponds to the probability that the infection occurs between lineages 

present at time t. Note that when the number of susceptibles is not changing significantly 

relative to the total population size (i.e., S(t) ≈ N) and infection rate is constant (i.e., 

β(t) = β), the structured coalescent reduces to the classical Kingman’s coalescent, where 

we interpret I(t)/(2βN) as the effective population size trajectory (Kingman, 1982). It is 

possible to find approximate coalescence rate for general compartmental models, but closed 

form expressions exist only for a few models with a low number of compartments (e.g., SI, 

SIR) (Volz et al., 2009; Volz, 2012; Dearlove and Wilson, 2013).

Since we allow sequences to be sampled at different times s1 < s2 < ⋯ < sm = cn, some 

inter-coalescent times are censored. To deal with this censoring algebraically, each 

inter-coalesecent interval ck − 1, ck  is partitioned by the sampling events into ik sub-

intervals: ℐ0, k, …, ℐik − 1, k. The intervals that start with a coalescent event are defined as 

ℐ0, k = ck − 1, min ck, sj , for sj > ck − 1 and k = 2, …, n. Let the number of lineages in each 

interval ℐi, k be li, k. Then the number of lineages at each time point t can be written as 

l(t) = ∑k = 2
n ∑i = 0

ik − 1 1 t ∈ Ii, k li, k. If the interval ℐi, k ends with a coalescent time, the number of 

lineages in the next interval will be decreased by 1. If the interval ends with a sampling 

event si, then the number of lineages in the next interval is increased by ni — the number 

of sequences sampled at time si. Figure 2.1 shows an example of a genealogy with labeled 

coalescent times, sampling times, number of lineages, and the corresponding intervals.

We are now ready to connect the SIR model and a genealogy with serially sampled tips 

with the help of a structured coalescent density/likelihood. First we discretize the time 

interval between the time to the most recent common ancestor c1 (time corresponding 

to the root of the tree) and the most recent sampling time sm using a regular grid 

t0 < t1 < ⋯ < tT (t0 < c1 and tT > sm) Using this grid, we discretize the latent epidemic trajectory 

by assuming that X(t) = ∑j = 1
T Xj − 11 tj − 1, tj (t), where Xj = Sj, Ij  is a column vector. Similarly, 

we discretize the infectious disease dynamics parameter vector trajectory θ(t) = (β(t), γ(t))
so that θ(t) = ∑j = 1

T θj − 11 tj − 1, tj (t), where θj = βj, γj  is also a column vector. We collect latent 

variables Xj s and parameters θj s into matrices X0:T and θ0:T respectively. The SIR structured 

coalescent density/likelihood then becomes
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Pr(g ∣ X0:T, θ0:T) ∝ ∏
k = 2

n
(l(ck − 1)

2 )2β(ck − 1)S(ck − 1)
I(ck − 1)

exp − ∑
i = 0

ik − 1 ∫
ℐi, k

li, k

2
2β(τ)S(τ)

I(τ) dτ .
(2)

Since S(t), I(t), and β(t) are piecewise constant functions, the integrals in the above formula 

are readily available in closed form and are fast to compute.

2.2. Bayesian data augmentation

2.2.1. Posterior distribution—Given genealogy g, our goal is to infer the latent SIR 

population dynamic X0:T and rate parameters θ0:T over time grid t0 < t1 < ⋯ < tT. Let Pr X0

and Pr θ0:T  denote the prior densities for the initial compartment states and the SIR 

parameters respectively. The posterior distribution for the population trajectory X0:T and 

parameters θ0:T given observed genealogy g is

Pr X0:T, θ0:T ∣ g ∝ Pr g ∣ X0:T, θ0:T Pr X1:T ∣ X0, θ0:T

Pr θ0:T Pr X0 , (3)

where Pr g ∣ X0:T, θ0:T  is the structured coalescent likelihood introduced in Section 2.1 and 

Pr X1:T ∣ X0, θ0:T  is the likelihood function for discrete observations of trajectory X1:T given 

the initial value X0:

Pr(X1:T ∣ X0, θ0:T) = ∏
i = 1

T
Pr(Xi ∣ Xi − 1, θi − 1), (4)

where the factorization comes from the assumed Markov property of the disease dynamics. 

However, the SIR transition density Pr Xi ∣ Xi − 1, θi − 1  becomes intractable as population size 

N grows large, making it difficult to perform likelihood-based inference for outbreaks in 

large populations.

2.2.2. Linear noise approximation—To furnish a feasible computation strategy for 

large populations, we use a linear noise approximation (LNA) method, in which the 

computationally intractable transition probability Pr Xi ∣ Xi − 1, θi − 1  is approximated using a 

closed form Gaussian transition density (Kurtz, 1970, 1971; Komorowski et al., 2009).

The LNA method replaces the MJP discrete state space with a continuous state space of 

X(t) to approximate the counts of at time t, under the following constraints: S(t) > 0, I(t) > 0
and S(t) + I(t) ≤ N. To briefly explain how this approximation is obtained, we will need 

additional notation.

The SIR MJP instantaneous transitions, depicted in Figure 1, are encoded in an effect matrix
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A =
susceptible infected

−1 1
0 −1

infection
removal .

(5)

Each row in matrix (5) represents a type of transition event and each column corresponds to 

a change in the susceptible and infected populations. Next, we define a rate vector h and a 

rate matrix H:

h(X(t), θ(t)) = β(t)S(t)I(t)
γ(t)I(t) , H = β(t)S(t)I(t) 0

0 γ(t)I(t) . (6)

The above notation, as well as subsequent developments based on it, can be generalized to 

other epidemic models and, more generally, to a large class of density dependent stochastic 

processes, such as chemical reaction and gene regulation models (Wilkinson, 2011). See 

Section A-1 in the Appendix for more details on this generalization.

Consider a transition from Xi − 1 at time ti − 1 to Xi at ti. Recall that we assume that the SIR 

rates θ(t) take constant values θi − 1 in ti − 1, ti . The LNA represents the value of the next 

state Xi as Xi = η ti + M ti , where η ti  is a deterministic component and M ti  is a stochastic 

component. The deterministic component η ti  can be obtained by solving the standard SIR 

ODE that in our notation can be written as

dη t = ATh η t , θi − 1 dt, t ∈ ti − 1, ti . (7)

The stochastic part M ti  corresponds to the solution of the following SDE at time ti

dM(t) = F η(t), θi − 1 M(t)dt + ATH η(t), θi − 1 AdWt, t ∈ ti − 1, ti , (8)

where F η(t), θi − 1 : = ∂ATh X(t), θi − 1
∂X

X = η(t)
 is the Jacobian matrix of the deterministic part 

ATh X(t), θi − 1  in (7) evaluated at η(t). The solution of SDE (8), M(t), is a Gaussian process 

and can be recovered by solving two ordinary differential equations governing the mean 

function m(t): = E M(t)  and covariance function Φ(t): = Var(M(t)):

dm(t) = F η(t), θi − 1 m(t)dt (9)

dΦ(t) = F η(t), θi − 1 Φ(t) + Φ(t)FT η(t), θi − 1

+ATH η(t), θi − 1 A dt,
(10)

for t ∈ ti − 1, ti . A heuristic derivation of LNA, based on (Wallace, 2010), is given in Section 

A-2 of the Appendix. Let ηti − 1, mti − 1, Φti − 1 denote the initial values of η(t), m(t), Φ(t) at 

time ti − 1 in differential equations (7), (9), and (10) respectively. There are two options 

for choosing these initial conditions: the non-restarting LNA of Komorowski et al. (2009) 

and the restarting LNA of Fearnhead, Giagos and Sherlock (2014). In this paper, we will 
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use the non-restarting LNA by Komorowski et al. (2009) since it allows us to isolate the 

effect of adding stochasticity to the ODE method as the mean population trajectory of the 

non-restarting LNA is the trajectory from the ODE method. The non-restarting LNA has the 

following choice of initial conditions:

1. ηti − 1 = η ti − 1 , where η ti − 1  was obtained by solving the ODE (7) using parameter 

vector θi − 2 over the interval ti − 2, ti − 1 ,

2. mti − 1 = Xi − 1 − η ti − 1 ,

3. Φti − 1 = 0.

Solving the system of ODEs (7), (9), (10), we obtain η ti , m ti , and Φ ti . The solution m ti

will be a function of the initial value Xi − 1 − η ti − 1 , the interval length Δti: = ti − ti − 1 and the 

SIR rates θi − 1. To make this dependence explicit, we write m ti : = μ Xi − 1 − η ti − 1 , Δti, θi − 1 . 

Since (9) is a first order homogeneous linear ODE, the solution μ Xi − 1 − η ti − 1 , Δti, θi − 1  is a 

linear function of Xi − 1 − η ti − 1 . Hence, the transition from Xi − 1 to Xi follows the following 

Gaussian distribution:

Xi ∣ Xi − 1, θi − 1 ∼ N η ti + μ Xi − 1 − η ti − 1 , Δti, θi − 1 , Φ ti . (11)

To summarize, the derived conditional Gaussian densities Pr Xi ∣ Xi − 1, θi − 1  allow us to 

compute the density of the latent SIR trajectory (4). As a result, our augmented posterior 

distribution of X0:T and θ0:T, shown in equation (3), can be computed up to proportionality 

constant and approximated via “standard” (not particle filter) MCMC approaches.

2.3. Reparameterization, priors, and MCMC algorithm

2.3.1. Reparameterizing SIR rates—We have experimented with multiple 

parameterizations of our inhomogeneous SIR model and found that the following 

parameterization works best with our proposed MCMC algorithm for approximating the 

posterior distribution (3). First, recall that we allow SIR rates to vary with time. Since it 

is much more likely for the infection rate to be time variable, we are going to assume a 

constant removal/recovery rate γ. This leaves us with the following parameters: infection 

rates on a grid β, removal rate γ, and initial SIR state X0 = S0, I0 . Since we are interested in 

modeling an emerging infectious disease outbreak, we set the initial counts of susceptibles to 

S0 = N − I0. Initial counts of infected individuals, I0, is assumed to be low and treated as an 

unknown parameter with a lognormal prior distribution. Instead of the time-varying infection 

rate β(t), we parameterize our SIR model with a time-varying basic reproduction number 

R0(t) = β(t)N /γ. The reproduction number is interpreted as the average number of cases that 

one case generates over its infectious period in a completely susceptible population. Since 

our infection rate changes in a piecewise manner, the basic reproduction number varies over 

time in a piecewise manner too:

R0(t) = ∑
i = 1

T
R0i − 11 ti − 1, ti)(t), (12)
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where R0i = βiN /γ is the reproduction number corresponding to the time interval ti − 1, ti . Let 

R0 = R00 be the initial basic reproductive number and δi = log R0i/R0i − 1 /σ be a normalized log 

ratio of R0(t) over two successive time intervals. Then, interval-specific basic reproduction 

numbers can be written as

R0i = R0(t, δ1:T, σ) = R0exp ∑
k = 1

i
σδk , for i = 1, …, T , (13)

where we assume a priori that δi s are independent standard normal random variables.

This construction implies that log-transformed piecewise constant reproduction numbers, 

log R0i s, a priori follow a first order Gaussian Markov random field (GMRF) with standard 

deviation σ that controls the a priori smoothness of R0(t) trajectory (Rue, 2001; Rue and 

Held, 2005). In addition to speeding MCMC convergence, working with R0(t) is convenient, 

because this trajectory is dimensionless and retains its interpretation when one changes the 

population size N. The initial R0 is assigned a lognormal a1, b1  prior. We use a lognormal 

a2, b2  prior for the inverse of standard deviation 1/σ.

2.3.2. Grid size and prior for GMRF standard deviation—The number of grid 

intervals T  can be thought of as a tuning parameter in our model. Increasing T  linearly 

increases complexity of the coalescent likelihood and R0(t) prior density calculations, 

suggesting that keeping T  small is prudent from a computational point of view. However, if 

the chosen T  is too small, we may miss large changes of the latent numbers of susceptible 

and infectious individuals and changes of the basic reproduction number. We recommend 

choosing T  large enough to capture these changes, possibly experimenting with multiple 

grid sizes. We recommend setting the prior distribution for σ in conjunction with T , for 

example, by controlling the probability that R0(t) a priori stays within a reasonable range.

2.3.3. Reparameterizing SIR latent trajectories—We reparameterize the latent SIR 

trajectory X1:T with a sequence of independent Gaussian random variables ξ1:T, following a 

non-centered parameterization framework of Papaspiliopoulos, Roberts and Sköld (2007). 

According to formula (11), conditional on Xi − 1, Xi can be written as

Xi = η ti + μ Xi − 1 − η ti − 1 , Δti, θi − 1 + Φi
1/2ξi, (14)

where ξi ∼
iid

N(0, I) for i = 1, …, T  and I is a 2 × 2 identity matrix. In our parameterization, we 

will treat ξ1:T as random latent variables and the SIR latent trajectory X1:T as a deterministic 

transformation of ξ1:T. More details about our non-centered parameterization of X1:T can be 

found in Section A-3 of the Appendix.

2.3.4. MCMC algorithm—Using our new parameterization, we are now interested in the 

posterior distribution of the initial number of infected individuals, I0, removal rate, γ, the 

initial basic reproduction number, R0, standardized vectors, δ1:T and ξ1:T, and GMRF standard 

deviation, σ:
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Pr I0, R0, γ, δ1:T, ξ1:T, σ ∣ g ∝ Pr g ∣ I0, R0, γ, δ1:T, ξ1:T, σ Pr I0

Pr R0 Pr(γ) Pr δ1:T Pr ξ1:T Pr(σ)
∝ Pr g ∣ X0:T, θ0:T Pr I0 Pr R0 Pr(γ)
Pr δ1:T Pr ξ1:T Pr(σ) .

The latent variables X0:T and parameter vector θ0:T are deterministic functions of new 

parameters I0, γ, R0, δ1:T, ξ1:T, and σ. We use the following MCMC with block 

updates to approximate this posterior distribution. We update high dimensional vector 

U = log R0 , δ1:T, log(σ)  using the efficient elliptical slice sampler (Murray, Adams and 

MacKay, 2010). Vector ξ1:T is updated the same way in a separate step. Initial number of 

invected individuals I0 and removal rate γ are updated using univariate Metropolis steps. 

The full procedure is described in Algorithm 2, which together with details of the elliptical 

slice sampler can be found in Section A-4.1 of the Appendix. After MCMC is done, we 

report posterior summaries using natural parameterization. For example, we report posterior 

medians and 95% Bayesian credible intervals (BCIs) of the piecewise latent reproduction 

number trajectory, R0i, for i = 0, …, T , and latent trajectory X0:T.

2.3.5. Implementation—Our R package called LNAPhylodyn provides an 

implementation of our MCMC algorithm. The package code is publicly available 

at https://github.com/MingweiWilliamTang/LNAphyloDyn. This repository also contains 

scripts that should allow one to reproduce key numerical results in this manuscript. The 

PhyDyn simulation example is also included in https://github.com/MingweiWilliamTang/

LNAphyloDyn/blob/master/inst/SIR_phydyn_example.xml.

3. Simulation experiments

3.1. Simulations based on single genealogy realizations

In this section, we use simulated genealogies to assess performance of our LNA-based 

method and to compare it with an ODE-based method, where we replace equation (14) with 

its simplified version: Xi = η ti . Under our assumption of a fixed and known genealogy and 

constant R0, our ODE-based method closely resembles previously developed methods by 

Volz et al. (2009) and Volz and Siveroni (2018). To compare ODE-based and LNA-based 

models in a Bayesian nonparametric setting, we equip the ODE model with the GMRF prior 

for time-varying R0(t), described in Section 2.3.1. We use the same MCMC algorithm for 

both LNA-based and ODE-based models, except we do not have a separate step to update 

latent vector ξ1:T (equivalently, X0:T) in the ODE-based inference. See Algorithm 3 in the 

Appendix for a more detailed description of the ODE-based MCMC.

The simulation protocol consists of two steps. First, given the population size N and pre-

specified parameters γ, I0, and R0(t), we simulate one realization of the SIR population 

trajectory based on the MJP using the Gillespie algorithm (Gillespie, 1977). Next, we 

generate realistic lineage sampling times and simulate coalescent times from the distribution 

specified by density (2) using a thinning algorithm by Palacios and Minin (2013). We 

specified several sampling times spanning the time of the epidemic. The number of sampled 
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sequences at each sampling time in each scenario is set to be approximately proportional to 

the true prevalence. More details are given in Appendix Section A-5.1.

We test LNA-based and ODE-based methods under three “true” R0(t) trajectories over the 

time interval [0, 90]:

1. Constant (CONST) R0(t). R0(t) = 2.2 for t ∈ 0,90 . Recovery rate γ = 0.2. Initial 

counts of infected individuals I0 = 1. Total population size is N = 100,000. The 

total number of sampled sequences is 1022.

2. Stepwise decreasing (SD) R0(t). R0(t) = 2, t ∈ 0,30), R0(t) = 1, t ∈ 30,60) and 

R0(t) = 0.6, t ∈ 60, 90 . Recovery rate γ = 0.2. Initial counts of infected 

individuals I0 = 1. Total population size N = 1,000,000. The total number of 

sampled sequences is 342.

3. Non-monotonic (NM) R0(t). R0(t) = 1.4 × 1.0150.5t, t ∈ 0,30 , 

R0(t) = 1.750 × 0.975t − 30, t ∈ 30,80  and R0(t) = 0.4583, t ∈ 80,90 . Recovery rate 

γ = 0.3. Initial counts of infected individuals I0 = 3. Total population size 

N = 1,000,000. The total number of sampled sequences is 442.

For all simulations, we use lognormal (1, 1) prior for I0. The parameters of the lognormal 

priors for the initial R0 and inverse standard deviation 1/σ are set to a1 = 0.7, b1 = 0.5
and a2 = 3, b2 = 0.2 respectively, in such a way that a priori R0(t) trajectory stays within 

a reasonable range of [0, 5] with 0.9 probability. We assign an informative prior for 

γ in each simulation scenario, assuming that prior information about this parameter is 

available: (1) CONST: γ ∼ lognormal( − 1.7,0.1), (2) SD: γ ∼ lognormal( − 1.7,0.1), (3) NM: 

γ ∼ lognormal( − 1.2,0.1). We set the grid size to T = 36, with ti − ti − 1 = 2.5 for i = 1, …, 36. 

As a result, each scenario has 72 latent variables that keep track of latent numbers of 

infectious and removed individuals, X1:36, and 36 parameters that describe changes in the 

basic reproduction number, δ1:36, plus parameters R0, I0, γ, and σ. For both LNA-based and 

ODE-based methods, we use 1,000,000 MCMC iterations. All MCMC chains appeared to 

converge (trace plots are shown in Section A-5.4.1 of the Appendix). The effective sample 

sizes of all unknown quantities were above 400 (See Table A-1 for more details).

The first row of Figure 3 shows point-wise posterior medians and 95% BCIs for the basic 

reproduction number trajectory, R0(t). Our LNA-based method performs well in capturing 

the continuous dynamics of R0(t). Though our approach may not perfectly catch the 

discontinuous changes in R0 in the SD scenario, the method provides BCIs that are able 

to capture most of the R0(t) trajectory. The ODE-based method yields similar results in the 

CONST case and the SD case, but underestimates the magnitude of the decrease in R0(t)
toward the end of the epidemic.

The second row in Figure 3 shows posterior summaries of removal rate γ. Both LNA-based 

and ODE-based methods provide good estimates in the CONST scenario, with posterior 

modes centered at the true value and higher posterior densities at truth when compared with 

the prior. In the SD and NM scenarios with the time varying R0(t), the posterior estimates 
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from the LNA-based method and ODE-based method, though still centered at the truth, do 

not differ much from the prior distribution.

Posterior summaries of S(t) and I(t) are depicted in the third and fourth rows of Figure 

3. The two methods produce similar results in the CONST and SD scenario, as both of 

them have narrow BCIs covering the true trajectories. However, in the NM case, while the 

LNA-based method manages to recover the latent SIR trajectory trend, the BCIs from the 

ODE-based method fail to cover the true prevalence trajectory in the middle and at the end 

of the epidemic. Somewhat counterintuitively, LNA-based method produces BCIs for the 

latent trajectories, S(t) and I(t), that are narrower than its ODE counterparts. We suspect 

this is a result of the ODE-based method poor estimation of the basic reproduction number 

trajectory at the end of the epidemic.

3.2. Frequentist properties of posterior summaries

In this Section, we design a simulation study based on repeatedly simulating SIR 

trajectories using MJP with pre-specified parameters. We report simulations based on the 

non-monotonic R0(t) trajectory scenario in Section 3.1 with the same parameter setup, except 

the parameters of the lognormal prior for the initial R0 are set to a1 = 0.7, b1 = 0.3. Results 

of repeatedly simulating SIR trajectories with constant and monotonic R0(t) trajectories are 

reported in Appendix Section A-5.3. Simulating SIR dynamics under low initial number of 

infected individuals I0 can end up with low prevalence trajectories that end at the beginning 

of the epidemic, or trajectories having unrealistically high prevalence, which are less likely 

to be observed during real infectious disease outbreaks. Therefore, while simulating SIR 

trajectories we reject such “unreasonable” realizations to arrive at 100 simulated trajectories. 

The details of the rejection criteria are given in Section A-5.2 of the Appendix. For each 

simulated SIR trajectory, a realization of a genealogy is generated using the structured 

coalescent process. We use both LNA-based and ODE-based models to approximate the 

posterior distribution of model parameters and latent variables for each genealogy. In 

addition to the informative prior for removal rate γ, used in Section 3.1, we use a weaker 

prior γ ∼ lognormal( − 1.2, 0.25) to probe prior sensitivity of both LNA-based and ODE-based 

methods.

We use three metrics to evaluate models based on their estimates of R0(t) and I(t): average 

error of point estimates (posterior medians), width of credible intervals, and frequentist 

coverage of credible intervals. Since the value of R0(t) is greater than 0 and usually upper-

bounded by 20 (i.e, it stays within the same order of magnitude), we will measure accuracy 

using an unnormalized mean absolute error (MAE):

MAE = 1
T + 1 ∑

T

i = 0
R0i − R0(ti) , (15)

where R̂0i is the posterior median of R0 ti . In contrast, I(t) varies from one at the beginning 

of the epidemic to thousands at the peak, so to evaluate accuracy of prevalence estimation 

we use the mean relative absolute error (MRAE):
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MRAE = 1
T + 1 ∑

T

i = 0 I i − I(ti)
I(ti) + 1 , (16)

where I i is the posterior median of I ti . We assess precision of R0(t) estimation based on the 

mean credible interval width (MCIW):

MCIW = 1
T + 1 ∑

i = 0

T
R0i

0.975 − R0i

0.025 , (17)

where R̂0i
0.025

 and R̂0i
0.975

 denote the lower and upper bounds of the 95% BCI for R0i. Similar as 

our measure of accuracy, precision of I(t) estimation is quantified via mean relative credible 

interval width (MRCIW):

MRCIW = 1
T + 1 ∑

i = 0

T I i
0.975 − I i

0.025

I(ti) + 1 (18)

where Îi
0.025

 and Îi
0.975

 specify the lower and upper bounds of the 95% BCI of I ti . In addition, 

we compute the “envelope” (ENV) — a measure of coverage of BCIs the true trajectory — 

for R0(t) and I(t) as follows:

ENV − R0 = 1
T + 1 i = 0

T
1 R̂0i

0.025 ≤ R0 ti ≤ R̂0i
0.975 ,

ENV − I = 1
T + 1 i = 0

T
1 Îi

0.025 ≤ I ti ≤ Ii
0.975 .

Sampling distribution boxplots of R0(t) posterior summaries are depicted in the left three 

plots of Figure 4. The LNA-based method yields lower MAE than the ODE-based method 

under both informative and weakly informative priors for the removal rate γ. As a trade-off, 

the MCIWs produced by the LNA-method are generally higher, as expected since the 

LNA-based method incorporates the stochasticity in the population dynamics. With less bias 

and wider BCIs, the LNA-based method BCIs result in better R0(t) coverage than ODE-based 

BCIs, as shown by the envelope boxplots. Informative prior for the removal rate γ helps both 

LNA-based and ODE-based methods to estimate R0(t).

Sampling distribution boxplots of I(t) posterior summaries, shown in Figure 4, are similar 

to the R0(t) results, with the LNA-based method generally having lower MRAEs, higher 

MRCIWs and a better coverage/envelope than the ODE-based method. Again, somewhat 

counterintuitively, the MRCIWs for the LNA-based method are smaller than the ODE 

counterparts. This is likely caused by significant bias in R0(t) estimation by the ODE-based 

method. The contrast between results of informative and weakly informative prior is a little 
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different from R0(t) estimation results, because the LNA-bnsed method is estimating I(t)
better than R0(t) under the weakly informative prior.

We also report the absolute error (AE) and 95% BCI widths for removal rate γ in Figure 

4. The LNA-based method yields slightly higher AEs than the ODE method. Under the 

informative prior, both LNA-based and ODE-based methods have coverage of 95% BCIs 

equal to 1.0. However, coverage of LNA-based method drops to 0.65 under the weakly 

informative prior, while the ODE-based method’s 95% BCI coverage becomes 0.99.

In conclusion, the ODE-based method tends to be biased and overconfident when estimating 

basic reproduction number R0(t) and prevalence I(t). By modeling stochasticity of the 

population trajectory dynamics, our LNA-based method produces more accurate and less 

precise estimators of R0(t) and I(t) that enjoy good frequentist properties. However, the 

ODE-based method does better in estimating the recovery rate γ, which is only weakly 

identifiable.

3.3. Additional simulations and validation

We perform the same repeated simulations for the constant and stepwise decreasing R0(t)
scenarios under the same parameter setup as in Section 3.1 and report the corresponding 

frequentist properties of the posterior summaries in Figures A-5 and A-6. Both LNA-based 

and ODE-based methods results are similar to the results from the non-monotonic R0(t)
simulation scenario, but the differences between LNA-based and ODE-based methods are 

less pronounced than in the non-monotonic R0(t) scenario.

Theoretically, both structured coalescent models and LNA are designed to work for 

epidemics in large populations. We test performance of LNA-based and ODE-based methods 

in a relatively small population with the size of N = 1, 000. For simplicity, we use a 

constant R0(t) simulation scenario. Assuming that R0 is constant also allows us to compare 

our method to the BEAST 2 PhyDyn module that implements the ODE-based approach. 

PhyDyn can handle a wide range of different compartmental models of infectious disease 

dynamics, but we use only a simple SIR model in this comparison. This simulation study 

shows that our implementations of both LNA-based and ODE-based approaches perform 

reasonably in this small population setting, but PhyDyn does do as well. However, we 

find that the disagreement between our ODE implementation and PhyDyn is artifact of 

the small population size setting, which leads to the outbreak to be densely sampled. In 

Appendix Section A-9, we demonstrate that our ODE-based method implementation agrees 

with R package PhyDynR (a predecessor of BEAST 2 PhyDyn) under a setup with a large 

population size, but the two implementations disagree under a small population size setting.

4. Analysis of Ebola outbreak in West Africa

We apply our LNA-based method to the Ebola genealogies reconstructed from molecular 

data collected in Sierra Leone and Liberia during the 2014–2015 epidemic in West Africa 

(Dudas et al., 2017). We use a Sierra Leone genealogy, depicted in the top left plot of Figure 

5, which was estimated from 1010 Ebola virus full genomes sampled from 2014-05-25 to 
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2015-09-12 in 15 cities. The Liberia genealogy, shown in the top left plot of Figure 6, was 

estimated from a smaller number of samples: 205 Ebola virus full genomes sampled from 

2014-06-20 to 2015-02-14. The original sequence data and the reconstructed genealogies are 

publicly available at https://github.com/ebov/space-time.

When Ebola virus infections were detected in West Africa in mid-Spring of 2014, various 

intervention measures were proposed and implemented to change behavior of individuals 

in the populations through which Ebola was spreading. Border closures, encouragement to 

reduce individual day-to-day mobility, and recommendations on changing burial practices 

were among the broad spectrum of interventions attempted by multiple countries. It is 

reasonable to expect that these intervention measures resulted in lowering the contact rates 

among members of the populations, which in turn reduced the infection rate, or equivalently 

the basic reproduction number.

When analyzing the Sierra Leone and Liberia genealogies, we rely on conclusions of Dudas 

et al. (2017) and assume the population in each country to be well mixed. Furthermore, 

we assume Ebola spread to follow SIR dynamics. For each country, the population 

size is specified based on its census population size in 2014, with N = 7,000,000 for 

Sierra Leone and N = 4,400,000 for Liberia. We investigated robustness to population size 

misspecification in Appendix Section A-8.2 and found that altering population size of 

Liberia by an order of magnitude in each direction did not appreciably change estimation 

results. As in our simulation study, we use the lognormal prior for R0 with a1 = 0.7 and 

b1 = 0.5 and the lognormal prior for the inverse standard deviation 1/σ with a2 = 3, b2 = 0.2. 

Recall that this prior setting ensures that a priori R0(t) stays within a reasonable range 

of [0, 5] with probability 0.9. For removal rate γ, we use an informative lognormal prior 

with mean 3.4 and variance 0.2 based on previous studies (Towers, Patterson-Lomba and 

Castillo-Chavez, 2014). The parameter 1/γ, interpreted as the length of the infectious period, 

is expected to be 8–18 days for each country a priori. The total time span for each genealogy 

is divided evenly into 40 intervals, which results in grid interval lengths, Δtis, to be 12.41 

days for Sierra Leone and 6.9 days for Liberia. We experimented with two additional grid 

sizes for the Liberia analysis in Appendix Section A-7 and found that our results are not too 

sensitive to the choice of grid size.

We run the MCMC algorithm in Section 2.3 for 2,000,000 iterations with 9 parallel chains 

for Sierra Leone data and 750,000 iterations for Liberia data using a single chain. The 

posterior samples are obtained by discarding the first 100,000 iterations and saving every 

30th iteration afterward. The trace plots in Section A-5.4.2 of the Appendix indicate the 

MCMC algorithm has converged and achieved good mixing in each case.

Figures 5 and 6 show results for Sierra Leone and Liberia respectively, with intervention 

events mapped onto the calendar time on the x-axis. Our LNA-based method estimates the 

initial R0 in Sierra Leone during 2014–2015 to be 1.66, with 95% BCI of (1.31, 2.15). 

Similarly, R0 in Liberia during 2014 –2015 has a point estimate 1.67 and a 95% BCI(1.29, 

2.24). Our estimate of initial R0 in Sierra Leone is consistent with the estimates of Stadler 

et al. (2014), who fitted multiple birth-death models to 72 sequences at the early stages of 
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the outbreak. Our LNA-based method yields a slightly smaller estimate of the initial R0 than 

methods based on susceptible-exposed-infectious-removed (SEIR) models. For example, 

Volz and Pond (2014) used a SEIR model with a constant R0 and estimated it to be 2.40 

(CI: (1.54, 3.87)). Althaus (2014) assumed an exponentially decaying R0(t) with an estimated 

initial R0 of 2.52 (CI: (2.41, 2.67))The discrepancies between our and SEIR-based estimates 

are not unexpected, because SEIR models generally yield higher R0 estimates than SIR 

models when applied to the same dataset (Wearing, Rohani and Keeling, 2005; Keeling and 

Rohani, 2011). Our estimated R0 for Liberia is in agreement with results of Althaus (2014), 

who fitted a SEIR model to incidence data and arrived at an estimated R0 of 1.59 (CI: (1.57, 

1.60)).

The R0(t) dynamics in the two countries share a similar pattern: with (1) a decreasing trend 

that starts in Spring/Summer of 2014, (2) a stable/constant period until the end of September 

2014 and (3) a final decrease below 1.0 (epidemic is contained) around November 2014. 

Since the number of susceptible individuals did not change significantly over the course 

of the epidemic, relative to the total population size, the basic and effective reproduction 

numbers, R0(t) = β(t)N/γ and Reff(t) = β(t)S(t)/γ, are approximately equal. This allows us 

to compare our R0(t) estimation results with previously estimated changes in Reff(t). Our 

estimation of early R0(t) dynamics in Sierra Leone agrees with results of Stadler et al. 

(2013), who concluded that the effective reproduction number did not significantly decrease 

until mid June. Our estimated R0(t) trajectory suggests that later interventions, such as border 

closures and release of burial guides, may have been helpful in controlling the spread of the 

disease. The infectious period for Sierra Leone epidemic is estimated to be 10.8 days with 

a 95% BCI (7.6,15.6). For Liberia, the infection period has a point estimate of 9.8, with a 

95% BCI (6.87, 14.05). The posterior median of the total number of infected individuals 

(final epidemic size) is 7,450 and its 95% BCI is (3495, 15518) for Sierra Leone, which is 

close to 8,706 total confirmed number of cases reported by (CDC). Liberia had a smaller 

epidemic than Sierra Leone, with estimated total infected individuals being 2,842 and a 95% 

BCI of (1296, 6173). These results are also in agreement with 3,163 total confirmed cases 

from CDC.

We perform an out-of-sample validation by comparing our results with weekly reported 

confirmed incidence in Sierra Leone and Liberia from the (2016) (WHO). The posterior 

predictive weekly incidence at time t, denoted by N̂(t), is approximated by

N̂(t) = β̂(t)Ŝ(t)Î(t) ⋅ Δt (19)

where β̂(t), Ŝ(t) and Î(t) are the posterior estimates of the infection rate, number of 

susceptible and number of infected individuals at time t respectively, and Δt: = 7/365
corresponds the time interval of one week. We plot the posterior predictive estimates of 

weekly incidence together with the corresponding weekly reported confirmed incidence. For 

both countries, our model-based incidence 95% BCIs cover the reported incidence counts 

from WHO, suggesting that our time varying SIR model can estimate incidence well from 

genetic data alone. We note that our estimated latent incidence should be greater than 

the reported incidence, because not all Ebola cases were reported and recorded. However, 
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the discrepancy between latent and reported incidence should not be large, because Ebola 

reporting rate was high. For example, Scarpino et al. (2014) estimated that 83% of Ebola 

cases were reported.

We also report results from the ODE-based method and superimpose these results over 

LNA-based results on Figures 5 and 6. For the relatively small Liberia genealogy, the 

ODE-based and LNA-based methods yield similar parameter estimates. However, the larger 

Sierra Leone genealogy produces substantial differences between ODE-based and LNA-

based estimates of the R0(t). The ODE-based method captures the decreasing trend of R0(t)
in Spring and Summer of 2014, but provides narrow BCIs with unrealistic short term 

fluctuations in the basic reproduction number trajectory.

5. Discussion

In this paper, we propose a Bayesian phylodynamic inference method that can fit a 

stochastic epidemic model to an observed genealogy estimated from infectious disease 

genetic sequences sampled during an outbreak. Our statistical model can be viewed as semi-

parametric: with (1) a parametric SIR model describing the infectious disease dynamics 

and (2) a non-parametric GMRF-based estimation of the time varying basic reproduction 

number. To the best of our knowledge, this is the first method combining a Bayesian 

nonparametric approach with a deterministic or stochastic SIR model for phylodynamic 

inference (although see (Xu, Kypraios and O’Neill, 2016) for a similar approach applied 

to more traditional epidemiological data). Our use of LNA allows us to devise an 

efficient MCMC algorithm to approximate high dimensional posterior distribution of model 

parameters and latent variables. Our LNA-based method produces posterior summaries with 

better frequentist properties than the state-of-the-art ODE-based method, underscoring the 

importance of working with stochastic models even in large populations. We showcase our 

method by applying it to the Ebola genealogies estimated from viral sequences collected in 

Sierra Leone and Liberia during the 2014–2015 outbreak. Our nonparametric estimates of 

R0(t) in Sierra Lione and Liberia suggest that the basic reproduction number decreased in 

two-stages, where the second stage brought it below 1.0 — a sign of epidemic containment. 

The second stage of R0 t  decrease closely follows in time implementation of interventions, 

pointing to their effectiveness.

Our method relies on the assumption that population is well-mixed and the population 

dynamics follow a SIR model. However, it may be desirable to be able to relax these 

assumptions. For example, in Ebola spread modeling some authors used a SEIR model 

that assumes a latent period during which an infected individual is not infectious (Althaus, 

2014; Volz and Siveroni, 2018). Moreover, adding more compartments should allow us to 

partially relax the unrealistic assumption of homogeneous mixing. For example, stratifying 

compartments by age group would allow us to account for different contact rates between 

these groups. One future direction of this work is to generalize the LNA-based method 

to fit complicated compartmental epidemic models, including models with multi-stage 

infections like SEIR model and models with the population stratified by sex, age, geographic 

location, or other demographic variables. The structured coalescent likelihoods under these 

models may not have closed-form expressions. However, Volz (2012), Dearlove and Wilson 
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(2013), and Müller, Rasmussen and Stadler (2017) propose several strategies to approximate 

structured coalescent likelihoods. Our LNA-based methodology is directly portable to these 

approximate structured coalescent likelihood approaches, but our current implementation 

lacks this generality. We hope to remedy this in our future work.

The experiments in Section 3.1 indicate that one has to pay close attention to parameter 

identifiability when fitting SIR models to genealogies or to sequence data directly. 

Identifiability may not be a problem under an assumption of a constant R0(t). However, 

the removal rate tends to be only weakly identifiable in the scenarios with a time-varying 

basic reproduction number, in which the estimation can be sensitive to the choice of priors. 

In Section 3.2 and Appendix Section A-6, we demonstrate that putting a weakly informative 

prior on the removal rate can cause bias not only in the estimation for removal rate, but also 

can lead to a failure in recovering the reproduction number and latent population dynamics. 

Therefore, successful inference of SIR model parameters using genealogical data should rely 

on a sound informative prior for the removal rate. This constraint is not a big shortcoming in 

situations where prior information about the removal rate, or mean length of the infectious 

period is available from patient hospitalization data (WHO Ebola Response Team, 2014).

Since parameter identifiability is a recurring problem in infectious disease modeling, 

integration of multiple sources of information is of great interest. Using particle filter 

MCMC, Rasmussen, Ratmann and Koelle (2011) demonstrated that jointly analyzing 

genealogy and incidence case counts considerably reduces the uncertainty in both estimation 

of latent population trajectory and SIR model parameters, compared with estimation based 

on a single source of information. We plan to use our LNA-based framework to perform 

similar integration of genealogical data and incidence time series. Another possible source 

of information is the distribution of genetic sequence sampling times. Karcher et al. 

(2016) proposed a preferential sampling approach that explicitly models dependence of the 

sampling times distribution on the effective population size. The authors demonstrated that 

accounting for preferential sampling helps decrease bias and results in more precise effective 

population size estimation. It would be interesting to incorporate preferential sampling into 

our LNA-based framework by assuming a probabilistic dependency between sampling times 

and latent prevalence I(t).

Our method assumes a genealogy/phylogenetic tree is given to us. In reality, genealogies 

are not directly observed and need to be inferred from molecular sequences. Genealogy 

estimation remains one of the biggest computational bottlenecks in phylodynamics, 

with computational burden of such estimation being typically higher than the burden 

of phylodynamics methods that use the genealogy as input. Ideally, uncertainty in the 

genealogy should be handled by building a Bayesian hierarchical model and integrating 

over the space of genealogies using MCMC. In fact, implementations of such Bayesian 

hierarchical modeling already exist for nonparametric, birth-death, and ODE-based 

phylodynamic approaches (Drummond et al., 2005; Minin, Bloomquist and Suchard, 2008; 

Gill et al., 2013; Stadler et al., 2013; Volz and Siveroni, 2018). Therefore, an important 

future direction will be to extend our LNA framework to fitting stochastic epidemic 

models to molecular sequences instead of genealogies. Similarly to the structured coalescent 

model implementation of Volz and Siveroni (2018), the easiest way to achieve this will 
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be integration of our LNA MCMC algorithm into popular open source phylogenetic/

phylodynamic software packages, such as BEAST, BEAST2, and RevBayes (Suchard et 

al., 2018; Bouckaert et al., 2014; Höhna et al., 2016).
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Appendix

for “Fitting stochastic epidemic models to gene genealogies using linear noise 

approximation”

by Mingwei Tang, Gytis Dudas, Trevor Bedford, Vladimir N. Minin

A-1. A general framework for stochastic kenetic models

A-1.1. Stochastic model generalization

In Section 2, we provide an example of the linear noise approximation (LNA) for the SIR 

model. The LNA framework can be also generalized to other types of the stochastic kinetic 

models in Infectious Disease Epidemiology and in Systems Biology. Here, we give a general 

representation of the stochastic kinetic model by viewing it as a reaction network system. 

The notation is based on the work of Fearnhead, Giagos and Sherlock (2014).

Let’s start with a reaction system with d reactants X1, …, Xd and q reactions. Without loss 

of generality, each reaction is assumed to have a constant rate parameter θi for i = 1, …, q
and θ = θ1, …, θq  denotes the rate vector of the system (this framework can be extended to 

handle stochastic kinetic models with time-varying rates as in Section 2 of the main text). 

The transition event in the ith reaction (i = 1, …, q) has the following form:

ai1X1 + ⋯ + aidXd

θi
a‾i1X1 + … + a‾i1Xd, (A-1)

where aij and a‾ij are non-negative integers representing the number of Xj in the ith reaction 

equation. In a compartmental stochastic epidemic model, the coefficient aij will be either 0 or 

1. The transitions in the reaction system can be encoded in an effect matrix,

A: = aij − a‾ij ∈ ℤq × d, (A-2)

with each row corresponding to a certain type of reaction event and each column 

representing the change in the counts of reactants. Let Xj(t) denote counts/population of 

the Xj at t, and the population state at time t can be tracked by vector X(t): = X1(t), …, Xd(t) . 

Let ℎi denote the reaction rate of the i th reaction, where ℎi can be written as
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ℎi = θi ∏
j = 1

d Xj

aij
. (A-3)

Hence, following the same notation as in Section 2.2.1 of the main text, the rate vector h and 

the rate matrix H can be defined as

h X, θ = ℎ1, …, ℎq
T , H X, θ = diag h X, θ . (A-4)

Given the above notation, the deterministic ordinary differential equation model of the 

reaction system can be written as

dX = ATh(X, θ) dt, X(0) = x0, (A-5)

where x0 is a vector of initial counts of reactants X1, …, Xd.

FIGURE A-1. 
SEIR Markov jump process. From the current state with the counts S, E, I, R, the population 

can transition to (1) state S − 1, E + 1, I, R (an infection event) with rate β SI or to (2) 

state S, E − 1, I + 1, R (an event where infected individual becomes infectious) with rate 

μE or to (S) state S, E, I − 1, R + 1 (a removal event) with rate γI. No other instantaneous 

transitions are allowed.

A-1.1.1. Example: SEIR model—The above general representation of stochastic 

kinetic models can be directly applied to stochastic epidemic models. Here, we illustrate 

this on a Susceptible-Exposed-Infected-Recovery (SEIR) model. SEIR model is an extension 

of the SIR model that assumes a latent period called “Exposed”, in which an infected 

individual does not have the ability to infect others. The exposed individual will eventually 

become infectious with rate μ. As in the SIR model, an infectious individual has removal/

recovery rate γ. The transition events between different states of the SEIR model are 

depicted in Figure A-1.

Following the stochastic kinetic model representation, the SEIR model can be viewed 

as a reaction system of four reactants — susceptible, exposed, infected, and recovered 

individuals — and the following three “reactions”:

Susceptible + Infected β Exposed + Infected, (A-6)
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Exposed μ Infected, (A-7)

Infected γ Recovered . (A-8)

Since the recovered population never interacts with individuals in other compartments, we 

will only keep track of the counts of susceptible, exposed, and infectious individuals at time 

t, denoted by S(t), E(t), I(t) respectively. The effect matrix A for the SEIR model can be 

written as:

A =

Susceptible Exposed Infected
−1 1 0
0 −1 1
0 0 −1

reaction (A‐6)
reaction (A‐7)
reaction (A‐8)

, (A-9)

with columns representing compartments and rows representing reactant changes during 

reaction events.

If we let X(t) = (S(t), E(t), I(t)) denote the state vector at time t, then the rate vector h for the 

SEIR model is

h(X(t), θ) = (βS(t)I(t), μE(t), γI(t))T . (A-10)

A-2. Derivation of the linear noise approximation

A-2.1. SDE approximation for MJP

A stochastic way to approximate the MJP model is to use the Stochastic Differential 

Equation (SDE) approximation, also known as the chemical Langevin equation (CLE) 

(Gillespie, 2000). The SDE method can be viewed an approximation of the MJP at time 

t, obtained by applying a normal approximation to the Poisson distributed number of state 

transitions in a small interval of time (t, t + Δt) (Gillespie, 2000; Wallace, 2010). The 

deterministic part in SDE corresponds to the right hand side of ODE (7) and stochastic part 

is related to the variance of the system. The SDE for general stochastic kinetic models can 

be written as

dX(t) = ATh(X(t), θ(t))dt + ATH(X(t), θ(t))A ⋅ dWt, (A-11)

where Wt denote a d dimensional Wiener process and the square root . means the Cholesky 

triangle of the d × d covariance matrix.

A-2.2. LNA approximation of the SDE

Since in the main text we assume the rate θ(t) varies in a piecewise constant way, without 

loss of generality, we use the notation θ for the rate in a given time interval where the LNA 

is applied.

Tang et al. Page 21

Ann Appl Stat. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem A-2.1—(Linear Noise Approximation for SDE). Let η(t) be the solution of 

ordinary differential equation (7) with initial value η0. Let N be the system size, which is the 

total number of individuals in the system (In SIR model, N will be the total population, i.e 

N = S + I + R), θ = θ1, …, θq  denote the vector of rate parameters in q reactions. Then the 

solution X(t) of the SDE (A-11) satisfies the following equation

1
N d(X(t) − η(t)) = 1

N (F(η(t), θ)(X(t) − η(t)) + o(1))dt +

1
N ATH(η(t), θ)A + o(1) dWt,

(A-12)

as N + ∞.

Proof.—The following derivation is based on (Wallace, 2010).

We rescale both the compartment size and reaction rates as follows:

X(t) = N−1 ⋅ X(t) (A-13)

θi = Nmi − 1θi, (A-14)

where mi = ∑j = 1
d aij is the sum of coeffcients in the left hand side of i-th reaction as in 

Section A-1. The transformed X(t) represents the proportion of individuals/reactants each 

compartment with respect to the total population size. Then we have h(X(t), θ) = Nℎ(X(t), θ)
and F(η(t), θ) = F(η(t), θ). Hence, the SDE (A-11) becomes

dX t = ATh X t , θ dt + 1
N ATH(X t , θ)A ⋅ dWt . (A-15)

Let η(t) be the solution of the ODE

dη t = ATh η t , θ dt, (A-16)

and we have η(t) = Nη(t), where η(t) is the solution of the ODE (7). η(t) can be viewed as 

a scaled version solution of ODE (7). Let ξ(t) = N X(t) − η(t) = 1
N (X(t) − η(t)) denote the 

scaled residual, then the rescaled compartment size vector X(t) can be written as

X t = 1
N ξ t + η t . (A-17)

After using first order Taylor expansion of h(X(t), θ) and H(X(t), θ) around

X = η(t), the SDE (A-15) becomes
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dX(t) = ATh η(t) + 1
N ξ(t), θ dt + ATH η(t) + 1

N ξ(t), θ A ⋅ dWt

= ATh(η(t), θ) + F(η(t), θ) ⋅ 1
N ξ(t) + O N−1 dt

+ 1
N ATH(η(t), θ)A + O( 1

N ) ⋅ dWt

= ATh(η(t), θ) + 1
N F(η(t), θ) ⋅ ξ(t) dt

+ 1
N ATH(η(t), θ)A ⋅ dWt + o(N−1/2)dWt + o N−1 dt .

where F(η(t), θ): = ∂ATh(X(t), θ)
∂X X = η(t)

 is the Jacobian matrix of the deterministic part 

ATh(X(t), θ) in (7) at η(t). By subtracting (A-16) and multiplying by N on the two ends, the 

above equation becomes a differential equation with respect to ξ:

dξ(t) = F(η(t), θ)ξ(t)dt + ATH(η(t), θ)A ⋅ dWt + o(N−1/2)dWt +
o(N−1)dt .

(A-18)

After multiplying by N, the above equation gives us (A-12).

Recall that M(t) is the solution of (8) with initial condition M(0) = X0 − η0. We can use 

η(t) + M(t) as an approximation of X(t). Based on the local Lipschitz property of F(η(t), θ)
with respect to t and ATH(η(t), θ), X(t) can be approximated by η(t) + M(t) with

X t = η t + M t + o(N
1
2), (A-19)

for fixed t as system size N + ∞.

A-2.3. Derivation of equations (9) and (10) in the main text

Lemma A-2.2 (Solution of linear ODE system).—Let F(t) ∈ ℝd × d and X(t) ∈ ℝd be 

function of defined on t: t ≥ 0  that satisfies the following linear ODE

dX(t) = F(t)X(t)dt, X0 = x0 . (A-20)

For t ≥ 0, the solution of (A-20) can be represented as

X(t) = Σ(t, 0)x0 (A-21)

where Σ(t, 0) is the solution of ordinary differential equation in ℝd × d

dΣ(t, 0) = F(t)Σ(t, 0)dt, Σ(0, 0) = I . (A-22)

Lemma (A-2.2) gives the solution of linear ODE. Hence, the solution for the main text linear 

ODE 9 is on ti − 1, t  will be
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m(t) = Σ t, ti − 1 mi − 1, (A-23)

where mi − 1 is the initial state at ti − 1 and Σ t, ti − 1  is the transition matrix by

dΣ t, ti − 1 = F η t , θ Σ t, ti − 1 dt, Σ ti − 1; ti − 1 = I, (A-24)

and mi − 1 is the initial value for m at time ti − 1.

Theorem A-2.3.—Let M(t)
t ≥ 0

∈ ℝd be stochastic process that satisfies the following 

stochastic differential equation,

dM t = F η t , θ M t dt + ATH η t , θ AdWt . (A-25)

Then the solution of (A-25) is the Gaussian process

M(t) = Σ t, t0 M t0 +
t0

t

Σ−1 s, t0 ATH(η(t), θ)AdWs , (A-26)

with mean process 

m(t): = E M(t) ∣ M t0 satisfies (9) and variance process Φ(t): = V ar M(t) ∣ M t0  satisfies 

(10).

Proof.—Define matrix function Σ t, t0  as (A-24). First we apply the linear transform 

M(t) = Σ−1 t; t0 M(t). Based on Ito’s lemma, (A-25) can be simplified as a SDE of M(t):

dM t = Σ−1 t; t0 ATH η t , θ AdWt, (A-27)

with solution.

M(t) = M t0 +
t0

t

Σ−1 s; t0 ATH(η(t), θ)A ⋅ dWs

Then the solution of M(t) is

M(t) = Σ t, t0 M t0 +
t0

t

Σ−1 s, t0 ATH(η(t), θ)AdWs . (A-28)

Σ t, t0 M t0  in (A-28) is a deterministic function of t. The integral ∫t0
t Σ−1 s, t0 ATH(η(t))AdWs

in (A-28) should be Gaussian random variable with mean 0 since it is a linear combination 

of the increments of Brownian motion with different variance. Hence, the M(t) should be a 

Gaussian process. By taking the expectation of (A-28), the mean of m(t) = E Mt  satisfies

m t = Σ t, t0 m t0 , (A-29)

which corresponds to the solution of ODE (9).

For the variance process, from (A-28),
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Φ(t) = Σ t, t0
t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−1 s, t0 ds ⋅ ΣT t, t0 (A-30)

By differentiation with respect to t, (A-30) becomes

dΦ(t) = dΣ t, t0 ⋅
t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−T s, t0 ds ⋅ ΣT t, t0

+ Σ t, t0 ⋅ d
t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−T s, t0 ds ⋅ ΣT t, t0

+ Σ t, t0 ⋅
t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−T s, t0 ds ⋅ dΣT t, t0

= F(η(t), θ) ⋅ Σ t, t0 t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−T s, t0 ds ⋅ ΣT t, t0 dt

+ Σ t, t0 ⋅ Σ−1 t, t0 ATH(η(t), θ)AΣ−T t, t0 ⋅ ΣT t, t0 ⋅ dt

+ Σ t, t0 ⋅
t0

t

Σ−1 s, t0 ATH(η(t), θ)AΣ−T s, t0 ds ⋅ ΣT t, t0 FT(η(t), θ) ⋅ dt

= F(η(t), θ)Φ(t) + Φ(t)FT(η(t), θ) + ATH(η(t), θ)A dt,

which is the result in (10).

A-2.4. Relationship between LNA and other methods

The SDE approach can be viewed as a normal approximation based on a τ − leaping step 

for the MJP. The LNA can be derived either directly from Taylor expansion of the transition 

probability of the MJP or the Taylor expansion of the transition density of the SDE. The 

ODE solution can be considered as a limit of the mean trajectory of the MJP when system 

size N goes to infinity. ODE solution can also be viewed as the deterministic part for SDE 

(A-11) and the mean process for LNA based on (A-36). Figure A-2.4 depicts relationships 

between different dynamical system representations as a diagram.

A-3. Non-centered parameterization

In LNA, the latent trajectory X(t) is decomposed into the deterministic part η(t) plus a 

stochastic part M(t) that follows a multivariate Gaussian distribution with mean 0. However, 

the population size at the i-th time interval Xi depends on rate parameter θ and is correlated 

with other population sizes Xjs in the trajectory, leading to mixing issues for the MCMC 

chain, especially when we introduce multiple change points for reproduction number R0.
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FIGURE A-2. 
The relationship between different dynamical system representations.

Here we take the idea of non-centered parameterization from Papaspiliopoulos, Roberts and 

Sköld (2007, 2003) and reparameterize the latent trajectrory in terms of residuals Xi − ηi for 

i = 1, …, T . Given rate parameters θi − 1, ODE solution η0:T, fundamental matrix Σ ti, ti − 1  and 

variance matrix Φi in (10), the trajectory X0:T can be parameterized using standard Gaussian 

noise ξ1:T based on the following iterative equations:

X0 = η0, (A-31)

Xi = μ(Xi − 1 − η(ti − 1), Δti, θi − 1) + ηi + Φi
1/2ξi,

= Σ(ti, ti − 1)(Xi − 1 − ηi − 1) + ηi + Φi
1/2ξi, for i = 1, …, T .

(A-32)

Let Mi: = Xi − ηi denote the residual in grid cell i. Based on (A-32), the residual process 

satisfies

M1 = Φ1
1/2ξ1 (A-33)

Mi = Σ(ti − 1, ti)Mi − 1 + Φi
1/2ξi, i = 2, …, T . (A-34)

Then M0:T can be viewed as a Gaussian Markov random field with mean 0 that follows 

the Markov property on a chain graph. Let Σi be the abbreviated notation of Σ ti, ti − 1  and 

Pi = Φi
1/2. From (A-34), Mi can be written as
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Mi = Σi − 1Mi − 1 + Piξi

= Σi − 1 Σi − 2Mi − 2 + Pi − 1ξi − 1 + Piξi

= Σi − 1Σi − 2Mi − 2 + Σi − 1Pi − 1ξi − 1 + Piξi

= Σi − 1Σi − 2⋯Σ1P1ξ1 + ⋯ + Piξi

=
k = 1

i
(
j = k

i − 1
Σj)Pkξk .

Since Σi and Pi are governed by rate parameters θi − 1 and initial value X0, then we define the 

transform matrix L X0, θ0:T ∈ ℝ2T × 2T ,

L X0, θ0:T =

P1 0 0 ⋯ 0 0
Σ1P1 P2 0 ⋯ 0 0

Σ2Σ1P1 Σ2P2 P3 ⋯ 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯

ΣT − 2⋯Σ1P1 ΣT − 2⋯Σ2P2 ΣT − 2⋯Σ2P3 ⋯ PT − 1 0
ΣT − 1⋯Σ1P1 ΣT − 1⋯Σ2P2 ΣT − 1⋯Σ3P3 ⋯ ΣT − 1PT − 1 PT

A linear relationship between X1:T and the reparameterized noise ξ1:T can be established with 

the help of the above transform matrix L,

X1

⋮
XT

=
η1

⋮
ηT

+ L X0, θ0:T

ξ1

⋮
ξT

. (A-36)

Instead of directly updating X1:T, we will apply the above transform and update the Gaussian 

noise ξ1:T instead. The MCMC approach will focus on sampling parameter I0, R0, γ, δ1:T, 

ξ1:T, σ with the posterior likelihood

Pr I0, R0, γ, δ1:T, ξ1:T, σ ∣ g
∝ Pr g ∣ I0, R0, γ, δ1:T, ξ1:T, σ Pr I0 Pr R0 Pr(γ) Pr δ1:T Pr ξ1:T Pr(σ)
∝ Pr g ∣ X0:T, θ0:T Pr I0 Pr R0 Pr(γ) Pr δ1:T Pr ξ1:T Pr(σ) .

In summary, the transformation that allows us to move from parameterization in terms of 

X0:T, θ0:T to the parameterization in terms of I0, R0, γ, δ1:T, ξ1:T, σ are based on the following 

equations:

1. R0i: = R0 ti = R0 ⋅ exp(∏j = 1
i δjσ) - a function of R0, δ1: i and σ.

2. βi: = β ti = NR0 ti
γ  - a function of R0, δ1: i, σ and γ.

3. θi = βi, γ  - a function of R0, δ1: i, σ and γ.

4. θ0:T - a function of R0, δ1:T, σ and γ.

5. X0 = N, I0
T .

6. X1:T = η1:T + L X0, θ0:T ξ1:T - a function of R0, δ1:T, σ, γ, I0 and ξ1:T.
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A-4. MCMC details

A-4.1. Elliptical slice sampler

FIGURE A-3. 
Parameter dependency graph after reparameterization. The root nodes I0, γ, σ, δ1:T, R0, σ
outside the large box are parameters and latent variables after reparameterization, for which 

we assign prior distributions. The dash-dotted lines show deterministic relationships and 

the solid lines show the stochastic dependencies. The grey node denotes the observed data. 

The figure shows the dependency structure between the transformed parameters and original 

parameters θ0:T, X0 and X0:T.

The elliptical slice sampler, proposed by Murray, Adams and MacKay (2010), aims 

at sampling from posterior distributions associated with probability models with a 

latent a priori zero-mean Gaussian random vector X ∈ ℝd with covariance Σ(θ), i.e., 

X ∼ N(0, Σ(θ)). We use L(Y ∣ X, θ) to denote the likelihood function for observed data 
Y given latent variable X and parameter θ . Hence, the target posterior distribution for X given is

Pr X ∣ Y, θ ∝ L Y ∣ X, θ N X ∣ 0, Σ θ π θ ,

where π(θ) is the prior distribution for parameter θ. The goal of elliptical slice sampler 

is to obtain posterior samples of latent variable X from p(X ∣ Y, θ). The proposal step in 

elliptical sampling consists of two parts: (1) proposing an auxiliary random vector Z ∈ ℝd

from distribution N(0, Σ(θ)), (2) proposing a variable α ∈ 0, 2π  as an angle parameter. In 

elliptical slice sampler, a new state X′, Z′  is proposed by rotating the previous state (X, Z)
with angle α,
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X′ = Xcos(α) + Xsin(α) (A-37)

Z′ = Zsin(α) − Zcos(α) (A-38)

For any given α, this transition leaves the joint prior probability invariant, i.e,

N(X ∣ 0, Σ)N(Z ∣ 0, Σ) = N X′ ∣ 0, Σ N Z′ ∣ 0, Σ .

Hence, X′, Z′  are considered at the proposed state and the ratio and the propose transition 

probability from (X, Z) to X′, Z′  should equal that from X′, Z′  to (X, Z), i.e

Pr X′, Z′ (X, Z)
Pr (X, Z) X′, Z′ = 1 .

The algorithm for elliptical slice sampler is given in Algorithm 1. Notice that iterations will 

stop only when a new sample is accepted. Hence, the elliptical slice sampler has acceptance 

rate 1, meaning that it will always update the latent random vector X at each MCMC 

iteration.

Algorithm 1

Elliptical slice sampler for posterior distribution π ⋅ ∣ Y, θ

1 Input: Latent variable from the previous iteration X ∈ ℝd. Observed data Y, previous updated parameter X..

2 Output Updated latent variable value X′
3 Sample ellipse Z ∼ N 0, Σ θ
4 Compute log-likelihood threshold: sample U ∼ Uniform 0, 1  and let

τ logL(Y ∣ X, θ) + log(U)
5 Sample angle parameter α ∼ Uniform 0, 2π  and αmin, αmax α − 2π, α
6 X′ X ⋅ cos α + Z ⋅ sin α
7 whilelog L Y ∣ X′, θ < τdo

8 if α < 0then

9  αmin α
10 else

11  αmax α
12 Sample α ∼ Uniform αmin, αmax .

13 Make new proposal

X′ X ⋅ cosα + Z ⋅ sinα
14 Return X′.

A-4.2. MCMC algorithm for the LNA-based SIR model

In this framework, the observed data are the genealogy g estimated from a sample of 

sequences from virus hosts. The sufficient statistics for SIR structured coalescent likelihood 
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would be the coalescent times T and sampling times S. The unknown parameters and the 

latent variables are

1. The initial number of infected individuals: I0. The initial population is 

parameterized as X0 = N, I0 , suppressing that S0 = N − I0 and that there are no 

recovered individuals at time 0.

2. The initial basic reproduction number R0.

3. The removal rate γ.

4. The hyperparameter σ that controls the smoothness of R0(t) trajectory.

5. The parameters modeling the first order differences in log R0(t) :δ1:T.

Note that assuming δ0 = 1, the infection rate βi can be obtained as

βi = γ
N ⋅ R0exp ∑

k = 0

i
σδk . (A-39)

The parameter θ0:T can be obtained from R0, δ1:T, γ and σ.

6. Random noise for the population trajectory at t1, …, tT, i.e. ξ1:T, with ξi iidN(0, I) a 

priori. The latent SIR trajectories X0:T can be recovered from θ0:T, X0 and random 

noise ξ1:T.

The MCMC update for parameters and latent variables is given in Algorithm 2.

Algorithm 2

Updating rule in the LNA-based MCMC algorithm

1: Input: Parameter values from the previous interation I0, R0, γ, δ1:T , σ, ξ1:T , geneology g. Proposal density 
q1 ⋅ , q2 ⋅  for updating the initial number of infected individuals and the removal rate.

2: Output Updated parameters values

3: Calculate X0:T, θ0:T  based on I0, R0, γ, δ1:T , σ . ξ1:T .

4: Propose I0
′
 based on q1 ⋅ ∣ I0 , then X0:T  will be deterministically updated to X0:T

′
 according to I0

′
, R0, γ, δ1:T ,

σ, ξ1:T .

5: Accept I0
′ , XD:T

′
 with acceptance probability

a min 1, Pr g ∣ θ0:T
′ , X0:T

′ Pr I0
′ q1 I0 ∣ I0

′

Pr g ∣ θ0:T, X0:T Pr I0 q1 I0
′ ∣ I0

.

6: Propose γ′ based on q2 ⋅ ∣ γ , then X0:T, θ0:T  will be deterministically updated to XD:T
′ , θ0:T

′
 according to 

I0, R0, γ′, δ1:T , σ, ξ1:T .

7: Accept γ′, X0:T
′ , θ0:T

′
 with acceptance probability
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a min 1, Pr g ∣ θ0:T
′ , X0:T

′ Pr γ′ q2 γ ∣ γ′
Pr g ∣ θ0:T, X0:T Pr γ q2 γ′ ∣ γ .

8: Let U = log R0 , δ1:T, log σ , then Ua priori follows a multivariate normal distribution. Use elliptical slice 

sampler to obtain U′ and get the updated R0
′ , δ1:T

′
 and σ′ . XD:T  will be deterministically updated to XD:T

′

according to I0, R0
′
, γ, δ1:T

′ , σ′.
9: Since ξ1:Ta priori follows a multivariate normal distribution, we use the elliptical slice sampler to obtain 

ξ1:T
′ . X0:T  will be deterministically updated to X0:T

′
 according to I0, R0, γ, δ1:T , σ, ξ1:T

′
.

A-4.3. MCMC algorithm for the ODE-based model

The MCMC algorithm for ODE-based method is similar to the LNA-based MCMC except 

there is no need to update the Gaussian noise ξ1:T in the population trajectory. The MCMC 

updates of parameters and latent variables is given in Algorithm 3.

Algorithm 3

Updating rule in the ODE-based MCMC algorithm

1: Input: Parameter values from the previous interation I0, R0, γ, δ1:T, σ, geneology g. Proposal density 
q1 ⋅ ∣ ⋅ , q2 ⋅ ∣ ⋅  for updating the initial number of infected individuals and the removal rate.

2: Output Updated parameters values

3: Calculate X0:T, θ0:T  based on I0, R0, γ, δ1:T, σ.

4: Propose I0
′
 based on q1 ⋅ ∣ I0 , then X0:T  will be deterministically updated to X0:T

′
 according to I0

′
, R0, γ,

δ1:T, σ based on ODE integration.

5: Accept I0
′ , XD:T

′
 with acceptance probability

a min 1, Pr g ∣ θ0:T
′ , X0:T

′ Pr I0
′ q1 I0 ∣ I0

′

Pr g ∣ θ0:T, XD:T Pr I0 q1 I0
′ ∣ I0

6: Propose γ′ based on q2 ⋅ ∣ γ , then X0:T, θ0:T  will be deterministically updated to XD:T
′ , θ0:T

′
 according to 

I0, R0, γ′, δ1:T, σ
7: Accept γ′, X0:T

′ , θ0:T
′

 with acceptance probability

a min 1, Pr g ∣ θ0:T
′ , X0:T

′ Pr γ′ q2 γ ∣ γ′
Pr g ∣ θ0:T, X0:T Pr γ q2 γ′ ∣ γ .

8: Let U = log R0 , δ1:T, log σ , then Ua priori follows a multivariate normal distribution. Use elliptical slice 

sampler of obtain U′ and get the updated R0
′ , δ1:T

′
 and σ′ .XD:T  will be deterministically updated to X0:T

′

according to I0, R0
′
, γ, δ1:T

′ , σ′ based on ODE integration.
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A-5. Details of the simulation study

A-5.1. Simulation details for Section 3.1 of the main text

Here we provide details for the specified sequence/lineage sampling times and number of 

samples in each simulation scenario:

1. CONST R0(t): Sampling times: S = 5, 10, 50, 70, 80, 90 , number of samples at 

each time: 2, 20, 300, 300, 200, 200 .

2. SD R0(t):: Sampling times: S = 5, 10, 50, 70, 80, 90 , number of samples at 

each time: 2, 20, 200, 80, 20, 20 .

3. NM R0(t): Sampling times: S = 5, 30, 50, 70, 80, 90 , number of samples at 

each time: 2, 50, 250, 100, 20, 20 .

Table A-1 shows effective sample sizes for the parameter I0, R0, γ and σ in Section 3.1, 

based on 1,000,000 MCMC iterations.

TABLE A-1

Effective sample sizes for simulation studies in Section 3.1.

CONST SD NM

parameter LNA.ESS ODE.ESS LNA.ESS ODE.ESS LNA.ESS ODE.ESS

I0 891 1130 772 1132 992 1124

R0 677 751 686 730 407 617

γ 678 1391 2375 1780 705 824

σ 922 882 807 805 406 594

A-5.2. Simulation details for Section 3.2 of the main text

The R0(t) trajectory in the simulations is set to

R0(t) =
1.4 × 1.015t/2, t ∈ 0, 30 t ∈ 0, 30 ,
1.750 × 0.975t − 30 t ∈ 30, 80 ,
0.494 t ∈ 80, 90

(A-40)

which is depicted in the left plot of Figure A-4. The initial number of infected individuals 

is I0 = 3 and the removal rate is set to γ = 0.3. The population size is fixed to N = 1,000,000. 

Epidemic trajectories are simulated using the SIR Markov jump process (MJP) and are 

accepted/rejected based on the following criteria:

1. Reject the SIR trajectories that ends before time 90. The number of infected 

individuals should never drop to 0 for t ∈ 0,90 , i.e. mint ∈ 0,90 I(t) > 0.

2. Reject the SIR trajectories with extremely high maximum prevalence: 

the maximum prevalence should be less or equal than 12,000, i.e., 

maxt ∈ 0,90 I(t) ≤ 12000.
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3. Reject SIR trajectories with extremely low maximum prevalence. The maximum 

prevalence should be greater or equal than 600, i.e., maxt ∈ 0,90 I(t) ≥ 600.

The 100 simulated SIR prevalence trajectories are shown in the right plot of Figure A-4 and 

the trajectories used in Section 3.1 is highlighted in blue. We also plot the ODE trajectory 

under the same parameter setting.

A-5.3. Repeated simulations for CONST and SD scenarios

In this Section, we repeat the simulation scenario for CONST and SD scenarios in Section 

3.1 100 times. We use the same parameter set up for R0(t) and γ. The initial number of 

infected I0 is se to 3 instead of 1 so that most of the numbers of simulated infectious 

individuals will not reach 0 before T = 90. As in Section A-5.2, we reject trajectories than 

end before 90. For the SD scenario, we also reject trajectories with maxt ∈ 0,90 I(t) > 4000
and maxt ∈ 0,90 I(t) < 300. We run the LNA-based and ODE-based methods assuming the 

informative prior on γ. The posterior summary boxplots for CONST and SD scenarios are 

presented in Figure A-5 and Figure A-6 respectively.

The LNA-based method results in wider BCIs and enjoys better frequentist coverage 

(envelope) properties than the ODE-based method, although differences between the two 

methods are less pronounced than their counterparts in the NM scenario. In terms of bias, 

LNA-based and ODE-based methods perform similarly in these simulations.

FIGURE A-4. 
Repeated simulation setup. Left: R0(t) trajectory under which the population trajectories are 

simulated. Right: The 100 simulated prevalence trajectories using MJP, the ODE trajectory 

under the same parameter setup, the MJP trajectory in for simulation in Section 3.1.
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FIGURE A-5. 
Boxplots comparing performance of LNA-based and ODE-based methods using 100 

simulated genealogies in CONST R0(t) scenario. The first three plots shows mean absolute 

error (MAE), mean credible interval width (MCIW) and envelope for R0(t) trajectory. The 

next three plots depict mean relative absolute error (MRAE), mean relative credible interval 

width (MRCIW), and envelope for I(t) (prevalence) trajectory. The last two plots show the 

absolute error (AE) and Bayesian credible interval (BCI) width for γ.

FIGURE A-6. 
Boxplots comparing performance of LNA-based and ODE-based methods using 100 

simulated genealogies in SD R0(t) scenario. See caption in Figure A-5 for explanation of 

the plots.

FIGURE A-7. 
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MCMC trace plots of the log-posterior in the 3 simulation scenarios. Columns correspond 

to CONST, SD, and NM simulated R0(t) trajectories. The first row shows the LNA-based 

results and the second row shows the ODE-based results.

A-5.4. Trace plots and effective sample sizes

A-5.4.1. Trace plots for simulations from Section 3.1 of the main text—Figure 

A-7 shows the trace plots of the log-posterior for the LNA-based method and ODE-based 

method in the three simulation scenarios from Section 3.1. The effective sample sizes (ESSs) 

for all parameters are above 400.

A-5.4.2. Trace plots for Ebola data—Figures A-8 and A-9 show trace plots of 

parameters R0, I0, γ, σ for the LNA-based model and ODE-based model respectively applied 

to the Sierra Leone genealogy, with each color correspond to a parallel MCMC chain. 

Figures A-10 and A-11 show the analogous trace plots for the analysis of the Liberia 

genealogy. We also list posterior medians, 95% BCIs, and ESSs for each parameter in the 

MCMC algorithm in Table A-2.

FIGURE A-8. 
Trace plots for I0, R0, γ, and σ in the LNA-based MCMC runs applied to the Ebola 

genealogy in Sierra Leone and using 9 parallel chains. Top left: Initial number of infected 

I0. Top right: initial basic reproduction number R0. Bottom left: removal rate γ. Bottom right: 

smoothing parameter σ.

Table A-2 show the effective sample sizes in the MCMC algorithm using genealogy from 

Sierra Leone and Liberia.
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A-6. Prior sensitivity analysis

A-6.1. Simulations based on single genealogy realizations

In Section 3.1, we put informative priors on the removal rate γ and explore three 

different simulation scenarios. Although our LNA-based model successfully recovers the 

R(t) dynamics and SIR trajectories, the posterior density of the removal rate is not too 

different from its prior in the SD and NM scenarios. In this section, we investigate sensitivity 

of our inferences to changes in the prior of the removal rate γ. For the same genealogies and 

parameter settings as in Section 3.1, we assign weakly informative priors to the removal rate 

γ

1. CONST R0(t) scenario: γ ∼ lognormal( − 1.7,0.25),

2. SD R0(t) scenario: γ ∼ lognormal( − 1.7,0.25),

3. NM R0(t) scenario: γ ∼ lognormal( − 1.2,0.25).

FIGURE A-9. 
Trace plots for the ODE-based MCMC algorithm applied to the Ebola genealogy in Sierra 

Leone. See caption in Figure A-8 for the explanation of the plots.

Tang et al. Page 36

Ann Appl Stat. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE A-10. 
Trace plots for the LNA-based MCMC algorithm applied to the Ebola genealogy in Liberia. 

Top left: Initial number of infected I0 . Top rigℎt: initial basic reproduction number R0 Bottom 

left: removal rate γ. Bottom right: smoothing parameter σ.

FIGURE A-11. 
Trace plots for the ODE-based MCMC algorithm applied to the Ebola data in Liberia. See 

caption in Figure A-10 for the explanation of the plots.
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TABLE A-2

Table for posterior medians, 95% BCIs, and ESSs for MCMC algorithms applied to Ebola 

data from Sierra Leone and Liberia.

Sierra Leone Liberia

post med 95%BCI ESS post med 95%BCI ESS

LNA

I0 4.84 [1.35,13.71] 1408 I0 3.49 [1.03, 9.95] 1630

R0 1.66 [1.31.2.15] 1011 R0 1.67 [1.29,2.24] 942

γ 33.61 [23.44,48.21] 2160 γ 37.21 [25.98,53.13] 1704

ρ 15.19 [10.60,21.53] 953 ρ 14.83 [10.41,20.70] 870

ODE

I0 2.63 [1.09,6.09] 2085 I0 4.31 [1.89,9.27] 1236

R0 1.64 [1.29,2.13] 1253 R0 1.83 [1.41.2.44] 796

γ 38.00 [26.12.55.40] 2841 γ 38.31 [27.27.53.43] 1608

ρ 12.13 [8.46,16.40] 1012 ρ 11.79 [9.78,19.20] 879

For each scenario, we fit a LNA-based model using 300,000 MCMC iterations. The first 

row in Figure A-12 shows the point-wise posterior medians and 95% BCIs for the basic 

reproduction number trajectories, R0(t) Our LNA-based method performs well in the CONST 

and SD scenario. However, for NM scenario, the method fails to fully capture the increase 

and decrease trend at the beginning and the end of the epidemic. The second row in Figure 

A-12 depicts the prior and posterior densities of the removal rate γ. The LNA-based method 

estimates the removal rate with good precision in the CONST scenario. However, for SD and 

NM scenario, the removal rate posterior densities are similar to the prior densities, but shift 

to the right from the truth. Posterior summaries of S(t) and I(t) are given in the third and 

fourth row of Figure A-12. The LNA-based method performs well in recovering the truth in 

the CONST and SD scenarios. In the NM scenario, the true trajectories are still covered by 

the wide BCIs, but the model seems to underestimate the S(t) and overestimate I(t).

A-7. Grid sensitivity analysis

The number of grid cells T  can be viewed as a tuning parameter in our model. Throughout 

the main text, T  is set to be around 30 to 40 and with a lognormal (3, 0.2) prior for inverse 

of smoothing parameter 1/σ. In this section, we investigate sensitivity to the choice of grid 

size T . We fit our LNA-based method to genealogy data constructed from virus sequences 

collected from Liberia using the same prior setup as in Section 4 under different choices of 

grid sizes:

1. T = 20, grid interval length Δti = 12.6 days.

2. T = 40, grid interval length Δti = 6.3 days (The grid setup in Section 4).

3. T = 80, grid interval length Δti = 3.2 days.

For simplicity, we use the same prior setup for each parameter and fit LNA-based method 

to the Liberia genealogy. We run the MCMC algorithm for 1,000,000 iterations and discard 
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the first 200,000 iterations. Posterior summaries, depicted in Figure A-13, show that the 

estimation results do change significantly when we change the grid size.

A-8. Performance under population size misspecification

A-8.1. Simulation study

In real applications, the census population size is usually not an accurate estimate of 

the true population size Ntrue . Hence, robustness to the misspecification of the population 

size is desirable. In this section, we repeat the simulation study in Section 3.2 with true 

population size Ntrue = 1,000,000 and fit LNA-based models under different population size 

misspecifications:

1. N = 200,000, N/Ntrue = 1/5,

2. N = 500,000, N/Ntrue = 1/2,

3. N = 1,000,000, N/Ntrue = 1/2, true population size used in Section 3.2,

4. N = 5,000,000, N/Ntrue = 5,

5. N = 10,000,000, N/Ntrue = 10.
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FIGURE A-12. 
Analysis of 3 simulation scenarios using the LNA-based method with weakly informative 

priors. Columns correspond to CONST, SD, and NM simulated R0(t) trajectories. The first 

row shows the estimated R0(t) trajectories for the 3 scenarios, with the black solid lines 

representing the truth, the red depicting the posterior medians and the red-shaded area 

showing the 95% BCIs for the LNA-based method. The second row corresponds to the 

estimation of the removal rate γ. Posterior density curves from the LNA-base method are 

shown in red lines compared with prior density curve in green lines. The bottom two rows 

show the estimated trajectories of γ and I(t) respectively.
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FIGURE A-13. 
Analysis of genealogy relating Ebola sequence data collected in Liberia using LNA-based 

method under different choices of grid size. Top left: basic reproduction number R0(t)
posterior summaries. Top right: removal rate γ posterior density. Bottom left: S(t) posterior 

summaries. Bottom right: I(t) posterior summaries. The results for T = 40 in Section 

4 are plotted in red. Green color corresponds to the result based on the coarser grid 

(T = 20) and tℎe blue color is used to sℎow posterior summaries for tℎe finer grid (T = 80).

FIGURE A-14. 
Boxplots comparing the performance of LNA-based method under population size 

misspecification using 100 simulated genealogies. See caption in Figure 4 for the 

explanation of the plot.

To evaluate model performance, we use the same metrics defined in Section 3.2 and generate 

posterior summary boxplots in Figure A-14. The Figure shows that it is safe to overestimate 

the true population size, but underestimating it leads to poor statistical performance. We 
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note that while basic reproduction number and recovery rate have been shown before to be 

robust to population size misspecification (Koepke et al., 2016; Fintzi et al., 2017), the latent 

variables generally do not enjoy such robustness. For example, the number of susceptible 

individuals does depend on the assumed population size. In our simulation, susceptible 

individuals do not deplete enough to change estimation of latent prevalence, but in other 

cases prevalence estimation can be affected by the population size misspecification.

A-8.2. Analysis of Liberia genealogy under different population size assumptions

We repeat LNA-based analysis of the Liberia genealogy under different population size 

assumptions. Recall that the census population size Ncensus = 4,400,000 is used in Section 4. 

We use our LNA-based method assuming the following population sizes:

1. N = 440,000, N/Ncensus = 1/10,

2. N = 44,000,000, N/Ncensus = 10.

FIGURE A-15. 
Analysis of genealogy relating Ebola sequence data collected in Liberia using the LNA-

based method under different total population specification. Top left: basic reproduction 

number R0(t) posterior summaries. Top right: mean infection period 1/γ posterior 

density. Bottom left: Disease prevalence I(t) posterior summaries. The results for 

N = Ncensus = 4, 400, 000 in Section 4 is plotted in red as, with green color corresponding 

to the results based on overestimating total population (N = 44, 000, 000) and the blue color 

plotting posterior summaries under an underestimated total population size (N = 440, 000).

In conclusion, if the final epidemic size is relatively small compared with the true total 

population size, estimation results are robust to the misspecification of the population size, 

if the misspecification is not too severe. Intuitively, this makes sense, because when the 

number of susceptible individuals S(t) is approximately equal to the total population size N, 

the coalescent rate is reduced to

λ(t) = l(t)
I

2β(t)S(t)
I(t) ≈ 2R0(t)γ

I(t) ,
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which is invariant to the population size N.

A-9. Comparison with PhyDynR package

In this paper, we implement the SIR structured coalescent likelihood based on equation 

(2) that can be found in (Volz, 2012). We check our implementation of this likelihood by 

comparing it with the implementation from PhyDynR package (a predecessor of the BEAST 

2 PhyDyn module). The comparison protocol consists of two steps. First, a genealogy 

is simulated under a deterministic ODE SIR population trajectory determined by the pre-

specified parameters: R0 = 2, γ = 0.15 and I0 = 3. We assume the constant basic reproduction 

number. Secondly, the basic reproduction number R0 and removal rate γ are estimated via the 

maximum likelihood method. Variances and standard deviations of parameter estimates are 

obtained from the inverse Hessian of the log-likelihood function. We repeat the experiment 

100 times and report absolute errors (AEs) and standard deviation (SDs) for parameters R0

and γ respectively.

FIGURE A-16. 
Comparison of SIR coalescent likelhhood implementations of our ODE method and 

PhyDynR package in a sparsely sampled outbreak (population size is 10, 000 and the number 

of sampled sequences is 150). The first row shows the absolute errors (AEs) and estimated 

standard deviation (SDs) for basic reproduction number R0. The second row shows the AEs
and estimated SDs for removal rate γ.

We consider two scenarios:

1. A sparsely sampled outbreak, where the population size is N = 10, 000 and the 

number of sampled sequences is 150.

2. A densely sampled outbreak, where the population size is N = 1, 000 and the 

number of sampled sequences is 200.
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Figures A-16 and A-17 show the AEs and SDs for parameters in scenarios 1 and 2 

respectively, demonstrating that the two likelihood implementations agree in the sparsely 

sampled outbreak setting, but disagree when outbreaks are densely sampled. Since all 

coalescent-based methods assume sparse sampling, we do not think that the disagreement 

between our implementation and PhyDynR is concerning.

Figure A-17. 
Comparison of SIR coalescent likelihood implementations of our ODE method and 

PhyDynR package in a sparsely sampled outbreak (population size is 1, 000 and the number 

of sampled sequences is 200). The first row shows the absolute errors (AEs) and estimated 

standard deviation (SDs) for basic reproduction number R0. The second row shows the AEs 

and estimated SDs for removal rate γ.

A-10. Simulations under small population size

A-10.1. Simulations based on single genealogy realization

In this section, we perform simulation studies under a small population size = 1, 000. We 

simulate an epidemic with constant reproduction number R0(t) = 2 for t ∈ 0, 90 . The initial 

number of infected is set to be I0 = 3 and the recovery rate the is γ = 0.15. First, we simulate 

one realization of the population trajectory, based on which a sequence of coalescent times 

are simulated using pre-specified sampling times.

For simplicity, we also assume a constant basic reproduction number in the inference, i.e. 

fixing δ1:T = 0. We fit both LNA-based algorithm and ODE-based algorithm to simulated 

genealogy. Moreover, since the reproduction number is constant, we also use the ODE-based 

model implementation in PhyDyn package from (Volz and Siveroni, 2018). We use the same 

prior setup for basic reproduction number R0 and initial number of infected I0 as in Section 3 

and an informative prior lognormal ( − 1.9, 0.1) is assigned for the recovery rate γ.

Tang et al. Page 44

Ann Appl Stat. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Posterior summaries of the one realization simulation is shown in Figure A-18. Note the 

there exist differences in the posterior summaries between our ODE-based method and 

PhyDyn. Such differences are likely to be caused by differences in the grid set up for 

the coalescent likelihood and different ODE solvers used by the two methods. The top 

two plots show the posterior densities of R0 and γ. While both our ODE-based method 

and PhyDyn posteriors have small shifts from the truth, our LNA-based method yields a 

more flat density curve that has much higher density at the truth. The bottom two plots 

depict posterior summaries for the population trajectories. Compared with the results in 

Section 3.1, the BCIs for LNA based method in small population epidemic lose in coverage 

of the population trajectory. However, the BCIs and posteriors median generally capture 

the trend of the population dynamic. Our ODE-based implementation and PhyDyn seem 

to be over-confident and yield narrow BCIs that miss most of the true trajectories. The 

inconsistency between our ODE-based inference and BEAST2 PhyDyn results are present 

only in a densely sampled outbreak settings, as demonstrated in Section A-9 above.

A-10.2. Frequentist properties of posterior summaries

We simulate 100 realizations of the SIR trajectories under the same parameter setup in 

Section A-10.1. We keep all the simulated trajectories but only reject those ending before 

t = 90. The 100 simulated trajectories are plotted in Figure A-19 in grey lines, with the 

corresponding ODE curve plotted in black. For each simulated trajectory, we simulate 

genealogy and apply the LNA-based method, our implementation of ODE-based method, 

and BEAST2 PhyDyn package to each genealogy under the same prior setup as in Section 

A-10.1 (Volz and Siveroni, 2018). The estimation R0 and γ is evaluated by absolute error 

(AE), BCI width (BCIW) and envelope defined in Section 3.2. We evaluate the estimation 

of prevalence I t  is based on MRAE, MRICW and ENV-I. Posterior summaries for repeated 

simulations are depicted in Figure A-20.

FIGURE A-18. 
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Analysis of LNA-based and ODE-based methods in the small population size setting. The 

first row shows the estimation results for basic reproduction number R0 and removal rate 

γ respectively, with posterior density curve for LNA-based method plotted in red, our ODE-

based implementation plotted in blue, and PhyDyn results plotted in orange. The second row 

shows posterior summaries for S(t) and I(t) trajectories with the same color scheme.

FIGURE A-19. 
The 100 simulated prevalence trajectories using MJP and the ODE trajectory under the same 

parameter setup.

FIGURE A-20. 
Boxplots comparing the performance of LNA-based, our implementation of the ODE-based 

method, and BEAST2 PhyDyn package implementation of the ODE-based method under 

population size N = 1,000 and using 100 simulated genealogies. First row: AE, CIW for R0

(left two) AE, CIW for γ. Second row: MRAE, MRCIW and ENV-I for I(t)
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FIGURE 1. 
SIR Markov jump process. From the current state with the counts S, I, R, the population 

can transition to state S − 1, I + 1, R (an infection event) with rate β(t)SI or to state 

S, I − 1, R + 1 (a removal event) with rate γ(t)I. No other instantaneous transitions are 

allowed.
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FIGURE 2. 
Example of a genealogy. Black solid lines show the genealogy structure. The colescent times 

c1, …, c4 and sampling times s1, …, s4 are labeled with vertical dashed lines. The number of 

lineages li, k is given in each intervals ℐi, k.
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FIGURE 3. 
Analysis of 3 simulation scenarios. Columns correspond to CONST, SD, and NM simulated 

R0(t) trajectories. The first row shows the estimated R0(t) trajectories for the 3 scenarios, 

with the black solid lines representing the truth, the red dashed lines depicting the posterior 

median and the red-shaded area showing the 95% BCIs for the LNA-based method. For the 

ODE-based method, the posterior median is plotted in blue dotted lines, with blue shading 

showing the 95% BCIs. The second row corresponds to the estimation for the removal rate 

γ. Posterior density curves from the LNA are shown in red lines and the posterior density for 

ODE is plotted in blue lines, compared with prior density curve in green lines. The bottom 

two figures shows the estimated trajectory of S(t) and I(t) respectively.
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FIGURE 4. 
Borplots comparing performance of LNA-based and ODE-based methods using 100 

simulated genealogies under informative prior (IP) and weakly informative prior (WIP) for 

removal rate γ. The first row shows mean absolute error (MAE), mean credible interval 

width (MCIW), and enevolope ENV − R0 for R0(t) trajectory. The second row depiets 

mean relative absolute error (MRAE), mean relative credible interval width (MRCIW), 

and enelope (ENV-1) for I(t) (prevalence) trajectory (ENV-I). The last two plots show the 

absolute error (AE) and Bayesian credible intereval (BCI) width for γ.
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FIGURE 5. 
Analysis of the genealogy relating Ebola virus sequences collected in Sierra Leone. Top top 

left plot depicts the Ebola genealogy. The top right plot shows the estimated R0(t), with the 

red dashed line showing the posterior median and the salmon shaded area showing the 95% 

BCIs of the LNA-based method. The posterior median based on the ODE-based method 

is plotted as the blue dotted line with blue shading corresponding to the 95% BCIs. The 

medium left figure shows prior and posterior densities of the mean infection period 1/γ. The 

prior density is shown in green, while the posterior densities based on LNA and ODE are 

plotted in red and blue respectively. The medium right and the bottom left figures show the 

estimated trajectory of S(t) and I(t), using the same legend as in top right plot. The bottom 

right plot shows the predicted median and 95% BCIs for weekly reported incidence together 

with the reported incidence from WHO shown as crosses.
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FIGURE 6. 
Analysis of the genealogy relating Ebola virus sequences collected in Liberia. See caption in 

Figure 5 for the explanation of the plots.
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