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Abstract

Background—There is widespread concern about the use of body mass index (BMI) to define 

obesity status in postmenopausal women because it may not accurately represent an individual’s 

true obesity status. The objective of the present study is to examine and adjust for exposure 

misclassification bias from using an indirect measure of obesity (BMI) compared with a direct 

measure of obesity (percent body fat).
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Methods—We used data from postmenopausal non-Hispanic black and non-Hispanic white 

women in the Women’s Health Initiative (WHI; n=126,459). Within the WHI, a sample of 11,018 

women were invited to participate in a sub-study involving dual-energy x-ray absorptiometry 

(DXA) scans. We examined indices of validity comparing BMI-defined obesity (≥30kg/m2) with 

obesity defined by percent body fat. We then used probabilistic bias analysis models stratified by 

age and race to explore the effect of exposure misclassification on the obesity-mortality 

relationship.

Results—Validation analyses highlight that using a BMI cutpoint of 30 kg/m2 to define obesity 

in postmenopausal women is associated with poor validity. There were notable differences in 

sensitivity by age and race. Results from the stratified bias analysis demonstrated that failing to 

adjust for exposure misclassification bias results in attenuated estimates of the obesity–mortality 

relationship. For example, in non-Hispanic white women age 50–59, the conventional risk 

difference was 0.017 (95% CI 0.01, 0.023) and the bias-adjusted risk difference was 0.035 (95% 

SI 0.028, 0.043).

Conclusions—These results demonstrate the importance of using quantitative bias analysis 

techniques to account for non-differential exposure misclassification of BMI-defined obesity.

Keywords

bias analysis; obesity; body mass index

Introduction

Body mass index (BMI) is the most frequently used metric to categorize individuals 

according to their body weight status.1–3 Despite the widespread use of BMI to define 

obesity in clinical settings and epidemiologic research, the limitations of using it as a 

measure of obesity status are well documented.4–6 One concern about the use of BMI is that 

it may not accurately represent an individual’s true obesity status, resulting in exposure 

misclassification. In this manuscript, we aim to explore the potential for exposure 

misclassification bias from using BMI to define obesity status in studies of the obesity-

mortality relationship in postmenopausal women.

BMI-related misclassification may be amplified in postmenopausal women because after 

menopause, it is common for women to experience changes in body composition, including 

increased total body fat and an accumulation of abdominal fat, as well as decreased muscle 

and bone mass and height loss.6–10 Considering the known physical changes that occur as 

women age, it is unlikely that a BMI value of 30 kg/m2 corresponds to the same amount of 

body fat in pre- and postmenopausal women. The extent to which BMI-related 

misclassification of obesity status influences the evaluation of hypotheses pertaining to 

obesity and health outcomes in postmenopausal women is unclear. Additionally, previous 

research has demonstrated that race is an important determinant of body composition and 

obesity.11,12 The validity of BMI-defined obesity may differ across racial groups as the 

relationship between BMI and percent body fat, muscle mass, fat distribution and bone 

mineral density differ among black and white women.11,12 White women who are obese are 

known to have greater body fat than obese black women at a given BMI value.11 
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Considering the known age-related and racial differences in body composition in 

postmenopausal women, in the present manuscript we stratified all analyses by age and race.

In this paper we describe differences in the validity of BMI-defined obesity status by age 

and race and quantify the impact of exposure misclassification bias resulting from using 

BMI-defined obesity as a proxy for true adiposity status in postmenopausal women. The 

manuscript includes results from two analyses: (1) a validation study exploring the 

sensitivity and specificity of obesity classification defined by BMI compared with percent 

body fat measured using dual energy x-ray absorptiometry (DXA) scan, and (2) a bias 

analysis to investigate the impact of BMI-related misclassification on the association 

between obesity and all-cause mortality in postmenopausal women.

Methods

Study Design and Participants

Between 1993 and 1998, the Women’s Health Initiative (WHI) enrolled 161,808 

postmenopausal women aged 50–79 at 40 clinical centers across the United States.13–15 The 

WHI is a longitudinal study designed to examine causes of morbidity and mortality in 

postmenopausal women. It comprises an observational study and clinical trial and included 

comprehensive questionnaires on medical history, demographic information, and lifestyle 

behaviors as well as clinical visits, collection of biologic specimens, and in-person 

interviews.16 To increase the generalizability of study results, the inclusion criteria for the 

WHI were broad.16 Women were only excluded if they had a medical condition predictive of 

less than 3 years survival or a condition that interfered with adherence and participation 

(e.g., dementia), or if they were actively participating in another clinical trial.16 The study 

protocol was reviewed by institutional review boards at each of the clinical centers as well as 

the WHI Coordinating Center.17

All women recruited to participate in the WHI at three of the clinical centers (Pittsburgh, 

Birmingham, and Tucson-Phoenix) consented to have DXA scans as part of their study visits 

at baseline and at years 3,6, and 9.8 There was no additional consent form required for DXA 

participants; this procedure reduced the likelihood of differential participation in the sub-

study. Participants from these three centers form the WHI DXA sub-cohort (Pittsburgh 

n=3590; Birmingham n=3665; Tucson-Phoenix n=3765). Of the women screened at each of 

the three DXA centers, 90% had a DXA scan. Reasons for ineligibility for DXA included 

predefined criteria, such as bilateral hip replacement (prosthesis). The age distribution of 

participants in the DXA sub-cohort is similar to the distribution in the larger WHI cohort. 

The DXA sites were chosen because they were expected to have a good representation of 

participants from diverse race/ethnicity groups.18 Body composition, site-specific and 

whole-body bone density were measured through a whole body DXA scan using a Hologic 

QDR-4500A densitometer (Hologic Inc, Bedford MA). DXA scans were performed 

according to standard protocol by trained technicians.19

Data from the WHI DXA sub-cohort served as an internal validation study. All participants 

at the three selected clinical sites were invited to participate in the sub-cohort; inclusion was 

not dependent on any other characteristics and all women had BMI measures and DXA scan 

Banack et al. Page 3

Epidemiology. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



completed at the same study visit.8 Only women in the DXA sub-cohort were included in 

the analysis for the validation study (n=11,018). For the purpose of the bias analysis, data 

from all non-Hispanic white and non-Hispanic black women in the WHI at baseline was 

used (n=126,459). Women were excluded if they had a missing BMI value at baseline 

(n=1,076). Information about the breakdown of participants from each cohort can be found 

in eAppendix 1 as well as additional information on age- and race- specific participation 

rates in the DXA subcohort.

Measures

In the present analysis, obesity is defined as BMI ≥ 30kg/m2.20 The height and weight values 

used to calculate BMI were measured by trained technicians using a calibrated scale and 

fixed stadiometer. Body fat percentage was calculated as total body fat mass divided by total 

mass multiplied by 100.21,22 Validation studies and review articles have indicated that body 

fat percent from DXA scan is an appropriate gold standard for the measurement of obesity; 

however, there is a lack of consensus about what threshold value should be used to define 

obesity.19,23,24 Based on a review of the substantive literature on body composition in older 

women, in this analysis, women who had a body fat percent greater than 40% were 

considered obese.24–27

The outcome variable in the bias analysis was all-cause mortality. The present analysis 

includes mortality follow-up through September 2016. The WHI coordinating center collects 

information on vital status through mail and telephone contacts with participants or 

participants’ relatives, medical record assessments, obtained death certificates, and the 

National Death Index.7

Information on covariates was ascertained from study questionnaires at baseline and 

throughout follow-up. We identified predictors of misclassification from a search of the 

substantive literature on obesity, body composition, and mortality, including cigarette 

smoking status (never/former/current), total recreational physical activity level (metabolic 

equivalent of task (MET) hrs/week), hormone therapy use (never/former/current) and 

number of years since menopause. For the bias analysis, we additionally controlled for 

confounding by education, income level, marital status, alcohol consumption, and 

employment status as these are all variables known to affect obesity status and mortality 

risk. All analyses were stratified by race (non-Hispanic white and non-Hispanic black) and 

baseline age (50–59, 60–69, and 70–79).

Statistical Analysis

Stata 14 (College Station, TX) was used for all analyses. Software code is provided in 

eAppendix 2.

Analysis 1: Validation Study

Using baseline data from the WHI DXA sub-cohort, we modeled sensitivity and specificity 

with logistic regression. Sensitivity is the proportion of individuals who are truly obese 

according to DXA measurement of body fat percent (≥ 40%) who are classified as obese 

according to BMI, while specificity is the proportion of individuals who are truly non-obese 
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(body fat < 40%) who are classified as non-obese according to BMI. An advantage of using 

this modeling approach to calculate sensitivity and specificity is that it allows for 

stratification by age and race as well as adjustment for predictors of misclassification. In this 

analysis, obesity defined by BMI is the outcome variable; an individual was assigned Y=1 if 

their BMI ≥ 30 kg/m2 or Y=0 otherwise, and true obesity status is included as a binary 

exposure variable (i.e., X1=1 if BF ≥ 40%; X1=0 otherwise).28 The log odds of the outcome 

is modeled as a linear function of the exposure variable (X1) and a vector of covariates (Z):

logit Pr (Y = 1 ∣ X1, Z)) = β0 + β1X1 + β2Z

The variables in Z were predictors of misclassification: smoking status, hormone therapy 

use, physical activity level, and number of years since menopause. The analysis was 

stratified by age and race, thus a separate model was fit for each strata of non-Hispanic white 

and non-Hispanic black women aged 50–59, 60–69, and 70–79.

Sensitivity is then calculated from the following formula:

Sensitivity = 1
1 + exp[ − (β0 + β1X1 + β2Z)]

And specificity is calculated as:

Specificity = 1 − 1
1 + exp[ − (β0 + β1X1 + β2Z)]

When calculating sensitivity, X1=1 and when calculating specificity, X1=0. The delta 

method was used to estimate 95% confidence intervals for the sensitivity and specificity 

parameters. As a sensitivity analysis, we compared these results to sensitivity and specificity 

values calculated using data from repeated DXA study visits (baseline, years 3,6, and 9; see 

eAppendix 3).28

Analysis 2: Bias Analysis

We used the estimates from the validation study to conduct a stratified probabilistic bias 

analysis with Monte Carlo sampling techniques to adjust for non-differential exposure 

misclassification. The bias analysis was conducted within the previously described age and 

race strata.29 Throughout this manuscript, we use ‘non-differential exposure 

misclassification’ to refer to a systematic error in classification of BMI-defined obesity 

status that is independent of exposure or outcome status.5

This method for bias analysis has been described in detail elsewhere.30,31 The bias analysis 

consists of three parts: (1) modeling the bias parameters, (2) record-level correction for 

exposure misclassification, and (3) estimating effect of obesity on mortality using the bias-

adjusted exposure variable.32 We then compared the results of the bias-adjusted analysis 

with the results of a conventional statistical analysis.
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Modeling Bias Parameters—The sensitivity and specificity values were used to 

calculate positive predictive values (PPV) and negative predictive values (NPV) for each age 

and race strata.31 PPV represents the probability of correct classification, that is, the 

probability that a woman originally classified as obese by BMI was correctly classified. 

NPV is the probability that a woman originally classified as non-obese by BMI was 

correctly classified.

To incorporate binomial error in the sensitivity and specificity values, we used beta 

distributions to model the probability density functions.30,32 The shape of the distribution is 

determined by two parameters: α and β. For both sensitivity and specificity, we started with 

the α and β values calculated from the observed data and adjusted the values (i.e., increasing 

α or β) as required so the mean of the beta distribution (= α/α+ β) accurately reflected the 

predicted sensitivity and specificity values calculated from the multiple logistic regression 

model in the validation data. A separate beta distribution was used to model each of the 

stratum-specific sensitivity and specificity values.

Calculating PPV and NPV takes several steps using the observed data, sensitivity, and 

specificity values (see Figure 1):31 1) use the observed data to calculate the number of 

exposed (E+) and unexposed (E−) individuals at each level of the outcome (D− and D+) for 

each age-race strata (Figure 1a), (2) use the observed data, and the sensitivity and specificity 

values drawn from the beta distributions, to calculate the values for 2×2 table that you would 

expect to see had there been no misclassification (Figure 1b), (3) use the expected values, 

sensitivity, and specificity to calculate the number of expected true positives (TP), true 

negatives (TN), false positive (FP) and false negatives (FN) at each level of the outcome 

(Figure 1c), and (4) calculate the PPV and NPV values for each strata at each level of the 

outcome (Figure 1d). There were 12 PPV and 12 NPV values calculated for non-Hispanic 

black and non-Hispanic white women aged 50–59, 50–69, and 70–79 at each level of the 

outcome. Given the validation data available, it was possible, in theory, to calculate the PPV 

and NPV from the data directly, but the age and race stratified data from the validation study 

were very sparse when further stratified by outcome group (see eAppendix 4). The sparse 

outcome-level data was an obstacle to calculating PPV and NPV directly, as we wanted to 

ensure that we would be able to calculate predictive values with a reasonable level of 

precision to inform the bias analysis.33 Considering this limitation, using the sensitivity and 

specificity to calculate the PPV and NPV is a valid technique to use in the present analysis.
31

Record-level correction for exposure misclassification—The predictive values 

were then applied to each record (observation) in the dataset to simulate whether an 

individual was correctly classified.31 All PPV and NPV values used in the record-level bias 

correction were age and race specific, meaning the probability of correct classification for a 

50–59 year old non-Hispanic white woman may differ from the probability of correct 

classification for a 60–69 year old non-Hispanic black women.

Classified obesity was a dummy variable with 1 indicating obesity and 0 indicating non-

obesity. To model whether an individual observation was correctly or incorrectly classified, 

for each subject in the dataset we conducted a Bernoulli trial with a probability equal to the 
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relevant PPV for those who were classified as obese and 1-NPV for those classified as not 

obese. The result of this trial was used as the bias-adjusted exposure.31,34 Exposure status 

was left unchanged for women who were part of the DXA sub-cohort. Once this 

reclassification process is conducted for each record in the dataset, we have simulated a 

single new, bias-adjusted, dataset.

Estimating the obesity-mortality relationship—Using the bias-adjusted dataset, we 

then used a logistic regression model and marginal standardization to calculate the average 

marginal effects associated with obesity.35,36 The average marginal effect is the change in 

the conditional mean of the outcome per unit change in the exposure, conditional on the 

covariates included in the model. The interpretation of the average marginal effect is similar 

to a risk difference. We used the -margins- command in Stata to estimate the marginal 

standardized risk in the exposed and unexposed participants and then take the difference of 

these means.37,38 We additionally calculated hazard ratios from a discrete time hazards 

regression model so our results are readily comparable with the broader literature on obesity 

and mortality, as this is the most frequently used effect estimate. However, we acknowledge 

that the hazard ratio shares many of the limitations of the odds ratio.39

This entire process (i.e., sampling from the beta distributions for sensitivity and specificity, 

calculating PPV and NPV, reclassifying individual records in the dataset to generate a new 

dataset and then calculating stratified bias-adjusted risk difference) was repeated 80,000 

times to create a distribution of risk differences. The bias-adjusted effect estimate reported is 

the 50th percentile of the distribution for each age and race/ethnicity strata. The 2.5th and 

97.5th percentiles of the distribution provide a 95% simulation interval around the bias 

adjusted estimate that only accounts for systematic error. In order to also account for total 

study error (i.e. systematic and random error), we subtracted the product of the conventional 

standard error and a random normal deviate from each of the bias-adjusted estimates. We 

repeated the same process of 80,000 iterations to calculate the bias-adjusted hazard ratios.

We compared the effect estimates from a conventional analysis, using obesity defined by 

measured BMI as the primary exposure and all-cause mortality as the outcome 

(“conventional results”) with the effect estimates from the bias analysis (“bias-adjusted 

results”).

Results

Participant Demographics

The analytic cohort included data from 126,459 women, 69,690 from the WHI observational 

study and 56,769 from the clinical trial. At baseline, the average age was 63 ± 7.1 years for 

non-Hispanic white women and 61 ± 6.9 years for non-Hispanic black women. The 

prevalence of BMI-defined obesity (BMI ≥30 kg/m2) was 28% for non-Hispanic white 

women, and 50% for non-Hispanic black women. Using a 40% body fat cutpoint to 

determine obesity, 71% of non-Hispanic white and 81% of non-Hispanic black women were 

classified as obese. Table 1 contains additional demographic information on the DXA 

subcohort used in the validation study and total WHI cohort used in the bias analysis.
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Table 2 presents a summary of baseline anthropometric characteristics stratified by race and 

age group. Interesting differences emerged when comparing body weight and body 

composition across groups. In general, there is a pattern of attenuation in these 

characteristics across age groups. Height, body weight, body fat, lean mass, and bone 

density all decrease as women age, regardless of race/ethnicity (see Figure 2). Across all age 

groups, non-Hispanic black women had markedly higher body weight, BMI, body fat, and 

lean mass values than non-Hispanic white women. The difference in mean weight 

comparing non-Hispanic black women to non-Hispanic white women is particularly striking. 

In the youngest age group, on average, non-Hispanic black women weighed 10 kg more than 

non-Hispanic white women.

Results of validation study comparing obesity defined by BMI vs body fat percent

Results comparing sensitivity and specificity of BMI-defined obesity with obesity defined 

by percent body fat are presented in Table 3. The sensitivity of BMI-defined obesity was 

higher in non-Hispanic black women than non-Hispanic white women. Estimates increased 

after accounting for smoking, hormone therapy use, physical activity level, and number of 

years since menopause, all variables known to influence body composition and body weight. 

There was a consistent pattern of declining sensitivity across age strata. In both black and 

white women, the sensitivity of BMI to define obesity was lower in the 70–79 year old 

group than the 50–59 year old group. The magnitude of the age-related difference in crude 

sensitivity values was consistent in both race groups (non-Hispanic white: 35.0–44.7=

−9.7%, non-Hispanic black: 45.6–55.7=−10.1%). However, there was a greater discrepancy 

in the decline of the adjusted sensitivity values. In non-Hispanic white women, adjusted 

sensitivity values were 56.8% (95% CI: 52.9, 60.7) in 50–59 year olds, 49.5% (95% CI: 

45.1, 53.8) in 60–69 year olds and 42.1% (95% CI: 36.2, 48.1) in 70–79 year olds. The 

adjusted sensitivity values in non-Hispanic black women were 73.7% (95% CI:65.5, 82.8) in 

50- to 59-year olds, 59.7% (95% CI: 55.1, 64.3) in 60- to 69- year olds and 52.4% (45.9, 

58.9) in 70- to 79-year olds.

Results of bias analysis investigating impact of BMI-related misclassification on the 
obesity-mortality relationship

Over the follow-up period, there were 21,459 deaths due to all causes (16%) in the total 

cohort. Of those deaths, 19,576 (91%) were among non-Hispanic white women and 1,362 

(6%) among non-Hispanic black women.

The results of the bias analysis are presented in Table 4. After adjusting for both random and 

systematic error, the mortality risk difference is similar in white and black women aged 50–

59 (see Table 4). The bias-adjusted mortality risk difference increased in both non-Hispanic 

white and non-Hispanic black women aged 60–69, to 651 per 10,000 (95% SI: 588, 713) in 

white women and 794 per 10,000 in black women (95% simulation interval [SI]: 352, 1284). 

However, in non-Hispanic white women aged 70–79, the mortality risk of obesity decreased 

to 466 per 10,000 women (95% SI: 278, 654), but a similar decline was not seen in non-

Hispanic black women (779 per 10,000 women; 95% SI: 6, 1571). These results provide 

some evidence of effect modification by age and race. As expected, the 95% simulation 
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intervals (SI) for the bias-adjusted estimates are wider than the 95% confidence intervals for 

the conventional estimates across all age and race groups.

Table 4 also contains conventional and bias-adjusted hazard ratios for the effect of obesity 

on mortality. The results consistently demonstrate that BMI-related non-differential 

misclassification of obesity status produces a substantial bias toward the null, leading to an 

underestimate of obesity-related mortality risk in this sample of post-menopausal women. 

Comparison of the bias-adjusted and conventional results shows that the bias-adjusted 

estimates were greater than conventional estimates across all age categories in both black 

and white women.

Discussion

Using data from a large prospective cohort of postmenopausal women, our results highlight 

differences in the validity of BMI as a measure of true obesity status among postmenopausal 

non-Hispanic white and non-Hispanic black women. Accounting for misclassification of 

obesity status defined by BMI using probabilistic bias analysis yielded results that were 

greater than conventional estimates of obesity defined by BMI. Non-differential exposure 

misclassification of BMI-defined obesity resulted in attenuated estimates of the relationship 

between obesity and mortality.

Descriptive results from the current study provide additional insights into racial variation in 

body composition in post-menopausal women across different age groups. Race and 

ethnicity are known to be important determinants of body composition and obesity.11,12,40 

Non-Hispanic black women had the highest values for all of the components of body weight 

(i.e., fat mass, lean mass, and bone mass) as well as the highest average BMI values at ages 

50 to 79, which is consistent with previous studies.7,12,41 In a study of reproductive aged 

women (ages 16–33 years), Rahman et al., reported a similar pattern of findings: body fat, 

lean mass, and BMI were all higher in black women than white women.11 Further research 

is required to examine the complex relationship between changes in the proportions of each 

of the components of body composition (i.e., fat mass, lean mass and bone density) and BMI 

in older women of different racial groups. At a fixed BMI level, there is great heterogeneity 

in body composition across women of different race and age groups.12 Previous research has 

demonstrated that the proportion of women correctly classified as obese by BMI cutpoints 

decreases as women age.24,25 These findings speak to the importance of stratifying on age 

and race when adjusting for BMI-related misclassification of obesity status. Our results 

highlight that not only does the relationship between BMI and body fat change as women 

age, the change is differs according to race.24,26

There has been debate in the scientific literature about whether there is a need for population 

subgroup-specific BMI-cutpoints to define obesity or whether BMI is the best measure to 

use to assess obesity altogether.26,42,43 Asian-specific BMI cutpoints are now widely 

recognized, yet a BMI cutpoint of 30 kg/m2 is used to define obesity in all other adult 

populations.44 Age- and sex- specific BMI Z-scores are used to define obesity in children 

and adolescents to account for the fact that childhood is a time of rapid growth and physical 

change.45,46 However, the same considerations are not made for older adults, despite our 
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knowledge of the physical changes that occur with aging. The present results demonstrate 

that there is potentially a need to consider different cutpoints to define obesity in older 

women or move away from using BMI cutpoints altogether. One interesting suggestion is 

that BMI may be a useful tool to define obesity at a population level (i.e., as a screening tool 

or to describe differences in populations) but should not be used to make individual level 

treatment decisions, owing to the fact that it does not account for location of adipose tissue 

(visceral vs. subcutaneous) nor body composition (muscle vs. lean vs. bone mass).47 There 

is also much work to be done to understand the relationship between BMI-defined obesity 

and disease risk in older women.48,49

To the best of our knowledge, the present results are the first to use stratified probabilistic 

bias analysis to account for the effect of race and age on obesity-related exposure 

misclassification. Non-differential misclassification of a binary exposure typically leads to a 

bias toward the null, thus failing to account for this type of misclassification produces 

attenuated effect estimates.29,50,51 This is consistent with our results, as we found that 

conventional estimates were nearer to the null than bias-adjusted estimates, although in some 

strata, there was overlap in the confidence intervals for bias-adjusted and conventional 

estimates. The logic behind this is straightforward: if non-differential exposure 

misclassification produces attenuated effect estimates, adjusting for this bias should result in 

increased effect estimates. An interesting avenue for future research is to investigate whether 

this form of exposure misclassification bias has produced a systematic underestimate of 

obesity-related mortality risks in older adults in the scientific literature.

Although the link between obesity and mortality has been well-established in young and 

middle-aged adults, there is less consensus about the effect of obesity on mortality in older 

adults.1,52 In a meta-analysis examining the effect of obesity on mortality, Flegal and 

colleagues reported that obesity (BMI ≥30 kg/m2) was not associated with mortality in 

adults over age 65 (HR=1.02; 95% CI=0.81–1.29). Other WHI investigators have also 

questioned the strength of the obesity–mortality relationship in postmenopausal women.7,41 

Research by Chen et al. demonstrated a decrease in the hazard ratio of mortality comparing 

obese (BMI 30–34.9 kg/m2) to normal weight (BMI 18.5 to 24.9 kg/m2) as women age but 

no evidence of effect measure modification by race (HRwhite=1.02; 95% CI=0.97, 1.07 and 

HRblack=1.10; 95% CI=0.93, 1.31).41 Previous work in the WHI has not explored the 

combined effect of age and race on the obesity–mortality relationship. The bias-adjusted risk 

differences we present herein do not show a consistent pattern of age-attenuation, but the 

hazard ratios do. This highlights an important point for investigators to consider when 

choosing between absolute and relative effect estimates.53 One hypothesized explanation for 

the previously documented attenuation of obesity-related mortality in the literature is related 

to an increase in potential exposure misclassification bias when women age. As exposure 

misclassification increases, so too would the magnitude of the downward bias influencing 

effect estimates of the obesity–mortality relationship, producing an apparent attenuation of 

the effect. Another possible explanation for the different findings is the fact that our 

exposure was BMI ≥ 30kg/m2, whereas Bea and Chen et al., explored the effect of 5-unit 

BMI categories on mortality (i.e. 25–29.9, 30–34.9, and ≥ 40 kg/m2) compared with normal 

weight.
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The threat of BMI-related exposure misclassification is a well-recognized concern in 

epidemiologic research. Exposure misclassification is frequently mentioned as a concern or 

limitation of published research, but few authors incorporate quantitative bias analysis tools 

into their work.54 Probabilistic bias analysis is one empirical approach that can be used to 

adjust for misclassification. Our example included a misclassified exposure variable, but it 

could also be used to adjust for misclassification of confounding variables or outcome 

variables.31 It is a flexible approach; since the bias adjustment occurs before any statistical 

modeling, the re-classified variables can then be used in any type of statistical analysis 

ranging from simple linear or logistic regression to survival analysis or complex analyses 

like inverse probability weighting or g-estimation.31,32 A software macro has been 

developed to facilitate implementation of this bias analysis technique in SAS, and all Stata 

code from the present analysis is available in eAppendix 2. Other methods of quantitative 

bias analysis are also available but rely on adjusting sensitivity analyses of summary effect 

estimates.55,56

Our study has some limitations. For the purpose of conducting the bias analysis, we used 

BMI as a dichotomous variable. Dichotomizing a continuous variable is associated with a 

loss of information and specific assumptions (i.e., assuming individuals close to, but on 

opposite sides of the cutpoint are very different from each other).57 We used DXA-defined 

body fat percent as the gold standard measure of adiposity. A strong body of literature 

demonstrates that body fat percent is an appropriate reference standard to use as a true 

measure of adiposity, but there is some debate about which cutoff point should be used to 

define obesity according to body fat percent.4,24,25,40 Using body fat percent from a DXA 

scan as the gold standard does not incorporate information about the distribution of adipose 

tissue or numerous biologic complexities associated with different types of fat tissues which 

may impact estimates of the obesity-mortality relationship.47 Also, since the women in the 

WHI cohort are all older and postmenopausal, our results are not generalizable to men or 

younger women, and it is possible that restriction to women who survived to cohort entry 

induced some selection bias.58 Finally, we recognize that differences in the BMI–body fat 

percent relationship may exist for Hispanic women compared with non-Hispanic Black and 

non-Hispanic white women. As such, in eAppendix 5 we have included supplemental 

analyses in Hispanic women from the WHI exploring the validity of BMI and adjustment for 

BMI-related exposure misclassification.

Balancing these limitations, there are notable strengths of the present work. The large, well-

characterized WHI cohort has excellent follow-up and is linked with the National Death 

Index. All anthropometric variables were measured using standardized techniques. The 

study investigators recruited women at three study sites to participate in the DXA subcohort, 

producing a valuable internal validation subsample. Our study makes a methodologic 

contribution to the epidemiologic literature by extending probabilistic bias analysis to 

include stratified bias analysis for exposure misclassification in settings when there is 

potential effect measure modification. The present results demonstrate the importance of 

incorporating probabilistic bias analysis in aging research, particularly researched focused 

on the effect of obesity in postmenopausal women.
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Figure 1. 
Calculating positive predictive value and negative predictive value using observed data, 

sensitivity, and specificity. Note: E indicates exposure status (E+ for exposed, E− for 

unexposed) and D indicates outcome status (D+ for deceased, D− for non-deceased). TP = 

true positive; TN= true negative; FP= false positive; FN= false negative; PPV= positive 

predictive value; NPV=negative predictive value.
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Figure 2. 
Comparison of baseline body weight, total body fat, total lean mass, and bone mineral 

density (BMD) T-score and age among non-Hispanic (NH) white and non-Hispanic (NH) 

black women.
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Table 1

Demographic characteristics comparing the Women’s Health Initiative cohort (observational study and clinical 

trial) and WHI DXA sub-cohort at baseline

WHI cohort (n=131,812) WHI DXA sub-cohort (n=11,018)

Age (%)

 50–59 years 33 34

 60–69 years 45 43

 >70 years 22 23

Race/ethnicity

 Non-Hispanic Black 9 15

 Non-Hispanic White 83 77

 Hispanic 4 7

 Other* 4 2

Education (%)

 Some high school 5 9

 High school diploma or GED 17 23

 Post-secondary 49 46

 Post-graduate 29 22

Income

 <$50,000 62 74

 $50,000–$75,000 20 15

 >$75,000 19 11

 Current smokers (%) 7 8

 Current HRT users (%) 40 36

 Married (%) 61 61

 Moderate alcohol intake (1–7 drinks per week; %) 26 20

 Employed (%) 37 32

 Clinical trial participant, % 42 42

 Recreational physical activity (total MET hours per week, mean ± SD) 12 ± 14 11 ± 14

 Age at menopause, mean ± SD 48 ± 6 48

Note:

*
Other race/ethnicity consisted of individuals who self-reported American Indian or Alaska Native, Asian or Pacific Islander, or Other
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Table 4

Risk difference (RD) per 10,000 and hazard ratios (HR) for the effect of obesity on all-cause mortality 

comparing conventional analysis using measured BMI (conventional estimate) and bias analysis adjusting for 

misclassification (bias-adjusted estimate).

Non-Hispanic White Non-Hispanic Black

Conventional estimatea
(95% CI)

Bias-adjusted Estimatea,b
(95% SI)

Conventional estimatea
(95% CI)

Bias-Adjusted Estimatea,b
(95% SI)

RD per 10,000

 50–59 170
(100, 230)

353
(275, 431)

150
(−20, 330)

340
(98, 591)

 60–69 270
(190, 340)

651
(588, 713)

60
(−17, 290)

794
(352, 1284)

 70–79 290
(140, 440)

466
(278, 654)

27
(−25, 800)

779
(6, 1571)

Hazard ratio

 50–59 1.34
(1.22, 1.46)

1.82
(1.63, 2.01)

1.22
(1.05, 1.40)

1.67
(1.26, 2.23)

 60–69 1.22
(1.11, 1.32)

1.63
(1.50, 1.76)

1.05
(0.91, 1.22)

1.94
(1.39, 2.81)

 70–79 1.13
(1.07, 1.21)

1.24
(1.15, 1.33)

1.15
(0.87, 1.52)

1.54
(1.01, 2.22)

Note:

a
Models were adjusted for smoking status, physical activity, hormone therapy use, years since menopause, education, income, marital status, 

alcohol consumption, and employment. SI =simulation interval, CI = confidence interval.

b
Adjusted for systematic and random error (total error).
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