UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Designing Exercises to Teach Programming Patterns

Permalink
bttgs:ééescholarshiQ.orgéucgitem43xk123wg
Author

Weinman, Nathaniel

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3xk123wk
https://escholarship.org
http://www.cdlib.org/

Designing Exercises to Teach Programming Patterns

by

Nathaniel Weinman

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Armando Fox, Co-chair

Professor Marti Hearst, Co-chair
Professor Marcia Linn

Summer 2022



Designing Exercises to Teach Programming Patterns

Copyright 2022
by
Nathaniel Weinman



Abstract
Designing Exercises to Teach Programming Patterns
by
Nathaniel Weinman
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Armando Fox, Co-chair

Professor Marti Hearst, Co-chair

As digital technologies continue to grow in importance and influence, the need for strong
programmers continues to grow. “Programming,” though captured by a single word, actually
requires the acquisition of many different skills. One such skill is identifying where and how
to apply programming patterns — reusable abstractions and organizations of code. This skill
has been shown to be a distinguishing characteristic between experts and novices.

However, our current Computer Science classrooms offer scarce opportunities for students
to deliberately practice patterns through exercises. The most common code practice tool is
the Code Writing exercise; the goal it presents to students is to construct a program that
matches certain outputs from given inputs. Code Writing exercises offer minimal affordances
to guide students towards particular solutions, making it difficult for instructors to ensure
students will practice a specific pattern.

This work introduces three new exercises designed to support students in acquiring new
patterns. In Faded Parsons Problems, students rearrange and complete lines of code to
reconstruct a program. In Subgoal Decomposition exercises, students reconstruct the exe-
cution flow of subgoals across multiple files and languages, specifying where each subgoal
fits in an architectural framework. In Data Flow exercises, students further concretize each
subgoal by using code snippets to specify the data processing for which each subgoal is re-
sponsible. Each of these exercises were designed to be easy to adopt into existing curricula
without significant changes, complementing existing Code Writing exercises. Studies with
students revealed that each of these exercises addresses currently unmet needs in CS courses,
that these exercises support students practicing patterns by allowing students to focus on
the full solution, and that students want these exercises to be integrated into their courses.
Additionally, a classroom-based study with 237 students found that Faded Parsons Problems
are more effective than Code Tracing and Code Writing exercises at helping students acquire



patterns while also improving their general code writing abilities. Finally, from the lessons
learned in developing these exercises, five design goals are presented to motivate the creation
of more exercises for new contexts.



To Dave, who decided every day to
come along on this wild adventure.



Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1 Overview of this Dissertation . . . . . . . . . . . . . . .
1.2  Statement of Prior Publication . . . . . . . . . . . . ... ...

Design Goals for Exercises that Teach Patterns

2.1 Design Goals . . . . . . ..
2.1.1  Provide Opportunity to Practice. . . . . . . . ... .. .. ... ...
2.1.2  Scaffold Vocabulary . . . . . .. .. ... oo
2.1.3 Scaffold Process . . . . . . . . ...
2.1.4  Guide Students to One Solution . . . . . . . ... ... ... .....
2.1.5  Present Examples Efficiently . . . . . . . ... ... ...

2.2 Exploring Specific Exercises . . . . . . . . ...
2.2.1 Code Tracing . . . . . . . . .
2.2.2 Code Writing . . . . . . . . ..
2.2.3 Parsons Problems . . . . ... ... .
2.2.4 Faded Parsons Problems . . . . . .. ... ... ... .........
2.2.5 Subgoal Decomposition . . . . . . ... ..o
226 DataFlow . . . .. .. ...

2.3 DISCussion . . . . . . ... e

Taking Parsons Problems Beyond CS2

3.1 Methodology . . . . . . . . .
3.1.1 Weeks 1 and 4: Pre-/Post-Test . . . ... ... ... ... ... ...
3.1.2 Weeks 2 and 3: Practice . . . . . . . .. . ... ... ... ... ..

3.2 Results. . . . . .
3.2.1 Limitations . . . . . . . . . . . e e

i

ii

vi

- -

© 00 00~ O O G

— = e
O = =N O ©



il

3.2.2 Efficiency of Parsons Problems . . . . . ... ... ... ... .. ... 24
3.3 Discussion . . . . . . .. 24
Exploring Challenging Variations of Parsons Problems 26
4.1 Introduction . . . . . . . ..o 26
4.2 Related Work . . . . . .o 27
4.3 Implementing Blank-Variable Parsons . . . . . . . . ... .. ... ... ... 29
4.4 Study Design . . . . .. . 31
4.4.1 Study Materials . . . . . . . ..o 31
4.4.2 Procedure . . . . . ... 32
4.5 Results . . . . . . 33
4.5.1 RQI1: Varying Learning Objectives . . . . . . . . . ... . ... ... 33
4.5.2  RQ2: Difficulty of Interfaces . . . . . . . .. ... ... ... ... 34
4.5.3 RQ3: Short-Term Coding Mastery . . . . . ... ... ... ... .. 36
4.5.4 RQ4: Student Affinity . . . . . . ... 37
4.6 Discussion . . . . . . ... 37
4.6.1 Observations/Opportunities . . . . . . . . . ... ... ... ... .. 37
4.6.2 Limitations . . . . . .. .. Lo 38
4.6.3 Future Work . . . . . .. .o 38
4.7 Conclusion . . . . . . ..o 39
Improving Instruction of Programming Patterns with Faded Parsons
Problems 40
5.1 Introduction . . . . . . . .. L 41
5.2 Related Work . . . . . .. 42
5.2.1 Programming Patterns . . . . . .. . ... ..o 42
5.2.2  User Interfaces for Program Exercises . . . . . . .. .. .. ... ... 43
5.2.3 Parsons Problems . . . . . . .. ... oo 44
5.3 Programming Patterns . . . . . . . .. .. 0oL 45
5.3.1 Examples of Programming Patterns . . . . . . .. ... ... ... .. 46
5.3.2 Programming Patterns in Code . . . . . . . .. .. ... .. .. ... 48
5.4 User Interface For Programming Exercise Comparison . . . . . . . . .. . .. 48
5.5 Ewvaluation . . . . . ..o 50
5.5.1 Study Environment and Participants . . . . . ... .. .. ... ... 51
5.5.2  Method for Constructing Faded Parsons Problems . . . . . . . . . .. 51
5.5.3 Study Description . . . . . . .. ..o 51
56 Results . . . . . . . 55
5.6.1 Statistical Measures . . . . . . . .. ..o 56
5.6.2 Data Cleaning . . . . . . . . . . ... 56
5.6.3 Pattern Acquisition . . . . . .. ..o 57
5.6.4 General Efficacy . . . . . ... 59

5.6.5 Student Perception of Faded Parsons Problems . . . . ... ... .. 59



v

5.6.6 Synthesis Of Results . . . . .. .. ... ... ... .. 60

5.7 Limitations and Future Work . . . . . .. .. ... ... 61
5.8 Conclusion . . . . . . .. 61

6 A Design Framework for Creating Reconstruction Exercises that Teach

Software Architecture Patterns 63
6.1 Introduction . . . . . . . . .. 63
6.2 Related Work . . . . . . ..o 64
6.2.1 Problem Decomposition . . . . . ... ... ... 64
6.2.2 Programming Patterns . . . . . . ... ... 0oL 66

6.3 Design Goals: Reconstruct Many Intentionally-Designed Solutions . . . . . . 67
6.3.1 Construct: Provide Opportunity to Practice . . . . . . ... ... .. 67
6.3.2 Reconstruct: Scaffold Vocabulary and Details . . . . . ... .. ... 68
6.3.3 Reconstruct: Scaffold Process . . . . . ... .. .. ... ... .. 68
6.3.4 Intentionally-Designed Solutions: Guide Students to One Solution . . 69
6.3.5 Many solutions: Present Examples Efficiently . . . . ... ... ... 69

6.4 Designing New Exercises . . . . . . . . . .. ..o oo 69
6.4.1 Exercise 1: Subgoal Decomposition . . . . . ... ... ... ... .. 70
6.4.2 Exercise 2: Data Flow . . . . .. ... ... .. ... .. ....... 72
6.4.3 Feedback Mechanism . . . . . . . . ... .. ... L. 74
6.4.4 Creating Content . . . . . . . . . .. ... 75

6.5 Evaluation . . . . . . ... 75
6.6 Results. . . . . . . . 76
6.6.1 Exercise Efficacy . . . . . .. ..o o 7
6.6.2 Revisiting the Design Goals . . . . . . ... ... ... ... ... .. 80
6.6.3 Exercise Improvements . . . . . ... ..o 83

6.7 Limitations and Future Work . . . . . . . .. ... ... L. 86
6.8 Conclusion . . . . . . . .. 87
7 Conclusion 88

Bibliography 90



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4

9.5
5.6

6.1
6.2
6.3
6.4
6.5

Examples of different goal-oriented patterns in a single solution . . . . ... .. 6
A Code Tracing exercise . . . . . . . . . . o 10
A Code Writing exercise . . . . . . . . . . . . 11
A Parsons Problem . . . . . . . ... 12
A Faded Parsons Problem . . . . . . .. .. ... ... ... ... ... ..., 13
A Subgoal Decomposition exercise . . . . . . . . . .. ... 15
A Data Flow exercise . . . . . . . . . . . . 18
An early iteration of a Parsons Problem . . . . . .. .. ... ... .. ..... 20
The weekly number of participants by treatment condition . . . . . .. ... .. 23
A Blank-Variable Parsons Problem . . . . ... ... .. ... .. .. ...... 30
A Code Writing exercise . . . . . . . . . . . 31
Study Design . . . . . . .. 32
A Faded Parsons Problem . . . . . . .. .. ... ... ... .. ... .. ..., 40
A Code Tracing exercise . . . . . . . . . . . . 44
A Code Writing exercise . . . . . . . . . . .. 44
Three different correct student submissions and their pattern adherence and com-

plexity . . . .. 47
A Faded Parsons Problem . . . . . . . ... .. ... ... ... .. ... ..., 49
Study description for Studies 1and 2 . . . . . .. . . ... ... ... ... ... 53
Upper-Division problem prompt . . . . . . . . . ... ... ... ... 70
A Subgoal Decomposition exercise . . . . . . . . ... 71
A Data Flow exercise . . . . . . . . . . . . 73
Different types of feedback students receive on these exercises. . . . . . . . . .. 74
Study description . . . . . . ... 76



vi

List of Tables

2.1
3.1

4.1
4.2

5.1
5.2
9.3

6.1
6.2

Design Goal Adherence by Exercise . . . . . . .. .. ... 19
Efficiency by Interface and Week . . . . . . . . . .. o000 23
Self-reported learning measures . . . . . . . . . ... 34
Problem completion rate by interface . . . . . . . .. ..o 35
Examples of programming patterns and their descriptions . . . . . . . . .. .. 46
High-level description of each reported study . . . . . . . .. ... ... ... .. 52
Summary statistics related to Pattern Exposure and Acquisition, Code Writing

Transfer, and Actual Difficulty. . . . . ... ... ... ... .. 58
Connecting Design Goals to Exercises . . . . . . .. ... ... ... ... .. .. 72
Summary results from self-rated questions after each exercise . . . . . . . . . .. 78



vil

Acknowledgments

This work would not have been possible without the support of many brilliant and wonderful
people along the way. First and foremost, thank you to Armando Fox and Marti Hearst for
the countless hours you have spent co-advising me on my work and developing me as a
researcher. Thank you both for pushing me to develop my ideas further than I thought
possible.

I would also like to thank my committee member, Marcia Linn, as well as my other
qualifying exam committee member, Sarah Chasins. Your feedback has helped tie this work
together. Thank you to Bjorn Hartmann for the mentorship you provided at the beginning
of my Ph.D. as I was first learning about Human-Computer Interaction. Thank you to Paul
Laskowski, for patiently teaching me to conduct more rigorous statistical analyses.

I would like to thank Michael Ball, for trusting me to run a study as part of his course.
I’d like to think him along with Pamela Fox for the many discussions around this work, as
well as working to bring this work into more classes and contue extending it.

Thanks to Rob Deline, Steven Drucker, and Titus Barik for the mentorship you provided
during my intersnship at Microsoft Research. You taught me ways to think about research,
allowing me to answer the questions that mattered to me.

Thanks to the members of research groups I've been a part of at my time at Berkeley.
Thank you for sharing your wisdom, support, inspiration, and camaraderie. Thank you
Andrew Head for mentorship, friendship, and an endless supply of interesting papers to read.
Thank you Katie Stasaski for incredible brainstorming, tea breaks, and the frequent advice.
Thank you Hezheng Yin, An Ju, Logan Caraco, and the members of Fox Group. Thank
you Philippe Laban, Chase Stokes, Peitong Duan, and the members of Hearst Lab. Thank
you Collette Roberto, Zephyr Barkan, Vron Vance, Dan Garcia, Nick Weaver, and the other
members of ACELab. Thank you Molly Nicholas, Sarah Sterman, Elena Glassman, Ananya
Nandy, Forrest Huang, Janaki Vivrekar, Jeremy Warner, J.D. Zamfirescu-Pereira, Yakira
Mirabito, Bala Kumaravel, Cesar Torres, Christine Dierk, David Chan, Deniz Dogruer,
Drew Sabelhaus, Eldon Schoop, Katherine Song, Mike Laielli, Shm Almeda, Yifan Wu, and
the members of BiDLab.

Thanks to the various students I've been lucky enough to mentor for supporting this
work. A particular thank you to Brian Hsu and Jack Boreckzky for being co-conspirators
in creating new tools. Thank you also to: Alexander Ng, Alexia Camacho, Aman Sidhant,
Ashi Akalin, Daniel Gultom, Danny Chu, Emily Zhong, Leanna Tran, Srujay Korlakunta,
and Tlaloc Baraja.

Thank you to my friends, for helping me disconnect when it was helpful and making sure
I continued living a full life these past years. Thanks to Mitha Nandagopalan, Jacob Little,
Alex Rybak, Alina Shinkarsky, Kendra Albert, Regina Eckert, Sandra Hui, Emily Naviasky,
Josh Sanz, and all of my other friends who have supported me on this journey.

Finally, thank you to my husband, David Gainsboro. You celebrated in the milestones
of my program and the successes of my work. You were the first to lend a hand whenever I
was struggling. Thank you for coming along, every step of the way.



Chapter 1

Introduction

Programmers build incredible tools that change the way we live our lives, be it the way we
access information, communicate with others, and more. Both the demand for and number
of individuals interested in becoming software engineers continues to grow incredibly quickly
(Scaffidi et al., 2005; Barr et al., 2011; U.S. Department of Labor, Occupational Outlook
Handbook, Software Developers 2019). As we continue to train more software engineers to
do important work, we should be improving the methods we have to train them. In this
work, I discuss how we can better prepare future software engineers, with a particular focus
on scaffolding the instruction of patterns.

In college-level courses, students are expected to spend a substantial proportion of their
learning time working on homework exercises (Seaton et al., 2014). Homework and lab
exercises provide a space for students to actively learn the concepts covered in lecture. It
more closely mimics a professional environment, since students are given a chance to practice
reasoning through how to solve given problems by applying concepts in new ways.

In many CS1 courses, homework practice shifts from reading code (e.g., example so-
lutions, Code Tracing exercises) to writing it. Though this can be described simply as a
transition from reading to writing, it is actually much more complex than that. When we
speak of “programming” or “code writing,” we are actually discussing many different ideas
and skills (du Boulay, 1986; Jenkins, 2002; Cutts et al., 2012). Programmers must think
about syntax, data types, control flow, algorithms, data structures, problem comprehension,
problem decomposition, interpreting error messages, debugging test case failures, and more.

To become a proficient programmer, students must eventually become familiar with tying
these ideas and skills together. Students often practice with Code Writing exercises as part
of their coursework, in which students construct a program that matches certain outputs
from given inputs. In some ways, Code Writing exercises may provide the perfect practice, as
they provide realistic, holistic programming practice. On the other hand, the transition from
reading example programs to writing programs might be overwhelming for some students,
missing an opportunity to scaffold some of these skills. In fact, there are many projects that
propose different exercises to scaffold some part of the programming practice, suggesting
others also believe in a significant opportunity for more scaffolding (Linn and Clancy, 1992;



CHAPTER 1. INTRODUCTION 2

Alphonce et al., 2005; Moritz et al., 2005; Sajaniemi et al., 2005; Parsons et al., 2006; Politz
et al., 2014; Choudhury et al., 2016; Loksa et al., 2016; Zavala et al., 2017; Ericson, Foley,
et al., 2018; Felleisen et al., 2018; Shi et al., 2019; Wrenn et al., 2019; Weinman, Fox, and
M. Hearst, 2020; Milliken et al., 2021).

Below, I explore how exercises can help students acquire useful patterns (also known
as plans, schemata, templates, or frameworks). Specifically, I focus on two different types
of patterns. Goal-oriented patterns are partial implementations of reusable, higher-level
concepts which can achieve a goal; for example, computing a count or the Observer pattern
in software design (Gamma et al., 1995). Architectural patterns are abstractions which can be
used to set clear boundaries between smaller problems that can be solved independently. For
example, the Model-View-Controller framework in web architecture or the Builder pattern
(Gamma et al., 1995).

I chose to focus on scaffolding the instruction of patterns for a range of reasons. Ex-
perts have been found to have access to more patterns than novices (Wiedenbeck et al.,
1993; Robins et al., 2003; Ko et al., 2008), suggesting that patterns are important to learn.
Patterns help in understanding code written by someone else (McCauley et al., 2008), help
in debugging code (O’Dell, 2017), and are a key building block to problem decomposition
(Soloway, 1986). That is, patterns are critical to enabling programmers to tackle problems
of increasing complexity.

All of these use cases have compounding effects as programs get more complex. In a CS1
course, a student might be writing a function of 5 lines over the course of 15 minutes. If the
student fails to recognize the relevant patterns, their solution may become more complex
increasing to 10 lines. Or the student may pursue some false leads adding an additional
15 minutes. But, even in these cases, the problem is still be reasonable to complete. In
upper-division courses, individual programming questions may be designed to take hours,
and consists of hundreds of lines of code across multiple files. These numbers get even
larger if there is a month-long project in the course. In these cases, a false start that does
not pan out could add hours to the total time a student spends on the exercise. Poor
problem decompositions can lead to incredibly complex interactions between components
and classes, in some cases because students did not identify productive boundaries between
different subgoals. Though the benefits of learning patterns may not be as strongly apparent
in CS1 courses, learning to recognize and think of patterns sets students up well to continue
learning larger patterns in later courses, where the impact is much more significant.

This work contributes the following:

e A set of five design goals to capture one approach for creating exercises in a range of
contexts to productively teach patterns, motivated by existing literature and probed
through exercises (Chapters 2, 6).

e Faded Parsons Problems, a new exercise designed for patterns that can be grounded
in a reasonable amount of syntax (< 20 lines of code) (Chapter 4). This exercise is
evaluated and found effective in a large CS1 classroom study (Chapter 5).



CHAPTER 1. INTRODUCTION 3

e Subgoal Decomposition and Data Flow exercises, designed for patterns at a higher
level of abstraction than code. These exercises are qualitatively evaluated and show
promise for students in an upper-division Software Engineering course (Chapter 6).

1.1 Overview of this Dissertation

In this section, I provide some additional details for each of the remaining chapters.

Chapter 2 describes five design goals to capture an approach to create exercises that teach
patterns. The chapter provides some additional context by exploring the extent to which six
different exercises adhere to each of the design goals. This chapter appears anachronistically;
these design goals are motivated by insights from the empirical work in Chapters 3 - 5 and
probed in the work in Chapter 6.

The following chapters appear in chronological order. Chapter 3 describes my initial
structured exploration into Parsons Problems. I ran a study with advanced undergraduate
students comparing Parsons Problems to Code Writing exercises. The study was focused on
teaching students how to use different algorithms, similar to questions that might be asked
in a Software Engineer interview. While the study did not lead to any strong findings, the
results suggested that Parsons Problems were not particularly effective practice for upper
division students.

Chapter 4 introduces Faded Parsons Problems, a variant of Parsons Problems that pro-
vide students with partially incomplete lines of code instead of complete lines. I ran a small
study with CS1 students (n=13) to compare Parsons Problems, Faded Parsons Problems,
and Code Writing exercises. This study confirmed the opportunity for further scaffolding
between Parsons Problems and Code Writing exercises, as students that solved a question as
a Parsons Problem weren’t able to demonstrate transfer by solving an identical Code Writing
exercise later in the same study session. This study also suggested that both types of Parsons
Problems were easier for students than Code Writing exercises and effective at showing them
a particular approach, with the caveat that these findings were based on self-rated data.

Chapter 5 reports on a more rigorous study on the efficacy of Faded Parsons Problems.
I ran a study (in 3 parts) as part of a CS1 course, offering extra credit throughout the
semester. 237 students participated in some part of the study. This study compared Faded
Parsons Problems to both Code Tracing and Code Writing exercises. This study provided
compelling evidence that Faded Parsons Problems are well-suited to teaching patterns, as
well as general programming skills. Additionally, students expressed a preference for working
with Faded Parsons Problems. Overall, the results suggest that Faded Parsons Problems are
an effective complement to other exercises in a CS1 context. However, it was unclear how
powerful they would be for more advanced students.

Chapter 6 reports on the design of two exercises that were motivated by the success
of Faded Parsons Problems. I hope that Faded Parsons Problems could be powerful at
teaching syntax-level patterns to upper-division students, such as idioms in a new language.
However, I was more curious how to design exercises that could teach patterns at higher



CHAPTER 1. INTRODUCTION 4

levels of abstraction, where individual lines of code might not be a productive granularity
to engage with the ideas. In this chapter, I repeat the set of design goals (covered in more
detail in Chapter 2), which were motivated by trying to hypothesize why Faded Parson
Problems are effective at teaching patterns. I also introduce two new exercises targeted at
an upper-division Software Engineering course teaching web development. I evaluated these
two new exercises with 12 upper-division students, and also used the exercises as a probe to
evaluate the design goals. The results suggest promise for these new exercises, as well as for
the design goals as a productive method to develop further exercises in other contexts.
Finally, Chapter 7 highlights some exciting opportunities for future work.

1.2 Statement of Prior Publication

Chapter 4 is an extended version of a poster that previously appeared in the proceedings
of the SIGCSE Technical Symposium on Computer Science Education (Weinman, Fox, and
M. Hearst, 2020). Chapter 5 previously appeared as a conference paper in the proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Weinman, Fox, and
M. A. Hearst, 2021).

All of my co-authors on these articles have provided their consent for the articles to be
reproduced in this dissertation. Much of this dissertation, therefore, represents the gracious
contributions of my co-authors and advisors, Professor Armando Fox and Professor Marti
A. Hearst.



Chapter 2

Design Goals for Exercises that Teach
Patterns

Writing programs requires programmers to draw on a range of skills and different types
of knowledge. While Code Writing exercises are a valuable opportunity to practice all of
those skills in conjunction, students could benefit from exercises that provide opportunities
to deliberately practice a subset of those skills. One such skill is identifying where and how
to apply programming patterns when constructing a program. In this chapter, I present a
set of five design goals to aid instructors and researchers in creating new exercises that help
students practice this skill.

I explore patterns in two domains. First, I explore goal-oriented patterns relevant to a
CS1 classroom. Goal-oriented patterns are partial implementations of reusable, higher-level
concepts which can achieve a goal. In a CS1 context, these patterns consist of only a few
lines of code. Consider computing the number of k-sized permutations of n objects, where
the goal is to write a program that computes the product of k consecutive numbers, starting
from n and working downwards. A solution can be seen in Figure 2.1. A student creating
this solution may extract several different patterns.

In addition to CS1 patterns, I also explore those relevant in an upper-division setting;
specifically, in web architecture. As in the simpler case, there are still goal-oriented pat-
terns such as the use of asynchronous callbacks when leveraging a third party service (e.g.,
for authentication). However, there are also architectural patterns, such as the Model-
View-Controller framework, which help keep programs reasonably organized and efficient.
Architectural patterns are abstractions which can be used to set clear boundaries between
sub-problems.

In this chapter, I present a set of five design goals to create new exercises that help
students learn when and how to apply patterns. These proposed design goals emerged from
the studies in Chapters 3 - 6. I then explore how several different exercises satisfy or fail
to satisfy these design goals. I explore ubiquitously used exercises (Code Tracing and Code
Writing), as well as less widely-used exercises (Parsons Problems, Faded Parson Problems,
Subgoal Decomposition exercises, and Data Flow exercises).



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 6

falling(n, k): def falling(n, k):

prod = 1 prod = 1 b

for L in range(n, n-k, -1): for 1 in|range(n, n-k, —“ﬁgP
prod *=]i prod *= i

return prod return prod

Figure 2.1: Examples of different goal-oriented patterns in a single solution. A
solution to compute the number of k-sized permutations of n objects, or a “falling factorial.”
We highlight 2 of the possible patterns students may recognize in this program. (a) The
pattern of an accumulator variable, in this case a running product. (b) The pattern of a
reverse range in Python, iterating down instead of up.

2.1 Design Goals

In this section, I describe five proposed design goals to create exercises that teach patterns.
These design goals can be collectively referenced as creating exercises in which students
reconstruct many intentionally-designed solutions.

The first three design goals focus on “reconstructing solutions.” While it is important to
make exercises interactive for students, the exercises should also limit parts of programming
that might distract students from reflecting on the patterns. By providing pieces that can
be combined into a solution (e.g., lines of code or subgoals), students can maintain their
attention on the problem as a whole until it is solved. Without this aid, students might
disrupt their own problem solving process to dive into implementation details and complex
debugging. By focusing on the problem as a whole, students would also focus on the structure
of the solution and the patterns contained within.

The final two design goals focus on students creating “many intentionally-designed so-
lutions.” Constructivism posits that people learn by comparing new experiences to what
they already know, identifying similarities and differences, and synthesizing that into new
knowledge (Fosnot, 2013). Based on this theory, one way to teach a pattern is for students
to identify similarities and differences between two programs that share the pattern in com-
mon. An advantage of this is that students can internalize patterns without explicitly naming
them. Exercises should allow students to rapidly see multiple examples of a pattern, to aid
them in recognizing and internalizing the pattern by identifying similarities in solutions to
multiple problems.

2.1.1 Provide Opportunity to Practice

Exercises should address learning goals by allowing students to construct relevant compo-
nents of the solution. Formative assessments, such as homework assignemnts, are critical to
the classroom. Exercises like Code Writing involve “active learning” — having students re-



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 7

flect on ideas and how to use them. Active learning is a powerful pedagogical tool (Michael,
2006). When assigning an exercise for a course, it is important to examine what is given to
students and what they must actively reflect on. Exercises can focus on any combination of
mental models (e.g, the notional machine (Boulay et al., 1981; Griffin, 2016) or UML dia-
grams), skills (e.g., program comprehension before writing (Wrenn et al., 2019; Basu et al.,
2015)), particular knowledge (e.g., language-specific syntax), and more. With this design
goal, I encourage reflection on what parts of programming students actively practice as they
construct their solutions. Since many patterns are structural, spanning more than a single
line of code, exercises must allow students to engage with how the different components that
form a pattern interact.

2.1.2 Scaffold Vocabulary

Exercises should provide pieces of the solution to students, allowing students to focus their
learning, time, and energy on how those pieces interact to form a solution. In a CS1 context,
those pieces might be lines of code. In an upper-division context, those pieces might e more
abstract, for example subgoals. Programming is a complex task consisting of many different
skills and types of knowledge (du Boulay, 1986; Cutts et al., 2012; Jenkins, 2002). Cognitive
Load theory poses that students have limited mental capacities while working on problems,
and if overtaxed they will be unable to reflect on and store their learning from completing
exercises (Renkl et al., 2002; Sweller, 1988). One way to reduce cognitive load is through
scaffolding, or providing structure or material to students.

Scaffolding is an effective method to help students focus on particular learning goals. For
example, a series of problems around navigating Trees might provide an already implemented
Tree class, since the learning goals are around using Trees rather than implementing the data
structure itself. Or, some courses use cloud-based virtual machines so that students do not
need to learn about installing libraries and packaging in their local development environment,
a task which can be quite time-consuming and distracting for students.

In the context of learning patterns, we highlight the opportunity to limit the levels of
abstractions students must navigate. Patterns focus on how subgoals or different pieces of
syntax combine together. For example, by scaffolding vocabulary by providing lines of code,
these exercises prevent students from getting distracted by debugging issues at a low-level of
abstraction, such as missing a colon at the end of a line. By providing vocabulary to students,
students can focus their efforts on understanding how that vocabulary can be reconstructed
into a solution.

2.1.3 Scaffold Process

When relevant, exercises should be designed such that students follow good processes as they
reconstruct solutions. In programming courses, it is common to grade students primarily
on the completeness of the final program. However, though it can be difficult to grade,



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 8

instructors also may desire students to practice different processes (e.g., top-down problem
decomposition, test-driven development, pair programming) (Ju et al., 2018).

One way to scaffold process is to require students to submit artifacts at different stages.
For example, to encourage Test-Driven Development, CaptainTeach (Politz et al., 2014)
requires students to submit and peer review test suites before the program implementation.
Or, to encourage problem comprehension, OK! (Basu et al., 2015) requires students to
validate example outputs before beginning their program implementation. Alternatively,
exercises can require students to submit artifacts at a level of abstraction different than
code, such as the work by Cunningham et al. (2021) in which novice programmers work
on goals before code. Architectural patterns, which provide an organization framework for
sub-problems, are particularly relevant when planning a solution. If teaching patterns like
these, exercises should require students to create artifacts in an order such that students are
following good processes.

2.1.4 Guide Students to One Solution

Exercises should intentionally expose students to particular solutions selected by the in-
structor. There are many ways to construct a program that achieves a specific goal. For
example, for loops can be replaced by while loops, or an algorithm using iteration can also
be solved with recursion. Pedagogically, there are several reasons instructors might want to
guide students towards a specific implementation: one approach may be much simpler to
reason through than the other, or one approach may require students grapple with a newer
approach, or one approach might be better-styled and more compact. In the context of
patterns, this design goal becomes even more relevant, as the instructor can ensure that stu-
dents reconstruct a program that matches the intended pattern. Instructors can then create
a series of exercises that all leverage the same pattern, given students multiple sequential
examples that highlight the pattern as a similarity between each exercise. If this design goal
is not achieved, there is no guarantee that a student will even see the pattern at all. Though
not explored in this work, instructors could also use this design goal to expose students to
multiple solutions to the same problem, giving students an opportunity to reflect on which
solutions or patterns are a best fit for the problem. Exercises should ensure students have
the opportunity to discover patterns by careful design of activities.

2.1.5 Present Examples Efficiently

Exercises should be efficient enough to expose students to multiple solutions using a pattern
within a single assignment. Constructivism posits that people learn by comparing new expe-
riences to what they already know, identifying similarities and differences, and synthesizing
that into new knowledge (Fosnot, 2013). Indeed, programmers become more effective over

Thttps://okpy.org/



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 9

time by seeing more programs and developing patterns they can apply to future problems
(Rist, 1991).

In the limited amount of time students have to work on homework or lab exercises, they
should see enough examples to see commonalities in solutions that generalize into patterns.
This design goal becomes particularly relevant in upper-division courses. In introductory
courses, problem sets often consist of a sequence of problems that can each be solved in
minutes, but in upper-division courses, many programming assignments take days if not
weeks. While these longer exercises play a critical role, students would be supported they
were also able to work on shorter exercises to better prepare for the longer ones. Exercises
should be fast enough that students can see multiple solutions to internalize their own
generalizations.

2.2 Exploring Specific Exercises

In this section, I describe how six exercises adhere to each of the design goals described above.
The first two exercises are ubiquitous to CS classrooms: Code Tracing and Code Writing
exercises. In Code Tracing exercises, students must read a program and predict the output
from specified input. In Code Writing exercises, students must construct a program that
solves a given prompt. The third exercise is Parsons Problem. In a Parsons Problem, students
are given a prompt and must create a solution by selecting and reordering lines of code that
are given to them. The final three exercises are novel to this thesis: Faded Parsons Problems,
Subgoal Decomposition exercises, and Data Flow exercises. Faded Parsons Problems are
the same as Parsons Problems, except the given lines of code are incomplete, so students
must reorder and complete the lines of code. Both Subgoal Decomposition and Data Flow
exercises were designed for use in a web architecture course. In Subgoal Decomposition
exercises, students must order subgoals by execution flow and select where they fit into the
Model-View-Controller framework. In Data Flow exercises, students must select which data
is modified by each subgoal as well as the code that connects execution between each subgoal.

2.2.1 Code Tracing

In Code Tracing exercises (Figure 2.2), students are given a program and must predict what
a program will output given certain arguments. In some cases, students must also record
the value of each variable at certain points of execution within the program.

Below, I explore how well Code Tracing exercises satisfy each design goal.

e Provide Opportunity to Practice: Low adherence. Code Tracing exercises provide prac-
tice of the notional machine (Boulay et al., 1981; Griffin, 2016), since students must
understand how state is updated as the program is executed. However, students do not
construct any of the program themselves, so these exercises do not offer practice for
syntax, debugging, control flow, and many other skills that are part of programming.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 10

Code

a
L]

ef function(argl):
=0
vall = argl[@]
for val2 in argi[l:]:
Li.append([vall, val2])
vall = val2
return lambda func: [func(x, y) for x, y in 11i]

00NV B W

What Would Python Return?

Make sure you're using the correct types (e.g. 'my string’)

function([1, 2, 3, 4])(add): | |

0 2 Fe 9]

function([1, 2, 3, 4, 5])(mul): | ‘

Figure 2.2: A Code Tracing exercise. Students must read the obfuscated code (top) and
determine the output from specified argument prompts (bottom)

e Scaffold Vocabulary: High adherence. Code Tracing exercises provide a complete pro-
gram.

e Scaffold Process: Low adherence. Code Tracing exercises fully scaffold the process of
getting to a complete program without representing any intermediate steps.

o Guide Students to One Solution: Medium adherence. Code Tracing exercises provide
all students with the same complete program. However, these exercises often use
obfuscated variable names to ensure students walk through the program step-by-step,
and sometimes use obscure syntax to introduce it to students. By design, Code Tracing
exercises may not be providing a well-designed example of a program.

e Present Fxamples Efficiently: High adherence. Code Tracing exercises are quite fast
compared to Code Writing exercises.

2.2.2 Code Writing

In Code Writing exercises (Figure 2.3), students are given a goal as a problem prompt and

must construct a program which achieves that goal. In some cases, students are given parts

of the program (e.g., function signatures) or test cases with or without expected outputs.
Below, I explore how well Code Writing exercises satisfy each design goal.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 11

Problem Statement

The Fibonacci sequence is a sequence of numbers. The first two numbers of the sequence are 1. Each number after that is
equal to the sum of the previous two numbers.

The Fibonacci sequence starts with 1, 1, 2, 3, 5, 8, ....The next number would be 13 = 5 + 8.

Write a function that computes the nth Fibonacci number.

Your Solution

1~ def fibonacci(n):

2 first, second = 0,

3 for i in ran
xrange keyword
range keyword
raw_input keyword

Figure 2.3: A Code Writing exercise. Students must create a functioning program to solve
a given exercise prompt using an editor with basic IDE functionality like syntax highlighting
and auto-completion.

e Provide Opportunity to Practice: High adherence. Code Writing exercises provide
practice of every part of the programming process given a problem prompt. Instructors
can use the problem prompt to an extent to adjust the complexity of each of these, but
this includes: recollecting the correct syntax, problem decomposition and planning,
and selecting appropriate algorithms to use. Outside of instructor control, this also
includes debugging, as each student will make different syntactic or semantic mistakes
as they work through a problem.

e Scaffold Vocabulary: Low adherence. Code Writing exercises need not provide any
vocabulary, and often only include function signatures.

e Scaffold Process: Low adherence. Code Writing exercises can scaffold problem decom-
position and planning through problem prompts or provided code, but otherwise do
not scaffold the program construction process.

o Guide Students to One Solution: Low adherence. Code Writing exercises provide
limited mechanisms for instructors to ensure students are guided to a single solution.
Instructors can achieve this to an extent by explicitly instructing students to follow an



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 12

Problem Statement

In this demo, complete a function that returns 3.

Drag from here Construct your solution here, including indents

return x def return_three(): 1
X = 2 # You can insert tabbed lines as well
= n (necessary to Python) 2
print( )

#

Figure 2.4: An example of an unsolved Parsons Problem. Students rearrange the
given lines of code by dragging them from the left to the right.

approach, but in that students do not have an opportunity to recognize for themselves
which approaches are applicable.

e Present Examples Efficiently: Medium adherence. In a CS1 context, Code Writing
exercises are fast enough that students can work through several problems on a weekly
homework. However, in upper-division courses, project-based assignments are much
more common and can take weeks to complete a single assignment.

2.2.3 Parsons Problems

In Parsons Problems (Parsons et al., 2006) (Figure 2.4), students are given both a problem
prompt as well as lines of code. Students must select and correctly rearrange the appropriate
lines into a program.

Below, I explore how well Parsons Problems satisfy each design goal.

e Provide Opportunity to Practice: Medium adherence. Parsons Problems have been
found to correlate more closely with Code Writing exercises than Code Tracing exercises
(Denny et al., 2008; Ericson, Margulieux, et al., 2017). Though Parsons Problems
provide code snippets, students must still reason how the lines connect to correctly
construct the logical flow of the program. However, with sufficiently advanced students,



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 13

def last_even_ adder(li): def last_even_adder(li): 1

for in range(len( ) - o 7 )z for index in range(len( 1i ) -1 ;-1 , -1 y: 2

if 2 == : —_— if lifindex] % 2 =0

return 'All odd' return lambda x : x + li[index] 4

return 'All odd'

Figure 2.5: An example of an unsolved Faded Parsons Problems (left) and the
completed solution (right) using a Premature Return pattern to solve a Higher-Order
Function problem. Students solve the question by both rearranging and completing the given
lines of code.

there are some concerns that they can use techniques like data flow analysis to nearly
solve a Parsons Problem, reducing the effective practice (Weinman, Fox, and M. Hearst,
2020).

e Scaffold Vocabulary: High adherence. Parsons Problems provide students with the full
lines of code necessary to complete the program. They scaffold syntactic knowledge
and may be particularly effective when asking students to practice new syntax and
concepts, as Bloom’s taxonomy suggests students will be able to recognize how to use
new syntax before being able to compose with it unaided (Bloom et al., 1956).

e Scaffold Process: Medium adherence. Parsons Problems offer a different process than
Code Writing exercises. It is possible that they encourage students to take a top-down
approach, focusing on either key control flow or data flow elements. Further researcher
similar to that done by Helminen et al. (2012) could shed further light on this.

o Guide Students to One Solution: High adherence. Parsons Problems, by design, of-
ten have a single solution. In fact, some popular implementations (e.g. Runestone?,
PrairieLearn®) grade Parsons Problems by simply checking the order of the lines of
code without any code execution. Because code fragments are provided to students,
an instructor can guarantee that students create a particular solution.

e Present Examples Efficiently: High adherence. Ericson, Margulieux, et al. (2017)
found that Parsons problems take only 70% of the time as Code Writing exercises in
introductory Computer Science courses. However, this efficiency may be lost if the
given lines of code differ greatly from how the student would approach their solution
(Haynes et al., 2021).



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 14

2.2.4 Faded Parsons Problems

In Faded Parsons Problems (Weinman, Fox, and M. A. Hearst, 2021) (Figure 2.5, Chapters

4, 5), in addition to rearranging the lines of code as in Parsons Problems, students must

also complete certain lines of code (e.g., referencing variables, writing conditions, etc.). The

design of Faded Parsons Problems is motivated in Chapter 4 and evaluated in Chapter 5.
Below, I explore how well Faded Parsons Problems satisfy each design goal.

e Provide Opportunity to Practice: High adherence. Similar to Parsons Problems, Faded
Parsons Problems correlate more closely with Code Writing exercises than Code Trac-
ing exercises (Weinman, Fox, and M. A. Hearst, 2021). In Faded Parsons Problems,
students must also complete the blanks, which might require reasoning about the rel-
evant variable or constructing the correct syntax to achieve a goal.

e Scaffold Vocabulary: High adherence. Faded Parsons Problems provide students with
partially complete lines of code. As long as not too much of the line is left blank, it
still scaffolds most of the code used by the final solution. Similar to Parsons Problems,
they scaffold syntactic knowledge.

e Scaffold Process: Medium adherence. Similar to Parsons Problems, it is possible that
these exercises encourage students to take a top-down approach.

e Guide Students to One Solution: High adherence. Similar to Parsons Problems, Faded
Parsons also guarantee a particular solution by providing code fragments to students,
though it depends on which parts of the lines are admitted. For example, a Faded
Parsons Problem might guarantee an algorithmic approach, but allow students to create
their own individual variable names. Faded Parsons Problems can guarantee that
students are being exposed to well-structured solutions and can target specific learning
goals (e.g., the use of a particular syntax feature or algorithm) (Weinman, Fox, and
M. A. Hearst, 2021).

o Present Examples Efficiently: Unknown adherence. Faded Parsons Problems have not
yet been tested for efficiency, but the efficiency would likely be influenced by the lines
of code given as well as the nature of the omitted code that students must complete.

2.2.5 Subgoal Decomposition

Subgoal Decomposition exercises (Figure 2.6, Section 6.4.1) were initially designed to be
used in a software engineering course that teaches web programming and architecture. In
these exercises, students are given a problem prompt, a list of goals, and a list of subgoals.
Students must arrange the subgoals into the correct goal as well as order each subgoal based

Zhttps://runestone.academy /ns/books/published /overview/ Assessments/parsons.html
3https://prairielearn.readthedocs.io/en /latest /elements /#:pl-order-blocks-element



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 15

Subgoal Plan

oal(s) Subgoal Blocks

Install OmniAuth b [ ]
[Modify Configuration File (' C Destroy User Session data
Update Gem dependency list \4 | |
(Run Command V) Receive Sign out request
Install new packages | ]

Sign out button

User signs In

(Modify View v)

Sign in button

[Modify Configuration File v]
OmniAuth middleware intercepts

[Create Route v]
Receive authentication callback

[Modify Model ——
Lookup and (if necessary) create User Receive Sign oft request

T
(Modify Controller v) w

Set User session data

User signs out

| l

Figure 2.6: A mostly solved Subgoal Decomposition exercise. (a) Students are given
a list of goals, each of which begin empty. (b) Students drag Subgoal Blocks from the right
into the appropriate goal on the left, ordered within each goal by execution flow. (c¢) Students
also specify where in the Rails Model-View-Controller framework they would modify code.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 16

on the execution flow within the goal. Additionally, students must specify where in the Rails
Model-View-Controller framework they would modify code to implement each subgoal.
Below, I explore how well Subgoal Decomposition exercises satisfy each design goal.

e Provide Opportunity to Practice: Unknown adherence. Subgoal Decomposition ex-
ercises provide a list of concrete subgoals, allowing students to practice how those
subgoals work together to achieve a goal as well as their understanding of the bound-
aries in the Rails Model-View-Controller framework. This exercise also forces students
to practice explicitly using subgoals as part of their problem decomposition process.
Participant feedback suggests that this exercise helps students understand how to use
the Model-View-Controller framework and the “big picture” of how to satisfy the prob-
lem prompt (Section 6.6.1). While this suggests adherence, actual learning gains have
not yet been assessed.

e Scaffold Vocabulary: High Adherence. Subgoal Decomposition exercises provide sub-
goals to students as well as an extended list of where they will modify code within the
Model-View-Controller framework.

e Scaffold Process: High adherence. Subgoal Decomposition exercises are complete when
students have correctly placed each subgoal and specified where code would be modi-
fied. This has two implications for scaffolding process. First, the scope of this exercise
does not include any part of the process beyond subgoals; that is, this exercise does
not allow practice for parts of the process like code writing or debugging. As this
exercise targets a particular part of the problem decomposition process, instructors
should be sure to complement it with other exercises (e.g., Faded Parsons Problems,
Code Writing exercises). Second, this exercise requires students to reconstruct a so-
lution at the level of abstraction of subgoals. This exercise adds an explicit check of
student understanding at an intermediate stage, which otherwise students may skip
over entirely.

e Guide Students to One Solution: High adherence. Subgoal Decomposition exercises
solve problems at the level of subgoals, not code. Because these subgoals are created
by the instructor and are ordered by execution flow, there is a single correct solution.
Since the subgoals are at a higher level of abstraction than code, however, students
could construct countless different implementations from the same subgoal solution.

e Present Examples Efficiently: High adherence. Subgoal Decomposition exercises have
not been compared directly to Code Writing exercises. However, students reported
spending hours on each Code Writing exercise in the course, but were able to complete
a Subgoal Decomposition exercise in under 20 minutes (Section 6.6.2). Additionally,
students self-reported that they expected to take less time on a Code Writing prompt
after working on this exercise, even if they included the time it took to complete this
exercise.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 17

2.2.6 Data Flow

Data Flow exercises (Figure 2.7, Section 6.4.2) were also initially designed to be used in
a software engineering course that teaches web programming and architecture, as a follow-
up to the Subgoal Decomposition exercise. Data Flow exercises were designed to ground
the abstract subgoals from the Subgoal Decomposition exercise, focusing on how data flows
through the subgoals to eventually achieve the desired effect. In these exercises, students
are given a problem prompt and an already ordered list of subgoals. Students are also
given a set of Data Block code snippets representing data access and modification (e.g.,
function arguments, instance variables) along with another set of Connector code snippets
that represent how a programmer instructs the framework to move from one component to
the next (e.g., function calls, route specifications). In this exercise, students must specify
any Data Blocks that are necessary or produced by each subgoal from. Additionally, they
must correctly place Connectors between the appropriate subgoals.
Below, I explore how well Subgoal Decomposition exercises satisfy each design goal.

e Prouvide Opportunity to Practice: Unknown adherence. Data Flow exercises provide an
ordered list of concrete subgoals, allowing students to practice how data flows through
these subgoals as well as their understanding of how syntactic conventions work with
the framework to ensure code execution follows the intended path. Participant feedback
suggests that this exercise helps students understand particular conventions of the
Rails Model-View-Controller framework and further concertizes how the “big picture”
satisfies the problem prompt (Section 6.6.1). However, while this suggests adherence,
actual learning gains have not yet been assessed.

o Scaffold Vocabulary: High adherence. Data Flow exercises provide Data Block and
Connector code snippets to students. These exercises provide examples of well-styled
syntax, though students don’t construct this syntax themselves, similar to Code Trac-
ing exercises.

e Scaffold Process: High adherence. Similar to Subgoal Decomposition exercises, Data
Flow exercises target a specific part of the problem decomposition process that students
might otherwise skip. This exercise makes explicit where each key piece of data is read,
created, or modified, as well as ensuring that each code segment across different parts
of the framework will be connected as intended.

o Guide Students to One Solution: High adherence. Data Flow exercises provide stu-
dents with an already complete list of well-separated subgoals. Given that list, there
is a single correct solution to how each subgoal interacts with each piece of data for a
program that follows the conventions of the Rails Model-View-Controller framework.
While this exercise provides concrete code snippets, many implementation details are
not covered by this exercise, so students could still construct countless different imple-
mentations from the same Data Flow solution.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 18

L . |
Data Blocks
Command Line: $ bundle install c
Install new packages ’F“e: GEnCIe
Necessary Data: Produced Data Changes: ey — e
: auth_name, auth_uil
| File: Gemfile X| I ]
Session: session[:user_id]
ser signs In Session: session[:user_id] = user.id
b View: application. html.erb Session: session[:user_id] = nil
Sign in button Value: request.env['omniauth.auth']
Necessary Data: Produced Data Changes: - ( ”
alue: user (or user. i
|Session: session[:user_id] Xl ]
N
<a href='/auth/github’ > Connectors
Configuration: config/initializers/omniauth.rb
OmniAuth middleware intercepts <a href='/session/destroy* ...>
Necessary Data: Produced Data Changes: L e,
User.find_or_create_by(...)
Route: routes.rb

Authentication callback received
Necessary Data: Produced Data Changes:

( ) | )

s
match 'auth/:provider/callback' => 'session#create', via: [:get,

:post]

S
Controller: app/controllers/session_controller.rb
Set User session data

Necessary Data: Produced Data Changes:

Value: X Session: session[:user_id] = X

request.env['omniauth.auth'] user.id p
ser.Tinda_o

U or_crea
. Y
Place connector here
N
Model: app/models/user.rb

Lookup and (if necessary) create User:

e
Necessary Data: Produced Data Changes:
Function Args: auth_name, X |Va|ue: user (or user. id) X
auth_uid

User signs out

I | View: application.html.erb I |

Figure 2.7: A mostly solved Data Flow exercise. (a) Students are given the a list of
goals and subgoals similar to Subgoal Decomposition exercises. (b) Each subgoal specifies
the file and location in the framework where its code belongs. There are containers in which
students can drop Data Blocks to specify necessary data and produced data changes by
each subgoal. (c) Students must correctly drag Data Blocks into the correct subgoals. Data
Blocks can be used multiple times. (d) Students must also drag Connectors between subgoals
where appropriate. (e) Students can remove any incorrectly placed Data Blocks by pressing
an X button.



CHAPTER 2. DESIGN GOALS FOR EXERCISES THAT TEACH PATTERNS 19

Code Code Parsons Faded Subgoal Data

Tracing | Writing | Problem | Parsons | Decomposition Flow
Provide Oppt. Low High Medium High Unknown Unknown
to Practice
Scaffold Vocabulary High Low High High High High
Scaffold Process Low Low Medium | Medium High High
Guide Students to Medium Low High High High High
One Solution
Present Examples High Medium High Unknown High High

Efficiently

e Present Examples Efficiently: High adherence.

Table 2.1: Design Goal Adherence by Exercise

Similar to the Subgoal Decomposi-

tion exercises, Data Flow exercises have not been compared directly to Code Writing
exercises. More than half of students were able to complete a Subgoal Decomposi-
tion exercise in tens of minutes (Section 6.6.2). Additionally, students self-reported
that they expected to take less time on a Code Writing prompt after working on this

exercise, even if they included the time it took to complete this exercise.

2.3 Discussion

This chapter proposes five design goals to motivate the creation of exercises that teach
programming patterns. It also explores how six different exercises adhere to each of the design
goals. A summary of the exercise adherence can be seen in Table 2.1. These design goals
are meant as motivation to evaluate and create new exercises, representing one perspective
on how exercises can be used to teach patterns. The following chapters describe the work
from which these design goals emerged.



20

Chapter 3

Taking Parsons Problems Beyond CS2

In this section, I discuss my initial structured exploration into Parsons Problems. Given
the success of Parsons Problems in CS1 contexts, I set out to explore their effectiveness for
upper-division students. In this between-subject study, we used Parsons Problems (Figure
3.1) for more complex concepts (e.g., topological sort, Tries) as well as complex programs
(up to 28 lines of code to rearrange across up to four functions or methods).

This chapter is structured slightly differently from the following as it was preliminary
work that laid the groundwork for the approach and results of Chapter 4. This study
provided early motivation that Parsons Problems had some limitations, particularly when
used as an exercise for upper-division students.

Drag from here Construct your solution here, including indents
elif i & 5 0: def fizz buzz(n):
pass result [l
elif i % 3 0z for i in range(l, n+l):
result.append("buzz") if i & 15 0:
result.append(“fizz") print(M)
while True: result.append("fizzbuzz")
# [:::::::] else:

result.append(i)

return result

Figure 3.1: A partially complete Parsons Problem of fizzbuzz, an easy problem used
to demonstrate the system. Unlike other Parsons Problem interfaces, this one introduced
blanks so that students could use comments to organize their code and print statements to
debug it. Though certain lines of code do allow text input, these are not Faded Parsons
Problems, which are introduced in the next Chapter.



CHAPTER 3. TAKING PARSONS PROBLEMS BEYOND CS2 21

3.1 Methodology

I recruited 84 student volunteers from UC Berkeley through a forum post on Facebook.
Participants were required to have taken CS2 or an equivalent course. The study was run as
part of a Software Engineering (SWE) Interview Preparation workshop. Participants were
not monetarily compensated for their participation.

The study ran over 4 weeks, each week consisting of a 90 minute session. There were
two tracks of the study running in parallel on different days of the week (treatment and
control), and participants were required to say within a single track. During weeks 2 and 3,
participants in the treatment group practiced with Parsons Problems, while participants in
the control group practiced with Code Writing exercises. The first 15 minutes and final 15
minutes of each session were mini-presentations around preparing for SWE interviews. The
remaining 60 minutes were dedicated to solving problems as part of the study. To ensure
both groups had as similar experiences as possible, all presentation was done with a verbatim
script (excluding participant questions) and identical materials. Any mistakes (e.g., typos
in the slides) made in the earlier session were repeated in the later session.

In this study, I focused on Depth-First Search, Topological Sort, Tries, and Huffman
Coding, all topics typically taught after CS2 or late in a CS2 curriculum. Problems involved
extending these algorithms in interesting ways. Problems were designed to be numerous and
difficult enough that participants would not finish them within the time limit; that is, all
participants, regardless of speed, were intended to have a full 60 minutes of practice.

3.1.1 Weeks 1 and 4: Pre-/Post-Test

In the first and last week, participants worked through identical problems as a pre- and post-
test. After being introduced to the system, participants had 10 minutes to answer multiple
choice and short answer comprehension questions about the four algorithms covered in the
study. As an example, one of these questions asked participants to report on the DFS
traversal order of a given graph. After this, participants had 45 minutes to work through up
to five coding questions. For each of these questions, participants were asked to write their
approach in English along with code to solve the problem. They were allowed to use outside
resources. However, they were not allowed to run their code and were not given test cases.

Participants in the treatment and control groups had the exact same experience for weeks
1 and 4.

3.1.2 Weeks 2 and 3: Practice

In the two middle weeks, participants worked on a series of exercises designed to help them
practice the four algorithms used in this study. In these sessions, participants had access
to an autograder to validate if their solution was correct. The autograder provided the
sample input, expected output, actual output, and print statements for every test case. In



CHAPTER 3. TAKING PARSONS PROBLEMS BEYOND CS2 22

addition, questions for each algorithm were designed in a sequence to get progressively more
challenging.

Each practice session lasted 60 minutes. In each week, participants worked on a maximum
of five problems; three for the first algorithm of the week, two for the second algorithm.
Participants were able to move on the next question after working on it for 15 minutes or
passing all test cases. After 40 minutes, all participants were forced to move onto the fourth
problem of the week (the first problem of the second algorithm).

Participants in the control group worked with a standard coding interface both weeks.
Participants in the treatment group worked with a Parsons Problems interface both weeks,
including print statements and comments. Because the Parsons Problems were 11-28 lines
long and consisting of up to four functions or methods, I decided to not use any distractors
(i.e., lines of code that would not be used in the solution). At the time of running this study,
studies that used distractors with Parsons Problems primarily used syntactic distractors
(e.g., missing a colon at the end of a control flow), which I believed would not be interesting
for upper-division students. Additionally, I was concerned the problems might already have
enough lines of code to overload participants, so I did not want to add additional unnecessary
lines of code.

3.2 Results

3.2.1 Limitations

There were two major limitations that prevented me from presenting any strong conclusions
from this study. First, there was significant attrition in the study (Figure 3.2). Though the
study began with 84 participants, that number dwindled to 19 participants by the end of
Week 4. This prevented me from reporting on any statistically significant results between
the pre-test and post-test. However, I did have 64 participants during Week 2, so can
still conduct some analysis comparing the practice of Parsons Problems and Code Writing
exercises.

Second, even if I had not lost many participants, the pre-test and post-test were not well
designed to find learning differences. In general, when one sees neutral learning gain results,
it’s possible that participants did not learn or that the tests did not assess what participants
were actually learning. The pre-test and post-test consisted only of straightforward questions
and challenging Code Writing questions. This study would have benefited from problems of
varying difficulty, which could have better distinguished participants. Despite these limita-
tions, this study still provided some valuable insights that motivated work described later in
this dissertation.



CHAPTER 3. TAKING PARSONS PROBLEMS BEYOND CS2 23

Participants by Treatment by Session

b —&— Coding
~&— Parsons
-8 NA

5

# Participants
o

10

Session #

Figure 3.2: The weekly number of participants by treatment condition. The N/A
condition represents participants that dropped out before week 2, and therefore were never
exposed to treatment or control conditions

Table 3.1: Efficiency by Interface and Week. Efficiency is reported as a percentage
change of Parsons Problems compared to Code Writing. * indicates p < .01

Code Writing Parsons Problems Efficiency

Week 2

Attempted 3.36* 4.23* 20.6%
Solved .94% 2.32% 59.5%
Progress 7.36% 10.548%* 30.2%
Week 3

Attempted 2.63* 4.54% 42.1%
Solved 0.94* 3.62* 74.0%

Progress 5.75% 12.69* 54.7%




CHAPTER 3. TAKING PARSONS PROBLEMS BEYOND CS2 24

3.2.2 Efficiency of Parsons Problems

Ericson, Margulieux, et al. (2017) found that CS1 students worked through Parsons Problems
in approximately 70% of the time as Code Writing exercises. That is, Parsons Problems were
30% more efficient to work with than Code Writing exercises. In that study, all participants
worked through the same set of questions, but took varying amounts of time to complete it.
Additionally, participants had a fixed amount of time (1 hour), were able to work through as
many problems as they can. Finally, participants were allowed to move on from a question
after 15 minutes even if they had not solved it.

I report on the efficiency with which participants solved Parsons Problems compared to
Code Writing exercises through three metrics collected from Weeks 2 and 3. Due to the
significant drop-off in participation, we analyze Week 2 and Week 3 separately. First, I
report on the number of attempted problems, which ranges from a minimum of two to a
maximum of five by design. All participants worked on the first problem of each algorithm
(first and fourth problem in the weekly sequence) and had a maximum of five problems to
work through each week. Second, I report on the number of correctly solved problems,
ranging from a minimum of zero to a maximum of five. Since participants could move on
from a problem after working on it for 15 minutes, some participants may have attempted all
five problems but solved none of them. Finally, IT report on an aggregate progress metric by
combining these metrics into a single score; for each question, a participant receives a score
of 3 if they solve the question correctly, a score of 2 if they moved on from the question (i.e.,
spent 15 or more minutes on it), a score of 1 if they attempted the question at all (i.e., spent
less than 15 minutes on it), and a score of 0 otherwise. These point values are summed for
each participant. The results of this analysis can be seen in Table 3.1. Statistical significance
was assessed using a Mann-Whitney U Test.

3.3 Discussion

The reported values suggested that, for upper-division students, Parsons Problems might be
meaningfully more efficient than the 30% efficiency previously reported (Ericson, Margulieux,
et al., 2017). In short answer responses, participants noted that Parsons Problems “helped
[them] think of ideas for some of the problems where [they] initially felt a little stuck” and
“gave hints about the correct way of coding up the solution...allowing [them] to focus more
on the conceptual part”. However, despite these advantages and that the treatment group
was working through many more problems, I did not observe any changes in learning gains
between Weeks 1 and 4. While this could have been the fault of my own measurements
(as mentioned above), it also might have been because participants were solving Parsons
Problems in ways that were less beneficial to learning. At least one participant “was able
to guess [their] way through using the code blocks - looking at the variable names, [they]
could deduce which statements belonged to which functions”. That is, Parsons Problems
give strong contextual hints, like edge pieces in a jigsaw puzzle. In fact, some of the more



CHAPTER 3. TAKING PARSONS PROBLEMS BEYOND CS2 25

challenging exercises in the study could be nearly entirely solved simply by focusing on data
flow and recognizing initialization statements. It also made sense that this concern might
not be as apparent in a CS1 context, as students needed a level of expertise and patterns to
be able to confidently and efficiently take advantage of contextual hints. While I could have
run a similar study to get more concrete results, this highlighted an opportunity to adapt
Parsons Problems to remove these edge pieces, motivating the creation of Faded Parsons
Problems.



26

Chapter 4

Exploring Challenging Variations of
Parsons Problems

Though the previous study did not lead to as concrete results as I had hoped, it suggested
that the efficacy of Parsons Problems might be limited for students that could take advantage
of syntactic heuristics. This study was intended to better understand whether that limitation
was present, as well as introduce Faded Parsons Problems as an attempt to navigate around
the limitation. In addition to being able to obfuscate some syntactic hints by removing them
from the given lines of code, Faded Parsons Problems also offered a more direct opportunity
for automatically converting existing Code Writing exercises. For example, an Abstract
Syntax Tree parser could find all variable references and automatically remove them from
the instructor solution to create a Faded Parsons Problem. An in-lab study with 13 students
found that both types of Parsons Problems are effective at teaching solution structures
compared to Code Writing exercises, and that solving standard Parsons Problems don’t
necessarily lead to an understanding of the solution.'

4.1 Introduction

Learning to successfully write code to solve a task is complex. Both du Boulay (1986) and
Cutts et al. (2012) argue that programmers move among multiple domains and levels of
abstraction while solving programming problems. CS1 classes typically use code-reading
exercises, such as worked examples and code tracing questions, to help scaffold students into
code writing. However, even with these scaffolds, a large gap remains between code-reading
mastery and code-writing mastery.

!The condensed version of this work was published as a poster (Weinman, Fox, and M. Hearst, 2020)
and demo (Weinman, Hsu, et al., 2020) at SIGCSE 2020. This work was criticized for the duration of the
treatment. The treatment lasted one hour. The critics argued that this was too short to impact the intended
study goals. Despite this limitation, I still believe there are some interesting findings to this study, so the
original paper submission is included here.



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 27

The learning sciences suggest that students benefit from tackling problems in their Zone
of Proximal Development (ZPD), or problems that are solvable but only with guidance or
scaffolding (Berk et al., 1995). Parsons Problems (Parsons et al., 2006), in which students
unscramble provided lines of code, are an example of such scaffolding: unlike code tracing
and worked examples, they provide an opportunity for students to construct solutions, but
unlike code writing, the solution space is much more limited and a lighter mastery of language
syntax is required. Ericson, Margulieux, et al. (2017) found Parsons Problems to be faster
than code writing exercises while producing similar learning gains in CS1 classrooms.

However, Denny et al. (2008) raise concerns that students can “game” Parsons Problems,
or make progress while avoiding learning. “Gaming” behavior is correlated with missed learn-
ing gains in Intelligent Tutoring Systems (Baker et al., 2004). This chapter introduces a more
challenging and less “gameable” variant of Parsons Problems, Faded Parsons Problems,
in which the provided lines of code can be partially blank or incomplete. This provides a
tunable opportunity to scale the difficulty of Parsons Problem exercises by adjusting the
proportion of incompleteness in the given code.

We explore the efficacy of Faded Parsons Problems in a CS1 context. We run a study
on current CS1 students focused on Multiple Recursion: recursive functions that contain
multiple self-references. This topic was selected because instructors and previous students
reported it as one of the more challenging topics. We introduce and study Blank-Variable
Parsons Problems, in which all variable names are removed from the provided lines. This
instantiation of Faded Parsons Problems requires no extra work for instructors to create
compared to Parsons Problems and removes a class of syntactic cues present in the provided
lines. This work compares Blank-Variable Parsons to code writing and to Parsons Problems
(without distractors), making the following three contributions:

1. We introduce Faded Parsons Problems and explore Blank-Variable Parsons as a par-
ticular instantiation.

2. We demonstrate that both types of Parsons Problems provide opportunities to achieve
different learning objectives than code writing.

3. We demonstrate that Blank-Variable Parsons fall in difficulty between standard Par-
sons Problems and code writing.

After reviewing existing related research comparing Parsons Problems to code tracing
and code writing, we describe our Faded Parsons Problems and present the design, results,
and potential implications of a study of their effects on CS1 students.

4.2 Related Work

The learning sciences suggest several helpful teaching techniques, including faded scaffolding.
Faded scaffolding incrementally removes scaffolding structures to gradually make problems



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 28

more challenging. This allows instructors to design a series of increasingly difficult problems
that remain inside a students’ Zone of Proximal Development as they acquire new knowledge.
Cognitive Load Theory (CLT) proposes that students have limited mental capacities when
working on problems (Sweller, 1988). Faded scaffolding is also supported by CLT, as it limits
the new knowledge that must be integrated by the student compared to fully removing the
scaffolding. Faded scaffolding has been found as an effective technique in a range of domains
(Renkl et al., 2002).

Parsons Problems (or Parsons Puzzles, code scrambles, Code Mangler problems) were
originally designed to be an engaging task for students to practice syntax drills (Parsons et
al., 2006). Several studies have found that the skills required to solve Parsons Problems lie
between those of code tracing and code writing (Lopez et al., 2008; Zavala et al., 2017). Lopez
et al. (2008) found that code tracing questions and Parsons Problems on an exam required
less mastery to solve than code writing questions. Zavala et al. (2017) further separated
these and found support that students should master code comprehension followed by code
manipulation as precursor skills to writing code.

Parsons Problems have also successfully been integrated into teaching. Ericson, Mar-
gulieux, et al. (2017) found that Parsons Problems, when combined with worked examples,
provide similar learning gains to code writing or bug detection in a CS1 classroom while
taking only 70% of the time. Harms, Rowlett, et al. (2015) compared Parsons Problems to a
guided tutorial with students replicating code in Looking Glass?, a block-based programming
environment to author 3D animations. They found that students using Parsons Problems
did 26% better on transfer tasks despite taking less time.

A common approach to adjust the difficulty of Parsons Problems is with distractors
(additional lines of code that do not fit in the solution), though it can be challenging and
time-consuming to generate them. Ericson, Foley, et al. (2018) explored Adaptive Parsons
Problems, which improve learning speed by modulating difficulty with arrangement and
number of hand-crafted distractors. In contrast, Harms, Chen, et al. (2016) found evidence
that certain logical distractors are harmful to learning with Parsons Problems.

A downside suggested by Denny et al. (2008) is that students can use certain syntactic
heuristics, such as data flow dependencies between variables or placing return statements at
the end of functions, as hints that Parsons Problems unavoidably provide. This “gaming”,
if present, could become more problematic as students gain more mastery over common
programming patterns to leverage as hints. Faded Parsons problems offer a new way to
adjust the difficulty of Parsons Problems. In addition to offering different ways of fading the
difficulty, they also address Denny et al.’s concern by allowing instructors to remove these
syntactic heuristics. For example, Blank-Variable Parsons was designed to obscure data flow
dependencies between variables.

There is previous work combining blanks with Parsons Problems. Garner (2007) explored
removing full lines of code from Parsons Problems. Zhi et al. (2019) explored Parsons
Problems with Snap! and allowed user input for constants, which are individual fragments

2https:/ /lookingglass.wustl.edu/



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 29

in this programming language. Thantola, Helminen, et al. (2013) designed an interface where
parts of code lines, such as comparator operators, had to be selected from pre-configured
choices, but did not measure its effectiveness. Unlike these works, Faded Parsons Problems
encourage arbitrary user input as part of a fragment (e.g. a code line in Python). This
chapter also differs by directly comparing standard Parsons Problems to Blank-Variable
Parsons on the same questions.

4.3 Implementing Blank-Variable Parsons

We built a Flask app that extends Karavirta et al.’s js-parsons library (Ihantola and Kar-
avirta, 2010) to support Blank-Variable Parsons Problems, as well as Faded Parsons Prob-
lems more generally. The system supports Python programming exercises—traditional code
writing, standard Parson Problems, and Blank-Variable Parsons—as well as survey questions
(multiple choice and short answer questions). A nearly complete Blank-Variable Parsons ex-
ercise can be seen in Figure 4.1(c). In Parson Problem exercises, the user is initially given a
set of blocks containing code on the left including optional print and comment statements (e)
for debugging, with the initial function signature populated on the right. The lines on the left
are initially alphabetized, as suggested by Cheng et al. (2017). To solve a Parsons Problem,
students drag fragments in a correct order and indentation on the right. In Blank-Variable
Parsons exercises, some blocks will have lines indicating omitted code and support for text
input (f), similar to a fill-in-the-blank question an an exam. The code writing interface can
be seen in Figure 4.2.

Exercises in any of these interfaces display the current time spent on a problem to par-
ticipants (a), followed by the problem statement (b). Participants can run pre-configured
tests as often as they want, which displays detailed output from the test cases (g) includ-
ing: function arguments, expected output, actual output, any standard output from print
statements, and any raised exceptions. The type of feedback is consistent across interfaces.
Unlike some other work with Parsons Problems, no line-level placement feedback is given
(Helminen et al., 2012; Ericson, Guzdial, et al., 2015).

The Flask app logs anonymized data from participants, enforces time limits, and ran-
domizes treatment selection. The autograder is a separate worker that uses RQ? to safely
execute arbitrary Python code. We manually selected the blanks in Blank-Variable Par-
sons, but with minor modifications, the system could do this automatically from a reference
solution using Python’s AST library*.

3https://python-rq.org/
4https://docs.python.org/3.7/library /ast.html



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 30

a 7:12@  Toggle Timer

@Problem Statement

Problem

Definition: A plus expression for a non-negative integer n is made by inserting + symbols in between
digits of n, such that there are never more than two consecutive digits in the resulting expression. For
example, one plus expression for 2018 is 20+1+8, and its value is 29. Assume that a two-digit number
starting with @ evaluates to its one's digit. For example, another plus expression for 2018 is 2+21+8, and
its value is 11.

Definition: A k-odd plus expi n is a plus ion, as defined above, except that only odd
numbers count towards the sum and at most k numbers count towards the sum. For example, a 5-
odd plus expression of 2018 is {2}+01+(8} and its value is 1 as 2 and 8 do not contribute to the sum. As
another examle, a 5-odd plus expression of 1529 is 1+5+29 with a value of 35. A 1-odd plus expression of
1529 could be £15}+29 with a value of 29, as only one number can count towards the sum.

Implement max_k_odd_plus(n, k), which takes non-negative integers n and k. It returns the largest
value of any k-odd plus expression for n.

>>> max_k_odd_plus(1529, 100)  # 15 + 29 = 44

44

>> max_k_odd_plus(1529, 1)  # (15) + 29 = 29

29

>>> max_k_odd_plus(1953, 3)  # 1+ 95 + 3 = 99
99

>>> max_k_odd_plus(2018, 3)  # (2) + 01 + (8) = 1
1

@Drag from here Construct your solution here, including indents
return @ def max_k_odd plus(n, k): 1

# 7T0DO: Exclude even € o = 2
return 0 3
if k =0 4
return 0 5
@prim( ‘Args:’, m, k ) 6
skip = max_k_odd_plus(n // 10,
ko) 7
take_one = max_k_odd plus(n // 10,
k -1) + n % 10 8
take_two = max_k_odd plus(n // 100,

k -1) + n % 100 9

@ if 82 == 0:
@ return max( skip , take_one , take_two b

@Test Cases

‘ 2/7 tests passed ‘

Calling function max_k_odd_plus(1529, 1).
Expected result to be 29, your code returned 52
Print Output:

Args: 1529 1

Args: 152 1

Args: 15 1

Args: 11

Calling function max_k_odd_plus (1953, 3).
Expected result to be 99, your code returned 99
Print Output:

Figure 4.1: A nearly correct Blank-Variable Parsons exercise of k-Odd Plusses.
(a) Timer (b) Problem Description (c) Parsons Problem interface, participants can drag
blocks between the bin (left) and solution (right) (d) A block being dragged to the right (e)
Optional print block (f) Blanks for Faded Parsons Problems (g) Test case results.



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS

PROBLEMS 31
1~ def max_k_odd_plus(n, k):
2~ if k == 0:
3 return
4~ if n ==
5 return
6 skip = max
max_k_odd_plus local
max keyword

Figure 4.2: A Code Writing exercise. It supports basic IDE functionality, such as syntax
highlighting and autocomplete.

4.4 Study Design

We ran a study in the summer of 2019 at a large US university. All participants were currently
enrolled in a CS1 class, in week 5 of an 8 week course, and were recruited through a post
on a class forum and in-person announcement. 13 participants (11 Male) were compensated
monetarily for their time and offered a chance to review a topic covered in their CS1 class.
The researchers were not course instructors.

To calibrate the difficulty of the questions and smoke-test the system design, two CS1 stu-
dents were recruited to test a pilot version of the system. Both participants worked through
two Multiple Recursion problems in a range of interfaces. They were able to solve both ques-
tions in well under the expected time, so the questions were modified to be slightly more
challenging in the larger study. Based on their performance, we decided to include variable
names in the function signature to match the problem description and reduce unnecessary
confusion for Blank-Variable Parsons. Due to practical constraints the new questions were
not piloted, and results indicate they were quite challenging in difficulty.

4.4.1 Study Materials

Programming Questions

All three programming questions were designed to be representative of those in a typical CS1
class. The first and last problem of the study was k-Odd Plusses, which can be seen with
a nearly complete solution in Figure 4.1. The second problem was Fizz Buzz®. We include
Fizz Buzz as an easier question. The third problem was Coin Game, determining the winner
of a game of Nim® with only 2 rows.

Shttps:/ /www.hackerrank.com /challenges /fizzbuzz/problem
Shttps://www.hackerrank.com/challenges /nim-game-1/problem



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS

(" Survey ( Survey ( Survey ( Survey
Demo U/H L 90 Fizz Buzz Lain soad Surve
Plusses Game Plusses Y

All Interfaces Interface 1 Interface 2 Interface 3 Code Writing

Figure 4.3: Study Design. After being introduced to each exercise type, participants
worked through three problems in a fixed order but with their own randomized interface
ordering. Finally, participants worked on the first problem again as a Code Writing exercise
before completing survey questions.

Post-Exercise Survey Questions

After each exercise, participants were asked to rate the Mental Demand and Effort expended
on a 1-7 scale. They were also asked if the exercise helped them to (a) learn ways others use
Python, (b) learn how to solve the question they just worked on, (c¢) learn the topic they
just worked on (Multiple Recursion, or loops for Fizz Buzz), and (d) learn Python Syntax.
Additionally, on the final exercise, they were given a text prompt to describe any benefit
from working on the same question again.

Post-Study Survey Questions

Participants were asked to rate the difficulty of solving a problem with both types of Parsons
Problems compared to code writing in terms of required time and assistance. They were also
given text prompts to describe (a) which interfaces they would prefer to use for homework
problems to master the topics, (b) how each of the Parsons Problem interfaces could be best
integrated into their class, and (c¢) any other comments.

4.4.2 Procedure

Figure 4.3 illustrates the study design. Each ezercise consisted of working on a problem in
a particular interface. Participants were first introduced to the system with a simple task
in all three interfaces, writing a function that returns 3. They then worked through three
problems in a fixed order, each exercise in one of the three interfaces described above, having
12 minutes for each exercise. The interface order was assigned randomly for each participant;
each participant used each of the three interfaces once in these three exercises. The first
and third questions were different Multiple Recursion questions, which were designed to
be challenging, while the second question was Fizz Buzz, designed to be an easy for-loop
question.

After completing these exercises by constructing a correct solution or running out of time
on each, there was a final exercise that repeated the first question. The final exercise was



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 33

always in a code writing interface, as code writing is a commonly used to measure student
understanding of a problem in CS1. Participants were told at the start of the study that
one of the questions would be repeated, but not which one.

As described in Study Materials, participants were asked to fill out a brief survey after
each exercise about their experience with the exercise. At the end of the study session,
participants were asked to complete a longer survey.

The study is designed to answer the following four research questions:

e RQ1: How effective is each interface at achieving specific learning objectives?
e RQ2: How do Blank-Variable Parsons affect the difficulty of a problem?
e RQ3: How does practice in each of these interfaces support short-term coding ability?

e RQ4: How do students feel about using Blank-Variable Parsons?

4.5 Results

4.5.1 RQ1: Varying Learning Objectives

Compared to code writing, participants found both types of Parsons Problems
better for learning how others write Multiple Recursion programs but not Fizz
Buzz. Recall that after each exercise, participants were asked whether that exercise helped
them learn four topics: ways others use Python, how to solve the question they just worked
on, Multiple Recursion (or loops), and Python Syntax. Table 4.1 shows the responses. We
analyze these self-reported responses on the first three exercises, excluding the fourth as it
was a repeated problem and always code writing. Furthermore, we combine the responses
from the two Multiple Recursion problems. A Kruskal-Wallis test on Fizz Buzz, the easy
problem, finds no significant differences between the interfaces on any of four learning topics.
A Kruskal-Wallis test on the Multiple Recursion problems finds a difference between the
interfaces only for learning how others use Python. Mann-Whitney U tests between each
pair of interfaces found no significant difference between either type of Parsons Problems,
but did find significant differences between each type of Parsons Problem and code writing.
P12 noted that for both types of Parsons Problems “sometimes your idea for a solution
looks very different from what is given.” P6 similarly noted that, in standard code writing
interfaces, they would “come up with an approach that is more complicated than necessary
and miss out on simpler solutions.”

While all participants wrote runnable (but often incorrect) code for the final
exercise, participants who worked with either Parsons Problem interface initially
were more likely to write Multiple Recursion code. After the final exercise, in which
participants repeated k-Odd Plusses in a code writing interface, participants were asked if
there was a benefit to working on the question again. P12, who originally worked on it in
Blank-Variable Parsons, noted that they “had already thought at least about the base cases”



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 34

Table 4.1: Self-reported learning measures. Proportion of participants indicating that
they learned 4 topics, by question set and interface. Multi Rec represents aggregate data
from Multiple Recursion exercises. * represent p < 0.05 in-group or pairwise statistical test.

Standard  Blank- Code
Parsons Variable Writing
Problem Parsons
Learn Others Code
Multi Rec* .89%* 75% 22%
Fizz Buzz .75 .6 75
Repeated Q - - 23
Learn This Problem
Multi Rec .78 ) .67
Fizz Buzz .75 .6 1.0
Repeated Q - - 46
Learn This Topic
Multi Rec .56 ) .33
Fizz Buzz 1.0 .8 .75
Repeated Q - - .54
Learn Python Syntax
Multi Rec .56 .75 .67
Fizz Buzz 1.0 .6 .75
Repeated Q - - 42

and “mainly focused on the structure, not so much the algorithm itself”. We mark code
submissions of the final exercise, which was code writing for all participants, on whether
it implements a Multiple Recursion structure. 4/7 participants who first worked on the
problem as code writing (compared to 1/6 in the other groups) failed to write Multiple
Recursion code, either by not writing recursive code or writing recursive code with only one
self-referential call.

4.5.2 RQ2: Difficulty of Interfaces

The relative difficulty of solving problems in the three interfaces is measured in three ways.

Completion Rate of Problems

Standard Parsons Problems make problems more solvable compared to the other
two interfaces. Participants ended each exercise either by running out of time or con-
structing a correct solution. First, we observe whether participants were able to successfully
complete each question. As shown in Table 4.2, the only interface in which participants could



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 35

Table 4.2: Problem completion rate by interface. Completion counts over participant
count by question and interface

Standard  Blank- Code
Parsons  Variable Writing
Problem Parsons

k-Odd Plusses 3/3 0/3 0/7
Fizz Buzz 4/4 5/5 3/4
Coin Game 4/6 0/5 0/2

solve the Multiple Recursion questions—=k-Odd Plusses and Coin Game—was the standard
Parsons Problem interface, and in this case 7/9 participants solved them.

A Kruskal-Wallis test on the Multiple Recursion questions finds a difference between the
interfaces (pj.01). Two-Proportion Z-tests between each pair of interfaces indicate that stan-
dard Parsons Problems have a higher success rate than Blank-Variable Parsons (pj.01) and
code writing (pj.01). This suggests that standard Parsons Problems, compared to Blank-
Variable Parsons and code writing, move problems into a student’s Zone of Proximal Devel-
opment that would otherwise be too challenging in a timed environment with less scaffolding.
This data shows no difference between Blank-Variable Parsons and code writing, though this
may be because the questions were too challenging to separate the two.

Self-Rated Mental Demand and Effort TLX scores

No significant difference was found in difficulty-related TLX scores. To assess
the participants’ perceived workload of completing the exercises, they were asked to answer
the NASA TLX questions after each exercise (Hart et al., 1988). We find no interesting
differences along the Mental Demand and Effort dimensions. This may be because the
scale on these questions were not concretely anchored, so participant responses depended on
varying scales and the previous interfaces they had encountered in the study.

Self-Rated Difficulty of Interfaces

Participants perceive Parsons problems as easier than Blank-Variable Parsons,
and Blank-Variable Parsons as easier than code writing. At the end of the study,
participants were asked to rate the amount of time and assistance they would need to solve
problems comparing each of the two Parsons type interfaces to code writing. These questions
were on a Likert scale of 1 (much easier than code writing) to 5 (much harder than code
writing). The average rating for Parsons Problems was 1.08, and for Blank-Variable Parsons
was 1.85. Wilcoxon Signed-Rank tests compared to an expectation of 3 show that both
types standard Parson Problems (pj.01) and Blank-Variable Parsons (pj.02) were self-rated
as easier than code writing. A Wilcoxon Signed-Rank test between answers to the two



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 36

questions show that Parsons Problems are self-rated as easier compared to Blank-Variable
Parsons (p;j.02).

P8, the only participant who ranked Blank-Variable Parsons as more difficult, explained
that “the number of blanks given means that [they| have to write [their] code as efficient
as the general solution,” losing the “freedom to write inefficient code which still works.”
Though this participant found Blank-Variable Parsons as more difficult than writing code,
they also indicate pedagogical value attached to that difficulty.

Summary

Completion rates clearly show that problems at a certain level of difficulty are solvable as
standard Parsons Problems but not as Blank-Variable Parsons or code writing exercises.
Though we find no significant differences in difficulty-related TLX scores, self-rated difficul-
ties indicate that students perceive Blank-Variable Parsons as harder than standard Parsons
Problems but easier than code writing. As P10 explains, “[Blank-Variable Parsons] are simi-
lar to [standard Parsons Problems|, but requires more thought on what each step is supposed
to do. But at least you're given a guiding hand on how the problem could be solved.”

4.5.3 RQ3: Short-Term Coding Mastery

Standard Parsons Problems do not immediately lead to short-term coding mas-
tery. Participants worked on k-Odd Plusses first in a random interface, and then again as a
code writing exercise. For each interface, we wanted to observe the short-term coding mas-
ter of an identical question roughly 30 minutes later. We identify students that successfully
solved the first exercise, k-Odd Plusses, in any interface and analyze their success on the
fourth exercise, the same question in code writing. However, likely due to the difficulty of
the question, all of these participants are ones that worked on the first exercise as a standard
Parsons Problem as seen in Table 4.2. None of these participants were able to successfully
write code for the same problem, indicating that solving standard Parsons Problems don’t
immediately lead to an ability to write code for the same problem. Our data does not eluci-
date if this applies to Blank-Variable Parsons or code writing. Of note, the only participant
to complete this exercise first attempted it as a Blank-Variable Parsons, but this single data
point is not enough to draw any conclusions.

One possible explanation comes from P5, stating that, with Parsons Problems they “can
just guess and check the right order” and “[they| didn’t really understand [the solution],
[they] just kind of logic-ed out how the cases have to be.” Despite the “gaming” behavior,
this suggests that Parsons Problems might be effective at exposing students to common
logical templates.



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 37

4.5.4 RQ4: Student Affinity

Participants responded positively to Blank-Variable Parsons. At the end of the
study, participants were given a text prompt for which interface(s) they would like to use
for formative assessments to best prepare them for exams. Participants were free to mention
as many interfaces as they wanted in this prompt. One participant did not answer the
question, and one gave too vague an answer to interpret. For the remaining 11 participants,
responses were coded to tally which interfaces they mentioned in a positive way. Of these 11
participants, 9 mentioned a preference for Blank-Variable Parsons, 6 for code writing, and 4
for standard Parsons Problems.

The results of RQ1 and RQ2 suggest one possible explanation as to why students find
Blank-Variable Parsons so helpful; student feedback suggests that they teach new ways to
solve a problem and are challenging enough to be educational.

4.6 Discussion

4.6.1 Observations/Opportunities

The results of this study suggest several immediate opportunities for integrating Blank-
Variable Parsons into classrooms.

Programming requires many skills. This study explored not only whether Parsons Prob-
lems and Blank-Variable Parsons represent a teaching opportunity, but also what they teach
effectively compared to code writing exercises. As Shunryu Suzuki said, “In the beginner’s
mind there are many possibilities, but in the expert’s there are few” (Suzuki, 1970), and
both types of Parsons Problems offer valuable opportunities to constrain the possibilities
attempted by beginners to match teaching goals. P6, for example, usually would “come
up with an approach that is more complicated than necessary”, but found Blank-Variable
Parsons to help them “focus on the process of the program instead of several different ap-
proaches.” This study found participants better following the intended structure of Multiple
Recursion after working with Parsons Problems. Instructors could also leverage Parsons
Problems to, for example, ensure students are exposed to certain helpful code idioms, or
make it easier for students to construct solutions with good coding habits.

Code Skeleton questions are a common CS1 exercise: students must fill in the missing
parts of a partially complete program, which both provides and constrains the structure of the
solution. Several students expressed sentiments similar to P7, that Blank-Variable Parsons
are “similar to the structure provided in skeleton code as seen on exams.” Blank-Variable
Parsons may therefore offer students an opportunity to practice questions in formative as-
sessments that are closer to the questions that appear on exams. Both types of Parsons
Problems can further be used for exam preparation as P12 expresses the speed with which
they can be solved is desirable once a student “just needs to do a lot of practice problems”
to prepare for an exam.



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 38

Though not directly explored in this study, Blank-Variable Parsons Problems were de-
signed, in part, to provide a scaffold between Parsons Problems and code writing exercises.
This study supports that solving a programming exercise as a Blank-Variable Parsons is,
indeed, more difficult than as a Parsons Problem and less difficulty than as a code writing
exercise. Feedback from two of the three participants that solved k-Odd Plusses as a stan-
dard Parsons Problem and then failed to solve it as a code writing exercise further highlights
the need to create a scaffold between standard Parsons Problems and code writing exercises.
Both of these participants mentioned that failing the code writing exercise hurt their self-
efficacy, which is troubling as self-efficacy has been found to correlate with positive learning
behaviors (Schunk, 1989). P5 expresses that the repeated exercise “made [them]| feel more
discouraged”, while P2 shared that it challenged their initial impression and “that [they] did
not have a solid understanding of how the problem should work.”

Lastly, P13 offers a compelling suggestion to let students “try out the problems with
[either type of Parsons Problem] as hints before going to the solution” when homework and
exam solutions are released, possibly offering them partial credit. This could provide an
opportunity to insert one more active learning opportunity before students view solutions to
problems on which they failed.

4.6.2 Limitations

This study had some limitations. First, the small sample size of n=13 limits the analysis
that could be done. The study was run on volunteers in a Summer session of CS1, which may
make them meaningfully different than all CS1 students during the regular Fall and Spring
sessions. As described above, analysis was mostly done on challenging Multiple Recursion
questions and in a timed environment, preventing an objective completion-based difficulty
analysis to separate Blank-Variable Parsons and code writing exercises. Lastly, students
were unfamiliar with both Parsons Problems and Blank-Variable Parsons before starting
this study, and their behavior may differ as they gain expertise.

4.6.3 Future Work

There is significant work to be done exploring other instantiations of Faded Parsons Prob-
lems. We designed Blank-Variable Parsons for this study to focus on the “gaming” concerns
present in Parsons Problems while being trivial for instructors to implement from existing
content. However, there are many exciting opportunities for Faded Parsons Problems beyond
Blank-Variable Parsons. First, instructors could manually add blanks to target particular
concepts in the solution code that need more practice. For example, if students were learning
list syntax in Python, instructors could ensure all list indexing code with square brackets
were left blank. Or, when introducing recursion, instructors could gradually remove how
much base case code is given to help students gradually learn how to reason about base
cases. Another Faded Parson Problem opportunity is leveraging old student solutions to
focus on common misconceptions. One could create an algorithm to, for example, remove



CHAPTER 4. EXPLORING CHALLENGING VARIATIONS OF PARSONS
PROBLEMS 39

the top N partial code fragments covering the most common incorrect student submissions.
In k-Odd Plusses, for example, several students returned the max of two values instead of
3; making the entire inside of the max() call blank would force students to address this
mistake to get a correct solution while still making it clear that max is the desired aggrega-
tion. Misconception-based Faded Parsons Problems could still provide some guidance and
assurance compared to writing code but also force students to confront and reconcile these
misconceptions. It would also be interesting to understand the opportunities offered by dif-
ferent types of Faded Parsons Problems compared to code writing exercises and to Parsons
Problems with distractors.

4.7 Conclusion

Parsons Problems are an exciting tool for CS1 classrooms. We introduce Faded Parsons
Problems to explore more ways these types of problems can be integrated into classrooms.
We confirm that Blank-Variable Parsons provide an opportunity for fading the scaffolding
afforded by standard Parsons as students work to master unscaffolded coding. Additionally,
we find that Parsons Problems and Blank-Variable Parsons can be more effective than code
writing at teaching certain skills. However, we do not yet find a difference in how they support
programming holistically. This study motivates exciting new opportunities for leveraging all
of these types of exercises in classrooms.



40

Chapter 5

Improving Instruction of
Programming Patterns with Faded
Parsons Problems

The previous study showed promise for Faded Parsons Problems as a pedagogical tool. How-
ever, many of the interesting findings were based on self-rated metrics by students in an in-lab
setting. To better understand Faded Parsons Problems, I wanted to run a large-scale in-situ
classroom study. This 237-student study compared Faded Parsons Problems to both Code
Tracing and Code Writing exercises. Additionally, since the study was run over the course
of a full semester, I was actually able to run the study in three distinct parts, each focused
on teasing out different insights. This study also crystallized the opportunity to use Faded
Parsons Problems to teach patterns in particular. I was excited about the opportunity to
help instructors teach patterns without a significant amount of work creating new materials
or reworking their curriculum. This study revealed that Faded Parsons Problems are partic-
ularly effective at teaching patterns while still improving overall code writing ability similar
to Code Writing exercises.!

!This work was published at CHI 2021 (Weinman, Fox, and M. A. Hearst, 2021).

def last_even_adder(li): def last_even_adder(li): 1

for in range(len( ) - 5 ; )z for index in range(len( 1i ) -1 ;-1 , -1 ):

if % == : —_— if lifindex] % 2 = 0

return 'All odd' return lambda x : ox + 1li[index] 4

return lambda : + return 'All odd'

Figure 5.1: An example of an unsolved Faded Parsons Problems (left) and the
completed solution (right) using a Premature Return pattern to solve a Higher-Order
Function problem. Students solve the question by both rearranging and completing the given
lines of code.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 41

5.1 Introduction

Despite the increasing relevance of programming (Scaffidi et al., 2005; Barr et al., 2011; U.S.
Department of Labor, Occupational Outlook Handbook, Software Developers 2019), develop-
ing this skill continues to be difficult for novices to learn in part because programming is a
complex task consisting of many skills and types of knowledge (du Boulay, 1986; Jenkins,
2002; Cutts et al., 2012).

One such skill, the ability to recognize and use programming patterns, is a distinguishing
characteristic between experts and novices (Robins et al., 2003). Programming patterns
are partial implementations of reusable, higher-level concepts which can achieve a goal.
For example, the solution in Figure 5.1 represents a “Loop: Premature Return” pattern,
searching the list backwards and returning a higher-order function as soon as an even number
is found. This pattern consists of a conditional return within a loop, with a catch-all return
outside of that loop. This same pattern, with different code, could be used for many similar
purposes, such as to find the first occurrence of a character in a string or the largest even
number in an increasingly sorted list. These patterns provide the building blocks that allow
programmers to efficiently tackle more complex tasks. However, despite their importance,
they are often not explicitly taught in CS1 classrooms (Muller et al., 2007).

Programming patterns can be challenging to teach because they rely on a foundation of
conceptual knowledge (Xie et al., 2019). For example, the pattern in Figure 5.1 requires
understanding of for loops and range(). Researchers have developed methods to teach
programming patterns, but these involve significant modifications to the structure of the
course curriculum (Linn and Clancy, 1992; McGill et al., 1997; Sajaniemi et al., 2005; Loksa
et al., 2016; Xie et al., 2019). For example, Pattern-Oriented Instruction (Muller et al.,
2007), as part of their guidelines, proposes discussions after all problem-solving activities
and prepared material to compare patterns after complex exercises. The practical difficulties
of introducing large-scale innovations to classroom teaching suggest that an approach that
minimizes changes to the status quo will lead to better adoption over major structural
changes.

Most computer programming classes already make use of assigned programming exercises,
highlighting opportunity for easily integrated improvements. Many programming courses use
a combination of Code Tracing exercises, in which students predict the behavior of instructor-
provided code, and Code Writing exercises, in which students write code in response to an
exercise prompt. In this work, we compare these commonly used exercise interfaces, as well
as a recently-introduced exercise interface, Faded Parsons Problems (Figure 5.1) (Weinman,
Fox, and M. Hearst, 2020), as a low-friction way to teach programming patterns. In this
chapter, we emphasize exercise interfaces as one way to distinguish between different types
of exercise. We find that the content of existing Code Tracing and Code Writing exercises
can be easily re-purposed as Faded Parsons Problems.

Faded Parsons Problems are a particular variation of Parson Problems (Parsons et al.,
2006). In Faded Parsons Problems, creators give students a set of partially complete lines



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 42

of code. Students must fill in blanks in the lines of code with valid expressions as well as
rearrange the lines of code to construct a valid program. Unlike Code Tracing exercises,
with Faded Parsons Problems, students must actively construct the structure and logic of
a program. However, students are heavily constrained by the given lines of code, thus
deliberately excluding many valid alternative solutions to the exercise.

We ran an in-situ study as part of an introductory Computer Science class and found
strong evidence to confirm that Faded Parsons Problems are effective at teaching program-
ming without any modifications to instruction. Our study also explores how Faded Parsons
Problems affect transfer to student code writing ability in general, as well as qualitative data
to understand how students engage with Parsons Problems and limitations of Code Writing
exercises.

Our contributions are as follows:

e We deploy a system which supports a range of programming exercise interfaces which
scales to a class of hundreds of students and is well-suited for remote learning.

e We confirm the efficacy of Faded Parsons Problems in teaching students to recognize
and apply programming patterns to relevant exercise prompts.

e We confirm that practicing with Faded Parsons Problems produces similar transfer to
code writing ability as directly practicing with Code Writing exercises.

e We probe student attitudes towards Faded Parsons Problems, finding students prefer
working with Faded Parsons Problems when given a choice and providing insights as
to why.

5.2 Related Work

5.2.1 Programming Patterns

Patterns (or plans, schemas, templates) have several subtly different definitions in the liter-
ature (Spohrer et al., 1986; Wiedenbeck et al., 1993; Marshall, 1995; Astrachan et al., 1998;
Clancy et al., 1999; Muller et al., 2007; Xie et al., 2019). In general, they are higher-level,
reusable abstractions of code that achieve a specific goal. Patterns are also hierarchical and
multi-layered, with some smaller patterns contained in other larger ones. The importance of
patterns is supported through chunking from cognitive theory, in which people, as they view
examples with identifiable similarities, construct and store more complex patterns as single
cognitive “chunks” (Chase et al., 1973; Marshall, 1995).

Studies have found evidence that one way the behavior of expert programmers is differ-
ent from novices is in their ability to leverage patterns in understanding and writing code
(Wiedenbeck et al., 1993; Robins et al., 2003). However, patterns remain out of the focus
in many Computer Science classes, leading to proposals for significant instructional shifts to
address this concern.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 43

Muller et al. (2007) propose Pattern-Oriented Instruction in introductory Computer Sci-
ence classes, where patterns are explicitly incorporated into a course’s instruction. They
found that this explicit change to instruction led to novices improving their problem decom-
position and solution construction skills. Xie et al. (2019) also designed a curriculum focused
on explicit instruction of templates. They find some evidence that this new template-oriented
curriculum improved student coding ability.

Xie et al. (2019) also note the importance of learning syntactic or conceptual knowledge
before learning patterns. That is, students must understand all the building blocks of a
pattern before being able to understand the pattern itself, and similarly for writing building
blocks and patterns. That is, though patterns are a foundational skill for programming, they
are not entirely introductory. This may explain why many CS1 classes today still do not
focus on explicitly teaching patterns.

We build on the existing work showing that patterns are both important and could be
taught better in most CS1 classrooms. Our work differs, however, in its focus on a much
simpler instructional change. Our work focuses on assigned programming exercises — a part
of the course where students already spend considerable time. Instead of updating curricula
to explicitly teach patterns to students, we focus on whether students can recognize and
incorporate patterns more effectively by working on programming exercises with different
user interface.

5.2.2 User Interfaces for Program Exercises

Several frameworks have been proposed for conceptualizing user interfaces for programming
exercises. Cutts et al. (2012) propose that programmers must master moving between three
levels of abstraction: English, pseudocode, and code, proposing different exercise interfaces
to target different levels of abstraction. Bryant et al. (2008) extend this further, proposing
five levels of abstraction. They posit that expressing algorithms in human language, when
compared to code, changes how programmers engage with their programming task, suggest-
ing that pair programming causes programmers to focus more on an intermediate level of
abstraction compared to when programming alone.

Shi et al. (2019) motivate their work from a different perspective, focused on the different
stages of problem solving. They design Pyrus, an interface where students work together
with limited knowledge to focus student attention and growth on the planning stage of
the problem-solving process. By constraining students’ actions in solving the exercise, they
find students spend more time planning. Python Tutor (Guo, 2013) has become a popular
educational tool for introductory students because its granular visualizations and debugging
functionality are well-suited to novice programmers.

Our work is motivated by these frameworks and interfaces, exploring how the design be-
hind programming exercise interfaces affects how students engage with the content. Thought-
fully considering these designs can support programmers in more effectively practicing spe-
cific programming knowledge or skills. Our work reveals insight into our recently introduced
interface, Faded Parsons Problems (Weinman, Fox, and M. Hearst, 2020).



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH

FADED PARSONS PROBLEMS 44
Code
1+ def functionCargl):
2 1=
3 vall = argl[@]
4~ for val2 in argi[l:]:
5 Li.append([vall, val2])
6 vall = val2
7 return lambda func: [func(x, y) for x, y in 11i]
8

What Would Python Return?

Make sure you're using the correct types (e.g. 'my string’)

function([1, 2, 3, 4])(add): | |

function([1, 2, 3, 4, 5])(mul): | ‘

Figure 5.2: A Code Tracing exercise. Students must read the obfuscated code (top) and
determine the output from specified argument prompts (bottom)

Your Solution

1+ def fibonacci(n):

2 first, second

3 for 1 in ran
xrange keyword
range keyword
raw_input keyword

Figure 5.3: A Code Writing exercise. Students must create a functioning program to solve
a given exercise prompt using an editor with basic IDE functionality like syntax highlighting
and auto-completion.

5.2.3 Parsons Problems

Parsons Problems (or Parsons Puzzles, code scrambles, Code Mangler Problems) require
students to unscramble lines of code to construct a syntactically and logically correct pro-
gram. They were originally designed to be an engaging task for students to practice syntax
drills (Parsons et al., 2006). They share many similarities with block-based programming
languages such as Scratch, Snap!, Alice, and Blockly, which provide an engaging introduction
to certain introductory topics (Rizvi et al., 2011; Meerbaum-Salant et al., 2013; Weintrop
et al., 2017). However, unlike block-based languages, Parsons Problems support the full



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 45

expressivity of text-based programming languages such as Python.

Zavala et al. (2017) found support that code comprehension (e.g., Code Tracing exer-
cises), code manipulation (e.g., Parsons Problems), and code writing are separate skills that
should be mastered in that order. Ericson, Margulieux, et al. (2017) successfully integrated
Parsons Problems into teaching, finding that Parsons Problems, when combined with worked
examples, provide similar learning gains to code writing or bug detection in a CS1 classroom
while taking only 70% of the time. Ericson, Foley, et al. (2018) extended this study, finding
similar results for Adaptive Parsons Problems, which dynamically adjust difficulty by adding
or removing unnecessary or incorrect lines of code.

However, Denny et al. (2008) raise concerns that Parsons Problems may be easily “gamed”
by sufficiently mature students using syntactic heuristics. In our formative study for the
present work, a student described their strategy for solving Parsons Problems as “just kind
of moving things around based on test cases, not really thinking about the logic.” In previous
work (Weinman, Fox, and M. Hearst, 2020), we found that solving a Parsons Problem did
not transfer to being able to write code for the same question, and attempted to address this
limitation by introducing Faded Parsons Problems. In Faded Parsons Problems, provided
lines of code can be partially or fully incomplete. Faded Parsons Problems integrate code
writing with Parsons Problems, providing less syntactic and logic scaffolding than standard
Parsons Problems.

The present work differs from previous work on Parsons Problems two ways. First, this
work primarily focuses on Faded Parsons Problems. Second, this work focuses on teaching
programming patterns, a targeted subset of general programming ability.

We focus on three interfaces. Code Tracing exercises (Figure 5.2), in which students
predict the behavior of instructor-provided code, require students to understand a well-
designed solution. Code Writing exercises (Figure 5.3), in which students write their own
code in response to an exercise prompt, require students to construct a solution, though
possibly a poor one. Faded Parsons Problems require students to reconstruct a well-designed
solution by using constraints to both lock out valid solutions and scaffold the solving process.

5.3 Programming Patterns

Following existing definitions in the literature, we define programming patterns as partial
implementations of reusable, higher-level concepts which can achieve a goal. The program-
ming patterns used in this study are specific to Python and are based in coding structures.

We ground our definition of programming patterns in actual code to ensure they contain
certain language idioms, some of which are specific to Python. For example, L2 (defined in
Table 5.1) includes the use of enumerate(li) in a for loop. A more abstract, language-
agnostic definition would include more verbose implementations such as iterating through
range(len(1i)) and then also defining a local variable from indexing into the list. This
example also highlights how patterns must be built on both conceptual knowledge, e.g., un-



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH

FADED PARSONS PROBLEMS 46
Table 5.1: Examples of programming patterns and their descriptions.
Goal/Name Description
Loop: Premature Return | A return within a loop based on a conditional, with a
(L1) final return outside of that loop
Loop: Index Value (L2) Use of enumerate to access and update both the index

and value of elements, using both inside the loop.
Loop: Last/Current (L3) Inside a loop, use last and then update last to current.
Stateful Tree Traversal | Traverse a Tree in depth-first-search using a default

(MR1) argument to pass state.

Multiple Recursion Game | Check for a base case, simulate moves, then return
Simulation (MR2) based on the results.

Stateful Generators | Define generators as part of a class for stateful in-
(OOP1) stance variables, yielding at the end of loops.

Mixins (OOP2) Use super to access parent methods.

derstanding loops, and syntactic knowledge, e.g., enumerate. Some of the syntactic features
on which patterns are built, such as for, may be more fundamental than others.

The pattern adherence of a given program can be evaluated both by the use of control
flow elements as well as specific syntactic elements. An advantage of this is that patterns are
specific enough to be effectively captured with automated parsing logic, allowing efficient
analysis across tens of thousands of submissions. Additionally, we can check the pattern
adherence of a program even if the program contains unrelated syntax errors, which happens
frequently for introductory student submissions.

Table 5.1 lists the programming patterns used in this study, along with definitions. These
programming patterns were selected by analyzing programming assignments from previous
versions of two introductory Computer Science courses. That is, existing course materials,
developed by the instructor, determined which programming patterns were used in this study.

5.3.1 Examples of Programming Patterns

The patterns were selected so the three Loop patterns, L1-L3, would appear appropriately
early in the course, focusing on foundational material. Though these patterns were used in
exercises over multiple weeks, tangential concepts covered within the exercises changed over
the course of the semester. For example, lambdas and higher order functions were introduced
into the patterns later in the semester. The example in Figure 5.1, for instance, returns a
function which takes an argument x and adds it to the last even element in the given list.
Another exercise using this pattern earlier in the course returned True if any numbers in a
list are divisible by five. The next two patterns (MR1, MR2) were selected to match course
content on multiple recursion, focusing on algorithmically challenging exercises. The final
two patterns (OOP1, OOP2) included class definitions in order to match course content



Problem Statement

Problem

Implement sum_grand_branches, which returns the sum of the
values that are two branches away from the root of a tree.

>>> tree = Tree(l, [Tree(1l), Tree(12), Tree(13),
Tree(14)])

>>> sum_grand_branches(tree) # The furthest node is only
1 branch away.

0
>>> tree = Tree(l, [Tree(11), Tree(12, [Tree(101),
Tree(102, [Tree(1001)])]), Tree(13, [Tree(103)])])

>>> sum_grand_branches(tree) # 101 + 182 + 103 = 306
306

-
if height==
return t.entry
for b in t.branches:
s+=sum_grand_branches(b,height+1)
return s

def sum_grand_branches(t,height=0): <:::
a

def sum_grand_branches(t,sumt=2): t;?
for b in t.branches:
for x in b.branches:
sumt+=x.entry
return sumt

def sum_grand_branches(t):
if t.is_leaf():

return
branches_1=t.branches
o=
branches_2=[]
for b in branches_1:
if not b.is_leaf():
branches_2+=b.branches
s+=sum([i.entry for i in branches_2])
return s

CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS

47

Figure 5.4: Three different correct student submissions to an exercise for which

students could apply the MR1 pattern.

(a) A reasonable solution to the exercise

which follows the pattern. (b) A reasonable solution to the exercise which does not follow
the pattern. (c) An overly complex solution to the exercise which does not follow the pattern.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 48

on Object-Oriented Programming, focusing on syntactically and conceptually challenging
exercises. These patterns were chosen to cover a range of different aspects of programming.

5.3.2 Programming Patterns in Code

To better illustrate the role of programming patterns in student work, Figure 5.4 contrasts
three correct student submissions to a problem — summing nodes of a Tree at depth 2 —
in an open-ended Code Writing exercise. These submissions were selected from the study
described in Section 5.5. All students had immediately previously worked on a question
computing the depth of a Tree of arbitrary height. Submission (a) follows the MR1 pattern.
It is very similar to the instructor solution for the previous exercise and a reasonable solu-
tion to this one. Submission (b) is a reasonable submission that does not follow the pattern.
Instead, it takes advantage of the fact that this exercise is asking about a fixed depth within
the Tree, using nested for loops instead of recursion. While this is a valid solution, it defeats
the instructor’s motivation to have students recognize this exercise as an opportunity to
practice recursion to navigate Trees. This highlights a challenge of teaching programming
patterns, as there can sometimes be other reasonable solutions to specific exercises. Sub-
mission (c) is a correct submission which does not follow the pattern, and is overly complex
and verbose. It is not uncommon for students to create poorly structured solutions such as
these in auto-graded Code Writing exercises, due to the lack of granular feedback and the
iterative manner with which students can create solutions.

Though Code Writing exercises are an effective form of practice for programming, the
example above illustrates why they may be ill-suited for helping students learn how to
use patterns as students only sometimes construct solutions following a relevant pattern.
If students are given the freedom to solve two related exercises in entirely different ways,
they miss an opportunity to compare and contrast two applications of the same pattern,
an important opportunity to generalizing the abstraction. Code Tracing exercises allow
instructors to control the structure of code students are interacting with, providing a good
opportunity for teaching patterns. However, they do not give students any practice in
constructing algorithms or syntax to create a program.

5.4 User Interface For Programming Exercise
Comparison

We built a Flask app that extends Karavirta et al.’s js-parsons library (Ihantola and Kar-
avirta, 2010) to support all exercise interfaces used in this study, including Faded Parsons
Problems. The system supports Python programming exercises—traditional Code Writ-
ing exercises, Faded Parsons Problems, Code Tracing exercise, Code Skeleton exercises, and
multiple-choice comprehension—as well as short answer survey questions. A nearly complete
Faded Parsons Problem exercise can be seen in Figure 5.5(c). In Faded Parson Problem ex-



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 49

5:35@ Toggle Timer

e O
Problem Statement @

Problem

Implement deptn, which returns the depth of a tree, or the length of the longest path from the root node to any leaf.

Remember that you can print() the tree to help with debugging.

>>> tree = Tree('l')

>>> depth(tree)

L)

>>> tree = Tree('l', [Tree('2a'), Tree('2b'), Tree('2c'), Tree('2d')])

>>> depth(tree)

1

>>> tree = Tree('l', [Tree('2a'), Tree('2b', [Tree('3a', [Tree('4a')])]), Tree('2c')])
>>> depth(tree)

2

@Drag from here Construct your solution here, including indents

print( ) def depth(tree, height=o ):
# print( height, tree )

max_depth_found = height

for branch in tree.branches:

@rint( ) 5
QID max_depth_found = max( max_depth found ,

depth(branch, height=height) )

1
2
4
6
e o @ 7
0 Back to Problem List e View Instructor Solution

Test Cases

h

Failed Test #2 ‘

Calling function test_method(“Tree('1')").
Expected result to be o , your code returned o
Print Output:

0 Tree(1)

Calling function test_method("Tree('1*, [Tree('2a'), Tree('2b'), Tree('2c'), Tree('2d')])").
Expected result to be 1, your code returned o

Print Output:

© Tree(1, [Tree(2a), Tree(2b), Tree(2c), Tree(2d)])

0 Tree(2a)

0 Tree(2b)

0 Tree(2c)

@ Tree(2d)

Figure 5.5: A nearly correct Faded Parsons Problem finding the depth of a Tree.
(a) Optional Timer. (b) Problem Description. (c¢) Faded Parsons Problem interface; par-
ticipants can drag blocks between the bin (left) and the solution (right). (d) An optional
print block being dragged to the right. (e) A blank that has been filled in with code by the
student. (f) Students can always navigate back to the exercise list or (g) run tests on their
current solution. After effort-completing a exercise, they can view the instructor solution
(g). (h) Descriptive test case results up to the first failed test.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 50

ercises, the user is initially given a set of blocks containing partially incomplete code on
the left including optional print and comment statements (d) for debugging, with the initial
function signature populated on the right. The lines on the left are initially alphabetized, as
suggested by Cheng and Harrington (Cheng et al., 2017). To solve a Faded Parsons Problem,
users drag fragments in a correct order and indentation on the right and complete the blanks
(e).

All exercises display the problem statement (b) above the interface. Users can run pre-
configured tests as often as they want, which displays detailed output from the test cases (h)
including: function arguments, expected output, actual output, any standard output from
print statements, and any raised exceptions. The type of feedback is consistent across all
programming interfaces. Not pictured: At any point, users can return to a list of exercises
for that week. Additionally, users can view a correct solution to the exercise after solving the
question or expending enough effort on the exercise based on custom time- and submission-
based logic.

The Flask app logs anonymized data from participants, and randomizes treatment selec-
tion. The autograder is a separate worker that uses RQ? to safely execute arbitrary Python
code, allowing execution-based feedback. Instructors manually configure the blanks in Faded
Parsons Problems.

5.5 Evaluation

We run a study to explore the following research questions:

RQ1: How does practice with different exercise interfaces affect student acqui-
sition of programming patterns? To be able to learn a pattern, students must first be
exposed to examples of it. We measured Pattern Exposure to see if students encounter
pattern-adherent code as they craft their own solution or by viewing the instructor solution.
We also measured Active Pattern Exposure, a subset of this, to see if students craft a
pattern-adherent solution. In later exercises, we measured Pattern Acquisition to see if
students, after being exposed to examples of a pattern, are able to recognize the opportunity
and apply a pattern in a Code Writing exercise. We note that students can apply a pattern
without correctly solving an exercise, such as the code in Figure 5.5.

RQ2: What is the general efficacy of practice with different exercise interfaces?
This work is motivated by the ease in which instructors can replace existing exercises with
different exercise interfaces. To that end, we must understand the educational impact of
different exercise interfaces beyond patterns. Since Code Writing exercises are often used as
a de facto measurement of programming expertise, we measured Code Writing Transfer

Zhttps://python-rq.org/



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS o1

to see if students can successfully transfer (Perkins et al., 1992) what they learned in each
interface to similar Code Writing exercises regardless of any pattern use.

RQ3: What is student perception of working with Faded Parsons Problems?
In several exercises, students were able to select which exercise interface they worked with,
which implicitly suggests preference. Students were also asked Likert-scale and open-ended
survey questions to understand their Preference surrounding Faded Parsons Problems.
These survey questions also provide insight into the Perceived Difficulty of these exercise
interfaces, which we compare to the Actual Difficulty.

5.5.1 Study Environment and Participants

We partnered with an instructor of a CS1 class at a large US research university with
IRB approval to run our evaluation study in three parts. Throughout the course of the
semester, 237 students (P1-P237, 111 male, 120 female, 6 unreported) agreed to the Terms of
Consent and interacted with our system. The study was deployed as extra credit assignments
appended to 10 of the 12 weekly lab assignments. Students could begin the questions in an
in-person lab, but had a week to continue working on the exercises on their own. The extra
credit exercises were effort-based (as opposed to completion-based) to better match how labs
were assessed. The instructor approved all exercises used in the study, but was not aware of
the specific research goals to ensure other course content and instruction were not modified.

5.5.2 Method for Constructing Faded Parsons Problems

Researchers selected which code segments to blank out for Faded Parsons Problems. Re-
quired function arguments were never blanked out, unless determining the function argu-
ments was critical to the exercise (e.g., recognizing and using an optional argument). If
a variable name was blanked out in its assignment statement, all other references to that
variable were also blanked out to avoid confusion in case students selected a different name.
Top-level control flow tokens were never blanked out, though conditionals, constants, vari-
able references, and other expressions were sometimes blanked out. The amount of code
blanked out from exercises ranged from 0% (only rearranging was required) to 75% of the
target code, on average blanking out 32% of the code.

5.5.3 Study Description

We report on three studies to answer the research questions. A high-level summary is
provided in Table 5.2. Two studies, Study 1 and Study 2, compared the efficacy of three
exercise interfaces — tracing, parsons, and writing — in teaching students to acquire
programming patterns. A qualitative study was run in-between these two studies to better
understand student perception of Faded Parsons Problems.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 52

Table 5.2: High-level description of each reported study.

Study Research Questions | Participants Exercise Interfaces Duration

Study 1 RQ1, RQ2 50 tracing, parsons, writing 4 weeks
Qualitative RQ3 50 parsons, writing 2 weeks

Study 2 RQ1, RQ2 43 parsons, writing 2 * 2 weeks

Figure 5.6 summarizes the structure of the two studies. In both pattern-focused stud-
ies (Study 1 and 2), students knew the concepts (e.g., for loops, Tree structures) necessary
to compose the patterns, but the patterns themselves were not explicitly taught as part of
the class. These studies began with an exposure phase, in which students solved exercises
involving different patterns and exercise interfaces. Knowledge Integration (Linn, 2005),
an educational framework, suggests that students incrementally acquire generalized knowl-
edge like patterns through new examples, motivating the use of multiple exposure exercises
for each pattern. The exposure phase explores the efficacy of these exercise interfaces in
successfully exposing students to relevant patterns. The exposure phase is followed by an
acquisition phase, in which students wrote code in response to a prompt where one of
the patterns was applicable. This phase explores if students can express their mastery of
patterns through Code Writing exercises. The first study consisted of additional exercises
between the two phases to explore other research questions. There was no explicit indication
to students of these different phases, nor did they receive different types of instruction or
feedback based on the phase.

In all studies, students worked through exercises in our system in a pre-determined order.
Students effort-completed a question by correctly solving it and passing all test cases or
by both spending at least 10 minutes on the exercise and making 10 consecutively distinct
submissions (the course instructor determined this definition for effort-completion). After
effort-completing a question, students were able to view an instructor solution or return
to the exercise list, after which they could continue on to the next question. Students
primarily worked in one of three exercise interfaces, as seen in Figures 5.2, 5.3, 5.5: Code
Tracing exercises (tracing), Faded Parsons Problems (parsons), and Code Writing exercises
(writing). Each exercise consisted of an exercise prompt (i.e., problem statement), an
interface to work on it, and test cases with their results up to the first failed test case.
Problems were designed such that problem statements within a pattern had meaningful
differences and were not isomorphic to each other.

Study 1

This study was designed to compare the efficacy of three exercise interfaces — tracing,
parsons, and writing — in teaching students programming patterns as well as more general
programming ability.

The study consisted of patterns L1, L2, L3 (Table 5.1). In the exposure phase, each
pattern was paired with one exercise interface such that each exercise interface was used once.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH

FADED PARSONS PROBLEMS 53
Study 1 Study 2 Module [
3 patterns, 3 interfaces 2 patterns, 1 interface

Interface Comprehension
Interface

Interface a

Comprehension -| l
racing ] | wiing ]
Parsons h Skeleton -|

I Week 2

Exposure Phase

W E Acquisition Phase

Week 4 Not Analyzed

Figure 5.6: Study description for Studies 1 and 2. Example sequence of exercises for
a single student for Study 1 and a Study 2 module, highlighting a single pattern. Each
block represents a single exercise. If 2 or more blocks are vertically touching, it means those
exercises were consecutive, otherwise some equivalent exercises for other patterns (possibly in
different exercise interfaces) occurred between them. The “stacking” of blocks highlights the
similar flow for other patterns. That is, in Study 1 Week 2, students worked on 2 exercises for
each of 3 (pattern, exercise interface) pairs. Problems in yellow were in the exposure phase,
where each pattern was associated with a single exercise interface. Problems in gradient
blue were in the acquisition phase, always Code Writing. Grey exercises were not analyzed
in this study. Study 2 consisted of 2 modules, one immediately after the other, represented
by the “stacking” of the full study.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS o4

For each such pair, five exercises were presented over the course of two weeks. Each student
effort-completed a total of 15 exercises in this phase, and all students saw all exercises in the
same order with the same exercise interfaces. These exercises measured Pattern Exposure
and Active Pattern Exposure.

In the following week, we instantiated all 9 (pattern, exercise interface) combinations:
Each student worked on 9 exercises, grouped by exercise interface. The order in which
patterns were presented to students was counterbalanced between exercise interfaces. These
exercises measured Actual Difficulty, as the exercise interfaces were independent of the
patterns they were paired with in the exposure phase.

Finally, in addition to the three writing exercises from the previous week, students
completed 6 more writing exercises, 2 for each pattern. These 9 exercises in total represent
the acquisition phase, and measured Pattern Acquisition and Code Writing Transfer.
Both metrics are analyzed based on the exercise interface each pattern was paired with in
the exposure phase.

All patterns were selected to be of comparable complexity, and the pairing of patterns and
exercise interfaces in the learning phase was done randomly after all exercises were created.
However, because the study was designed to give a consistent experience to every student
and a given pattern was paired with only a single exercise interface in the exposure phase,
better performance on that pattern could be due either to that exercise interface being more
effective for learning, or to the pattern itself simply being easier to learn.

Study 2

This study was designed to more robustly compare the efficacy of two exercise interfaces —
parsons and writing — in teaching students programming patterns as well as more gen-
eral programming ability. This study explores more complex patterns (MR1, MR2, OOP1,
OOP2) and randomizes interfaces within patterns (unlike Study 1). We do not explore
tracing exercises in this study due to its poor Code Writing Transfer from Study 1.

This study consisted of two modules, one following directly after the other, with students
randomly designated into treatment or control. FEach module targeted two patterns. The
first module covered MR1 and MR2 for all students regardless of treatment, with the second
module covering OOP1 and OOP2. Assignment was counterbalanced, so each student was
in the control group for one module and the treatment group for the other.

In the exposure phase of each module, patterns were paired with parsons for students in
treatment or writing for students in control. For each pattern, two exercises were presented
over the course of one week. Each student effort-completed a total of 4 exercises in this
phase.

After the exposure phase, students were given two writing exercises for each of the same
two patterns, for a total of 4 exercises in this phase.

The modules also consisted of exercises that were not analyzed for this study. First,
at the start of every week, students were given a multiple choice comprehension question
on the topics covered in lab. These questions were added because the exercises in Study



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 95

2 focused on more complex topics. Additionally, each module ended with a code skeleton
exercise — effectively a Faded Parsons Problem with the lines already arranged. We hoped
the code skeleton exercises would inform us if students were able to demonstrate mastery of
the patterns in a more constrained exercise interface. However, upon further analysis, we
did not present enough skeleton exercises to analyze.

Study Differences: Below, we emphasize some major differences between the studies
that may be helpful in interpreting the results.

e Randomization: In Study 1, all students saw the same materials. In Study 2, students
were randomly assigned to treatment or control.

e Dosage: In Study 1, students worked on 5 exercises for each pattern in the exposure
phase. In Study 2, they only worked on 2.

e Pattern-Exercise Interface Pairings: In Study 1, each exercise interface was used for a
single pattern in the exposure phase, which may have encouraged students to look for
similarities. In Study 2, each exercise interface was used for two independent patterns.

e Topics: In Study 1, problem topics changed meaningfully from week to week to match
course curriculum, for example focusing on higher-order functions or lambdas. In Study
2, the exercises focused on topics which extended but were supplementary to those in
the course curriculum.

Subjective Study

Between the Study 1 and 2, we ran a study focused on gaining preference and self-reported
insights from students. This study did not focus on any patterns. In this study, after seeing
each problem statement, students were able to choose whether to work on the exercise as
parsons or writing. Additionally, students filled out a survey with questions about their
perception of Faded Parsons Problems.

5.6 Results

The following subsections first describe the statistical measures used and next the data
cleaning process for the study. This is followed by analyses of the results corresponding to the
major research questions. We report on the degree to which students acquire programming
patterns (Section 5.6.3), what students learn using Faded Parsons Problems beyond learning
programming patterns (Section 5.6.4), and students’ subjective responses (Section 5.6.5).
We then synthesize these results (Section 5.6.6).



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 56

5.6.1 Statistical Measures

Unless otherwise stated, statistical significance is computed as the proportion of relevant
submissions matching the measurement in question grouped by student. For Study 1, we
analyze the 50 students (17 male, 31 female, 2 unreported) that effort-completed all exercises
in the study. We pair by student and use the Friedman test (Friedman, 1937) to determine
if there is a difference between the three interfaces, then use pairwise Wilcoxon Signed-Rank
tests to test for significance. For Study 2, we analyze the 43 students (17 male, 23 female, 3
unreported) that effort-completed all exercises in the study. We use Mann-Whitney U tests
to test for significance.

5.6.2 Data Cleaning
Labeling Pattern Adherence

For all 7 patterns used in this study, researchers created code to automatically detect if a
given code submission adhered to the pattern. The code relies on custom string parsing,
as submissions might adhere to a pattern even if they cannot be parsed as a valid Abstract
Syntax Tree, e.g. if a : was missing from a conditional statement. To test the validity
of this approach, for each pattern, we randomly selected 25 submissions from the relevant
exercises that adhered to the template and 25 submissions that did not. We then removed the
algorithm-generated labels, shuffled the results within each pattern, then had two researchers
manually annotate the pattern adherence of each submission. We computed Cohen’s Kappa
score (Fleiss et al., 1973) to measure agreement between the annotators and between each of
them and the algorithm-generated labels. We found a kappa of 0.89 between the annotators,
and an agreement of .94 and .88 respectively between each annotator and the algorithm-
generated labels, indicating very good agreement. This gives us confidence that the algorithm
can generate labels with comparable accuracy to a human.

Handling Corrupt Data

Researchers examined a sample of the logs and some aggregate data to detect and remove
entries where students were abusing the system in some way.

First, because test cases were transparent, some students wrote code to return hard-
coded values based on combinations of input arguments, clearly not trying to actually solve
the exercise. To address this, researchers added three or more additional test cases to each
exercise after the study completed. All submissions were re-tested for correctness based on
success on the full set of test cases.

Second, for parsons and writing exercises, we removed submissions from students if they
read and correctly solved the exercise in under 45 seconds. We also excluded submissions
from students where their solution exactly matched the instructor solution including the
comments explaining the solution.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS o7

Finally, from the remaining data to be analyzed, we manually inspected students that did
not answer a single writing question correctly throughout the study. From this, we remove
submissions that appeared designed entirely to get past the effort criteria, such as adding or
removing random characters. Across all three criteria, we removed 5 students from analysis.

5.6.3 Pattern Acquisition

The primary motivation of these studies was to understand how practice with different
exercise interfaces affects student acquisition of the programming patterns. For students to
learn to recognize and apply patterns, they must first be exposed to the pattern. However,
students can correctly solve exercises without ever writing pattern-adherent code or reading
the pattern-adherent instructor solution. We first analyze if students are exposed to pattern-
adherent code in the exposure phase, either as they construct their own solution or by
viewing the instructor solution (Pattern Exposure). We then analyze if students recognize
and apply the relevant pattern (Pattern Acquisition) to writing exercises based on the
exercise interface paired with each pattern in the exposure phase. Results can be seen in
Table 5.3.

Pattern Ezxposure: Are students exposed to the pattern-adherent code working
on an exercise?

We posited that one advantage of parsons and tracing is that they both significantly con-
strain the solution space, introducing students to particular solutions. Therefore, we would
expect that students are more likely to adhere to programming patterns when generating a
solution with either interface compared to writing. We separately analyze Active Pattern
Exposure, if students generate pattern-adherent code themselves while completing the exer-
cise, and Pattern Exposure, if students ever generate or view pattern-adherent code (e.g.,
by viewing the instructor solution). We analyze both, because research on Active Learning
(Michael, 2006), in which students practice applying skills instead of simply responding to
questions, suggests that students will learn patterns better if they construct the patterns
themselves.

For tracing, by design, Pattern Exposure is 100% and Active Pattern Exposure is 0% as
students always view but never construct pattern-adherent code. We find find that parsons
are more likely than writing to expose patterns. The rate of Pattern Exposure is higher for
parsons than writing, 97.2% vs. 39.2% (p;.001) in Study 1, 87.8% vs. 64.9% (p;.001) in
Study 2. The rate of Active Pattern Exposure is also higher for parsons than writing by
a more significant margin, 92.4% vs. 4.4% (pj.001) in Study 1, 70.9% vs. 36.9% (p;.001) in
Study 2.



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 58

Table 5.3: Summary statistics related to Pattern Exposure and Acquisition, Code
Writing Transfer, and Actual Difficulty. (*) indicates a pairwise-significant difference
with one other interface while (**) indicates a pairwise-significant difference with both.

Study 1 Study 2
Tracing Parsons Writing | Parsons Writing
Pattern Exposure 100%*  97.2%*  39.2%** | 87.8%* 64.9%*
Active Pattern Exposure 0%*  92.4%**  4.4%* | 70.9%* 36.9%*
Pattern Acquisition 44.0%*  55.3%*  20.7%** | 43.3%* 33.7%*
Code Writing Transfer 55.3%**  85.3%** T4.T%** | 27.7%  28.7%
Actual Difficulty 6.7%** 35.3%*  29.3%* | 51.2%  53.5%

Pattern Acquisition: Do students recognize and apply the relevant pattern in
writing erercises?

Though students are exposed to pattern-adherent code, they may not internalize the patterns
as a general solution or may be unable to recall them when given a relevant exercise prompt.
Unlike techniques like Pattern-Oriented Instruction (Muller et al., 2007), students were never
given explicit instruction on the patterns or when to use them. We analyze whether stu-
dents obtain sufficient mastery from the exposure exercises in each exercise interface to both
recognize the opportunity to apply a pattern and generate code for that pattern in writing
exercises in the acquisition phase.

We find that students are more likely to acquire patterns if they are first exposed to
them as parsons (or tracing) compared to writing. In Study 1, there is no statistically
significant difference in the rate of Pattern Acquisition of parsons (55.3%) and tracing
(44.0%), though both are higher than writing (20.7%). In Study 2, the rate of Pattern
Acquisition is higher in parsons than writing (43.3% vs. 33.7%, pj.01).

A Special Case

Interestingly, we found one pattern, OOP1, where Code Writing exercises were more effective
at teaching the programming pattern (though not statistically significant). Further investiga-
tion found that for this pattern’s exposure exercises, Pattern Exposure was nearly identical
between the parsons condition and the writing condition (73.9% vs. 73.7%). However,
participants were more likely (not statistically tested) to view the instructor solution in the
writing condition (57.9% vs. 28.3%).

This pattern involved creating classes with methods that returned generators, and part of
the pattern was ensuring that yield was at the end of the end of the defining function. This
requirement was included as a possibly misguided way to improve readability. The instructor
solutions made an explicit reference to this, “# yield is the last line of the loop.” This high-



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 59

lights a weakness of parsons for certain patterns. Though Active Pattern Exposure might
be better in most cases, in this case students were less likely to view the well-documented
instructor solutions after solving it correctly in parsons, so they did not notice this subtle
attribute of the pattern. However, this issue only arose in one of the 7 patterns used in this
study. For all exercises, instructors trying to teach patterns could benefit from tools that
aggregate student solutions to see if they are being solved in the expected way.

5.6.4 General Efficacy

We also analyze the effect of introducing Faded Parsons Problems beyond teaching pro-
gramming patterns. We want to understand how practice with each exercise interface affects
students’ ability to successfully complete subsequent writing exercises with similar solutions
(Code Writing Transfer). Open-ended code writing tasks are a well-established measure of
mastery in many Computer Science courses. Results can be seen in Table 5.3.

Code Writing Transfer

Both parsons and tracing exercises are a meaningfully different type of practice for students
compared to writing. As writing is a well-established goal of programming expertise in
introductory Computer Science courses, we evaluate students’ success on writing questions.

In Study 1, the Code Writing Transfer rate is highest for parsons (85.3%), followed by
writing (74.7%) and then tracing (55.3%). However, in Study 2, we find no significant
difference between parsons (27.7%) and writing (28.7%). The poor Code Writing Transfer
from tracing motivated its exclusion from Study 2.

5.6.5 Student Perception of Faded Parsons Problems

The Subjective Study was designed to gain insight into student perception of parsons. For
this, we restrict our analysis to participants that effort-completed all Study 1 exercises, as
they had reasonable exposure to both writing and parsons. All quotes are from open-ended
survey responses.

Student Preference for parsons

The Subjective Study included 7 exercises where students, after reading the problem state-
ment, could choose to solve an exercise as parsons or writing and then were asked to
explain their choice. We compare to a distribution of students choosing randomly between
the two, and find students were much more likely to choose parsons (77.6%) over writing
(22.4%). The primary reason for choosing parsons was their perceived difficulty, further
analyzed below. Separately, 22 students chose parsonsin order to focus on the structure of
the solution and “allowing them to think like the instructor” (P96), making this the next



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 60

most frequent explanation. However, 5 students chose writing for this same reason, prefer-
ring the “additional freedom” (P135) of “starting from scratch” (P114) to create “a more
intuitive solution” (P85).

Perceived Difficulty

In the Subjective Study, participants were asked to fill out a survey including a Likert-scale
question about whether writing was easier to solve, parsons was easier to solve, or both are
about the same. We find that 26 students (57%) thought parsons were easier, 12 students
(26%) thought they were similarly difficult, and only 8 students (7%) thought writing were
easier. Many students echoed this perception in open-ended questions, with 35 explaining
their choice of parsons as choosing the easier exercise interface. However, 6 chose writing
for this same reason, thinking they would get “more of a real practice” (P160) when forced
“to start thinking on their own” (P137).

Actual Difficulty

We also analyze the rate at which students effort-completed exercises from Study 1 and
Study 2 without solving them correctly. Previous work suggests that other variations of
Parsons Problems are easier than Code Writing exercises (Ericson, Margulieux, et al., 2017),
but Faded Parsons Problems have not yet been assessed for relative difficulty. In Study 1, we
analyze exercises from the third week, where we instantiated all 9 (pattern, exercise interface)
combinations, since the exercise interfaces equally represent each pattern. In Study 2, we
analyze the exercises from the exposure phase, comparing treatment to control.

We find that parsons and writing provide similar difficulty to students. In Study 1
there is no significant difference between writing (29.3%) and parsons (35.3%). In Study
2, we again find no difference between writing (53.5%) and parsons (51.2%). These results
conflict with the student perception that parsons are easier than writing.

5.6.6 Synthesis Of Results

This work has found strong evidence that Faded Parsons Problems are an effective exercise
for exposing students to patterns and having them correctly transfer them to subsequent
exercises. By contrast, open-ended Code Writing exercises — a widely used, popular approach
to programming exercises — often do not expose students to the intended patterns even when a
well-documented instructor solution is provided after the fact. Practice with Faded Parsons
Problems also shows similar transfer to general programming success in subsequent Code
Writing exercises over similar content. Though Code Tracing exercises are fairly effective
at having students transfer patterns as well, they are ineffective at transferring to general
programming success in subsequent Code Writing exercises. Code Tracing exercises offer
clear evidence for how practicing with exercises can support students in practicing certain
programming skills while insufficiently practicing others. Faded Parsons Problems appear



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 61

to offer a good balance between Code Tracing and Code Writing exercises, teaching both
patterns and general coding skills as well as either of those two interfaces. Furthermore,
students had a preference to work with Faded Parsons Problems over Code Writing exercises,
thinking of Faded Parsons Problems as easier problems despite their similar actual difficulty.

5.7 Limitations and Future Work

Notwithstanding the evidence in favor of integrating Faded Parsons Problems into CS1
courses, several questions remain open. We have not compared Faded Parsons Problems
systematically to other Parsons Problem variants or to Code Skeleton questions, in which
lines are already arranged but contain blanks, nor have we systematically studied the effects
of what and how much code is blanked out in fading the scaffolding. We also do not suggest
that all Code Writing exercises should be replaced with Faded Parsons Problems; indeed, we
found one pattern, OOP1, for which Code Writing exercises provided more effective practice.
Finally, we studied a limited number of patterns chosen based on the instructor’s existing
curriculum rather than on any systematic survey of the importance of different patterns.

The need to be minimally disruptive to the existing curriculum imposed additional con-
straints that may affect validity of results. First, the study exercises were offered as extra
credit rather than required, so self-selection may have biased the study population towards
more highly motivated students. Second, Study 2’s problems required students to learn more
material in addition to the patterns, and students had only 2 exercises in which to learn the
patterns, compared to 5 in Study 1. Finally, to remain consistent with the instructor’s exist-
ing behavior of grouping similar problems together in assignments, both studies intentionally
exposed students to the same patterns in consecutive exercises, which might boost students’
ability to recognize and apply patterns in the pattern acquisition phase of each study.

On the other hand, the positive results do suggest exploring other uses of scaffolding. For
example, instead of giving students instructor solutions after homework assignments were
due, what if students instead got points for “unlocking” them by solving Faded Parsons
Problems or Code Tracing exercises? In addition, students preferred Faded Parsons Problems
over code-writing in part because Faded Parsons Problems were perceived as easier, even
though our results suggest otherwise; we have not studied the potentially positive effect of
this perception on student self-efficacy.

5.8 Conclusion

The studies we describe provide clear evidence that Faded Parsons Problems are particu-
larly effective at teaching programming patterns in CS1 courses compared to code-tracing
and code-writing exercises, without detracting from the ability to transfer this knowledge to
code-writing exercises. Because Faded Parsons Problems can be created easily from existing
code-writing exercises, they can be introduced into existing curricula with minimal disrup-



CHAPTER 5. IMPROVING INSTRUCTION OF PROGRAMMING PATTERNS WITH
FADED PARSONS PROBLEMS 62

tion. Because they provide immediate feedback, they are particularly valuable for promoting
mastery learning in online instruction, where immediate manual feedback may be impossi-
ble. Because students piece together and complete an instructor-designed solution, students
are more likely to be exposed to a high-quality solution than they would be in constructing
their own solution from scratch, which could provide opportunities beyond patterns. These
benefits, combined with students’ stated preference for Faded Parsons Problems over code-
writing exercises, provide strong evidence in favor of integrating such problems widely into
introductory programming courses.



63

Chapter 6

A Design Framework for Creating
Reconstruction Exercises that Teach
Software Architecture Patterns

The previous study showed exciting results for a CS1 context. While I think there is still
a great opportunity to explore how upper-division students could be supported by Faded
Parsons Problems, I felt I could make a bigger contribution by digging more into why Faded
Parsons Problems are effective. By connecting qualitative data with related work, I identified
a set of design goals that could help understand what made Faded Parsons Problems effective.
To probe these design goals, I then designed two new exercises targeted at students in an
upper-division Software Engineering course focused on web development. These exercises
were evaluated through an in-lab, qualitative study with 12 students of the course. The
study suggests promise, both for the design goals and the specific exercises. In particular, I
report on the effectiveness of these exercises as a teaching tool, the appropriateness of each
design goal, and the biggest opportunities to further improve these particular exercises.!

6.1 Introduction

Despite the increasing need for effective programmers (Scaffidi et al., 2005; Barr et al.,
2011; U.S. Department of Labor, Occupational Outlook Handbook, Software Developers 2019),
developing and maturing programming ability continues to be a significant challenge in part
because programming is a complex task consisting of many skills and types of knowledge
(du Boulay, 1986; Jenkins, 2002; Cutts et al., 2012; Valstar et al., 2019).

One skill required by professional programmers is problem decomposition (or planning),
or the ability to take a complex goal and break it down into smaller, more manageable goals.
As programmers decompose a problem, they must evaluate countless different boundaries
at which to break down the problem. To ensure that each smaller goal is manageable,

LAt the time of writing, this work is currently under review at a conference.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 64

programmers rely on patterns. Patterns may be a way of achieving a specific goal (e.g.,
counter variables in loops, recursion with base cases), or a way to organize responsibilities
(e.g., singletons, Model-View-Controller (MVC) web architectures).

Experts have been found to have access to more patterns than novices (Wiedenbeck et al.,
1993; Robins et al., 2003; Ko et al., 2008; McCauley et al., 2008; O’Dell, 2017). However,
the programming assessments we use in courses often do not give feedback on students’ use
of patterns or problem decomposition. Autograders and linters are two commonly used tools
in CS classes. Autograders typically focus on the output of programs, while linters typically
focus on low-level style (e.g., variable naming conventions). Neither of these tools focus on
the algorithms being used by the student nor any thinking they did before they began writing
code. That is, our current programming assessments do not provide students an opportunity
to engage in deliberate practice with problem decomposition and patterns, which has been
found to be a key predictor of continued learning in a given field (Ericsson et al., 1993).

In this work, we explore how to create exercises that provide students this much-needed
deliberate practice. Specifically, we explore how we can offer this practice to upper-division
students in a Software Engineering course, as their problems often span multiple functions,
files, and programming languages. We identify a set of 5 design goals to create exercises aimed
at scaffolding students to provide deliberate practice. We then create two new exercises
focused on web architecture patterns, Subgoal Decomposition and Data Flow. In these
exercises, students reconstruct many intentionally-designed solutions. We run a qualitative
study with 12 upper-division students in a Software Engineering course to evaluate these
exercises. Our study explores the appropriateness of our design goals, the effectiveness of
these exercises as a teaching tool, and the biggest opportunities to further improve these
exercises.

Our contributions are as follows:

e We identify a set of 5 design goals.

e We create two new exercises from those design goals, focused on teaching upper-division
students MVC architecture and how to use third party services authentication in a web
application.

e We probe students attitudes towards these exercises, finding significant potential for
these design goals and exercises.

6.2 Related Work

6.2.1 Problem Decomposition

Soloway (1986) describes programming as a “design discipline,” where programs need not
only produce an output but provide a trail of why they were designed in a certain way. This
trail is communicated through using common plans, and is constructed by someone who



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 65

is able to iteratively break down goals repeatedly into subgoals until they arrive at these
common plans. Basu et al. (2015), in work focused on improving automated assessment,
posit that “solving technical problems” can be broken down into three stages: problem
understanding, problem planning, and implementation, which should be completed in that
order. That is, students and programmers should have confidently planned a solution before
working on implementing it.

Past work substantiates the benefits of problem decomposition, or top-down thinking.
Davies (1991) analyzed code generation of expert and novice programmers. Though they
found a mix of top-down and opportunistic programming in both groups, experts spent
more time at the start using a top-down approach. Song et al. (2014) found similar results
when interviewing undergraduate first years, seniors, and experts, noting that experts used
more problem decomposition, allowing them to take a breadth-first approach to solving the
problem. Burton-Jones et al. (2008) explored how decomposition quality affected novices’
problem solving performance, finding that being given higher quality decompositions im-
proved student performance.

Though problem decompositions show promising correlations, many students struggle to
use this skill effectively. Lahtinen et al. (2005) conducted a survey of over 500 students
and teachers on difficulties in learning and teaching programming, finding that “design[ing]
a program to solve a certain task” is one of the largest challenges. Kwon (2017) studied
novices creating pseudocode to solve problems, finding that students struggled in building
the strategic understanding necessary to create useful plans that could then be translated
into programs. PlanIT! (Milliken et al., 2021), Green (Alphonce et al., 2005), and CIMEL
ITS (Moritz et al., 2005) are tools that work to integrate plans and code with each other into
a single development environment. The goal of these tools is to improve problem solving
ability, reduce the friction to creating plans, and support students in more directly connect-
ing plans and code. Shi et al. (2019) motivated their work form a more indirect perspective,
designing Pyrus, an interface where students work together with limited knowledge to con-
struct a program. By constraining students’ actions in the solving exercises, they found that
students spent more time planning their solutions. Cunningham et al. (2021) design a set of
exercises focused on purpose-first programming, where participants progress from selecting
and ordering English plan goals to filling in small code snippets. They find that participants
from a secondary data-oriented programming course could complete scaffolded code writing
and debugging activities after only 30 minutes of instruction.

Our work builds on the motivation that problem decomposition is a valuable skill that is
often under-practiced in courses today. When writing code, while nothing prohibits students
from creating a plan for their program, students are also free to minimally plan their solution
and jump straight into implementation. Our exercises are designed as a sequence to go from
high levels of abstraction to lower ones. Additionally, our work anchors heavily on the use
of subgoals as an intermediate representation before introducing code. This adds an explicit
layer between the high-level goal of the problem statement and the low-level implementation
details of code.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 66

6.2.2 Programming Patterns

To decompose problems, students must recognize opportunities into how to decompose a
goal into more manageable subgoals. A key component to evaluating whether a subgoal is
manageable is recognizing if a subgoal matches a known pattern. Patterns (or plans, schemas,
templates) are higher-level, reusable abstractions of code (Spohrer et al., 1986; Wiedenbeck
et al., 1993; Marshall, 1995; Astrachan et al., 1998; Clancy et al., 1999; Muller et al., 2007;
Xie et al., 2019; Milliken et al., 2021). Patterns may be grounded in specific syntax or
be more abstract; they may be a way of achieving a specific goal or a way to organize
responsibilities. Studies have found evidence that experts have access to more patterns than
novices, allowing experts to be more effective programmers (Wiedenbeck et al., 1993; Robins
et al., 2003; Ko et al., 2008; McCauley et al., 2008; O’Dell, 2017).

Castro et al. (2016) analyzed CS1 students responses to scaffolded code writing exercises.
They found that students run into challenges when they don’t have a pattern from a similar
problem. Instead of decomposing the problem, they will start from a small code fragment
as a focus and expand outwards as they construct their program. Ko et al. (2008) built the
Whyline debugger, a tool that allows developers to ask why did and why didn’t questions
about a programs output. They found the tool improved debugging efficiency of novices by
helping them trace through code in a framework leveraging unfamiliar patterns. McCauley
et al. (2008) reviewed literature on debugging, and found that experts are more likely than
novices to take a breadth-first approach in understanding a system when tackling bugs.
Unlike novices, these experts are able to leverage patterns they’ve seen to understand the
structure of the system and begin to identify hypotheses for issues.

Though programmers develop patterns over time, more can be done to effectively teach
patterns in CS classes. Muller et al. (2007) propose Pattern-Oriented Instruction in intro-
ductory Computer Science classes, where patterns are explicitly incorporated into a course’s
instruction. They found that this explicit change to instruction led to novices improving
their problem decomposition and solution construction skills. Xie et al. (2019) also designed
a curriculum focused on explicit instruction of templates. They find some evidence that this
new template-oriented curriculum improved student coding ability. Chunking from cogni-
tive theory highlights one way students are currently acquiring patterns without this explicit
instruction. It suggests that students, as they view examples with identifiable similarities,
construct and store more complex patterns as single cognitive “chunks” which they can
retrieve later (Chase et al., 1973; Marshall, 1995; Castro et al., 2016).

Weinman, Fox, and M. A. Hearst (2021) builds off this theory, finding that when stu-
dents work on a series of problems with syntactically similar solutions, they are more likely
to acquire patterns and correctly apply them to future code writing exercises. Specifically,
they used Faded Parsons Problems, an exercise which requires students to unscramble and
complete lines of code to construct a syntactically and logically correct program. By pro-
viding students with instructor-defined lines of code, Weinman et al. were able to ensure
students were constructing solutions that matched the intended syntax-based patterns.

Our work builds on the motivation that patterns are both important and could be better



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 67

taught in our courses. This work prioritizes exploring how to improve learning through
assigned programming exercises over curricula changes. This work differs, however, in its
population and content. This work focuses on upper-division students that have deeper
programming experience than CS1 students and work on larger problems with more abstract
patterns. Additionally, instead of solely focusing on goal-based syntactic patterns, this work
also focuses on organizational patterns (i.e., the MVC framework).

6.3 Design Goals: Reconstruct Many
Intentionally-Designed Solutions

Writing programs requires programmers to draw on a range of skills and different types of
knowledge. While code writing exercises are a valuable opportunity to practice all of those
skills in conjunction, we want to create exercises that provide opportunities to deliberately
practice a subset of those skills; specifically, problem decomposition and leveraging architec-
tural patterns. Faded Parsons Problems, in which students unscramble and complete lines
of code, have been found effective at helping students acquire syntactic patterns that span
a few lines (Weinman, Fox, and M. A. Hearst, 2021). However, Faded Parsons Problems
have students engage with individual lines of code, which is reasonable only for shorter pro-
grams, such as those used in an introductory CS course. In this section, we present a set
of design goals motivated by educational theories and attributes of Faded Parsons Prob-
lems. By extracting these design goals, researchers and instructors can create new exercises
that are relevant in a range of domains beyond CS1. We present a set of 5 design goals,
which can be collectively captured as creating opportunities for students to reconstruct many
intentionally-designed solutions.

6.3.1 Construct: Provide Opportunity to Practice

Formative assessments like homework are critical to the classroom. Exercises like code
writing involve “active learning” — having students reflect on ideas and how to use them.
Active learning is a powerful pedagogical tool (Michael, 2006). When assigning an exercise
for a course, it is important to examine what is given to students and what they must
actively reflect on. Code tracing exercises, where students predict the output of a program,
are effective at having introductory students engage with the notional machine (Boulay
et al., 1981; Griffin, 2016). However, it is less effective at teaching students to construct
programs, as the correct logic is already given to them. Code writing exercises, in contrast,
force students to actively engage with every part of introductory programming, as they must
construct code unaided.

Parsons Problems have been found to correlate more closely with code writing exercises
than code tracing for assessment or transfer of general code writing ability (Denny et al.,
2008; Ericson, Margulieux, et al., 2017; Weinman, Fox, and M. A. Hearst, 2021). Though



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 68

Parsons Problems provide code snippets, students must still reason how the lines connect
to correctly construct the logical flow of the program. Exercises should allow students to
actively practice the concepts they are studying by constructing some component of the
solution.

6.3.2 Reconstruct: Scaffold Vocabulary and Details

To balance the design goal above, exercises must not be overwhelming to students by giving
too many things to practice on. Programming is a complex task consisting of many different
skills and types of knowledge (du Boulay, 1986; Jenkins, 2002; Cutts et al., 2012). Cognitive
Load theory poses that students have limited mental capacities while working on problems,
and if overtaxed they will be unable to reflect on and store their learning from completing
exercises (Sweller, 1988; Renkl et al., 2002). One way to reduce cognitive load is to provide
more structure or material to students.

Parsons Problems scaffold syntactic knowledge by providing lines of code. Traditional
Parson Problems adjust this scaffolding by using syntactic or semantic distractors as lines
of code that will not be used in the solution. Faded Parsons Problems adjust this scaffold-
ing by omitting instructor-selected code fragments within the lines of code. These can be
particularly beneficial when asking students to practice with new syntax and concepts, as
students are able to recognize them before being able to compose with them.

What the exercise scaffolds must be carefully selected to balance with the previous design
goal. Exercises should provide students with pieces that are not a learning goal of the
exercise. This allows students to focus their learning on what isn’t given to them as they
reconstruct a solution from those pieces.

6.3.3 Reconstruct: Scaffold Process

In programming courses, it is common to grade students primarily on the completeness of
the final program. However, though it can be difficult to grade (Ju et al., 2018), instructors
also want students to practice different processes (e.g., top-down problem decomposition,
test-driven development, pair programming).

Parsons Problems lightly follow this design goal, in that a top-down thinking approach
of data or control flow can make them easier to solve. However, these processes are often less
apparent in introductory Computer Science courses, where full assignments can consist of
3-10 lines of code. In upper-division courses, it is common for the solution to an assignment
to contain hundreds of lines of code in multiple languages and files. In these more complex
domains, exercises should be designed such that students follow good processes as they
reconstruct their solutions.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 69

6.3.4 Intentionally-Designed Solutions: Guide Students to One
Solution

There are many ways to construct a program that achieves a specific goal. For example,
for loops can be replaced by while loops, or an algorithm using iteration can also be solved
with recursion. However, sometimes one approach is much simpler to reason through than
the other. Or an instructor might want to intentionally have students grapple with a newer
approach. At a more granular level, instructors may want to expose students to better-styled
or more compact solutions. In code writing exercises, any expectations to have students solve
a problem with particular syntax or approaches are limited to the adjusting the problem
description.

Parsons Problems, by design, often have only one solution. Because the code fragments
are provided to students, an instructor can guarantee that students solve the problem in a
certain way. This allows instructors to guarantee that they are exposing students to well-
structured solutions that cover certain learning goals (Weinman, Fox, and M. A. Hearst,
2021). Exercises should expose students to intentionally-designed solutions by the instructor.

6.3.5 Many solutions: Present Examples Efficiently

Constructivism posits that people learn by comparing new experiences to what they already
know, identifying similarities and differences, and synthesizing that into new knowledge (Fos-
not, 2013). Indeed, programmers become more effective over time by seeing more programs
and developing generalized “schema” they can apply to future problems (Rist, 1991). In
introductory courses, problem sets often consist of several problems that build off each other
and can each be solved in minutes.

Ericson, Margulieux, et al. (2017) found that Parsons problems take only 70% of the
time as code writing exercises in introductory Computer Science courses. This could, for
example, allow teachers to assign 7 Parsons Problems and have it take as long as 5 code
writing exercises, giving students two more examples to build new schema. Exercises should
efficiently expose students to many solutions to help them build generalizable knowledge.

6.4 Designing New Exercises

We created two exercises for this study. These exercises were created for a Software En-
gineering class that uses Rails to teach web programming. Before designing the exercises,
the first author interviewed two professors (one of whom is an author) and two TAs of the
Software Engineering course. Instructors want students to practice working on all parts of
a web application (e.g., databases, testing, configuration files, server-side logic, client-side
logic). The current assignments provide significant instructional scaffolding, breaking down
the problem for students. However, instructors and TAs noticed that students often created
solutions that, while passing the functionality requirements, were not well structured or ad-



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 70

Problem Statement

In this prompt, you will be adding the idea of a user to RottenPotatoes. Users should be able to sign in and out of the system. To avoid the hassles
of managing passwords ourselves, we will allow the users to use Single Sign-on (SSO) to sign in with third-party credentials (e.g., Google, GitHub,
etc.). We will use GitHub in this example, but with minimal changes you can enable SSO sign-in for other third-party auth providers. We will use the
OmniAuth gem to handle SSO. In a nutshell, OmniAuth abstracts away the details of the specific API calls required to authenticate with an SSO
identity provider, and replaces them with three routes your app must support (where :provider is the SSO identity provider, e.g. github):

e GET /auth/:provider: when a user visits this route, OmniAuth will intercept the request (i.e. your app's controllers won't see it at all) and
send the user over to the SSO provider's login flow.

. . el skio-this . .

e (GET|POST) /auth/:provider/callback: if the user successfully signs in via SSO, your app will receive a request to this route. When this
route is called, OmniAuth makes available a hash called omniauth.auth containing information about the user, provided by the SSO provider.
The specific information varies depending on the provider, but we will use a couple of hash keys that are guaranteed to be present (1.0 and
later schema). The route should be accessible via either GET or POST due to differences in how SSO providers work.

Figure 6.1: Upper-Division problem prompt. In this study, students worked on adding
3rd party authentication to an existing app.

herent to MVC responsibilities. In office hours, TAs noticed that students often struggled
with knowing what components to look in when debugging their own programs. Based on
these interviews, and the design goals above, we created a sequence of exercises to help stu-
dents focus on these problems whose goal was to be at the right level of abstraction to build
architectural patterns.

Instructors had noted that students struggled with understanding how asynchronous
requests should work in the context of their applications. Instructors had already created a
draft assignment covering this topic by asking students to add third party authentication to
their application using a public library (Figure 6.1).

6.4.1 Exercise 1: Subgoal Decomposition

The first exercise can be seen in Figure 6.2. In this exercise, students are asked to arrange
subgoals into the correct goal, and order them based on execution flow. Additionally, stu-
dents must specify where in the Rails MVC framework they would modify code to implement
the subgoal.

This exercise provides students an opportunity to practice how the subgoals work together
to achieve a goal as well as their understanding of boundaries in the Rails MVC framework. It
scaffolds vocabulary by providing subgoals to students, giving them a set of smaller problems
that can be combined to achieve a larger goal. While it provides examples of well-separated
subgoals, the learning goal is for students to understand how these subgoals connect and how
the Rails MVC framework helps define them. It guides students to one solution because, at
the level of abstraction of these subgoals, there is a single correct solution based on execution



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION

EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 71
Subgoal Plan

oal(s) Subgoal Blocks

Install OmniAuth b [ ]
[Modify Configuration File (' C Destroy User Session data
Update Gem dependency list \/r : ]
(Run Command v Receive Sign out request
Install new packages [ ]

Sign out button

User signs In
[Modify View ]
Sign in button
[Modify Configuration File v)
OmniAuth middleware intercepts
[Create Route V]
Receive authentication callback
(Modify Model [ —— =
Lookup and (if necessary) create User R?celve Sign 0,9 trequest
(Modify Controller v] @

Set User session data
User signs out ° ,
Validate

I l

Figure 6.2: A mostly solved Subgoal Decomposition exercise. (a) Students are given
a list of goals, each of which begin empty. (b) Students drag Subgoal Blocks from the right
into the appropriate goal on the left, ordered within each goal by execution flow. (c¢) Students
also specify where in the Rails MVC framework they would modify code. (d) Students can
validate their answer at any point.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 72

Table 6.1: Connecting Design Goals to Exercises.

Subgoal Decomposition Data Flow Faded Parsons Problems
Practice Rearranging subgoals, Data creation, Rearranging lines of code
Framework placement Connectors
Vocabulary Subgoals, Syntax Syntax
Framework
Process Subgoal layer Subgoal layer Not necessary
One Solution Given subgoals, Given data, Given lines of code
Focus on execution Given connectors
Efficiency Section 6.6.2 Section 6.6.2 Previous research (Ericson, Margulieux, et al.,

flow. Finally, it is designed to present examples efficiently by being significantly faster than
writing code, but that can only be validated through user observation (Section 6.6).

6.4.2 Exercise 2: Data Flow

The second exercise can be seen in Figure 6.3. This exercise grounds the abstract subgoals
into more specific implementation details, focusing on how data flows throughout the sub-
goals to eventually achieve the desired effect. In this exercise, students are asked to correctly
place connectors, the code snippets that indicate to Rails that control flow should continue
to the next subgoal. Additionally, for each subgoal, they must specify any data the that is
necessary for the subgoal to execute or produced by the subgoal to be used later. These data
represent variables such as function arguments, instance variables, and file changes.

This exercise provides students an opportunity to practice how data is read, written, and
updated to achieve each goal. It scaffolds vocabulary by providing concrete code snippets to
students. While it provides examples of relevant syntax, other exercises are better suited to
teach students to generate their own syntax. It guides students to one solution because the
implementation details are self-contained enough to be unique; for example, a subgoal might
be responsible for taking a unique id and returning a user object, but the exercise does not
specify how that look-up is achieved. Additionally, the Rails MVC framework is opinionated
about where in the framework certain data transformations occur; for example, access to the
User database should be done in the Model. Finally, this exercise is also designed to present
examples efficiently, but it must be validated through user observation.

Though not explored in this study, Faded Parsons Problems could be used to continue
the progression towards lower layers of abstraction, having students work on Faded Parsons
Problems for each subgoal after completing the Data Flow exercises. Our new exercises
could not only be used effectively in conjunction with Faded Parsons Problems, but are
also examples of generalizing the effective attributes of Faded Parsons Problems to more
complex domains. Table 6.1 provides a summary of how all three exercises connect to our
design goals.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 73

: : Data Blocks

Command Line: $ bundle install c

Install new packages , File: Genfile

Necessary Data: Produced Data Changes: . .
Function Args: auth_name, auth_uid

|File: Gemfile Xl [ ]
Session: session[:user_id]

ser signs In Session: session[:user_id] = user.id
b View: application. html.erb Session: session[:user_id] = nil

Sign in button Value: request.env['omniauth.auth']

Necessary Data: Produced Data Changes:
Value: user (or user. id)

|Session: session[:user_id] X| [ ]

N

<a href='/auth/github' > ConneCtOrS

Configuration: config/initializers/omniauth.rb

OmniAuth middleware intercepts <a href='/session/destroy* ...>

Necessary Data: Produced Data Changes: . . N

I ] I ] get 'session/destroy' => ...
User.find_or_create_by(...)

Route: routes.rb

Authentication callback received
Necessary Data: Produced Data Changes:

I ) | J

/
match 'auth/:provider/callback' => 'session#create', via: [:get,

:post]

—
Controller: app/controllers/session_controller.rb
Set User session data

Necessary Data: Produced Data Changes:
Value: X Session: session[:user_id] = X
request.env['omniauth.auth'] user.id

User.find_or_create_by(...
N
Place connector here
\—
Model: app/models/user.rb

Lookup and (if necessary) create User:

e
Necessary Data: Produced Data Changes:
Function Args: auth_name, X Value: user (or user. id) X
auth_uid

User signs out

I | View: application.html.erb | |

Figure 6.3: A mostly solved Data Flow exercise. (a) Students are given the same
list of goals and subgoals as the previous exercise. (b) Each subgoal specifies the file and
location in the framework where its code belongs. There are containers in which students
can drop Data Blocks to specify necessary data and produced data changes by each subgoal.
(c) Students must correctly drag Data Blocks into the correct subgoals. Data Blocks can
be used multiple times. (d) Students must also drag Connectors between subgoals where
appropriate. (e) Students can remove any incorrectly placed Data Blocks by pressing an X
button. (not pictured) Students can validate their answer at any point.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 74

a
Run Comman d v
Update Gem dependency list

Install OmniAuth ( b )

Run Command V] T

Install new packages

Modify Configuration File V]
Update Gem dependency list

Install OmniAuth c
Modify Configuration File <
Update Gem dependency list

Figure 6.4: Different types of feedback students receive on these exercises. Only
the first mistake was highlighted. (a) Subgoal Decomposition, when a subgoal was placed in
an incorrect part of the framework. (b) Subgoal Decomposition, when a Subgoal was placed
in the incorrect goal or incorrect order within a goal. (c¢) Subgoal Decomposition, when a
goal is incomplete. (d) Data Flow, when a subgoal has an incorrect Data Block placed (or
missing) in a subgoal. (e) Data Flow, when a subgoal has an incorrect Connector placed or
missing between subgoals.

6.4.3 Feedback Mechanism

In this study, we designed the exercises so that students could receive feedback at any point
as they worked toward their solution. All feedback types can be seen in Figure 6.4. When
students requested feedback, the first incorrect component was highlighted in red. The
Subgoal Decomposition exercise provided feedback at three levels of granularity: framework
location, subgoal placement and order, and goal completeness. The Data Flow exercise
provided feedback to highlight incorrect Data Blocks and incorrect Connectors. We discuss
opportunities to improve this feedback mechanism in Section 6.6.3.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 75

6.4.4 Creating Content

The previous subsections describe the exercises designed for this study and how they are
motivated by the design goals. However, they do not describe how to create the content
for these exercises. To create a problem, the instructor must specify: goals, subgoals, a
framework in which subgoals can be placed, connectors between each subgoal, and the key
data that is created and used to achieve a functional solution.

To create this content, we began with a problem prompt for an in-development exercise
that had not yet been implemented in the course (Figure 6.1), along with a complete solution
to the problem. We removed the code- and file-specific scaffolding from the prompt. To
create goals, we considered series of actions the programmer makes for configuration (e.g.,
installing libraries) and any action the user could take to start a process (e.g., clicking
on a button). To create subgoals, we used all file and function boundaries in the correct
solution to create the list of subgoals; that is, each subgoal referenced code in no more
than one file, and no function was represented by more than one subgoal. To create the
framework options, we leveraged terminology from the Rails MVC framework. To create
the connectors, we extracted the code snippets from the reference solution responsible for
code execution to flow to the next subgoal. To create data choices, we extracted side effects
(e.g., instance variables, file changes), function parameters, and return values. Finally, we
removed a handful data changes which were deemed to be out of scope (e.g., Gemlfile.lock).

6.5 Evaluation

We ran a study to explore the following research questions:
e What was the efficacy for learning of these exercises? (Section 6.6.1)
e What is the impact of each design goal? (Section 6.6.2)
e How might we further improve these exercises? (Section 6.6.3)

We invited all students enrolled in the upper-division Software Engineering course at a
large US research university. None of the researchers were instructors of the course that
semester. We recruited 12 participants (P1-P12, 8 men and 4 women). Participants were
compensated $15/hour for their time.

The study was structured as follows (see Figure 6.5). Participants began each 90-minute
session by signing a consent form and were then interviewed in a semi-structured manner to
gain understanding about two questions: (i) the students’ experiences in the course so far
and (ii) their experiences with current code writing assignments. Participants then read a
problem statement and worked on that same problem through three exercises: (i) create as
complete a problem decomposition as possible without any tooling; (ii) solve the problem as
a Subgoal Decomposition exercise (Fig. 6.2); (ii) solve the problem as a Data Flow exercise
(Fig. 6.3). After each of these three exercises, participants were asked three questions to



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 76

Semi-Structured
Interview

Unaided
Decomposition

Self-Assessment

Subgoal
Decomposition

Self-Assessment

Data Flow

Self-Assessment

Semi-Structured
Interview

Figure 6.5: Study description. The series of tasks participants worked through. Partici-
pants had 10 minutes for the unaided decomposition exercise, and 25 minutes combined for
the Subgoal Decomposition and Data Flow exercise.

self-assess their confidence in their understanding. Participants had 10 minutes for the initial
problem decomposition, and 25 minutes combined to work through the second two exercises.
Additionally, participants worked through a tutorial for the two new exercises before working
on either of them. After completing the exercises, participants concluded by sharing their
thoughts in a semi-structured interview reflecting on their experiences working with these
new exercises.

The study took place remotely using Zoom. Participants shared audio and their screen
while working through the tutorial and three exercises, and optionally shared their video.
The participants took part in this study on a single monitor using a web application. They
used their own machines and selected their own environments to participate in the study.
The study sessions were recorded to be revisited for analysis.

6.6 Results

In the following sections, we revisit our research questions. First, we explore the efficacy
of the exercises as a teaching tool in their current form. Then, we explore how well the
exercises achieved the design goals and the impact of each design goal. Finally, we highlight
room for improvement for the exercises. To answer our research questions, the first author
used grounded theory to gather themes from participant answers to the semi-structured
interview questions. We also analyzed the screen recordings of them solving the exercises,



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 7

and aggregated their self-assessed learning scores.

Though we did not directly measure transfer learning in this study, participants self-
reported that our new exercises were educational, particularly in understanding the “big
picture” of an approach and the MVC architecture pattern. Additionally, all participants
wanted our new exercises in the course, primarily to be used alongside their current code
writing exercises.

We find that our new exercises achieved the desired design goals and that each design
goal added value. Participants found that being given subgoals supported building their
understanding of how to divide the problem into different parts. Though code writing
exercises are effective at teaching Rails syntax, participants found that our exercises taught
the structure of the solution because it guided them through decomposing the problem
through two layers of abstraction. However, the Data Flow exercises required too much
detail for a couple of the participants that wanted to shift to a bottom-up approach to make
sense of the solution. Although some participants felt that being forced to a single solution is
contrary to the open-ended nature of programming, they found it was valuable when working
at the level of abstraction of subgoals. Finally, students were able to solve these exercises an
order of magnitude faster than code writing exercises, and self-reported that these exercises
would save them time if they completed them before attempting to write code.

Participants indicated that these exercises could be made more effective by revisiting the
Data Blocks to make them more clear and by improving the feedback mechanism.

6.6.1 Exercise Efficacy

In this section, we explore the efficacy of these exercises in their current form.

Student Learning

Due to the design of this study, we cannot conclude with a pre-/post-test or a controlled study
what students actually learned. However, there are many indications suggesting that these
exercises complement learning gaps from code writing exercises, which we discuss below.
When asked about their experiences in the course at the start of the study, 7 participants
commented that they struggle to keep the “big picture”, or the overall task, in mind when
working on code writing exercises. In contrast, only one participant felt they can keep
the “big picture” in mind. Participants reflected that the current scaffolding structure in
code writing assignments assignments make it easiest to work on the problem in small parts
that have well-defined boundaries from the instructor directly. Similarly, 4 participants
expressed that they don’t think at all about the architecture of their solution while working
on code writing exercises. Two participants expressed that they try to keep MVC in mind,
but felt that code writing assignments make that difficult. Participant comments suggest
that the current assignments are effective at teaching, but are limited at teaching problem
decomposition or the boundaries of responsibility suggested by MVC architectures.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 78

Table 6.2: Summary results from self-rated questions after each exercise. We
report the time estimate as the average number of hours students reported. We report the
Likert-scale questions on solution confidence and code completeness in two ways: the average
Likert score on a 5-point scale, and the percentage of participants that rated higher than
the previous exercise minus the percentage of those that rated lower.

Unaided Subgoal Data

Decomposition | Decomposition | Flow

Avg. Time Estimate (hrs) 4.10 3.14 2.68

Avg. Solution Confidence 3.29 4.08 4.31

Avg. Code Completeness 3.48 3.82 4.30
Solution Confidence (% up - % down) — 75% 42%
Code Completeness (% up - % down) - 67% 75%

First, we explore student perception on whether our exercises were teaching anything.
After each of the three exercises (unaided decomposition, Subgoal Decomposition, and Data
Flow), we asked participants 3 questions to self-assess their learning: If they were given the
same problem prompt as a code writing assignment, how long would it take them; On a scale
of 1 to 5, how confident were they in their understanding of how to solve the problem; On a
scale of 1 to 5, how complete was their understanding of the code they would need to write.
For the second and third question, participants sometimes made statements such as “still
a 4, but a higher 4 than before”. As such, for these questions we report both the average
numeric score as well as whether their scores increased or decreased between exercises.

A summary of results can be seen in Table 6.2. Responses to all three questions suggest
that students felt they were getting a better understanding of how a program could solve the
problem as they worked on our exercises. Their average time estimate to write code dropped
.95 hours after working on the Subgoal Decomposition exercise, and then dropped a further
AT hours after working on the Data Flow exercise. Their confidence in how to solve the
problem went up for most participants after working on the Subgoal Decomposition exercise,
then up further after working on the Data Flow exercise. Similarly, the completeness of
their understanding of the code went up for most participants after working on the Subgoal
Decomposition exercise, then up further after working on the Data Flow exercise. The
Subgoal Decomposition exercise was always the first exercise and 5 participants were unable
to complete the Data Flow exercise in the given time, so the relative efficacy of the two
exercises is not compared by this study.

Though students self-reports suggest they were learning, it does not provide insight into
what they were learning. After working on our exercises, we asked participants what was
most and least effective about each exercise. Many participants volunteered their perception
on what these exercises encourage them to focus on, and therefore what they learn. Below,
we report on the counts of each topic participant mentioned.

10 participants mentioned that these exercises gave them much more clarity on the “big



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 79

picture” and “flow” of the problem. Some highlighted how much more difficult that is
when working with code, as the sheer amount of code belonging to a problem makes it
infeasible to keep the full context in mind. In particular, some critiqued the way textbooks
organize code by file; while this helps highlight implementation details, it makes it very
difficult to follow the execution flow through an application. Code writing assignments have
been scaffolded to allow students to solve them incrementally, but this also means students
often solve each subproblem with no idea how it will eventually create their desired final
product. One participant disagreed, expressing that code writing is the best way to gain an
understanding of the bigger picture because our exercises were too disconnected from actual
code implementations.

9 participants mentioned that these exercises helped them improve their understanding of
MVC architecture by grounding the concepts in a concrete example. Because these exercises
require selecting to which component each subgoal belongs, the exercises highlight “Rails’
particular conventions” [P5] and the “cononical” [P7] way of using them. Some participants
mentioned using their knowledge of the framework to select the appropriate data blocks in
the Data Flow exercise, for example that session variables are not accessible from the model.
These exercises require students to connect their understanding of the MVC framework to
specific subgoals and code snippets.

Finally, several participants highlighted the effect of these exercises on learning Rails
syntax. However, they were conflicted on whether the effect was positive or negative. Some
felt that the Data Flow exercise was an effective way to gain more comfort with Rails syntax
and different ways to use it. Others, however, felt that code writing forces students to look
up syntax and correct their own mistakes, therefore providing a better opportunity to learn
syntax. Despite this ambivalence, participants in both groups agreed that these exercises
were effective at reinforcing the bridge between syntax and more abstract concepts like MVC
or 3rd party verification.

Student Affect Towards These Exercises

We participants how, if at all, they would want these exercises integrated into the current
course. All 12 participants expressed an interest in including these exercises in the course.
10 participants wanted the exercises to be integrated as a part of the code writing exer-
cises, most thinking they should be done as a pre-assignment. Though most participants
valued both exercises, 2 mentioned wanting to only use Subgoal Decomposition exercises.
4 participants wanted these exercises to accompany existing textbook and lecture material
as a light-weight opportunity to check their understanding of the material. 3 participants
wanted these exercises to be used as quiz questions as a very effective way to assess their
application knowledge. This suggests that students found value in these exercises compared
to the current learning mechanisms they have available.

However, participants felt that these exercises should not fully replace code writing exer-
cises. Of the 10 that wanted to include in code writing, only 2 suggested that these exercises
should replace code writing. Participants felt that “coding is essential” for practice [P8, P10].



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 80

Coding build a certain “confidence” [P4] and “toughness” [P8] that is critical to training for
eventual jobs. Despite the fact that these exercises do not provide traditional coding prac-
tice, participants still found them quite valuable. These exercises “get you 80% [of the way]
there efficiently” [P2] and reduce the painful and time-consuming task of applying concepts
for the first time in coding assignments. This suggests these exercises could be used as a
type of scaffolding that could be removed to eventually get students much more comfortable
with unaided code writing at the scale of these problems.

6.6.2 Revisiting the Design Goals

Provide Opportunity to Practice

As mentioned in Section 6.6.1, participants felt these exercises helped them practice their
understanding of the big picture of the solution and MVC architecture. More generally,
students expressed appreciation for the interactivity of these exercises by comparing them
to textbooks and lectures. Textbooks and lectures can be “very descriptive” [P10] of high
level ideas and concepts compared to exercises. However, only one of the 12 participants
recalled that the problem they worked on in this study had already been covered in a required
reading and lecture a few weeks prior. Students often don’t have “a clear idea of what goes
where inside the code” [P2] as they try to apply these concepts. In fact, participants felt
that textbooks and lecture are poor ways to understand code. They “don’t have the mental
concentration to read through all the code line-by-line” [P1], find code snippets “hard to
follow” [P3], and often skip over it and hope that they’ll “look back at [it] when [they] need
it” [P4]. 11 participants appreciated the interactivity of our exercises, though one participant
thought our exercises would be most effective as static content. These are some of the reasons
participants in our study were excited about these exercises that allow them to practice.

Scaffold Vocabulary and Details

This design goal was motivated by an opportunity to reduce cognitive load for students.
Participants confirmed that current code writing assignments can be overwhelming. Partici-
pants reported code writing assignments as demotivating, often taking much more time than
is justified by how much they learn. They are overloaded by the number of files they must
navigate and they often end up “doing things in files that [they’re] not supposed to” [P10].
Even when they find the correct location, they feel “messing up...is catastrophic” [P9] due
to the complex connections between different components of the application.

The exercises we presented to participants reduced their perception of cognitive load.
These exercises hid superfluous files that were not directly relevant to the solution, giving
participants a confident sense of which what files they would need to modify [P9, P12].
Participants found the focus on subgoals and then individual code snippets to be “much
easier to understand and digest” [P1]. The exercises made it easier to think through the
problem itself by “dividing everything clearly into different parts” [P3]. Participants found



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 81

value in the reduced cognitive load of working on these exercises, though we saw other
benefits as well.

These exercises allowed students to maintain a top-down thinking approach by providing
them subgoals to work with. Before working on our exercises, participants were first asked
to decompose the problem themselves and explain it. Participants were able to decompose
the problem verbally and through writing. The Subgoal Decomposition exercise consisted
of 10 subgoals. The first author analyzed each utterance and written artifact, marked the
single closest subgoal the participant could be referring to, and then analyzed which of these
10 subgoals were referenced by each participant in their unaided decomposition. 3 of the 12
participants hit the limit of their ability to decompose the problem in under 10 minutes; that
is, without additional scaffolding, they would have been unable to make more sense of the
problem without writing code. On average, participants addressed 35% of the subgoals, with
20% of the subgoals explicitly given in the problem prompt. This suggests that students in
this course need some sort of scaffolding, such as the one provided by this design goal, to be
able to cleanly decompose problems.

Participants also found value in the concrete code snippets provided in the Data Flow
problems. When coming across unfamiliar code, several participants referred back to doc-
umentation or Google to understand certain syntax. One particularly appreciated this, as
“syntax can be annoying to piece together” [P7] and take “a lot of time...distracting from
core stuff” [P11] when learning a new language or library. Even with the code snippets,
these problems “skipped over superfluous information of the code” [P2] that are often found
in textbook examples for completeness, while still requiring students to do more work to
visualize how to actually implement the code.

Though students generally responded positively to this design goal, some raised concerns
that it might have provided too much scaffolding. We further discuss the difficulty of these
exercises in Section 6.6.3.

Scaffold Process

A learning goal of this course is to have students gain comfort with every part of the web
stack. As such, many assignments in the course ask students to add or test some functionality,
running commands and writing code across several files and different languages. In code
writing assignments, students navigate freely between the high-level problem statement and
implementation details. As such, the primary scaffolding instructors can provide is to give
low-level instructions around specific changes and break down the problem into smaller parts,
depriving students the opportunity to practice understanding and decomposing the high-level
problem statement. We designed this sequence of exercises to scaffold the process of problem
decomposition for students, first breaking the problem into distinct subgoals and then using
code snippets to define what happens within and between each subgoal.

These exercises “allowed” [P2] and “forced” [P3] students to “sort out” [P8] the whole
problem first, instead of focusing narrowly on low-level components to fill in. “The granular-
ity [students are| thinking of [got] more specific with each iteration” [P4]. By not providing



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 82

access to a code editor, these exercises force students to decompose the problem. Partici-
pants mentioned that they usually don’t “think too much before typing anything” [P6] and
use a “code first ask questions later” [P4] approach. In the unaided decomposition exercises,
we found that 6 of the 12 participants would have started writing code in under 10 minutes
of reading the problem, despite still not having an understanding of all the subgoals that
would be necessary to solve it.

Most participants found value in this forced decomposition. Instead of jumping rapidly
between writing code and thinking back to the big picture, these exercises support first
getting “an overall view of what [students] are learning right now” [P3]. P5 mentioned
getting stuck “sitting there for hours on end trying to figure out what’s happening” when
coding, but with these exercises , “if [they were| lost, [they could] find out why”. Participants
also highlighted the benefits of being able to focus on the whole problem because this exercise
allowed them to keep it all in their head. P7 would use these exercises to “checkpoint” their
thinking as they worked on the problem. P11 would use the exercises to “remember subtleties
of some steps that [they] didn’t recognize before.”

Despite generally positive feedback, three participants raised concerns about the amount
of process that was scaffolded; specifically, they were frustrated by the level of detail expected
by the Data Flow exercise. P4 and P6 found it “disorienting” to think through that level
of implementation without being able to use code to make better sense of the subgoals
in a bottom-up manner. Another participant, P9, was concerned the Data Flow exercises
gave away too much code of the final solution, though most participants felt there was still
significant work to be done to implement the solution even after solving the Data Flow
exercise.

Though the Data Flow exercise may have gone into too much detail, participants felt
this sequencing of exercises helped them better understand how different components work
together to obtain a goal. Instead of “just learning a little bit of Ruby” [P5] through the
“fill in this thing” [P4] approach of current code writing assignments, these exercises help
“actually understand the MVC framework” [P5] and how it applies to the problem. The
exercises “help reinforce relevant ideas” [P3] to “get the structure” [P11] of a solution. Both
exercises are critical to these insights; the Subgoal Decomposition exercise gives a “high-level
view of what’s first, what’s after, and what needs to be done” [P4], while the Data Flow
exercises cements “the actual things that will make it work” [P4] without giving away the
solution.

Guide Students to One Solution

By design, these exercises guide students to specific solutions. Participants found this helped
them “construct knowledge of the language” [P3] and learn “Rails conventions” [P5]. These
exercises pushed some participants to come up with better organized solutions than they
would otherwise, giving them examples of “a canonical way of doing things” [P7]. For some
participants, these solutions forced participants into a “different way of thinking about how
to solve the problem” [P9], exposing participants to new solution strategies. At the syntax



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 83

level, several participants looked up syntax that was effective in this problem but unfamiliar
despite being covered earlier in the course.

Two participants expressed concerns about being guided to a specific solution in general,
since there are many ways to write good code [P5, P10]. But both participants expressed
that, in this particular scenario, there is value. There are particularly good ways to decom-
pose problems even with eventual differences in implementation details [P5], and languages
like Rails are very convention-driven so it is helpful to practice those conventions [P10]. Par-
ticularly when staying at a level of abstraction above complete code solutions, these exercises
allow students flexibility in their implementation while still providing a “good understanding
of what goals should be met” [P9].

Present Examples Efficiently

To understand if these exercises were efficient compared to code writing, we analyze two
measures from our study. First, we explore how long it took participants to work through
these exercises. Participants reported spending an average of 6.6 hours on current code
writing assignments in the course. All participants completed the Subgoal Decomposition
exercise in under 18 minutes. 7 participants completed both the Subgoal Decomposition
and Data Flow exercise in under 25 minutes, reporting spending an average of 4.6 hours on
current code writing assignments. These two exercises are much faster than code writing
exercises.

However, these exercises should not fully replace code writing exercises. Instead, we can
explore whether these exercises make the eventual code writing task more efficient. After
each of the three exercises, participants expressed how long they thought it would take them
to write code to complete the task. The average time estimate began at 4.1 hours (after they
decomposed the problem themselves unaided), then dropped to 3.15 hours after the Subgoal
Decomposition exercise, then dropped further to 2.68 hours after the Data Flow exercise.
Participants reported that spending at most 25 minutes on our exercises would save them
85 minutes in writing a full solution.

While our participants didn’t want to spend more time on homework, they expressed a
desire to work through more examples, suggesting that this efficiency is important. Students
compare examples to help make sense of “why code belongs in one file vs. another” [P1].
Compared to textbook and lecture examples, these exercises clearly “show the actual flow”
of the solution in a “realistic sense” [P5]. Examples allow students to practice what they’re
learning “in a more real-world setting” [P6], to go from concepts to grounded instances.
Students need examples that they can understand (e.g., by working through themselves)
and are at the right level of detail for patterns to emerge.

6.6.3 Exercise Improvements

In this section, we explore the themes that emerged from student feedback to highlight
opportunities to improve these exercises.



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 84

Understanding Data Blocks

In the Data Flow exercises, participants had little trouble correctly placing connectors be-
tween subgoals. They thought the connectors were a “good way to visualize the flow of
a program” [P10], particularly when compared to “jumping in and out of folders”. The
connectors were “crucial to understanding what needs to be accomplished” [P4] and helped
participants “understand what in a higher level needs to happen and what actually happens
inside of each subgoal” [P5].

However, correctly placing the data blocks presented more of a challenge. 4 participants
noted that they were confused that some subgoals didn’t require any data blocks. 3 partic-
ipants were confused by the interaction of necessary and produced data in nested subgoals
with those of their parent subgoal. P9 highlighted other confusions that might arise from
students interpreting the data blocks. First, P9 internalized the subgoals as a stack of func-
tion calls, where each eventually returns data to the subgoal above it instead of passing it
through to the subgoal below. Second, P9 misinterpreted the semantic reason behind why
certain data blocks were required for certain subgoals. For example, the system needs access
to the user session data to determine whether to show a sign in or sign out button, but P9
thought this data was necessary so that the system could continually pass the variable down
to eventually update the user session data after a successful sign in or sign out. While this
was caused by a misconception around side effects, it highlights that data blocks in their
current form could be abstracting away too much context.

Despite these critiques, students still found data blocks to be a crucial part of the exercise.
Data blocks “make it concrete” [P4] how different types of variables (e.g., instance, session)
associate with different parts of the MVC framework [P10], help understand “what actually
happens inside of each subgoal” [P5], and provide much-needed assistance to students in
learning conventional Rails syntax [P7, P10]. Future work should explore how to improve
the way data blocks are presented to students.

Difficulty of Problems

Two key factors contribute to the difficulty of Subgoal Decomposition and Data Flow exer-
cises: the content that students have to work with (e.g., subgoals, code snippets), and the
feedback they receive when checking their answers.

Participants expressed that the content made these exercises feel manageable, even for
uncomfortably new concepts. In these exercises, “there is a clear answer and it’s finite” [P5],
so you don’t end up “sitting there for hours on end trying to figure out what’s happening”
[P5] when stuck. Unlike code writing assignments, where at any point a student may need
to start over from scratch and try a new approach, these exercises provide a finite space for
students to explore. Some participants were able to leverage their understanding of the MVC
frameworks or particular syntax to narrow down their options at each step [P1, P2, P4, P10,
P11]. These exercises reinforce the connection between these foundational ideas. However,
this also suggests that these exercises could lose some efficacy if students have such a strong



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 85

foundation they can ignore the problem domain of the exercise, particularly for Data Flow
problems. This is a similar challenge to students being able to nearly solve some Parsons
Problems simply by using their understanding of data flow dependencies and control flow
patterns.

To further explore whether these exercises provided the right level of content to students,
we analyzed the mistakes students made when solving the exercises. The first author watched
the recorded sessions and tallied every mistake made by each participant.

For the Subgoal Decomposition exercise, the top three mistakes mostly matched the
least familiar concepts to students at that point in the course. 11 participants selected the
incorrect location for where they would modify code to integrate OmniAuth middleware;
students had not practiced with middleware before, and the code to set up middleware is
written outside the traditional View-Route-Controller flow. 10 participants failed to correctly
assign the location for creating new routes, placing it as part of either the view or controller;
students had learned about routes, but had not created any new routes themselves as part
of any assignment. 5 participants switched the order of updating the Gem dependency list
and actually installing the new packages; students had learned about Gemfiles, but had
not practiced this two-step process themselves. Interestingly, there were few mistakes on
the arrangement of the asynchronous OmniAuth subgoals, even though this was a fairly
unpracticed concept for students.

For the Data Flow exercise, all participants placed the connectors correctly. However,
we do not report on the mistakes from the Data Flow exercises. Only 7 of the 12 partic-
ipants finished the Data Flow exercise, so analysis of all participant mistakes would bias
towards earlier in the exercise and analysis of only those 7 participants would bias towards
participants that made fewer mistakes. Additionally, the feedback mechanism of this imple-
mentation led some participants to solve this in an unnaturally top-to-bottom manner. For
example, of the 7 participants that completed the exercise, 5 skipped past the two Omniauth
subgoals because, when checking their answer up to that point, the system highlighted that
the next missing data block was below these subgoals.

Some participants felt the feedback provided when checking their answers was too gran-
ular, making thoughtless “guess-and-check” strategies too accessible for practical classroom
use. In this experiment, at any point participants could request feedback that highlighted
the first mistake in the current solution. P11 appreciated the level of feedback and only used
it when they truly felt stuck, but many participants used feedback frequently to guide their
problem solving process. In a classroom setting, students often “just want to get the work
done as quickly as possible” [P10], even if they won’t learn as much from the exercises.

Despite raising these concerns, only 2 participants had suggestions for how to improve
the feedback mechanism. P7 suggested additional feedback, highlighting all mistakes instead
of just the first one, so that students could focus on correcting their mistakes in any order.
P9, on the other hand, suggested making the feedback one level less granular, as this could
make it infeasible to brute-force an answer with frequent checks and perhaps guide students
towards trying to understand why it was incorrect. In this course, code writing exercises
give test-based feedback on the functionality of components as a whole. Future work could



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 86

explore what an analogue might be for these exercises, where there is not code to run.

A separate approach to continue tuning the difficulty of these problems could be in
the type of feedback provided. The current exercises highlights mistakes in the current
submission. However, since these exercises consist of only pre-defined content, it would
be possible for instructors to statically link certain types of mistakes to course material
or documentation. For example, subgoals about installing a library could link to Rails
documentation on the library management tool. This static linking of resources could help
guide students to the concepts that instructors want to reinforce with these exercises.

6.7 Limitations and Future Work

This work suggests that these exercises could be effective in providing deliberate practice
in problem decomposition and patterns for upper-division students. However, there are
a few limitations to this work. First, participants could only compare our exercises to the
scaffolded code writing exercises they used in the course, so we do not know how our exercises
compare to other code writing exercises (e.g., month-long projects) or other exercises (e.g.,
Faded Parsons Problems). Second, we did not measure learning in a controlled way with
pre- and post-tests. Third, we ran our study in a lab, not a classroom setting. Fourth,
students all came from a single class and worked through a single problem. Though the
problem prompt used in this study did come from an instructor’s existing draft, we did not
explore if students would have similar sentiments about these exercises for different problems
in the course. Despite these limitations, the results of this chapter suggest that the design
goals and exercises presented are worth further investigation to understand how well they
generalize.

This work posited a set of design goals for exercises to teach a range of programming
patterns and reports on student responses to the implementation of each design goal on two
specific exercises. Future work could attempt to modify the exercises to better isolate the
impact of each individual design goal. Additionally, the positive results suggest value in
exploring similar exercises in other domains. For example, in Machine Learning, students
might be learning to use PyTorch 2. In the Subgoal Decomposition exercise, instead of
focusing on the MVC framework for the location of subgoals, the exercise could require
students to specify whether subgoals affect graph initialization or are used in graph execution,
or which subgoals affect state in the model. In the Data Flow exercise, connectors might no
longer be relevant. Or an entirely new exercise could be built based on the 5 design goals
above, providing more insights into a generalized process for creating new exercises that
address these design goals.

Zhttps://pytorch.org/



CHAPTER 6. A DESIGN FRAMEWORK FOR CREATING RECONSTRUCTION
EXERCISES THAT TEACH SOFTWARE ARCHITECTURE PATTERNS 87

6.8 Conclusion

We present and evaluate two new exercises to teach problem decomposition and architectural
patterns to upper-division students. These exercises focus on topics that are difficult and
inefficient to learn with traditional code writing exercises. These exercises also probe our
set of design goals for teaching patterns more generally: reconstructing many intentionally-
designed solutions. These design goals allow us to create exercises that provide deliberate
practice to students for mastering higher-level patterns and processes.



88

Chapter 7

Conclusion

This work presents exercises designed to help Computer Science students learn foundational
patterns. This work further motivates the opportunities to build new exercises to be used
in our CS classrooms and reduce the reliance on Code Writing exercises as the primary op-
portunity for practice. Though testing the output of programs is an incredibly convenient
way to test correctness, we sometimes overemphasize the relevance of the final program to
a course’s learning goals. This work attempts to address this dissonance by motivating ex-
ercises that require students to reconstruct many intentionally-designed solutions. These
exercises scaffold away parts of programming, such as recalling syntax, to support students
in focusing on the bigger picture of how a solution works. These exercises guide students
to a single solution out of the infinite possibilities to help students not just achieve a target
program functionality, but also understand specific ways to approach problems. These ex-
ercises give students guardrails, reducing the time they may spend confused and frustrated
exploring a path to a solution that will not pan out.

More concretely, in this work I present three new exercises based on this motivation.
I find support that Parsons Problems alone do not transfer learning to Code Writing for
sufficiently advanced students (Chapters 3, 4). I motivate the design of Faded Parsons
Problems as a variation of Parsons Problems which can be created from instructor solutions
without also creating new distractor lines of code (Chapter 4). I evaluate Faded Parsons
Problems in a large classroom study, finding them to be a very effective complement to
Code Tracing and Code Writing exercises in a CS1 classroom (Chapter 5). I introduce
two new exercises focused on supporting upper-division students learning higher-abstraction
patterns, (Chapter 6). I confirm that the gap between reading and writing code extends to
upper-division courses and that these new exercises begin to address that gap (Chapter 6).
I introduce a set of design goals to motivate the success of these two new exercises and being
to probe how students engage with each of these design goals (Chapters 2, 6).

This work leaves many open questions that I believe are fruitful for future work. I have
only tested Subgoal Decomposition and Data Flow exercises in an in-lab setting with 12
students. While the students responded positively towards these exercises, they should be
further improved before actually being integrated into a course. In addition to improving



CHAPTER 7. CONCLUSION 89

the exercises themselves, future research could more concretely understand what learning
improvements come from having students work with these exercises in a classroom setting.

This work explored creating Faded Parsons Problems to help CS1 students acquire new
patterns. However, others have researched Parsons Problems to more generally scaffold
students between Code Tracing and Code Writing exercises (Ericson, Margulieux, et al.,
2017; Zavala et al., 2017). Future research could explore using Faded Parsons Problems
outside the context of teaching patterns. Faded Parsons Problems may be effective a step to
further scaffold students between Parsons Problems and Code Writing exercises for general
programming skills. Or they might be effective at teaching other foundational programming
skills or ideas.

This work introduced a set of design goals to create exercises that help students ac-
quire new patterns. Faded Parsons Problems are effective in a CS1 context, and Subgoal
Decomposition and Data Flow exercises show promise for web architecture. Future work
could use these design goals and examples to create new exercises for other domains (e.g.,
Machine Learning, System Architecture, etc.). Future work could also further substantiate
how relevant each of these design goals are to teaching patterns.

This work presented design goals to create exercises that could be individually added to
existing curricula. Future work could tie expand this scope to cover a multi-step instructional
process for teaching patterns. Such a process could be more strongly tied to particular
pedagogical frameworks, such as constructivism (Fosnot, 2013) or the Knowledge Integration
framework (Linn, 2005), motivating the exploration of a particular sequencing of different
exercises.

Finally, this work is motivated by patterns being a key building block to becoming an
expert programmer that is also difficult to learn with the current mainstream exercises.
But, programming consists of many different skills and ideas. Future work should continue
to explore other skills or ideas we should focus on deliberately practicing and how to design
new exercises to support that deliberate practice. For example, from my interviews with
professors, there is a clear opportunity for more deliberate practice with debugging.

I believe that we can build new exercises to better support students learning to become
expert programmers. One way to do that is to provide more opportunities for deliberate
practice of the overwhelming skills and ideas that must come together to write a program.
The research presented in this work offers one viewpoint on a way to make progress towards
that goal, and I hope it guides and inspires others to keep building better exercises.



90

Bibliography

1]

C. Alphonce and B. Martin. “Green: A Customizable UML Class Diagram Plug-
in for Eclipse”. In: Companion to the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA "05.
San Diego, CA, USA: Association for Computing Machinery, 2005, pp. 108-109. 1SBN:
1595931937. DOI: 10.1145/1094855.1094887. URL: https://doi.org/10.1145/
1094855.1094887.

O. Astrachan, G. Mitchener, G. Berry, and L. Cox. “Design patterns: an essential
component of CS curricula”. In: Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education - SIGCSE "98. New York, NY, USA: ACM
Press, 1998, pp. 153-160. DOI: 10.1145/273133.273182. URL: https://doi.org/10.
1145/273133.273182.

R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner. “Off-task behavior
in the cognitive tutor classroom”. In: Proceedings of the 2004 conference on Human
factors in computing systems - CHI ’04. ACM Press, 2004. DOI: 10.1145/985692 .
985741. URL: https://doi.org/10.1145/985692.985741.

D. Barr, J. Harrison, and L. Conery. “Computational Thinking: A Digital Age Skill
for Everyone.” In: Learning and leading with technology 38 (2011), pp. 20-23.

S. Basu, A. Wu, B. Hou, and J. DeNero. “Problems before solutions: Automated prob-
lem clarification at scale”. In: Proceedings of the Second (2015) ACM Conference on
Learning@ Scale. 2015, pp. 205-213.

L. E. Berk and A. Winsler. Scaffolding Children’s Learning: Vygotsky and FEarly Child-
hood Education (Naeyc Research Into Practice Series, Vol. 7). National Association
for the Education of Young Children, 1995. 1SBN: 0935989684.

B. S. Bloom, M. D. Englehart, E. J. Furst, W. H. Hill, D. R. Krathwohl, et al. Tazonomy
of educational objectives, handbook I: the cognitive domain. New York: David McKay
Co. 1956.

B. du Boulay, T. O’Shea, and J. Monk. “The black box inside the glass box: presenting
computing concepts to novices”. In: International Journal of man-machine studies 14.3
(1981), pp. 237-249.


https://doi.org/10.1145/1094855.1094887
https://doi.org/10.1145/1094855.1094887
https://doi.org/10.1145/1094855.1094887
https://doi.org/10.1145/273133.273182
https://doi.org/10.1145/273133.273182
https://doi.org/10.1145/273133.273182
https://doi.org/10.1145/985692.985741
https://doi.org/10.1145/985692.985741
https://doi.org/10.1145/985692.985741

BIBLIOGRAPHY 91

[9]

[10]

[11]

[12]

[13]

[14]

S. Bryant, P. Romero, and B. du Boulay. “Pair programming and the mysterious role
of the navigator”. In: International Journal of Human-Computer Studies 66.7 (July
2008), pp. 519-529. poI: 10.1016/j.1jhcs.2007.03.005. URL: https://doi.org/
10.1016/j.1jhcs.2007.03.005.

A. Burton-Jones and P. Meso. “The effects of decomposition quality and multiple forms
of information on novices’” understanding of a domain from a conceptual model”. In:
Journal of the Association for Information Systems 9.12 (2008), p. 1.

F. E. V. Castro and K. Fisler. “On the Interplay Between Bottom-Up and Datatype-
Driven Program Design”. In: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. SIGCSE '16. Memphis, Tennessee, USA: Association
for Computing Machinery, 2016, pp. 205-210. 1SBN: 9781450336857. DOI: 10.1145/
2839509.2844574. URL: https://doi.org/10.1145/2839509.2844574.

W. G. Chase and H. A. Simon. “Perception in chess”. In: Cognitive Psychology 4.1
(Jan. 1973), pp. 55-81. DOI: 10.1016/0010-0285(73)90004-2. URL: https://doi.
org/10.1016/0010-0285(73)90004-2.

N. Cheng and B. Harrington. “The Code Mangler: Evaluating Coding Ability Without
Writing Any Code”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education - SIGCSE ’17. New York, NY, USA: ACM Press,
2017, pp. 123-128. po1: 10.1145/3017680.3017704. URL: https://doi.org/10.
1145/3017680.3017704.

R. R. Choudhury, H. Yin, J. Moghadam, and A. Fox. “AutoStyle: Toward Coding
Style Feedback At Scale”. In: Proceedings of the 19th ACM Conference on Computer
Supported Cooperative Work and Social Computing Companion - CSCW 16 Compan-
ion. ACM Press, 2016. DOT: 10.1145/2818052.2874315. URL: https://doi.org/10.
1145/2818052.2874315.

M. J. Clancy and M. C. Linn. “Patterns and pedagogy”. In: ACM SIGCSE Bulletin
31.1 (Mar. 1999), pp. 37-42. DOI: 10.1145/384266.299673. URL: https://doi.org/
10.1145/384266.299673.

K. Cunningham, B. J. Ericson, R. Agrawal Bejarano, and M. Guzdial. “Avoiding the
Turing Tarpit: Learning Conversational Programming by Starting from Code’s Pur-
pose”. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI '21. Yokohama, Japan: Association for Computing Machinery, 2021.
ISBN: 9781450380966. DOI: 10.1145/3411764 .3445571. URL: https://doi.org/10.
1145/3411764 .3445571.

Q. Cutts, S. Esper, M. Fecho, S. R. Foster, and B. Simon. “The abstraction transition
taxonomy”. In: Proceedings of the ninth annual international conference on Interna-
tional computing education research - ICER ’12. ACM Press, 2012. pDO1: 10. 1145/
2361276.2361290. URL: https://doi.org/10.1145/2361276.2361290.


https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1016/0010-0285(73)90004-2
https://doi.org/10.1016/0010-0285(73)90004-2
https://doi.org/10.1016/0010-0285(73)90004-2
https://doi.org/10.1145/3017680.3017704
https://doi.org/10.1145/3017680.3017704
https://doi.org/10.1145/3017680.3017704
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/384266.299673
https://doi.org/10.1145/384266.299673
https://doi.org/10.1145/384266.299673
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/2361276.2361290

BIBLIOGRAPHY 92

[18]

[19]

[20]

[21]

[22]

[23]

[27]

28]

[29]

S. P. Davies. “Characterizing the program design activity: Neither strictly top-down
nor globally opportunistic”. In: Behaviour € Information Technology 10.3 (1991),
pp- 173-190.

P. Denny, A. Luxton-Reilly, and B. Simon. “Evaluating a new exam question”. In:
Proceeding of the fourth international workshop on Computing education research -
ICER 08. ACM Press, 2008. DOI: 10.1145/1404520.1404532. URL: https://doi.
org/10.1145/1404520.1404532.

B. du Boulay. “Some Difficulties of Learning to Program”. In: Journal of Educational
Computing Research 2.1 (Feb. 1986), pp. 57-73. DOI: 10.2190/31fx-9rrf-67t8-uvk9.
URL: https://doi.org/10.2190/31fx-9rrf-67t8-uvk9.

B. J. Ericson, J. D. Foley, and J. Rick. “Evaluating the Efficiency and Effective-
ness of Adaptive Parsons Problems”. In: Proceedings of the 2018 ACM Conference
on International Computing Education Research - ICER '18. ACM Press, 2018. DOI:
10.1145/3230977.3231000. URL: https://doi.org/10.1145/3230977.3231000.

B. J. Ericson, M. J. Guzdial, and B. B. Morrison. “Analysis of Interactive Features
Designed to Enhance Learning in an Ebook”. In: Proceedings of the eleventh annual
International Conference on International Computing Education Research - ICER ’15.
ACM Press, 2015. por: 10.1145/2787622.2787731. URL: https://doi.org/10.
1145/2787622.2787731.

B. J. Ericson, L. E. Margulieux, and J. Rick. “Solving parsons problems versus fixing
and writing code”. In: Proceedings of the 17th Koli Calling Conference on Computing
Education Research - Koli Calling '17. ACM Press, 2017. po1: 10.1145/3141880.
3141895. URL: https://doi.org/10.1145/3141880.3141895.

K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer. “The role of deliberate practice in
the acquisition of expert performance.” In: Psychological review 100.3 (1993), p. 363.

M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to design programs:
an introduction to programming and computing. MIT Press, 2018.

J. L. Fleiss and J. Cohen. “The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability”. In: Fducational and psychological
measurement 33.3 (1973), pp. 613-619.

C. T. Fosnot. Constructivism: Theory, perspectives, and practice. Teachers College
Press, 2013.

M. Friedman. “The use of ranks to avoid the assumption of normality implicit in the
analysis of variance”. In: Journal of the american statistical association 32.200 (1937),
pp. 675-701.

E. Gamma, R. Helm, R. Johnson, R. E. Johnson, J. Vlissides, et al. Design patterns:
elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995.


https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3141880.3141895

BIBLIOGRAPHY 93

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. Garner. “An Exploration of How a Technology-Facilitated Part-Complete Solution
Method Supports the Learning of Computer Programming”. In: Issues in Informing
Science and Information Technology 4 (2007), pp. 491-501. DOI: 10.28945/966. URL:
https://doi.org/10.28945/966.

J. M. Griffin. “Learning by Taking Apart: Deconstructing Code by Reading, Trac-
ing, and Debugging”. In: Proceedings of the 17th Annual Conference on Information
Technology Education. SIGITE "16. Boston, Massachusetts, USA: Association for Com-
puting Machinery, 2016, pp. 148-153. 1SBN: 9781450344524. DOI: 10.1145/2978192.
2978231. URL: https://doi.org/10.1145/2978192.2978231.

P. J. Guo. “Online python tutor: embeddable web-based program visualization for cs
education”. In: Proceeding of the 44th ACM technical symposium on Computer science
education - SIGCSE ’13. New York, NY, USA: ACM Press, 2013, pp. 579-584. DOI:
10.1145/2445196.2445368. URL: https://doi.org/10.1145/2445196 .2445368.

K. J. Harms, N. Rowlett, and C. Kelleher. “Enabling independent learning of program-
ming concepts through programming completion puzzles”. In: 2015 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Oct. 2015.
DOI: 10.1109/v1lhcc.2015.7357226. URL: https://doi.org/10.1109/v1lhcc.2015.
7357226.

K. J. Harms, J. Chen, and C. L. Kelleher. “Distractors in Parsons Problems Decrease
Learning Efficiency for Young Novice Programmers”. In: Proceedings of the 2016 ACM
Conference on International Computing Education Research - ICER ’16. ACM Press,
2016. por: 10.1145/2960310.2960314. URL: https://doi.org/10.1145/2960310.
2960314.

S. G. Hart and L. E. Staveland. “Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research”. In: Advances in Psychology. Elsevier,
1988, pp. 139-183. pOI: 10.1016/s0166-4115(08)62386-9. URL: https://doi.org/
10.1016/s0166-4115(08)62386-9.

C. C. Haynes and B. J. Ericson. “Problem-Solving Efficiency and Cognitive Load for
Adaptive Parsons Problems vs. Writing the Equivalent Code”. In: Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. CHI '21. Yokohama,
Japan: Association for Computing Machinery, 2021. 1SBN: 9781450380966. DOI: 10 .
1145/3411764.3445292. URL: https://doi.org/10.1145/3411764.3445292.

J. Helminen, P. Thantola, V. Karavirta, and L. Malmi. “How do students solve parsons
programming problems?” In: Proceedings of the ninth annual international conference
on International computing education research - ICER ’12. ACM Press, 2012. DOTI:
10.1145/2361276.2361300. URL: https://doi.org/10.1145/2361276.2361300.


https://doi.org/10.28945/966
https://doi.org/10.28945/966
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1109/vlhcc.2015.7357226
https://doi.org/10.1109/vlhcc.2015.7357226
https://doi.org/10.1109/vlhcc.2015.7357226
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1016/s0166-4115(08)62386-9
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/2361276.2361300
https://doi.org/10.1145/2361276.2361300

BIBLIOGRAPHY 94

[38]

[39]

[40]

[41]

[42]

[43]

[46]

P. Thantola, J. Helminen, and V. Karavirta. “How to study programming on mobile
touch devices”. In: Proceedings of the 13th Koli Calling International Conference on
Computing Education Research - Koli Calling '13. ACM Press, 2013. DOI: 10.1145/
2526968.2526974. URL: https://doi.org/10.1145/2526968.2526974.

P. Thantola and V. Karavirta. “Open source widget for parson’s puzzles”. In: Pro-
ceedings of the fifteenth annual conference on Innovation and technology in computer
science education - ITiCSE ’10. ACM Press, 2010. DoI: 10.1145/1822090.1822178.
URL: https://doi.org/10.1145/1822090.1822178.

T. Jenkins. “On the difficulty of learning to program”. In: Proceedings of the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences. Vol. 4.
Citeseer. Loughborough, Leicestershire, UK: Loughborough University, 2002, pp. 53—
8.

A. Ju and A. Fox. “TEAMSCOPE: Measuring Software Engineering Processes with
Teamwork Telemetry”. In: Proceedings of the 23rd Annual ACM Conference on Inno-
vation and Technology in Computer Science Education. ITiICSE 2018. Larnaca, Cyprus:
Association for Computing Machinery, 2018, pp. 123-128. 1SBN: 9781450357074. DOI:
10.1145/3197091.3197107. URL: https://doi.org/10.1145/3197091.3197107.

A. Ko and B. Myers. “Debugging reinvented”. In: 2008 ACM/IEEE 30th International
Conference on Software Engineering. 2008, pp. 301-310. por: 10 . 1145/ 1368088 .
1368130.

K. Kwon. “Novice programmer’s misconception of programming reflected on problem-
solving plans”. In: International Journal of Computer Science Education in Schools
1.4 (2017), pp. 14-24.

E. Lahtinen, K. Ala-Mutka, and H.-M. Jarvinen. “A Study of the Difficulties of Novice
Programmers”. In: Proceedings of the 10th Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Education. ITICSE '05. Caparica, Portu-
gal: Association for Computing Machinery, 2005, pp. 14-18. 1SBN: 1595930248. DOT:
10.1145/1067445.1067453. URL: https://doi.org/10.1145/1067445.1067453.

M. C. Linn. “The Knowledge Integration Perspective on Learning and Instruction”. In:
The Cambridge Handbook of the Learning Sciences. New York, NY, USA: Cambridge
University Press, Apr. 2005, pp. 243-264. DOI: 10.1017/cbo9780511816833.016. URL:
https://doi.org/10.1017/cbo9780511816833.016.

M. C. Linn and M. J. Clancy. “The Case for Case Studies of Programming Problems”.
In: Commun. ACM 35.3 (Mar. 1992), pp. 121-132. 18SN: 0001-0782. por: 10.1145/
131295.131301. URL: https://doi.org/10.1145/131295.131301.


https://doi.org/10.1145/2526968.2526974
https://doi.org/10.1145/2526968.2526974
https://doi.org/10.1145/2526968.2526974
https://doi.org/10.1145/1822090.1822178
https://doi.org/10.1145/1822090.1822178
https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1017/cbo9780511816833.016
https://doi.org/10.1017/cbo9780511816833.016
https://doi.org/10.1145/131295.131301
https://doi.org/10.1145/131295.131301
https://doi.org/10.1145/131295.131301

BIBLIOGRAPHY 95

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M. Burnett.
“Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance”.
In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
New York, NY, USA: ACM, May 2016, pp. 1449-1461. po1: 10 . 1145 /2858036 .
2858252. URL: https://doi.org/10.1145/2858036.2858252.

M. Lopez, J. Whalley, P. Robbins, and R. Lister. “Relationships between reading,
tracing and writing skills in introductory programming”. In: Proceeding of the fourth
international workshop on Computing education research - ICER °08. ACM Press,
2008. poI: 10.1145/1404520.1404531. URL: https://doi.org/10.1145/1404520.
1404531.

S. P. Marshall. Schemas in Problem Solving. New York, NY, USA: Cambridge Univer-
sity Press, June 1995. DOI: 10.1017/cbo9780511527890. URL: https://doi.org/10.
1017/cbo9780511527890.

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas, and
C. Zander. “Debugging: a review of the literature from an educational perspective”.
In: Computer Science Education 18.2 (2008), pp. 67-92.

T. J. McGill and S. E. Volet. “A Conceptual Framework for Analyzing Students’
Knowledge of Programming”. In: Journal of Research on Computing in Education
29.3 (Mar. 1997), pp. 276-297. DOI: 10.1080/08886504.1997.10782199. URL: https:
//doi.org/10.1080/08886504.1997.10782199.

O. Meerbaum-Salant, M. Armoni, and M. ( Ben-Ari. “Learning computer science con-
cepts with Scratch”. In: Computer Science Education 23.3 (Sept. 2013), pp. 239-264.
DOI: 10.1080/08993408.2013.832022. URL: https://doi.org/10.1080/08993408.
2013.832022.

J. Michael. “Where’s the evidence that active learning works?” In: Advances in Phys-
iology Education 30.4 (Dec. 2006), pp. 159-167. DOI: 10.1152/advan . 00053 . 2006.
URL: https://doi.org/10.1152/advan.00053.2006.

A. Milliken, W. Wang, V. Cateté, S. Martin, N. Gomes, Y. Dong, R. Harred, A.
Isvik, T. Barnes, T. Price, and C. Martens. “PlanIT! A New Integrated Tool to Help
Novices Design for Open-Ended Projects”. In: Proceedings of the 52nd ACM Tech-
nical Symposium on Computer Science Education. SIGCSE ’21. Virtual Event, USA:
Association for Computing Machinery, 2021, pp. 232-238. 1SBN: 9781450380621. DOI:
10.1145/3408877.3432552. URL: https://doi.org/10.1145/3408877.3432552.

S. H. Moritz, F. Wei, S. M. Parvez, and G. D. Blank. “From Objects-First to Design-
First with Multimedia and Intelligent Tutoring”. In: Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’05. Caparica, Portugal: Association for Computing Machinery, 2005, pp. 99—
103. 1SBN: 1595930248. DOI: 10.1145/1067445.1067475. URL: https://doi.org/10.
1145/1067445.1067475.


https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1017/cbo9780511527890
https://doi.org/10.1017/cbo9780511527890
https://doi.org/10.1017/cbo9780511527890
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1152/advan.00053.2006
https://doi.org/10.1152/advan.00053.2006
https://doi.org/10.1145/3408877.3432552
https://doi.org/10.1145/3408877.3432552
https://doi.org/10.1145/1067445.1067475
https://doi.org/10.1145/1067445.1067475
https://doi.org/10.1145/1067445.1067475

BIBLIOGRAPHY 96

[56]

[59]

[60]

[62]

[63]

[64]

[65]

O. Muller, D. Ginat, and B. Haberman. “Pattern-oriented instruction and its influ-
ence on problem decomposition and solution construction”. In: Proceedings of the
12th annual SIGCSE conference on Innovation and technology in computer science
education - ITiCSE °07. New York, NY, USA: ACM Press, 2007, pp. 151-155. DOT:
10.1145/1268784.1268830. URL: https://doi.org/10.1145/1268784.1268830.

D. H. O’Dell. “The Debugging Mindset: Understanding the psychology of learning
strategies leads to effective problem-solving skills.” In: Queue 15.1 (2017), pp. 71-90.

D. Parsons and P. Haden. “Parson’s Programming Puzzles: A Fun and Effective Learn-
ing Tool for First Programming Courses”. In: Proceedings of the 8th Australasian Con-
ference on Computing Education - Volume 52. ACE '06. Hobart, Australia: Australian
Computer Society, Inc., 2006, pp. 157-163. 1SBN: 1920682341.

D. Perkins and G. Salomon. “Transfer Of Learning”. In: International encyclopedia of
education 2 (1992), pp. 6452-6457.

J. G. Politz, D. Patterson, S. Krishnamurthi, and K. Fisler. “CaptainTeach: Multi-
Stage, in-Flow Peer Review for Programming Assignments”. In: Proceedings of the
2014 Conference on Innovation & Technology in Computer Science Education. ITICSE
"14. Uppsala, Sweden: Association for Computing Machinery, 2014, pp. 267-272. 1SBN:
9781450328333. DOIL: 10.1145/2591708.2591738. URL: https://doi.org/10.1145/
2591708.2591738.

A. Renkl, R. K. Atkinson, U. H. Maier, and R. Staley. “From example study to problem
solving: Smooth transitions help learning”. In: The Journal of Experimental Education
70.4 (2002), pp. 293-315.

R. S. Rist. “Knowledge creation and retrieval in program design: A comparison of
novice and intermediate student programmers”. In: Human-Computer Interaction 6.1
(1991), pp. 1-46.

M. Rizvi, T. Humphries, D. Major, M. Jones, and H. Lauzun. “A CSO course using
Scratch”. In: Journal of Computing Sciences in Colleges 26.3 (2011), pp. 19-27.

A. Robins, J. Rountree, and N. Rountree. “Learning and Teaching Programming: A
Review and Discussion”. In: Computer Science Education 13.2 (June 2003), pp. 137
172. bo1: 10.1076/csed.13.2.137.14200. URL: https://doi.org/10.1076/csed.
13.2.137.14200.

J. Sajaniemi and M. Kuittinen. “An Experiment on Using Roles of Variables in Teach-
ing Introductory Programming”. In: Computer Science Education 15.1 (Mar. 2005),
pp. 59-82. DOI: 10.1080/08993400500056563. URL: https://doi.org/10.1080/
08993400500056563.

C. Scaffidi, M. Shaw, and B. Myers. “Estimating the Numbers of End Users and End
User Programmers”. In: 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’05). Hoboken, NJ, USA: IEEE, 2005, pp. 207-214. DOT:
10.1109/v1hcc.2005.34. URL: https://doi.org/10.1109/v1hcc.2005. 34.


https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/2591708.2591738
https://doi.org/10.1145/2591708.2591738
https://doi.org/10.1145/2591708.2591738
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1080/08993400500056563
https://doi.org/10.1080/08993400500056563
https://doi.org/10.1080/08993400500056563
https://doi.org/10.1109/vlhcc.2005.34
https://doi.org/10.1109/vlhcc.2005.34

BIBLIOGRAPHY 97

[67]

[70]

[71]

[72]

73]

D. H. Schunk. “Social Cognitive Theory and Self-Regulated Learning”. In: Self- Requlated
Learning and Academic Achievement. Springer New York, 1989, pp. 83-110. poI: 10.
1007/978-1-4612-3618-4_4. URL: https://doi.org/10.1007/978-1-4612-3618-
4_4.

D. T. Seaton, Y. Bergner, I. Chuang, P. Mitros, and D. E. Pritchard. “Who does what
in a massive open online course?” In: Communications of the ACM 57.4 (Apr. 2014),
pp. 58-65. DOT: 10.1145/2500876. URL: https://doi.org/10.1145/2500876

J. Shi, A. Shah, G. Hedman, and E. O’Rourke. “Pyrus: Designing A Collaborative
Programming Game to Promote Problem Solving Behaviors”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems - CHI '19. New York,
NY, USA: ACM Press, 2019, pp. 1-12. por1: 10.1145/3290605.3300886. URL: https:
//doi.org/10.1145/3290605.3300886.

E. Soloway. “Learning to program= learning to construct mechanisms and explana-
tions”. In: Communications of the ACM 29.9 (1986), pp. 850-858.

T. Song and K. Becker. “Expert vs. novice: Problem decomposition/recomposition
in engineering design”. In: 2014 International Conference on Interactive Collaborative
Learning (ICL). 2014, pp. 181-190. DOI: 10.1109/ICL.2014.7017768.

J. C. Spohrer and E. Soloway. “Novice mistakes: are the folk wisdoms correct?” In:
Communications of the ACM 29.7 (July 1986), pp. 624-632. DOI: 10.1145/6138.6145.
URL: https://doi.org/10.1145/6138.6145.

S. Suzuki. Zen Mind, Beginner’s Mind: Informal Talks on Zen Meditation and Practice.
Weatherhill, 1970. 1SBN: 0834800799. URL: https://www.amazon . com/Zen-Mind-
Beginners-Informal-Meditation/dp/0834800799.

J. Sweller. “Cognitive Load During Problem Solving: Effects on Learning”. In: Cogni-
tive Science 12.2 (Apr. 1988), pp. 257-285. DOI: 10.1207/s15516709cog1202_4. URL:
https://doi.org/10.1207/s15516709cog1202_4.

U.S. Department of Labor, Occupational Outlook Handbook, Software Developers. (re-
trieved on April 22, 2020). Bureau of Labor Statistics. 2019. URL: https://www.bls.
gov/ooh/computer-and-information-technology/software-developers.htm.

S. Valstar, W. G. Griswold, and L. Porter. “The Relationship between Prerequisite
Proficiency and Student Performance in an Upper-Division Computing Course”. In:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
SIGCSE '19. Minneapolis, MN, USA: Association for Computing Machinery, 2019,
pp. 794-800. 1SBN: 9781450358903. DOI: 10.1145/3287324 . 3287419. URL: https:
//doi.org/10.1145/3287324.3287419.

N. Weinman, A. Fox, and M. Hearst. “Exploring Challenging Variations of Parsons
Problems”. In: Proceedings of the 51st ACM Technical Symposium on Computer Sci-
ence FEducation. New York, NY, USA: ACM, Feb. 2020, p. 1349. por: 10. 1145/
3328778.3372639. URL: https://doi.org/10.1145/3328778.3372639.


https://doi.org/10.1007/978-1-4612-3618-4_4
https://doi.org/10.1007/978-1-4612-3618-4_4
https://doi.org/10.1007/978-1-4612-3618-4_4
https://doi.org/10.1007/978-1-4612-3618-4_4
https://doi.org/10.1145/2500876
https://doi.org/10.1145/2500876
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1109/ICL.2014.7017768
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/6138.6145
https://www.amazon.com/Zen-Mind-Beginners-Informal-Meditation/dp/0834800799
https://www.amazon.com/Zen-Mind-Beginners-Informal-Meditation/dp/0834800799
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1207/s15516709cog1202_4
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://doi.org/10.1145/3287324.3287419
https://doi.org/10.1145/3287324.3287419
https://doi.org/10.1145/3287324.3287419
https://doi.org/10.1145/3328778.3372639
https://doi.org/10.1145/3328778.3372639
https://doi.org/10.1145/3328778.3372639

BIBLIOGRAPHY 98

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

N. Weinman, A. Fox, and M. A. Hearst. “Improving Instruction of Programming Pat-
terns with Faded Parsons Problems”. In: Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 2021, pp. 1-4.

N. Weinman, B. Hsu, and A. Camacho. “Implementing a More Challenging Parsons
Problem Interface for Teaching Computer Science”. In: Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. New York, NY, USA: Asso-
ciation for Computing Machinery, 2020, p. 1417. 1SBN: 9781450367936. URL: https:
//doi.org/10.1145/3328778.3372548.

D. Weintrop and U. Wilensky. “Comparing Block-Based and Text-Based Programming
in High School Computer Science Classrooms”. In: ACM Transactions on Computing
Education 18.1 (Dec. 2017), pp. 1-25. DOI: 10.1145/3089799. URL: https://doi.
org/10.1145/3089799.

S. Wiedenbeck, V. Fix, and J. Scholtz. “Characteristics of the mental representations
of novice and expert programmers: an empirical study”. In: International Journal of
Man-Machine Studies 39.5 (Nov. 1993), pp. 793-812. DOI: 10.1006/imms . 1993.1084.
URL: https://doi.org/10.1006/imms.1993.1084.

J. Wrenn and S. Krishnamurthi. “Executable Examples for Programming Problem
Comprehension”. In: Proceedings of the 2019 ACM Conference on International Com-
puting Education Research. ICER ’19. Toronto ON, Canada: Association for Com-
puting Machinery, 2019, pp. 131-139. 1SBN: 9781450361859. DOI: 10.1145/3291279.
3339416. URL: https://doi.org/10.1145/3291279.3339416.

B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson, D. Dong, H. Kwik, A. H. Tan, L.
Hwa, M. Li, and A. J. Ko. “A theory of instruction for introductory programming
skills”. In: Computer Science Education 29.2-3 (Jan. 2019), pp. 205-253. DOI: 10.
1080/08993408.2019.1565235. URL: https://doi.org/10.1080/08993408.2019.
1565235.

L. Zavala and B. Mendoza. “Precursor Skills to Writing Code”. In: J. Comput. Sci.
Coll. 32.3 (Jan. 2017), pp. 149-156. 1SSN: 1937-4771. URL: http://dl.acm. org/
citation.cfm?id=3015220.3015257.

R. Zhi, M. Chi, T. Barnes, and T. Price. “Evaluating the Effectiveness of Parsons
Problems for Block-based Programming”. In: July 2019, pp. 51-59. 1SBN: 978-1-4503-
6185-9. DOI: 10.1145/3291279.3339419.


https://doi.org/10.1145/3328778.3372548
https://doi.org/10.1145/3328778.3372548
https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799
https://doi.org/10.1006/imms.1993.1084
https://doi.org/10.1006/imms.1993.1084
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
http://dl.acm.org/citation.cfm?id=3015220.3015257
http://dl.acm.org/citation.cfm?id=3015220.3015257
https://doi.org/10.1145/3291279.3339419

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of this Dissertation
	Statement of Prior Publication

	Design Goals for Exercises that Teach Patterns
	Design Goals
	Provide Opportunity to Practice
	Scaffold Vocabulary
	Scaffold Process
	Guide Students to One Solution
	Present Examples Efficiently

	Exploring Specific Exercises
	Code Tracing
	Code Writing
	Parsons Problems
	Faded Parsons Problems
	Subgoal Decomposition
	Data Flow

	Discussion

	Taking Parsons Problems Beyond CS2
	Methodology
	Weeks 1 and 4: Pre-/Post-Test
	Weeks 2 and 3: Practice

	Results
	Limitations
	Efficiency of Parsons Problems

	Discussion

	Exploring Challenging Variations of Parsons Problems
	Introduction
	Related Work
	Implementing Blank-Variable Parsons
	Study Design
	Study Materials
	Procedure

	Results
	RQ1: Varying Learning Objectives
	RQ2: Difficulty of Interfaces
	RQ3: Short-Term Coding Mastery
	RQ4: Student Affinity

	Discussion
	Observations/Opportunities
	Limitations
	Future Work

	Conclusion

	Improving Instruction of Programming Patterns with Faded Parsons Problems
	Introduction
	Related Work
	Programming Patterns
	User Interfaces for Program Exercises
	Parsons Problems

	Programming Patterns
	Examples of Programming Patterns
	Programming Patterns in Code

	User Interface For Programming Exercise Comparison
	Evaluation
	Study Environment and Participants
	Method for Constructing Faded Parsons Problems
	Study Description

	Results
	Statistical Measures
	Data Cleaning
	Pattern Acquisition
	General Efficacy
	Student Perception of Faded Parsons Problems
	Synthesis Of Results

	Limitations and Future Work
	Conclusion

	A Design Framework for Creating Reconstruction Exercises that Teach Software Architecture Patterns
	Introduction
	Related Work
	Problem Decomposition
	Programming Patterns

	Design Goals: Reconstruct Many Intentionally-Designed Solutions
	Construct: Provide Opportunity to Practice
	Reconstruct: Scaffold Vocabulary and Details
	Reconstruct: Scaffold Process
	Intentionally-Designed Solutions: Guide Students to One Solution
	Many solutions: Present Examples Efficiently

	Designing New Exercises
	Exercise 1: Subgoal Decomposition
	Exercise 2: Data Flow
	Feedback Mechanism
	Creating Content

	Evaluation
	Results
	Exercise Efficacy
	Revisiting the Design Goals
	Exercise Improvements

	Limitations and Future Work
	Conclusion

	Conclusion
	Bibliography



