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A Machine Learning Model for Predicting Mortality
within 90 Days of Dialysis Initiation
Summer Rankin ,1 Lucy Han ,1 Rebecca Scherzer,2 Susan Tenney ,1 Matthew Keating,1 Kimberly Genberg,1

Matthew Rahn,3 Kenneth Wilkins,4 Michael Shlipak,2 and Michelle Estrella 2

Key Points
� This paper presents an eXtreme Gradient Boosting (XGBoost) model that predicted mortality in the first 90 days

after dialysis initiation using data from the United States Renal Data System.
� Such a model could facilitate patient-clinician shared decision making on whether to initiate dialysis or pursue

medical management.
� The XGBoost models discriminated mortality risk in both the nonimputed (c50.826) and imputed (c50.827)

models.

Abstract
Background The first 90 days after dialysis initiation are associated with high morbidity and mortality
in end-stage kidney disease (ESKD) patients. A machine learning–based tool for predicting mortality could
inform patient-clinician shared decision making on whether to initiate dialysis or pursue medical management.
We used the eXtreme Gradient Boosting (XGBoost) algorithm to predict mortality in the first 90 days after
dialysis initiation in a nationally representative population from the United States Renal Data System.

Methods A cohort of adults initiating dialysis between 2008–2017 were studied for outcome of death within
90 days of dialysis initiation. The study dataset included 188 candidate predictors prognostic of early mortality
that were known on or before the first day of dialysis and was partitioned into training (70%) and testing (30%)
subsets. XGBoost modeling used a complete-case set and a dataset obtained frommultiple imputation. Model
performance was evaluated by c-statistics overall and stratified by subgroups of age, sex, race, and dialysis
modality.

Results The analysis included 1,150,195 patients with ESKD, of whom 86,083 (8%) died in the first 90 days after
dialysis initiation. The XGBoost models discriminated mortality risk in the nonimputed (c50.826, 95% CI, 0.823
to 0.828) and imputed (c50.827, 95% CI, 0.823 to 0.827) models and performed well across nearly every subgroup
(race, age, sex, and dialysis modality) evaluated (c.0.75). Across predicted risk thresholds of 10%–50%, higher
risk thresholds showed declining sensitivity (0.69–0.04) with improving specificity (0.79–0.99); similarly, positive
likelihood ratio was highest at the 40% threshold, whereas the negative likelihood ratio was lowest at the 10%
threshold. After calibration using isotonic regression, the model accurately estimated the probability of mortality
across all ranges of predicted risk.

Conclusions The XGBoost-based model developed in this study discriminated risk of early mortality after
dialysis initiation with excellent calibration and performed well across key subgroups.

KIDNEY360 3: 1556–1565, 2022. doi: https://doi.org/10.34067/KID.0007012021

Introduction
ESKD is associated with exceedingly high morbidity
and mortality, especially within the first 90 days of
dialysis initiation (1–3). During this vulnerable period
of transition into dialysis, patients may experience
adverse health events, including vascular access place-
ment, fluid fluctuations that lead to either volume
overload or hypotension, electrolyte derangements
associated with increased risks of arrhythmia, and

loss of residual kidney function. Such events present
risk of further complications, particularly for the
increasing number of patients who are initiating dial-
ysis at an advanced age and have significant comor-
bidities such as diabetes, hypertension, and heart
failure (4).
In light of these risks, there is a growing call to con-

sider conservative medical management for ESKD
during clinical decision making in multimorbid
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patients (5–7). However, qualitative studies have shown
that a patient’s decision surrounding dialysis initiation
relies on their intuition and the potential effect of treatment
on their quality of life and survival (8,9). Conversely, clini-
cians tend to make their decisions largely on the basis of
patient-related clinical factors (age, comorbidities, etc.) and
default to chronic dialysis as the only option for manage-
ment of ESKD (5). A predictive tool to estimate patient risk
of early mortality after the initiation of dialysis could inform
patient-clinician shared decision making on whether to initi-
ate dialysis or to pursue medical management.
Although prediction models have been developed to

estimate the probability of mortality after dialysis initiation,
most have largely used conventional regression methods
(10–19). Despite the ability of contemporary methods such
as machine learning (ML) to integrate a rich array of clini-
cally available data with the potential for broad generaliz-
ability, to our knowledge, few prior studies have leveraged
ML to predict early mortality after dialysis initiation
(20–22). This study sought to build an eXtreme Gradient
Boosting (23) (XGBoost)-based model using data from the
United States Renal Data System (USRDS) to: (1) optimize
mortality prediction within the first 90 days of dialysis initi-
ation in a nationally representative population, and (2) cali-
brate the model such that predicted mortality likelihoods
are reasonably unbiased across the risk spectrum as
defined below in the section on ML.

Materials and Methods
Study Design
All adults aged $18 years who initiated chronic hemodi-

alysis or peritoneal dialysis between January 1, 2008, and
December 31, 2017, were retrospectively identified from the
USRDS national data registry maintained by the National
Institute of Diabetes and Digestive and Kidney Diseases
and containing data from Centers for Medicare & Medicaid
Services, the United Network for Organ Sharing, and the
ESKD networks. This study was approved by the University
of California San Francisco Institutional Review Board and
adhered to the Declaration of Helsinki. The selection criteria
utilized for the USRDS tables (Supplemental Table 1)—
PATIENTS, MEDEVID, pre-ESKD Medicare Claims, Kidney
Transplant—resulted in a study cohort of 1,150,195 patients.
The overall study design is shown in Figure 1.

Outcome Measure
The primary study outcome was all-cause mortality

within 90 days of dialysis initiation. The date of death was
ascertained from the USRDS PATIENT table. Outcome
data were available for all patients in the selected study
cohort through the entire 90-day assessment period.

Predictors
The study dataset was prepared using variables from the

USRDS data that had clinical relevance and prognostic
value for mortality in the first 90 days after dialysis initia-
tion. To produce a high-quality study dataset for training a
model, the following criteria were applied (Supplemental
Table 2): cleaning and correctly labeling candidate predic-
tors, structuring and curating to ensure that missing values

and outliers were handled appropriately, splitting using
random sampling into training (70%) and testing (30%)
datasets, and preparing a data dictionary. The predictors in
the study were limited to information that was known on
or before the first day of dialysis. The study dataset con-
sisted of 188 predictors, with one record per patient. Each
variable used for building the model was assessed to deter-
mine if it should be excluded as an operational factor (24)
(i.e., a nuisance variable not related to overall health but
present in the data, such as the day of a physician’s signa-
ture, etc.). Variables that were true operational factors were
removed from the dataset.
Two types of predictors were included in the study data-

set: (1) predictors taken directly from the USRDS tables
(e.g., age, race, hemoglobin) and (2) predictors derived
from variables in the USRDS data (e.g., time on kidney
transplant waitlist derived by subtracting dialysis date
from the kidney transplant list date). The full list of predic-
tors, including derivation methods, are shown in the Data
Dictionary (Supplemental Tables 3 and 4).

Data Preprocessing
Clinical and laboratory variables that had missing values

for .40% of patients were not included in the full list of
predictors. For clinical and laboratory variables from the
MEDEVID table used in the study dataset, M. Estrella and
M. Shlipak defined the upper and lower bounds such that
any values outside these bounds were considered clinically
impossible (Supplemental Table 5); these outliers were
set as missing values in the study dataset. Each record
was additionally supplemented with distinct indicators
of whether each such value was deemed an outlier
(Supplemental Table 4, rows 8–14). The proportion of data
considered to be outliers ranged from 0.5% to 2% of values
across the clinical variables. Two datasets were then pre-
pared for modeling: a nonimputed and a multiply imputed
dataset. Within the nonimputed dataset, missing data were
handled natively using XGBoost, as described below. To
maximize reproducibility of the model, both the nonim-
puted and imputed study data were partitioned randomly
into ten stratified nonoverlapping subsets (later referred to
as subset 0, subset 1, … , subset 9). These ten partitions
were further split into training subsets (70% of the whole
study dataset, n5804,890) and testing subsets (30% of
whole study dataset, n5345,305) to allow sufficient data
both to train and to robustly evaluate the XGBoost models.
Partitioning the study dataset into ten subsets allowed for

more efficiency in handling the missing values. The clinical
and laboratory variables in the dataset were multiply
imputed for each subset and included as predictors for the
dataset used in the XGBoost imputed model (25). Imputed
variables included height, weight, body mass index, serum
creatinine, serum albumin, hemoglobin, and GFR estimated
by the CKD-EPI equation (eGFR) (26). The missing values in
these clinical and laboratory variables were imputed using
multiple imputations by chained equations (27) (MICE) to
create five imputations to target 95% relative efficiency.

Statistical Analyses
Cross-tabulation was used to examine unadjusted differ-

ences in baseline characteristics, stratified by train/test
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split. Categorical variables are summarized as frequencies
and proportions, and continuous variables are summarized
as medians and interquartile ranges or means6SDs, as
appropriate.

Machine Learning
The XGBoost algorithm was selected to develop the pre-

diction model for several reasons. First, XGBoost is a super-
vised learning model of gradient boosted decision trees that
is widely used in classification tasks because it uses standard
classification benchmarks, returns predictor ranking, and is
scalable to large datasets due to its ability to parallel process.
Second, it can be applied to a wide array of use cases, data
types, and desired prediction outcomes. Third, it has shown
superior performance relative to other ML models in previ-
ous studies of kidney disease (28,29). Fourth, it handles
noninformatively missing values natively using a sparsity-
aware split finding algorithm, which allows for the compari-
son of models with or without the use of imputed data.
Two XGBoost models were developed in this study: one

on the nonimputed study dataset (missing values were
handled natively by the XGBoost model) and the other on

the imputed dataset. Before modeling, all categorical varia-
bles with more than two factors were one-hot encoded (e.g.,
turning categorical variable factors into separate binary
variables) in both datasets (see example in Figure 2) (30).
The training data were used to tune model settings (i.e.,
hyperparameters), which were optimized on the area
under the receiver operating characteristic curve (AUC
ROC or c-statistic) using Bayesian optimization and five-
fold cross-validation. The range of hyperparameters that
were tuned are shown in Supplemental Table 6. The final
model was trained on the 70% training subset using the
best hyperparameters from the five-fold cross-validation.
For the imputed model, an XGBoost model was run for
each imputed dataset. The resulting estimates (between 0
and 1) were combined by averaging the model prediction
scores per patient across the five imputations. Calibration
was performed using a nonparametric isotonic regressor
(31) trained on 66% of the testing dataset (subsets 7 and 8,
n5230,482) and evaluated on the remaining 33% of the
testing dataset (subset 9, n5114,823). The final model was
evaluated on the testing dataset using multiple metrics: (1)
c-statistics; (2) the most influential predictors using gain to
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Figure 1. | Study cohort criteria and analysis approach for predicting mortality within 90 days of dialysis in ESKD patients. Pink, tables
from United States Renal Data System (USRDS) database; green, cohort and dataset creation; yellow, constructed tables; blue, machine
learning methods; white, evaluation. Usrds_id is the identification number for a single patient in the USRDS tables. XGBoost, eXtreme Gra-
dient Boosting.
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reveal the underlying inputs that influence mortality risk;
(3) assessment of model calibration by plotting the
observed versus estimated risk by decile of predicted risk;
(4) sensitivity and specificity at the predicted mortality risk
cut points of 10%, 20%, 30%, 40%, and 50%, given the over-
all population risk of 8%, as candidate thresholds to denote
high risk; and (5) the ability to discriminate risk across sub-
groups on the basis of age, sex, race, and dialysis modality.

Results
Cohort Characteristics
The final study cohort included 1,150,195 patients with

ESKD, of whom 86,083 (8%) died in the first 90 days after
dialysis initiation. Overall, the mean age at initiation of dialy-
sis was 63years, 27% were Black, 57% were men, and 98%
had at least one comorbidity. Baseline demographic and clin-
ical characteristics stratified by train/test split are presented
in Table 1. The training and the test cohorts had comparable
characteristics, suggesting that the train/test split was valid.

XGBoost Model Results
Discrimination of the XGBoost models was high and

similar regardless of whether the missing data were
handed natively (c50.826, 95% CI, 0.823 to 0.828) or multi-
ply imputed (c50.827, 95% CI, 0.823 to 0.827), as shown in
Figure 3. The top 20 predictors from the XGBoost nonim-
puted model on the basis of gain are shown in Table 2. The
top 5 predictors by contribution to the model were age,
total hospital days, time between first and last hospitaliza-
tion, missing information on exogenous erythropoietin
(EPO), and presence of a maturing arteriovenous fistula.
Substantial overlap in selected predictors and their predic-
tion rankings was also observed in the XGBoost model fit
on the multiply imputed data (Supplemental Table 7). As a
sensitivity analysis, we ran more limited models using only
the ten most influential predictors on the basis of the fea-
ture importance analysis. These more limited models
yielded a c-statistic of 0.78 (95% CI, 0.782 to 0.787) for the
nonimputed model and 0.769 (95% CI, 0.765–0.77) for the
imputed. Calibration of the model predictions using iso-
tonic regression (31) showed close agreement between
observed and expected event rates across the full range of
predicted risk for the model fit on the nonimputed dataset
(Figure 4) and on the imputed dataset (Supplemental
Figure 1). Supplemental Table 8 and Table 3 and show the
performance across predicted risk thresholds of 10%
through 50% of the nonimputed and imputed model,

respectively, assessed that best illustrates the trade-offs
between the following metrics: sensitivity, specificity,
positive likelihood ratio, and negative likelihood ratio.
With increasing risk thresholds, sensitivity progressively
decreased, whereas specificity remained high and
showed slight improvement. The positive likelihood
ratio was highest at the 40% threshold, whereas the nega-
tive likelihood ratio was lowest at the 10% threshold.
Discrimination was compared across each race, age, sex,

and dialysis modality categories, as shown in Table 4. Dis-
crimination was sufficient (c.0.75) across all subgroups
that were considered.

Discussion
The first 90 days after dialysis are a high-risk period, and

yet existing prediction tools lack the ability to identify
patients at high risk for early mortality. To address this
gap, we constructed a risk prediction model using XGBoost
on the USRDS data. The XGBoost model developed in this
study achieved sufficient discrimination (c.0.75) for
predicting mortality within the first 90 days of dialysis.
Furthermore, the model was well calibrated, with little dif-
ference between the predicted and observed event rates
across the risk spectrum.
The ability of our model to distinguish risk for early mor-

tality among incident dialysis patients is significantly
improved compared with previously developed risk scores
for near-term mortality (11–13). The native XGBoost model
with the nonimputed data and the model with imputed
data both achieved an overall c-statistic of 0.826 (95% CI,
0.824 to 0.828) and 0.827 (95% CI, 0.823 to 0.827), respec-
tively. In contrast, a prior study by Thamer and colleagues
using logistic regression focused on predicting 3- and
6-month mortality among incident dialysis patients aged
$65 years derived from the USRDS registry achieved a
c-statistic of 0.69–0.72 (10). Other studies that used tradi-
tional regression modeling aimed to predict 6-month or
1-year mortality achieved similar discrimination as
reported by Thamer et al. To our knowledge, only one prior
study has used an ML-based approach to predict mortality
within the first 90 days of dialysis initiation. Using a ran-
dom forest approach, Akbilgic et al. obtained an overall c-
statistic of 0.75 for prediction of 90-day mortality. The
model performed well across most subgroups and had
slightly better performance compared with Cox regression
models (20). Although Akbilgic et al. utilized electronic
health record data, which allows for a richer set of
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Figure 2. | An example of a categorical variable before and after one-hot encoding. An example categorical variable (maturing arteriove-
nous fistula [AVF]) has four categories for four fictional patients (left table). The table on the right shows the resulting four variables after
one-hot encoding.
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Table 1. Demographic and clinical characteristics of the training and testing cohorts

Characteristics Training Data (N5804,890) Testing Data (N5345,305)

Demographic characteristics
Age, yr 63615 63615
Race

White 537,460 (67) 230,577 (67)
Black 218,237 (27) 93,560 (27)
American Indian or Alaska Native 7483 (0.9) 3225 (0.9)
Asian 30,030 (4) 12,965 (4)
Native Hawaiian or Pacific Islander 8810 (1) 3776 (1)
Other or multiracial 2088 (0.3) 881 (0.3)
Unknown 782 (0.1) 321 (0.1)

Sexa

Men 463,183 (58) 198,347 (57)
Women 341,702 (42) 146,957 (43)

Comorbid characteristics
Diabetes 452,424 (56) 193,697 (56)
Hypertension 688,465 (86) 295,806 (86)
Cardiovascular disease 283,715 (35) 121,685 (35)
Heart failure 240,728 (30) 102,863 (30)
Peripheral arterial disease 93,329 (12) 40,258 (12)

Underlying cause of ESKD
Diabetes 372,162 (46) 159,048 (46)
Hypertension 234,353 (29) 100,873 (29)
Glomerulonephritis 59,758 (7) 25,856 (7)
Other 138,617 (17) 59,528 (17)

Laboratory characteristics
Height, cm 168612 168612
Height missing 16,286 (2) 6935 (2)
Weight, kg 84625 84625
Weight missing 14,340 (2) 6120 (2)
BMI, kg/m2 3068 3068
BMI missing 19,939 (2) 8500 (2)
Serum albumin, g/dl 3.260.7 3.260.7
Serum albumin missing 246,862 (30) 105,235 (30)
Hemoglobin, g/dl 9.661.64 9.661.6
Hemoglobin missing 122,654 (15) 52,018 (15)
Serum creatinine, mg/dl 6.463.5 6.463.52
Serum creatinine missing 14,762 (2) 6321 (2)
eGFR 1065 1065
eGFR missing 23,078 (3) 9910 (3)

Prior nephrology care characteristics
Has maturing arteriovenous fistula 121,294 (15) 52,067 (15%)
Has maturing arteriovenous graft 16,645 (2) 6,932 (2%)
Received exogenous erythropoietin 140,046 (17) 59,882 (17%)
Under care of kidney dietician 60,946 (8) 26,370 (8%)
Had prior nephrology care 478,881 (60) 205,556 (60%)

Medicare pre-ESKD claims characteristics
IP claimsb 3 (2, 6) 3 (2, 6)
IP claims 417,523 (52) 178,968 (52)
OP claimsb 16 (6, 39) 17 (6, 39)
OP claims 444,874 (55) 190,395 (55)
HS claimsb 2 (1, 4) 2 (1, 4)
Missing HS claims 796,123 (99) 341,590 (99)
HH claimsb 2 (1, 5) 2 (1, 5)
Missing HH claims 647,880 (80) 278,043 (81)
SN claimsb 3 (2, 5) 3 (2, 5)
Missing SN claims 706,475 (88) 303,303 (88)

Results displayed either as mean6SD or n (%) unless otherwise indicated. eGFR calculated using the CKD-EPI (Chronic Kidney
Disease Epidemiology Collaboration) equation. IP, inpatient; OP, outpatient; HS, hospice; HH, home health; SN, skilled nursing.
aMissing values for sex are not reported as the aggregate count is under 11.
bResults displayed as median (Q1, Q3) per patient.
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predialysis predictors, the study population was limited to
veterans, who are predominantly men and older. The pre-
sent study relied on USRDS data, which enabled inclusion
of a broader study population representative of the US
dialysis population. Aside from inherent differences in
how traditional regression methods and ML-based meth-
ods incorporate candidate predictors, differences in model
performance between our study and prior studies may also
be due to differences in the study populations, mortality
incidence across different study periods and clinical set-
tings, and the spectrum of candidate predictors.
In this study, the XGBoost model identified the predic-

tors most influential in mortality risk in the early phase
after initiating dialysis. The majority of these variables
were related to the patient’s health status, including sev-
eral features that indicated a greater likelihood of frailty
(32): older age, frequent hospitalizations, institutionaliza-
tion or nursing home occupancy, inability to ambulate,
and a classification of being unfit for kidney transplanta-
tion. Laboratory indicators of health status included serum
albumin, creatinine concentrations, and eGFR. Other pre-
dictors selected by the model are indicators of the length
of time before ESKD and the quality of care delivered:
arteriovenous fistula status, unknown receipt of
erythropoiesis-stimulating agents, unknown cause of
ESKD, and nutritionist care. Although it is reassuring that
most of these predictors have face validity as determinants
of early mortality risk, causality is not a requirement for
inclusion into an ML prediction algorithm. More impor-
tant are the availability of the predictors to clinicians and
other researchers, the model’s generalizability across
groups of patients, and its ability to distinguish wide
ranges of risk. Almost 200 variables from USRDS were
included in the initial model; however, many of these vari-
ables may not be available to clinicians. As a sensitivity
analysis, we restricted the model to the ten most influential
features, which yielded a lower c-statistic compared with
the full model (c50.78 versus c50.83). The slight decrease
in performance when using only the ten most influential
predictors illustrates the importance of these features for

the prediction, even when many other features are
available.
Early mortality prediction is challenging among patients

newly diagnosed with ESKD because the overall mortality
risk is relatively low (only 8% in the USRDS cohort); risk
prediction is easiest for situations with a balance of cases
and noncases. To account for the class imbalance, the posi-
tive class (died in the first 90 days) was weighted more
heavily in the models, which applies a stronger penalty to
the model when the minority class is incorrectly classified
and a weaker penalty when the majority class is incorrectly
classified. As shown by the XGBoost model results, there
was no obvious threshold to balance the trade-offs of sensi-
tivity and specificity for predicting mortality, although our
model was well calibrated across the broad range of risks
(as shown in Figure 4). At a predicted risk threshold of 10%,
sensitivity was 69% and specificity was approximately 79%;
in contrast, at a predicted risk threshold of 50%, specificity
exceeded 99% but sensitivity was only 4%. This reflects the
challenge of risk prediction in the ambulatory setting in clin-
ical medicine; models are often excellent at placing patients
into appropriate risk groups but are much weaker at identi-
fying specific individual patient who will experience an
adverse event, such as death, in the first 90 days of dialysis.
A strength of this study is that it uses data from the

USRDS, which represents the largest and most representa-
tive population of ESKD patients. The USRDS offers nearly
complete inclusion of ESKD patients within the United
States and enables linkage to Medicare claims. This large
sample size provides robust assessment of risk and will
ensure reproducibility and generalizability of the results
generated in this study. Limitations of USRDS include lack
of specific prognostic data and high rates of missing data
for predialysis features and other predictors of interest,
including laboratory data (e.g., urine biomarkers, phospho-
rous, and calcium), comorbidities, and cause of death (33).
An additional strength of this study is the XGBoost algo-
rithm—a flexible, interpretable ML method, which can
natively handle noninformatively missing data while offer-
ing high predictive accuracy. Using XGBoost, we were able
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to create a model with high specificity, discrimination,
and calibration while identifying risk factors of clinical sig-
nificance. Limitations of XGBoost are that it is computation-
ally intensive when using a large dataset (more than one
million rows) and that multiple hyperparameters must be
tuned in order to achieve good model fit. Further, in con-
trast to traditional regression methods, XGBoost does not

provide interpretable regression coefficients and confi-
dence intervals, especially as there are many parameters
that the model learns from the training data.

In summary, the XGBoost-based model developed in this
study was able to predict risk of early mortality after dialysis
initiation with high accuracy and with strong discrimina-
tion across key subgroups. Such an ML-based approach

Table 2. Top 20 predictors of mortality within 90 days of dialysis initiation and their ranking of importance for the nonimputed
XGBoost model as measured through gain (the relative contribution of the predictor to the model)

Rank Feature Gain
Died in 90 Days,

N586,083
Survived in 90 Days,

N51,064,112

1 Age, yr 0.1454 71612 62614
2 Total inpatient hospital days 0.0743 40649 29644
3 Duration of time between first and most recent

hospitalizations
0.0502 5626533 4876512

4 Missing information on EPO receipt (as compared with
having information)

0.0371 20,744 (24) 270,825 (25)

5 Has maturing AVF 0.0356 8386 (10) 164,975 (15)
6 Serum albumin 0.0352 2.860.6 3.160.7
7 Institutionalized 0.0271 18,895 (21) 77,104 (7)
8 Serum creatinine 0.0251 5.262.8 6.463.5
9 Patient documented to be medically unfit for

transplantation
0.0241 14,194 (16) 55,713 (5)

10 Underlying cause of ESKD categorized as other 0.0219 15,717 (18) 98,182 (9)
11 Number of days between first and last claim 0.0213 9166594 8586588
12 Missing information on whether a patient was under the

care of kidney dietician (as compared with having
information)

0.0198 4034 (4) 70,956 (6)

13 GFR-EPI 0.0192 1165 964
14 Cause of ESKD 0.0190 86,083 1,064,112
15 Nursing home occupant 0.0174 17,124 (20) 65,410 (6)
16 Does not have maturing AVF 0.0156 67,416 (78) 629,017 (59)
17 Inability to ambulate 0.0142 15,759 (18) 64,544 (6)
18 Patient documented to be unsuitable for kidney

transplant due to age
0.0124 7893 (9) 42,387 (4)

19 Duration of time between first and last outpatient claim 0.0122 8916592 8486583
20 Has maturing AVG 0.0115 1607 (2) 21,970 (2)

Results displayed either as mean6SD or n (%). EPO, exogenous erythropoietin; AVF, arteriovenous fistula; GFR-EPI, GFR
calculated using the Chronic Kidney Disease Epidemiology Collaboration equation; AVG, arteriovenous graft; XGBoost, eXtreme
Gradient Boosting.
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could facilitate shared decision making among patients and
clinicians facing the complex decision of dialysis initiation
versus conservative medical management of ESKD. To
optimize the potential utility of ML-based algorithms in
this clinical context, future efforts should consider assessing
a broader set of options for ESKD management using addi-
tional pre-ESKD data sources that complement current
USRDS data, including temporary trial of dialysis and pal-
liative dialysis, and capturing additional patient-centered
predictors.
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Table 3. Predicted risk of mortality with 90 days of dialysis initiation at 10%, 20%, 30%, 40%, and 50% thresholds for the
XGBoost model on the nonimputed study dataset

Model
Threshold Sensitivity Specificity

Likelihood
Ratio (1)

Likelihood
Ratio (–)

True
Positive

False
Positive

True
Negative

False
Negative

0.1 0.69 0.79 3.39 0.38 5947 21,712 84,546 2618
0.2 0.39 0.93 5.82 0.64 3394 7229 99,029 5171
0.3 0.19 0.97 9.22 0.81 1709 2299 103,959 6856
0.4 0.12 0.99 12.85 0.88 1036 1000 105,258 7529
0.5 0.04 0.99 12.04 0.95 397 234 106,024 8168

True positives, number of patients the model correctly predicted died in 90 days; false positives, number of patients the model
incorrectly predicted died in 90 days; true negatives, number of patients the model correctly predicted survived in 90 days; false
negatives, number of patients the model incorrectly predicted survived the first 90 days; sensitivity, true positives/(true
positives1false negatives); specificity, true negatives/(true negatives1false positives); likelihood ratio (positive class), sensitivity/
(1–specificity); likelihood ratio (negative class). (1–sensitivity)/specificity. XGBoost, eXtreme Gradient Boosting.

Table 4. Comparison of discrimination by subgroup for the
XGBoost nonimputed model

Category
Area Under
the Curve

Race
White (N576,751) 0.819
Black (N531,088) 0.826
American Indian (N51042) 0.849
Asian (N54308) 0.847
Native Hawaiian or Pacific Islander (N51241) 0.840
Other or multiracial (N5295) 0.822
Unknown (N598) 0.822

Age group, yr
18–25 (N51490) 0.799
26–35 (N54269) 0.823
36–45 (N58693) 0.838
46–55 (N517,602) 0.818
56–65 (N528,372) 0.795
66–75 (N528,723) 0.789
76–85 (N520,635) 0.770
861 (N55039) 0.753

Sex
Men (N566,033) 0.831
Women (N548,769) 0.819

Dialysis modality
Hemodialysis (N5103,242) 0.818
Continuous cycling peritoneal dialysis

(N55016)
0.822

Continuous ambulatory peritoneal dialysis
(N54440)

0.858

Other (N531) 0.933
NA (N52094) 0.778
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